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EXISTENCE AND UNIQUENESS OF GLOBAL WEAK SOLUTIONS TO1

STRAIN-LIMITING VISCOELASTICITY WITH DIRICHLET BOUNDARY2

DATA∗3

MIROSLAV BULÍČEK† , VICTORIA PATEL‡ , ENDRE SÜLI§ , AND YASEMIN ŞENGÜL¶4

Abstract. We consider a system of evolutionary equations that is capable of describing certain viscoelastic5
effects in linearized yet nonlinear models of solid mechanics. The constitutive relation, involving the Cauchy stress,6
the small strain tensor and the symmetric velocity gradient, is given in an implicit form. For a large class of7
these implicit constitutive relations, we establish the existence and uniqueness of a global-in-time large-data weak8
solution. Then we focus on the class of so-called limiting strain models, i.e., models for which the magnitude of9
the strain tensor is known to remain small a priori, regardless of the magnitude of the Cauchy stress tensor. For10
this class of models, a new technical difficulty arises. The Cauchy stress is only an integrable function over its11
domain of definition, resulting in the underlying function spaces being nonreflexive and thus the weak compactness12
of bounded sequences of elements of these spaces is lost. Nevertheless, even for problems of this type we are able13
to provide a satisfactory existence theory, as long as the initial data have finite elastic energy and the boundary14
data fulfil natural compatibility conditions.15

Key words. nonlinear viscoelasticity, strain-limiting theory, evolutionary problem, global existence, weak16
solution, regularity17
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1. Introduction. This paper is devoted to the study of the following nonlinear system of19

partial differential equations (PDEs).We assume that Ω ⊂ R
d is a given bounded open domain.20

We denote the associated parabolic cylinder by Q := (0, T ) × Ω and its spatial boundary by21

Γ := (0, T ) × ∂Ω, where T > 0 is the length of the time interval of interest. For given data22

GGG : Rd×d
sym → R

d×d
sym, f : Q → R

d, uI : Ω → R
d, v0 : Ω → R

d, uΓ : Γ → R
d and α, β > 0, we seek a23

couple (u,TTT) : Q → R
d × R

d×d
sym satisfying24

∂2
ttu− divTTT = f in Q,(1.1a)25

αεεε(u) + βεεε(∂tu) = GGG(TTT) in Q,(1.1b)26

u(0) = uI , ∂tu(0) = v0 in Ω,(1.1c)27

u = uΓ on Γ.(1.1d)2829

Here, (1.1a) represents an approximation1 of the balance of linear momentum, where f is the30

density of the external body forces, u is the displacement, TTT denotes the Cauchy stress tensor and31

the operator div denotes the divergence operator with respect to the spatial variables x1, . . . , xd.32

The Cauchy stress tensor TTT is implicitly related to the small strain tensor εεε(u) := 1
2 (∇u+(∇u)T)33

and to the symmetric velocity gradient εεε(∂tu) := ∂t(εεε(u)) via (1.1b). The initial displacement and34

the initial velocity are given by (1.1c) and the Dirichlet boundary condition for the displacement35
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1In fact, the density ̺ of the solid should also appear in (1.1a). In principle, ̺ is a function of space and should

satisfy the equation for the balance of mass. Since we are dealing with small strains here, that is, the case when
the displacement gradient of the solid is small, assuming that the solid is homogeneous at initial time t = 0, we
consider the density to be equal to a constant for all times t ∈ (0, T ). We scale the density to be identically equal
to one for simplicity. We refer also to the discussion in [8]. However, under suitable assumptions, we can extend
the results presented herein to the case of variable density.
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2 M. BULÍČEK, V. PATEL, E. SÜLI, AND Y. ŞENGÜL

is represented by (1.1d). A more detailed discussion concerning the relevance of (1.1) to problems36

in viscoelasticity is contained in Section 1.2.37

It remains to specify the form of the implicit constitutive law (1.1b). The minimal assumptions38

imposed on the mapping GGG throughout the paper are the following. We assume that the function39

GGG : Rd×d
sym → R

d×d
sym is a continuous mapping such that, for some p ∈ [1,∞), some positive constants40

C1 and C2, and for all TTT, WWW ∈ R
d×d
sym , the following inequalities hold:41

(

GGG(TTT)−GGG(WWW)
)

· (TTT−WWW) ≥ 0,(A1)42

GGG(TTT) ·TTT ≥ C1|TTT|
p − C2,(A2)43

|GGG(TTT)| ≤ C2(1 + |TTT|)p−1,(A3)4445

where | · | stands for the usual Frobenius matrix norm. Assumptions (A1)–(A3) are sufficient for46

the existence and uniqueness of a weak solution provided that p ∈ (1,∞). For p = 1, however, we47

must impose a more restrictive assumption because of the lack of compactness experienced when48

working in L1(Q). Namely, we assume that there exists a strictly convex function φ ∈ C2(R+;R+)49

such that φ(0) = φ′(0) = 0, |φ′′(s)| ≤ C(1 + s)−1 for every s ∈ R+, and for all TTT ∈ R
d×d
sym there50

holds51

GGG(TTT) =
φ′(|TTT|)TTT

|TTT|
.(A4)52

53

We note that the structure of the constitutive relation (1.1b) is vital to many of the estimates in54

our work. In particular, we have the following memory kernel structure:55

εεε(u(t)) = e−
α
β
tεεε(u(0)) +

∫ t

0

e
α
β
(τ−t)

β
GGG(TTT(τ)) dτ.56

57

This representation of the strain εεε(u) allows us to obtain bounds on this term, given bounds on58

the initial strain εεε(u(0)) and the stress tensor TTT.59

Concerning the initial and boundary data, we assume that we are given a function u0 : Q → R
d60

fulfilling, in an appropriate sense, the initial and boundary conditions61

u0(0) = uI in Ω,

∂tu0(0) = v0 in Ω,

u0 = uΓ on Γ.

62

Although not the standard approach, such a joint treatment of the initial and boundary conditions63

simplifies the exposition here, as it avoids nonessential technical details concerning the choice of64

function spaces for the data and the corresponding trace theorems. We henceforth formulate all65

assumptions on the initial and boundary data in terms of u0, rather than uI , v0 and uΓ. While66

this choice may appear nontrivial upon first glance, the function spaces for u0 stated below are67

the same as those for the weak solution u. Hence it is necessary that such a u0 exists. Otherwise68

our construction of a weak solution would not be possible.69

1.1. Statement of the main results. First, we formulate our result for the case when70

p > 1. Here, p and p′ are dual exponents.71

Theorem 1.1. Let 1 < p < 2d/(d − 2), let GGG satisfy (A1), (A2) and (A3), and let α, β > 072

be arbitrary. Assume that the data satisfy the following hypotheses:73

u0 ∈ W 1,p′

(0, T ;W 1,p′

(Ω;Rd)) ∩W 2,p(0, T ; (W 1,p′

0 (Ω;Rd))∗) ∩ C1([0, T ];L2(Ω;Rd)),

f ∈ Lp(0, T ; (W 1,p′

0 (Ω;Rd))∗).
(1.2)74

There exists a couple (u,TTT) fulfilling75

u ∈ C1([0, T ];L2(Ω;Rd)) ∩W 1,p′

(0, T ;W 1,p′

(Ω;Rd)) ∩W 2,p(0, T ; (W 1,p′

0 (Ω;Rd))∗),(1.3)76

TTT ∈ Lp(0, T ;Lp(Ω;Rd×d
sym

))(1.4)7778
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and solving (1.1) in the following sense:79

〈∂ttu,w〉+

∫

Ω

TTT · ∇w = 〈f ,w〉 ∀w ∈ W 1,p′

0 (Ω;Rd), for a.e. t ∈ (0, T ),(1.5)80

αεεε(u) + β∂tεεε(u) = GGG(TTT) a.e. in Q,(1.6)8182

and83

(1.7) u− u0 = 0 a.e. on Γ and u(0)− u0(0) = ∂tu(0)− ∂tu0(0) = 0 a.e. in Ω.84

Furthermore, the function u is unique. If, additionally, the mapping GGG is strictly monotonic, then85

TTT is also unique.86

Before proceeding, we first comment on the assertions of Theorem 1.1. The proof of Theo-87

rem 1.1 is based on the relevant a priori estimates. The function spaces considered in (1.3), (1.4)88

correspond to the structural assumptions imposed on GGG, namely the coercivity assumption (A2)89

and the growth condition (A3). Since p > 1, we have a “standard” function space setting, so the90

nonlinearity in (1.6) can be identified by using a modification of Minty’s method. Theorem 1.191

can also be understood as an extension of the results established in [8]. In a similar way to the92

work presented here, the authors of [8] treat a viscoelastic solid model of generalized Kelvin–Voigt93

type. However, they consider a constitutive relation for the Cauchy stress of the following explicit94

form:95

TTT = TTTel(εεε(u)) +TTTvis(∂tεεε(u)) a.e. in Q.9697

The regularity results for such models are available in [7]. It is remarkable that while (1.6) can98

be fully justified from the physical point of view via implicit constitutive theory, (see [29], [31] for99

example) the above explicit form TTT = TTTel +TTTvis can be justified for particular choices of TTTel and100

TTTvis only.101

In contrast with the case p > 1, almost none of the above applies in the case that p = 1,102

or for the limit, as p → 1+, of the sequence of solutions constructed in Theorem 1.1. Indeed,103

for similar models in the purely elastic, steady setting, it was demonstrated in [3] that TTT is, in104

general, a Radon measure and therefore one cannot consider (1.6) pointwise in Q. Nevertheless,105

it was shown there that under some structural assumptions on GGG (corresponding to (A4)), TTT is106

integrable.107

A similar situation is studied in [2] but with p → ∞. In general, this leads to solutions u in108

the spaces of bounded variation. However, under a structural assumption related to (A4), one can109

again overcome such difficulties and show the existence of a solution that belongs to a Sobolev110

space. We expect something similar in our setting when p = 1. Therefore, in order to avoid111

difficulties associated with the interpretation of ∂ttu and the interpretation of the sense in which112

the initial data are attained, we assume here, for simplicity, that the right-hand side f ∈ L2(Q;Rd).113

We also use a variational formulation which is slightly different from (1.5). Nevertheless, we will114

show that (1.5) still holds locally in (0, T ) and, in the case of more regular initial data, we are115

able to show the continuity with respect to time of u and ∂tu on the whole time interval [0, T ].116

Inspired by [3], if p = 1 we assume in addition to (A1)–(A3) that we have (A4). It follows117

from these structural assumptions that, for all s ∈ R+, we have118

C1s

2
− C2 ≤ φ(s) ≤ C2s,

0 ≤ φ′(s) ≤ C2.
119

Since φ is convex, we deduce that there exists an L > 0 such that120

(1.8) L := lim
s→∞

φ′(s) ≥ φ′(t) ∀ t ∈ R.121

The number L plays an essential role in the subsequent analysis, in particular in the assumptions122

on the initial and boundary data. Indeed, thanks to (A4), we see that123

(1.9) L = lim
|WWW|→∞

|GGG(WWW)| ≥ |GGG(TTT)| ∀TTT ∈ R
d×d
sym .124
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Hence, if (1.1b) is satisfied, we necessarily have that125

(1.10) |αεεε(u) + β∂tεεε(u)| ≤ L a.e. in Q.126

Consequently, if such a u exists, it is natural to assume that (1.10) must also hold for the initial127

and boundary data. That is, we must have128

(1.11) |αεεε(u0) + β∂tεεε(u0)| ≤ L a.e. in Q.129

In fact, we require in the existence analysis that (1.11) is satisfied with a strict inequality sign.130

We call this the safety strain condition.131

Theorem 1.2. For some strictly convex φ ∈ C2(R+;R+), let GGG satisfy (A1)–(A4) with p = 1.132

Assume that the data satisfy the following hypotheses:133

u0 ∈ W 1,∞(0, T ;W 1,2(Ω;Rd)) ∩W 2,1(0, T ;L2(Ω;Rd)),

f ∈ L2(0, T ;L2(Ω;Rd)),
(1.12)134

with the safety strain condition135

(1.13) ‖αεεε(u0) + β∂tεεε(u0)‖L∞(Q;Rd×d
sym ) < L,136

and for every δ > 0 we have137

(1.14) ess sup
(t,x)∈(δ,T )×Ω

|∂ttεεε(u0(t, x))| < ∞.138

There exists a unique couple (u,TTT) fulfilling139

u ∈ W 1,∞(0, T ;W 1,2(Ω;Rd)) ∩ C1([0, T ];L2(Ω;Rd)) ∩W 2,2(δ, T ;L2(Ω;Rd)),(1.15)140

εεε(u) ∈ L∞(Q;Rd×d
sym

),(1.16)141

∂tεεε(u) ∈ L∞(Q;Rd×d
sym

),(1.17)142

TTT ∈ L1(0, T ;L1(Ω;Rd×d
sym

)),(1.18)143144

for every δ > 0, and satisfying145

∫

Ω

∂ttu ·w +TTT · ∇w dx =

∫

Ω

f ·w dx ∀w ∈ W 1,∞
0 (Ω;Rd), for a.e. t ∈ (0, T ),(1.19)146

αεεε(u) + β∂tεεε(u) = GGG(TTT) a.e. in Q,(1.20)147148

and149

(1.21) u− u0 = 0 a.e. on Γ and u(0)− u0(0) = ∂tu(0)− ∂tu0(0) = 0 a.e. in Ω.150

This theorem answers the question of existence of weak solutions to the problem under the as-151

sumptions (A1)–(A4) when p = 1 and therefore provides an existence result for limiting strain mod-152

els where the symmetric displacement gradient and symmetric velocity gradient remain bounded.153

In Section 1.2, we discuss the physical background and the importance of this model.154

In our proof, we rely on an approximation of the strain-limiting problem where in the con-155

stitutive relation we replace GGG with GGGn(TTT) = GGG(TTT) + TTT

n
. However, if we consider a regularisation156

of the form GGGn(TTT) = GGG(TTT) + TTT

n(1+|TTT|1−
1
n )

, taking the limit n → ∞ exactly corresponds to taking157

the limit p → 1+. Such a regularisation is considered in [9], for example. However, in order to158

simplify the exposition, we only consider the linear regularisation term of the form TTT

n
.159

A similar existence result was established recently in [11]. However, there are certain essential160

differences, which make the results of the present paper much stronger. First, in [11] the authors161

only consider the prototypical model162

GGG(TTT) :=
TTT

(1 + |TTT|q)
1
q

,(1.22)163

164
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while we are able to cover here a more general class of models under hypothesis (A4). The
corresponding potential φ (whose existence is assumed in (A4)) for the model (1.22) is given by

φ(s) :=

∫ s

0

t

(1 + tq)
1
q

dt, s ∈ R+.

The role of the parameter q in (1.22) is indicated in Fig. 1. Furthermore, the paper [11] is

|TTT|

|GGG(TTT)|

1

Fig. 1: Dependence of |GGG| on |TTT| for the prototype model (1.22). The three curves correspond to
q = 1 (solid curve), q = 2 (dashed curve) and q = 10 (dash-dotted curve). Clearly, |GGG(TTT)| tends
to 1 more rapidly with increasing q when |GGG(TTT)| > 1.

165
concerned with the spatially periodic setting, which simplifies the analysis in an essential way,166

most notably with regards to the derivation of the relevant a priori estimates. We are not able167

to derive estimates of the same strength as those in [11]. This is the consequence of working in168

the nonperiodic setting, as well as the choice of a more general constitutive relation. However, by169

an application of Chacon’s biting lemma and Egoroff’s theorem, we are able to overcome these170

difficulties and obtain a complete existence result.171

Finally, in [11] the initial data are assumed to be quite regular. They are supposed to belong172

to the Sobolev space W k,2(Ω;Rd) with k > d
2 . This is related to the choice of the method used173

to prove the existence of a weak solution. In this paper we do not require such strong regularity174

of the initial data, although in the current setting it is difficult to describe the correct space-time175

trace spaces, because we are dealing with L∞-type spaces and symmetric gradients. Since we want176

to state the result in its full generality, and, in particular, to be able to admit time-dependent177

boundary data, we assume a certain compatibility condition via an a priori prescribed space-time178

function u0 that we use in order to impose the initial and boundary conditions. This further179

justifies our choice of working with a function u0 incorporating both the boundary and the initial180

data.181

The existence of u0 satisfying the safety strain condition (1.13) is necessary for the existence182

of a solution and is used when deriving appropriate a priori estimates. The assumption (1.12)1183

concerning the temporal regularity of u0 is required in order to ensure that u0 and ∂tu0 have184

meaningful traces at time t = 0. Finally, the assumption (1.14) prescribes the required temporal185

smoothness of the boundary data. It only involves t ∈ (δ, T ) for δ > 0. Hence it does not affect the186

regularity of the initial condition or the compatibility between the boundary and initial data. We187

give several examples for simplified settings regarding the boundary conditions in the following188

remark.189

Remark 1.3. We discuss two cases of boundary and initial data from (1.1c)–(1.1d) for which190

it is easy to construct a function u0 that satisfies the assumptions (1.12)–(1.14).191

Boundary data independent of time. Suppose that uΓ is independent of time and uI ∈ W 1,2(Ω;Rd)192

satisfies the compatibility condition uI |∂Ω = uΓ. The boundary data are independent of time so193

it is natural to assume that v0 ∈ W 1,2
0 (Ω;Rd), where194

(1.23) ‖αεεε(uI) + βεεε(v0)‖L∞(Ω;Rd×d
sym) < L.195
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We set

u0(t, x) := e−
αt
β uI(x) +

αuI(x) + βv0(x)

α
(1− e−

αt
β ).

A direct computation yields that

∂tu0(t, x) = v0(x) e
−αt

β ,

and thus u0(0, x) = uI(x), ∂tu0(0, x) = v0(x) for x ∈ Ω and u0|Γ = uΓ. Moreover,

αεεε(u0) + β∂tεεε(u0) = αεεε(uI) + βεεε(v0).

Consequently, u0 satisfies (1.13) provided (1.23) holds. The validity of (1.14) is obvious.196

Time-dependent boundary data. In this setting, we assume the existence of a function ũ such that197

ũ(0, x) = uI(x) for x ∈ Ω and ũ|Γ = uΓ. In addition, we assume the natural compatibility198

condition v0(·) = ∂tuΓ(0, ·) on ∂Ω. We adopt the following assumption on ũ and v0:199

(1.24) ‖αεεε(ũ) + β(∂tεεε(ũ)− ∂tεεε(ũ(0, ·)) + εεε(v0(·)))‖L∞(Q;Rd×d
sym) < L.200

We define

u0(t, x) := ũ(t, x) +
β(v0(x)− ∂tũ(0, x))

α
(1− e−

αt
β ).

Clearly, u0(0, x) = ũ(0, x) = uI(x) for x ∈ Ω and u0 = uΓ on Γ. The time derivative of u0 is

∂tu0(t, x) = ∂tũ(t, x) + (v0(x)− ∂tũ(0, x)) e
−αt

β .

Thus ∂tu0(0, x) = v0(x) for x ∈ Ω. In addition, since

αεεε(u0) + β∂tεεε(u0) = αεεε(uI) + β(∂tεεε(uI)− ∂tεεε(uI(0)) + εεε(v0)),

we see that (1.13) is equivalent to (1.24). The assumption (1.14) is only related to our extension201

of the boundary data inside of Ω and the temporal regularity of the boundary data.202

1.2. Relevance to the modelling of viscoelastic solids. With these results in mind, we203

now discuss the importance of such problems. We often encounter materials exhibiting viscoelastic204

response. By definition, viscoelasticity involves the material response of both elastic solids and205

viscous fluids, which can be modelled linearly or nonlinearly. We refer to [13] for an extensive206

overview. On the other hand, it is well-known that implicit constitutive theories allow for a more207

general structure in modelling than explicit ones (cf. [29], [30]), where the strain can be given208

as a function of the stress. Indeed, this is the case in our constitutive relation (1.1b) in system209

(1.1). Rajagopal’s main contribution [31] to the theory was to show that a nonlinear relationship210

between the stress and the strain can be obtained after linearizing the strain. The relation (1.1b)211

is obtained by Erbay and Şengül in [18] as a result of application of the linearization procedure212

introduced by Rajagopal (see e.g., [33] for details) to the relation between the stress and the213

strain tensors under the assumption that the magnitude of the strain is small. For models of214

this type it is possible that once the magnitude of the strain has reached a certain limiting value215

(as is the case in Theorem 1.2), any further increase of the magnitude of the stress causes no216

changes in the strain. These models are called strain-limiting and/or strain-locking models and217

such behaviour has been observed in numerous experiments (see [15] and references therein). For218

a further discussion of such models in the purely elastic setting or in the setting of the generalized219

Kelvin–Voigt model we refer to [8], and in the viscoelastic setting to [15, 18, 14, 12].220

We note that the term ideal-locking material was introduced by Prager [28] (see also [27]). In221

the extreme cases, the strain (resp. stress) can increase arbitrarily without any further increase in222

the stress (resp. strain). However, in his study Prager neglects the elastic stresses in comparison223

to the much larger stresses that can be supported in the locked state. This is a more limited224

setting than that given by Rajagopal’s framework of implicit constitutive theory.225
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A potential application of strain-limiting models is in the context of fracture mechanics and226

crack propagation. Under a linear relationship between the stress and strain, in the anti-plane227

setting, the stress and the strain behave like r−
1
2 , where r is the distance to the crack tip [32].228

In particular, both the stress and the strain experience a singularity at the crack tip. However,229

this contradicts the standing assumption in the derivation of the model, namely, that one is in230

the small-strain regime. A better model for studying fracture in brittle materials might ensure231

that the magnitude of the strain tensor remains bounded a priori even in the presence of a stress232

singularity, as is the case for the model considered here.233

There has been some analysis in the literature of strain-limiting models of fracture, particularly234

in the time-independent setting from a computational point of view. In [24, 25], the authors235

consider a strain-limiting model in the anti-plane strain setting, studying a plate with a V-notch.236

The one-dimensional setting allows the reduction of the problem by use of the Airy stress function.237

Studying the problem numerically, the stress is shown to concentrate around the tip of the V-notch.238

We notice that this contradicts the asymptotic analysis performed in [35], where the stress is shown239

to vanish in the vicinity of the crack tip. This conflict is likely due to the fact that solutions of240

nonlinear PDEs can exhibit very different behaviour to what is suggested by formal asymptotic241

analysis. We mention the similar studies in [26, 10, 21], considering different geometric settings.242

Furthermore, there has been recent study of a finite-element discretisation of problems based243

on strain-limiting elasticity in [37]. The authors study the time-independent problem in three244

different crack geometries in the anti-plane setting. The numerical results presented in [37] indicate245

that the linearised strain remains bounded a priori below a fixed value, while the value of the stress246

is able to be very high. Indeed, near the crack tip, the stress grows significantly faster than the247

strain. The strain does not exhibit a singularity near the crack tip, in contrast to the linear model,248

which is also studied in [37] for comparison.249

The aforementioned literature all deal with time-independent problems. Here, we only study250

the time-dependent problem. Furthermore, we only consider viscoelastic solids. However, the251

study of implicitly constituted fluids is a very rich, active area of current research. We refer to252

[29, 30] for the modelling background on these fluids, of which strain-limiting fluids are a special253

subclass. For the corresponding mathematical analysis, we point the reader to [4] for the steady254

case and [5] for the unsteady case; however, we note that those studies do not cover a strain-255

limiting problem analogous to the one explored here. We refer to [6] for the analysis of a related256

parabolic type problem with the bounded gradient.257

Strain-limiting problems have also been considered in the quasi-static setting, that is, with the258

term ∂2
ttu is neglected from the balance of momentum equation. In [22], the authors consider the259

quasi-static system in a domain with a fixed crack set. Under certain conditions on the constitutive260

relation, they show that a weak solution of the problem exists. However, they are only able to261

show that a weak solution exists in the space of measures. In particular, the stress tensor is shown262

to be in the space C([0, T ];M(Ω)d×d), where M(Ω) is the space of Radon measures on Ω. We263

mention also [23] for a similar problem.264

A similar problem is studied in [16] but in an abstract setting. The authors consider265

∂2
ttu+A∂tu+Bu = f,266267

where u is scalar-valued. Assuming that A, B are operators on ‘nice’ function spaces and by268

considering a sequence of approximating problems based on temporal discretization, the authors269

prove the existence of a weak solution to this doubly nonlinear problem. We also mention the270

related work [17], where the authors consider271

∂2
ttu− div(F (∇∂tu) +∇u) = f,272273

supplemented with a Dirichlet boundary condition. The function F satisfies a suitable growth274

condition; namely, F is assumed to be a continuous, monotone function such that there exists an275

N -function (see [1, p. 228] for the definition) ϕ for which276

F (v) · v ≥ c
(

ϕ(v) + ϕ∗(F (v))
)

,277278
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where ϕ∗ is the convex conjugate of ϕ. The existence of such a ϕ ensures that one is not in279

any kind of strain-limiting setting. In particular, it is not the case that ∇u is a priori uniformly280

bounded on its domain of definition.281

Finally, we note the analysis in [36]. There, the author considers the system of equations282

∂2
ttu− div

(

GGG(∇∂tu,∇u)
)

= f .283284

The restrictions on GGG are however such that any physically realistic constitutive relation is ex-285

cluded. In particular, the uniform strict monotonicity assumption eliminates the strain-limiting286

case. However, the author suggests that the methods employed in the paper could be used in287

order to extend the results to physically more realistic cases. We note also that in [36] the full288

gradient is considered, rather than the symmetric gradient as is discussed here. One should refer289

to the review [13] for more related work on classical nonlinear viscoelasticity.290

Now we introduce some basic kinematics in order to discuss these limiting strain models from291

a mathematical perspective. We denote by u(X, t) := x(X, t) − X the displacement of a given292

body at a space-time point (X, t), where X is the position vector in the reference configuration293

and x(X, t) is the position vector in the current configuration. We denote the deformation of the294

body, which is assumed to be stress-free initially, by χ(X, t). The deformation gradient is defined295

as F = ∂χ/∂X. We define the left Cauchy–Green deformation tensor as B = FFT, the velocity296

as v = ∂χ/∂t and denote by DDD the symmetric part of the gradient of the velocity field LLL = ∇xv.297

Under the small displacement gradient assumption, that is,298

(1.25) ‖∇Xu‖L∞(Q;Rd×d) = O(δ), 0 < δ ≪ 1,299

one can consider the linearized strain defined by300

(1.26) εεε(u) =
1

2

[

∇Xu+ (∇Xu)T
]

.301

We consider a general constitutive relation between the Cauchy stress tensor TTT, the deformation B302

and the symmetric velocity gradient D. Noticing that B = I+2εεε+(∇Xu)(∇Xu)T and linearising303

under the assumptions (1.25), we obtain a relationship between the Cauchy stress, the linearised304

strain and the strain rate εεε(∂tu). In particular, we obtain (1.1b).305

As is explained in [15], in the purely elastic setting, starting from the following constitutive306

relation between the stress and the strain307

(1.27) GGG(TTT,BBB) = 0,308

for frame-indifferent and isotropic bodies, one can obtain the representation309

GGG(TTT,BBB) = χ0III+ χ1TTT+ χ2TTT+ χ3TTT
2 + χ4BBB

2 + χ5(TTTBBB+BBBTTT)

+ χ6(TTT
2BBB+BBBTTT2) + χ7(BBB

2TTT+TTTBBB2) + χ8(TTT
2BBB2 +BBB2TTT2),

(1.28)310

where the functions χi, i = 0, . . . , 8, depend only on the scalar invariants of TTT and BBB, which can311

be expressed in terms of312

trTTT, trBBB, trTTT2, trBBB2, trTTT3, trBBB3, trTTTBBB, trTTT2BBB, trTTTBBB2, trTTT2BBB2.313

Under the smallness assumption (1.25), we have that |BBB− (III+ εεε)| = O(δ2), with εεε = εεε(u). Thus,314

at the end of the linearization process, (1.28) gives a nonlinear relationship between TTT and εεε. In315

many studies a simpler subclass of constitutive relations than (1.28) is considered, namely316

(1.29) BBB = χ̃0III+ χ̃1TTT+ χ̃2TTT
2.317

Under the assumption (1.25), the equality (1.29) becomes318

(1.30) εεε = χ̄0III+ χ̄1TTT+ χ̄2TTT
2,319
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with some invariant-dependent coefficients χ̄i, i = 0, 1, 2. The analysis of a limiting strain problem320

with a constitutive relation of the form εεε = GGG(TTT), which is a more general version of (1.30), with321

a bounded mapping GGG, as those considered here, was also studied in [9], [3], where the authors322

highlight the analytical difficulties associated with such models, most notably the lack of weak323

compactness of approximations to the stress tensor in L1(Ω;Rd×d
sym). We rely on methods developed324

in [3] in order to show that (1.19) holds for our proposed solution of the problem. The additional325

time-dependence here presents further difficulties in the analysis. In particular, we must develop326

suitable space-time estimates.327

As is discussed in [34], we can consider a general implicit constitutive relation of the form328

(1.31) GGG(TTT,BBB,DDD) = 0.329

Motivated by the constitutive equation for the classical Kelvin-Voigt model and considering the330

simplification of (1.31) under the assumption of frame-indifference and isotropy, we obtain the331

following subclass of such implicit models:332

(1.32) αBBB+ βDDD = γ0III+ γ1TTT+ γ2TTT
2,333

where γi = γi(I1, I2, I3), i = 0, 1, 2, I1 = trTTT, I2 = 1
2 trTTT

2, I3 = 1
3 trTTT

3, for nonnegative constants334

α and β. We note that under assumption (1.25), we can interchange derivatives with respect335

to x and X. In particular, also assuming a similar smallness assumption for ‖∇Xv‖L∞(Q;Rd×d),336

the linearized counterpart of D can be identified with ∂tεεε = εεε(∂tu). Therefore, assuming (1.25)337

and writing the right-hand side of (1.32) more generally as a nonlinear function of TTT, one obtains338

(1.1b), as required.339

Models of the type (1.32) were considered in [34] in order to describe viscoelastic solid bodies.340

The model is a generalization of the classical (linear) Kelvin–Voigt model, which in one space341

dimension involves the constitutive relation342

(1.33) σ = Eǫ+ ηǫt,343

where σ denotes the scalar stress, ǫ the scalar strain, and E, η are constants signifying the modulus344

of elasticity and the viscosity, respectively. As mentioned previously, it is worth noting that similar345

models have been considered in [8, 7], where the authors assumed that the stressTTT was a sum of the346

elastic TTTel and viscous TTTvis parts. Considering implicit relations for each component separately,347

they obtained TTTel = HHH(εεε), TTTvis = GGG(εεεt) for nonlinear mappings HHH, GGG. However, the assumptions348

that were made there on HHH and GGG result in a problem that is not of strain-limiting type. This,349

together with the additive decomposition of the stress considered there, gives an analysis that is350

very different from the one performed here.351

There is some analysis, albeit limited, available in the literature for problem (1.1). In par-352

ticular, studies of the one-dimensional case have been performed. In [18], the authors derive the353

equation354

(1.34) σxx + βσxxt = g(σ)tt,355

using the equation of motion (1.1a) together with the constitutive relation (1.1b) and setting356

α = 1, with σ denoting the scalar stress. In (1.34), the nonlinearity g corresponds to GGG in problem357

(1.1). The authors investigate conditions on the function g under which travelling wave solutions358

exist. Furthermore, in [20] the authors prove the local-in-time existence of solutions for equation359

(1.34). In this work, we cannot proceed in the same way and derive a single equation, on account360

of the fact that we are not working in one spatial dimension. In particular, the symmetric gradient361

does not reduce to a classical gradient operator as in the one-dimensional case, a property that is362

exploited in [18] and [20].363

A related problem is studied in [19] where the authors look at a stress-rate problem rather364

than a strain-rate one. In the one-dimensional setting, this results in the equation365

(1.35) σxx + γσttt = h(σ)tt.366
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The constitutive law for the study is ǫ+γσt = h(σ). We note that the travelling wave solutions of367

equations (1.34) and (1.35) coincide. However, we do not attempt to treat the stress-rate problem368

in higher dimensions in this work.369

We close this section with a thermodynamical justification of the model (1.1). In particular,370

we show that an energy-dissipation balance holds and that the sum of the kinetic energy and the371

elastic energy is a decreasing function of time. We suppose that the constitutive relation can be372

written as373

αεεε(u) + βεεε(∂tu) =
∂ϕ

∂TTT
(TTT) =: GGG(TTT)374

375

where ϕ is a function from R
d×d to R+ defined by ϕ(TTT) = φ(|TTT|). We suppose that φ(0) = φ′(0) = 0376

and φ ∈ C2(R+;R+) is strictly convex. Clearly this is the case if (A4) holds. Under these377

assumptions, ϕ is also strictly convex, noting that φ is strictly increasing on [0,∞). Furthermore,378

GGG is monotone. We define the convex conjugate ϕ∗ by379

ϕ∗(εεε) = sup
TTT∈R

d×d
sym

(

εεε ·TTT− ϕ(TTT)
)

.380

We note that ϕ∗ is also convex and, for any TTT ∈ R
d×d
sym, the following identity holds:381

(1.36) ϕ∗(GGG(TTT)) + ϕ(TTT) = GGG(TTT) ·TTT.382

Thus, the function GGG−1 = ∂ϕ∗

∂TTT
is also monotone. With these facts in mind, formally testing (1.1a)383

against ∂tu and assuming the absence of body forces, we obtain384

(1.37)
1

2

d

dt

∫

Ω

|∂tu|
2 dx+

∫

Ω

TTT · εεε(∂tu) dx = 0.385

However, the integrand in the second term on the right-hand side can be rewritten as386

TTT · εεε(∂tu) =
∂ϕ∗

∂TTT
(αεεε(u)) · εεε(∂tu) +

(

TTT−
∂ϕ∗

∂TTT
(αεεε(u))

)

· εεε(∂tu)387

=
1

α
∂t(ϕ

∗(αεεε(u))) +
1

β

(

TTT−
∂ϕ∗

∂TTT
(αεεε(u))

)

· (GGG(TTT)− αεεε(u))388

=
1

α
∂t(ϕ

∗(αεεε(u))) +
1

β

(

TTT−GGG−1(αεεε(u))
)

· (GGG(TTT)− αεεε(u)).389
390

Substituting this back into (1.37) and defining TTT0 := GGG−1(αεεε(u)), we see that391

(1.38)
d

dt

(∫

Ω

1

2
|∂tu|

2 +
ϕ∗(αεεε(u))

α
dx

)

+
1

β

∫

Ω

(TTT−TTT0) · (GGG(TTT)−GGG(TTT0)) dx = 0.392

Recalling that GGG is monotone, we deduce that393

sup
t∈(0,T )

(∫

Ω

1

2
|∂tu|

2 +
ϕ∗(αεεε(u))

α
dx

)

≤

∫

Ω

1

2
|∂tu0(0)|

2 +
ϕ∗(αεεε(u0(0)))

α
dx.394

395

Consequently, the sum of the kinetic energy and elastic energy is decreasing. The extra term396

that appears in (1.38) corresponds to the dissipation. In particular, we have an energy-dissipation397

balance that holds in accordance with the laws of thermodynamics.398

The structure of the remainder of the paper is as follows. In Section 2 we prove Theorem 1.1.399

We structure the proof in the following way. First, in Section 2.1 we use a Galerkin method and400

find a weak solution to an approximate problem. In Section 2.2, we obtain uniform bounds on the401

sequence of Galerkin solutions, and use these in Section 2.3 in order to take the limit as n → ∞.402

Finally, we show that the limit is the correct one in Section 2.4. We prove uniqueness in Section403

2.5. In Section 3 we obtain further temporal and spatial regularity estimates for these solutions.404

Finally, in Section 4 we consider the case p = 1 and give the proof of Theorem 1.2.405
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2. Proof of Theorem 1.1. To prove the existence of a weak solution, we use a compactness
argument based on a sequence of Galerkin approximations. Since GGG is not invertible in general,
we introduce the following regularization:

GGGn(TTT) := GGG(TTT) + n−1|TTT|p−2TTT.

For all n ∈ N, the regularized mapping still satisfies (A1)–(A3), with C2 replaced by (C2 + 1).406

However, additionally, the inequality (A1) is strict whenever TTT 6=WWW. Therefore, it directly follows407

from the theory of monotone operators that there exists a continuous inverse GGG−1
n : Rd×d

sym → R
d×d
sym .408

2.1. Galerkin approximation. Let {ωj}
∞
j=1 be a basis2 of Wm∗,2

0 (Ω;Rd), which is or-409

thonormal in L2(Ω;Rd) for an arbitrary m∗ > d
2 + 1. We denote by Pn the projection of410

Wm∗,2
0 (Ω;Rd) onto the linear hull of {ωj}

n
j=1. This is a continuous linear operator by standard411

properties of Hilbert projections. The choice of m∗ guarantees that we have the continuous em-412

bedding Wm∗,2(Ω;Rd) ⊂ C1(Ω;Rd). In particular, the sequence of projections (Pnw)n is bounded413

in W 1,p′

(Ω;Rd), for every w ∈ Wm∗,2
0 (Ω;Rd), a fact that we use in later estimates.414

We look for a function un of the form415

un(t, x) = u0(t, x) +

n
∑

i=1

Cn
i (t)ωi(x),416

such that for all j = 1, 2, . . . , n and almost all t ∈ (0, T ) it solves the following problem:417
∫

Ω

∂2
ttu

n · ωj +GGG−1
n (αεεε(un) + β∂tεεε(u

n)) · ∇ωj dx = 〈f ,ωj〉,(2.1a)418

un(0) = u0(0),(2.1b)419

∂tu
n(0) = ∂tu0(0).(2.1c)420421

We denote by Cn the vector of coefficients (Cn
i )

n
i=1. It follows that (2.1b) and (2.1c) are equivalent422

to Cn(0) = 0 and ∂tC
n(0) = 0, respectively. Since GGG−1

n is continuous and the basis functions423

{ωj}
∞
j=1 are orthonormal in L2(Ω;Rd), equation (2.1a) reduces to424

∂ttC
n
i (t) = Fi(t,C

n(t), ∂tC
n(t)),425

where Fi is a Carathéodory mapping for every i = 1, 2, . . . , n. Hence, using standard Carathéodory426

theory for systems of ordinary differential equations, we deduce that there exists a solution on427

some maximal time interval (0, T ∗). Furthermore, either we must have |Cn(t)| + |∂tC
n(t)| → ∞428

as t → T ∗
− or we can extend the solution to the whole interval (0, T ). We next show that the latter429

is true by establishing uniform bounds on the sequence of Galerkin approximations.430

2.2. Uniform bounds. First, let us define431

TTTn := GGG−1
n (αεεε(un) + β∂tεεε(u

n)) ,432

which is clearly equivalent to433

(2.2) αεεε(un) + β∂tεεε(u
n) = GGG(TTTn) + n−1|TTTn|p−2TTTn.434

We multiply (2.1a) by ∂tC
n
j + α

β
Cn

j and sum the resulting identities with respect to the indices435

j = 1, . . . , n to obtain436

∫

Ω

∂ttu
n ·
[

∂t(u
n − u0) +

α

β
(un − u0)

]

+TTTn :
(αεεε(un) + β∂tεεε(u

n)

β
−

αεεε(u0) + β∂tεεε(u0)

β

)

dx

= 〈f , ∂t(u
n − u0) +

α

β
(un − u0)〉.

(2.3)

437

2Such a basis can be found by looking for eigenfunctions ωj ∈ W
m∗,2
0

(Ω;Rd) of the problem

−∆m∗

ωj = λjωj on Ω.
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It follows from (2.2) that438

TTTn ·

(

αεεε(un) + β∂tεεε(u
n)

β

)

=
1

β

(

GGG(TTTn) ·TTTn + n−1|TTTn|p
)

.439

Also, we can write440

∫

Ω

∂tt(u
n − u0) · (u

n − u0) dx =
d

dt

∫

Ω

∂t(u
n − u0) · (u

n − u0) dx−

∫

Ω

|∂t(u
n − u0)|

2 dx.441

Using these two identities in (2.3), we obtain442

1

2

d

dt

∫

Ω

|∂t(u
n − u0)|

2 +
2α

β
∂t(u

n − u0) · (u
n − u0) dx+

1

β

∫

Ω

GGG(TTTn) ·TTTn + n−1|TTTn|p dx

= 〈f , ∂t(u
n − u0)〉+

∫

Ω

TTTn · ∂tεεε(u0)− ∂ttu0 · ∂t(u
n − u0) dx

+
α

β

∫

Ω

|∂t(u
n − u0)|

2 − ∂ttu0 · (u
n − u0) +TTTn · εεε(u0) dx+ 〈f , (un − u0)〉.

(2.4)443

We define on [0, T ] the function444

Y n :=
1

4

∫

Ω

|∂t(u
n − u0)|

2 + |un − u0|
2 +

∣

∣

∣

∣

∂t(u
n − u0) +

2α

β
(un − u0)

∣

∣

∣

∣

2

dx.445

Using this, we rewrite the first term on the left-hand side of (2.4) as446

1

2

d

dt

∫

Ω

|∂t(u
n − u0)|

2 +
2α

β
∂t(u

n − u0) · (u
n − u0) dx =

d

dt
Y n −

(

α2

β2
+

1

4

)

d

dt

∫

Ω

|un − u0|
2 dx.447

Consequently, utilising this identity in (2.4), using (A2) to deal with the second term on the left-448

hand side, and applying the Hölder inequality to the terms on the right-hand side together with449

the Poincaré and Korn inequalities, it follows that450

d

dt
Y n +

C1

β

∫

Ω

|TTTn|p dx−

(

α2

β2
+

1

4

)

d

dt

∫

Ω

|un − u0|
2 dx

≤ C(‖εεε(un)‖p′ + ‖∂tεεε(u
n)‖p′ + ‖εεε(u0)‖p′ + ‖∂tεεε(u0)‖p′)(‖f‖

(W 1,p′

0
)∗

+ ‖∂ttu0‖(W 1,p′

0
)∗
)

+ C(‖εεε(u0)‖p′ + ‖∂tεεε(u0)‖p′)‖TTTn‖p + C (1 + Y n) ,

(2.5)451

where C is a generic constant that is independent of n. To bound the right-hand side, we use (2.2)452

to observe that453

∂t

(

e
α
β
tεεε(un)

)

=
e

α
β
t

β
(GGG(TTTn) + n−1|TTTn|p−2TTTn).454

After integration with respect to time, this yields455

εεε(un(t)) = e−
α
β
tεεε(u0(0)) + e−

α
β
t

∫ t

0

e
α
β
τ

β
(GGG(TTTn(τ) + n−1|TTTn(τ)|p−2TTTn(τ)) dτ.456

As discussed previously, this memory property follows from the specific structure of the constitutive457

relation. Namely, the elasticity and viscosity tensors are each a positive scalar multiple of the458

identity tensor. Using properties of the Bochner integral, it follows that459

‖εεε(un(t))‖p
′

p′ ≤ C

(∫ t

0

‖GGG(TTTn) + n−1|TTTn|p−2TTTn‖p
′

p′ dτ + ‖u0(0)‖
p′

1,p′

)

≤ C

(∫ t

0

‖TTTn‖pp dτ + ‖u0(0)‖
p′

1,p′ + 1

)

,

(2.6)460
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where for the second inequality we have used (A3). Consequently, using (2.6) and (2.2), we have461

the following bound:462

‖∂tεεε(u
n(t))‖p

′

p′ ≤ C

(

1 + ‖u0(0)‖
p′

1,p′ + ‖TTTn(t)‖pp +

∫ t

0

‖TTTn‖pp dτ

)

.(2.7)463

To bound the final term on the left-hand side of (2.5), we notice that performing differentiation464

in the time variable yields465

(2.8)

d

dt

∫

Ω

|un − u0|
2 dx =

∫

Ω

2∂t(u
n − u0) · (u

n − u0) dx

≤

∫

Ω

|∂t(u
n − u0)|

2 + |un − u0|
2 dx

≤ 4Y n.

466

Hence, using (2.6) and (2.7) for the terms appearing on the right-hand side of (2.5), using (2.8)467

for the last term on the left-hand side, and applying Young’s inequality to the resulting right-hand468

side, we deduce that469

d

dt

(

Y n +
C1

4β

∫ t

0

‖TTTn‖pp dτ

)

+
C1

4β
‖TTTn‖pp

≤ C

(

Y n +
C1

4β

∫ t

0

‖TTTn‖pp dτ

)

+ C sup
t∈[0,T ]

‖u0(t)‖
p′

1,p′

+ C

(

‖∂tεεε(u0)‖
p′

p′ + ‖f‖p
(W 1,p′

0
)∗

+ ‖∂ttu0‖
p

(W 1,p′

0
)∗

)

.

(2.9)470

Using Grönwall’s lemma and the assumptions on the data, we get that471

sup
t∈(0,T )

Y n(t) +

∫ T

0

‖TTTn‖pp dτ ≤ C(u0,f) + Y n(0) = C(u0,f).(2.10)472

From the definition of Y n, the bounds (2.6), (2.7), and Korn’s inequality, we deduce that473

(2.11) sup
t∈(0,T )

(

‖∂tu
n‖22 + ‖un‖22 + ‖un‖p

′

1,p′

)

+

∫ T

0

‖TTTn‖pp + ‖∂tu
n‖p

′

1,p′ dt ≤ C(u0,f).474

It remains to provide a bound on ∂ttu
n. We define V := {w ∈ Wm∗,2

0 (Ω;Rd), ‖w‖m∗,2 = 1}. Using475

the orthonormality of the basis and the continuity of Pn as a linear operator on Wm∗,2
0 (Ω;Rd),476

we deduce from (2.1a) that477

‖∂ttu
n(t)‖

(Wm∗,2
0

(Ω;Rd))∗
= sup

w∈V

∫

Ω

∂ttu
n(t) ·w dx

= sup
w∈V

∫

Ω

∂ttu
n(t) · Pnw dx

= sup
w∈V

(

〈f , Pnw〉 −

∫

Ω

TTTn(t) · ∇(Pnw) dx

)

≤ sup
w∈V

(

(‖f(t)‖
(W 1,p′

0
(Ω;Rd))∗

+ ‖TTTn(t)‖p)‖P
nw‖1,p′

)

≤ C sup
w∈V

(

(‖f(t)‖
(W 1,p′

0
(Ω;Rd))∗

+ ‖TTTn(t)‖p)‖P
nw‖m∗,2

)

≤ C(‖f(t)‖
(W 1,p′

0
(Ω;Rd))∗

+ ‖TTTn(t)‖p),

478

where we have used the fact that Wm∗,2(Ω;Rd) is continuously embedded into W 1,p′

(Ω;Rd).479

Therefore, it follows from (2.11) that480

(2.12)

∫ T

0

‖∂ttu
n‖p

(Wm∗,2
0

(Ω;Rd))∗
dt ≤ C

∫ T

0

‖f‖p
(W 1,p′

0
(Ω;Rd))∗

+ ‖TTTn‖pp dt ≤ C(u0,f).481
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2.3. Limit n → ∞. Using the bounds from Section 2.2 in conjunction with the reflexivity482

and separability of the underlying spaces, we can find a subsequence, that we do not relabel, such483

that484

(2.13)

GGG(TTTn) ⇀ ḠGG weakly in Lp′

(0, T ;Lp′

(Ω;Rd×d
sym)),

un ∗
⇀ u weakly∗ in W 1,∞(0, T ;L2(Ω;Rd)),

un ⇀ u weakly in W 1,p′

(0, T ;W 1,p′

(Ω;Rd)),

TTTn ⇀ TTT weakly in Lp(0, T ;Lp(Ω;Rd×d
sym)),

∂ttu
n ⇀ ∂ttu weakly in Lp(0, T ; (Wm∗,2

0 (Ω;Rd))∗).

485

Hence, we see that TTT fulfils (1.4) and u belongs to the first two spaces indicated in (1.3). In486

addition, thanks to the fact that W 1,p′

(Ω;Rd) is compactly embedded into L2(Ω;Rd), using the487

Aubin–Lions lemma, up to a further subsequence that we do not relabel, we have that488

(2.14)
un → u strongly in C([0, T ];L2(Ω;Rd)),

∂tu
n → ∂tu strongly in L2(0, T ;L2(Ω;Rd)) ∩ C([0, T ]; (Wm∗,2

0 (Ω;Rd))∗).
489

It follows directly from the fact that un(0) = u0(0) and ∂tu
n(0) = ∂tu0(0) and the convergence

result (2.14) that we have
u(0) = u0 and ∂tu(0) = ∂tu0(0).

Next, we let n → ∞ in (2.1a). Let φ ∈ C∞([0, T ]) be arbitrary. We multiply (2.1a) by φ and490

integrate the result over (0, T ) to get491

∫ T

0

〈∂ttu
n,ωj〉φ dt+

∫ T

0

∫

Ω

TTTn · ∇(ωjφ) dx dt =

∫ T

0

〈f ,ωj〉φ dt,492

for every j ∈ {1, . . . , n}. Thus, for a fixed j, we can let n → ∞. Using the weak convergence493

result (2.13), we deduce that494

∫ T

0

〈∂ttu,ωj〉φ dt+

∫ T

0

∫

Ω

TTT · ∇(ωjφ) dx dt =

∫ T

0

〈f ,ωj〉φ dt.495

Since j and φ are arbitrary, and recalling that {ωj}
∞
j=1 forms a basis of Wm∗,2

0 (Ω;Rd), it follows496

that497

(2.15) 〈∂ttu,w〉+

∫

Ω

TTT · ∇w dx = 〈f ,w〉 ∀w ∈ Wm∗,2
0 (Ω;Rd), for a.e. t ∈ (0, T ).498

Consequently, by the density ofWm∗,2
0 (Ω;Rd) inW 1,p′

0 (Ω;Rd), we see that, for almost all t ∈ (0, T ),

we have ∂ttu ∈ (W 1,p′

0 (Ω;Rd))∗. Furthermore, we have

‖∂ttu
n(t)‖

(W 1,p′

0
(Ω;Rd))∗

= sup
w∈W

1,p′

0
(Ω;Rd), ‖w‖1,p′=1

[

−

∫

Ω

TTTn(t) · ∇w dx+ 〈f(t),w〉

]

.

Using (2.11) and (2.13), it follows that499

(2.16)

∫ T

0

‖∂ttu
n‖p

(W 1,p′

0
(Ω;Rd))∗

dt ≤ C

∫ T

0

‖TTTn‖pp + ‖f‖p
(W 1,p′

0
(Ω;Rd))∗

dt ≤ C(u0,f).500

Hence, (2.15) can be strengthened so that (1.5) holds. In addition, by standard parabolic inter-501

polation and the fact that ∂tu0 ∈ C([0, T ];L2(Ω;Rd)), we see that u satisfies (1.3).502

Finally, letting n → ∞ in (2.2) and using (2.13), we see that503

(2.17) αεεε(u) + β∂tεεε(u) = GGG a.e. in Q.504

Hence, in order to show (1.6) and deduce the existence of a weak solution, it remains to show that505

GGG = GGG(TTT) a.e. in Q.506
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2.4. Identification of the nonlinearity. In order to identify the nonlinearity, we use mono-507

tone operator theory. Let φ ∈ C1
0((0, T )) be an arbitrary nonnegative function. We multiply (2.3)508

by φ and integrate the result over (0, T ). With the help of integration by parts, and the fact that509

un(0) = u0(0) and φ(0) = φ(T ) = 0, we observe that510

∫ T

0

∫

Ω

TTTn ·
(

∂tεεε(u
n) +

α

β
εεε(un)

)

φ dx dt

=

∫ T

0

∫

Ω

(

|∂t(u
n − u0)|

2

2
+

α

β
∂t(u

n − u0) · (u
n − u0)

)

φ′ dx dt

+
α

β

∫ T

0

∫

Ω

|∂t(u
n − u0)|

2φ dx dt+

∫ T

0

∫

Ω

TTTn ·
(

∂tεεε(u0) +
α

β
εεε(u0)

)

φ dx dt

+

∫ T

0

〈f − ∂ttu0, ∂t(u
n − u0) +

α

β
(un − u0)〉φ dt.

(2.18)511

Next, we use the weak convergence results (2.13) and the strong convergence results (2.14) to512

identify the limits on the right-hand side of (2.18). In particular, we see that513

lim
n→∞

∫ T

0

∫

Ω

TTTn ·
(

∂tεεε(u
n) +

α

β
εεε(un)

)

φ dx dt

=

∫ T

0

∫

Ω

(

|∂t(u− u0)|
2

2
+

α

β
∂t(u− u0) · (u− u0)

)

φ′ dx dt

+
α

β

∫ T

0

∫

Ω

|∂t(u− u0)|
2φ dx dt+

∫ T

0

∫

Ω

TTT ·
(

∂tεεε(u0) +
α

β
εεε(u0)

)

φ dx dt

+

∫ T

0

〈f − ∂ttu0, ∂t(u− u0) +
α

β
(u− u0)〉φ dt.

(2.19)514

Next, we use (1.5) to evaluate the terms on the right-hand side of (2.19). We note that, as a result515

of the regularity of u, both u − u0 and ∂t(u − u0) are admissible test functions in (1.5). Using516

these two choices as the test function w, multiplying the resulting equalities by φ and integrating517

over (0, T ), we can apply integration by parts in order to obtain the following identity:518

∫ T

0

∫

Ω

TTT ·
(

∂tεεε(u
n) +

α

β
εεε(un)

)

φ dx dt

=

∫ T

0

∫

Ω

(

|∂t(u− u0)|
2

2
+

α

β
∂t(u− u0) · (u− u0)

)

φ′ dx dt

+
α

β

∫ T

0

∫

Ω

|∂t(u− u0)|
2φ dx dt+

∫ T

0

∫

Ω

TTT ·
(

∂tεεε(u0) +
α

β
εεε(u0)

)

φ dx dt

+

∫ T

0

〈f − ∂ttu0, ∂t(u− u0) +
α

β
(u− u0)〉φ dt.

(2.20)519

Comparing (2.19) with (2.20), we see that520

(2.21) lim sup
n→∞

∫

Q

φTTTn · (αεεε(un) + β∂tεεε(u
n)) dx dt =

∫

Q

φTTT · (αεεε(u) + β∂tεεε(u)) dx dt.521
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Therefore, using the nonnegativity of φ, we observe that522

lim sup
n→∞

∫

Q

φGGG(TTTn) ·TTTn dx dt ≤ lim sup
n→∞

∫

Q

φ(GGG(TTTn) + n−1|TTTn|p−2TTTn) ·TTTn dx dt

(2.2)
= lim sup

n→∞

∫

Q

φTTTn · (αεεε(un) + β∂tεεε(u
n)) dx dt

(2.21)
=

∫

Q

φTTT · (αεεε(u) + β∂tεεε(u)) dx dt

(2.17)
=

∫

Q

φTTT ·GGGdx dt.

(2.22)523

The inequality (2.22) is the key to identifying the nonlinearity. LetWWW ∈ Lp(Q,Rd×d
sym) be arbitrary.524

Using the monotonicity assumption (A1), the weak convergence results (2.13), the bound (2.22)525

and the nonnegativity of φ, we obtain526

0 ≤ lim sup
n→∞

∫

Q

φ (GGG(TTTn)−GGG(WWW)) · (TTTn −WWW) dx dt ≤

∫

Q

φ
(

GGG−GGG(WWW)
)

· (TTT−WWW) dx dt.527

Setting WWW = TTT − κBBB for an arbitrary BBB ∈ Lp′

(Q;Rd×d
sym) and κ > 0, we divide through by κ to

deduce that

0 ≤

∫

Q

φ
(

GGG−GGG(TTT− κBBB)
)

·BBB dx dt.

Hence, since GGG is continuous, we let κ → 0+ and deduce that

0 ≤

∫

Q

φ
(

GGG−GGG(TTT)
)

·BBB dx dt.

As BBB and φ are arbitrary, we conclude that528

GGG = GGG(TTT) a.e. in Q.529

Thus we have proved the existence of a weak solution.530

2.5. Uniqueness of solutions. To complete the proof of Theorem 1.1, it remains to show531

uniqueness of the weak solution. To this end, let (u1,TTT1) and (u2,TTT2) be two weak solutions of532

(1.1) emanating from the same data. We denote u := u1 − u2. Then, using (1.5), we see that533

〈∂ttu,w〉+

∫

Ω

(TTT1 −TTT2) · εεε(w) dx = 0 ∀w ∈ W 1,p′

0 (Ω;Rd) and a.e. t ∈ (0, T ).534

We have that u and ∂tu belong to W 1,p′

0 (Ω;Rd) for almost all t ∈ (0, T ). Hence we can set535

w = β∂tu+ αu in the above to deduce that, for almost all t ∈ (0, T ), the following holds:536

d

dt

(∫

Ω

β

2
|∂tu|

2 + α∂tu · u dx

)

+

∫

Ω

(TTT1 −TTT2) · (β∂tεεε(u) + αεεε(u)) dx =

∫

Ω

α|∂tu|
2 dx.537

Following the same procedure that is used to derive the previous a priori estimates and using the538

constitutive relation (1.6), we obtain539

1

4

d

dt

∫

Ω

β|∂tu|
2 + β|u|2 + β

∣

∣

∣

∣

∂tu+
2α

β
u

∣

∣

∣

∣

2

dx+

∫

Ω

(GGG(TTT1)−GGG(TTT2)) · (TTT1 −TTT2) dx

=

∫

Ω

α|∂tu|
2 +

(

β +
α2

β

)

|u|2 dx

≤ C(α, β)

∫

Ω

β|∂tu|
2 + β|u|2 + β

∣

∣

∣

∣

∂tu+
2α

β
u

∣

∣

∣

∣

2

dx.

540

The second term on the left-hand side is nonnegative thanks to (A1) so we can apply Grönwall’s541

inequality. Since u(0) = ∂tu(0) = 0, we deduce that u = 0 a.e. inQ. In addition, by monotonicity,542

we also obtain that
(

GGG(TTT1)−GGG(TTT2)
)

· (TTT1 −TTT2) = 0 a.e. in Q. This proves that u1 = u2 a.e. in543

Q. If GGG is strictly monotone then also TTT1 = TTT2.544
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3. Regularity estimates. In this section we prove the higher regularity estimates for the545

solution constructed in Theorem 1.1. We note that this is an essential part in the proof of the546

existence of a solution for the limiting strain model, that is, the case p = 1. Indeed, as the547

focus turns to the limiting strain model, in this part we assume that there exists a strictly convex548

C2-function F : Rd×d
sym → R such that, for all TTT ∈ R

d×d
sym ,549

(3.1)
∂F (TTT)

∂TTT
= GGG(TTT).550

In this case, GGG is strongly monotone. In order to simplify the subsequent notation, for an arbitrary
TTT ∈ R

d×d
sym , we denote

A(TTT) :=
∂2F (TTT)

∂TTT∂TTT
=

∂GGG(TTT)

∂TTT
, Aij

kl(TTT) :=
∂GGGij(TTT)

∂TTTkl

.

We define a TTT-dependent scalar product on R
d×d
sym by551

(3.2) (VVV,WWW)A(TTT) := A(TTT)VVV ·WWW =

d
∑

i,j,k,l=1

∂GGGij(TTT)

∂TTTkl

VVVijWWWkl.552

The fact that (3.2) does indeed define a scalar product follows from the fact that GGG has a po-553

tential F . In particular, we know that for all TTT ∈ R
d×d
sym there holds

∂GGGij(TTT)
∂TTTkl

= ∂GGGkl(TTT)
∂TTTij

, that is,554

symmetry. Furthermore, A(TTT) is positive definite as a result of the convexity assumption.555

In what follows, we split the regularity estimates. First, we focus on time regularity. Then556

we consider regularity with respect to the spatial variable. We provide only a formal proof of the557

results. Nevertheless, the time regularity proof is fully rigorous since it can be deduced at the558

level of Galerkin approximations. The spatial regularity proof is only formal, but can be justified559

by using a standard difference quotient technique. We emphasise that we do not impose any560

coercivity and growth assumptions on A here because, in the case p = 1, we lose such information.561

We note that, if p ∈ (1,∞), one can usually assume that562

(3.3) |(VVV,WWW)A(TTT)| ≤ C3(1 + |TTT|)p−2 |VVV| |WWW|, (WWW,WWW)A(TTT) ≥ C4(1 + |TTT|)p−2 |WWW|2.563

Under assumption (3.3), the regularity estimates can be deduced in an easier way. However, they564

are not included here as the more challenging case of p = 1 is our primary interest. Also, it is worth565

observing that our prototype models (1.22) do not satisfy (3.3)2 and in general, the assumption566

(3.3)2 is not satisfied when p = 1.567

Defining the convex conjugate F ∗ of F as in Section 1.2, we recall that, from the definition568

of GGG, we have that569

(3.4) F (TTT) + F ∗(GGG(TTT)) = GGG(TTT) ·TTT.570

3.1. Time regularity. Here, we improve the bound on the time derivative. This bound is571

used in the existence proof for the limiting strain model in order to pass to the limit in the term572

∂ttu in the weak formulation. We formulate the following lemma locally in time in order to keep573

the initial data as general as possible.574

Lemma 3.1. Let p ∈ (1,∞) and suppose that (3.1) holds with GGG fulfilling (A1)–(A3). Assume575

that f ∈ L2(0, T ;L2(Ω;Rd)) and u0 ∈ W 2,p′

(δ, T ;W 1,p′

(Ω;Rd)) for every δ > 0. For any weak576

solution to (1.1) and for every δ > 0, the following bound holds:577

sup
t∈(δ,T )

∫

Ω

F ∗(GGG(TTT)) dx+

∫ T

δ

‖∂ttu‖
2
2 dt

≤ C(α, β)

(

∫ T

δ
2

∫

Ω

|f |22 + |∂tu|
2
2 + |∂ttu0|

2
2 + |∂tu0|

2
2 + |TTT · ∂t(β∂tεεε(u0) + αεεε(u0))| dx dt

)

+
C(α, β)

δ

∫ δ

0

∫

Ω

F ∗(αεεε(u(τ)) + β∂tεεε(u(τ))) + |∂tu(τ)|
2 dx dτ.

(3.5)578
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If additionally u0 ∈ W 2,p′

(0, T ;W 1,p′

(Ω;Rd)), we have the following global-in-time bound:579

sup
t∈(0,T )

∫

Ω

F ∗(GGG(TTT)) dx+

∫ T

0

‖∂ttu‖
2
2 dt

≤ C(α, β)

(∫

Q

|f |22 + |∂tu|
2
2 + |∂ttu0|

2
2 + |∂tu0|

2
2 + |TTT · ∂t(β∂tεεε(u0) + αεεε(u0))| dx dt

)

+ C(α, β)

∫

Ω

F ∗(αεεε(u0(0)) + β∂tεεε(u0(0))) + |∂tu0(0)|
2 dx.

(3.6)580

Proof. Recalling that f ∈ L2(0, T ;L2(Ω,Rd)), we set w := β∂tt(u − u0) + α∂t(u − u0) in581

(1.5) to observe that, for almost all t ∈ (0, T ),582

(3.7)

α

2

d

dt
‖∂tu‖

2
2 +

∫

Ω

β|∂ttu|
2 +TTT ·

(

α∂tεεε(u) + β∂ttεεε(u)
)

dx

=

∫

Ω

f ·
(

α∂t(u− u0) + β∂tt(u− u0)
)

+ ∂ttu ·
(

α∂tu0 + β∂ttu0

)

+TTT ·
(

α∂tεεε(u0) + β∂ttεεε(u0)
)

dx.

583

For the third term on the left-hand side of (3.7), using (1.1b), we see that

∫

Ω

TTT · (α∂tεεε(u) + β∂ttεεε(u)) dx =

∫

Ω

GGG−1(GGG(TTT)) : ∂tGGG(TTT) dx

=
d

dt

∫

Ω

F ∗(GGG(TTT)) dx,

recalling that GGG−1(TTT) = ∂F∗

∂TTT
(TTT). Thus, using this in (3.7) and applying Young’s inequality, we584

obtain the following bound:585

d

dt

(∫

Ω

F ∗(GGG(TTT)) +
α

2
|∂tu|

2 dx

)

+
β

2
‖∂ttu‖

2
2

≤ C(α, β)(‖f‖22 + ‖∂tu‖
2
2 + ‖∂ttu0‖

2
2 + ‖∂tu0‖

2
2) +

∫

Ω

TTT · ∂t(β∂tεεε(u0) + αεεε(u0)).

(3.8)586

Integrating (3.8) over (0, T ) and using the fact that

F ∗(GGG(TTT(0))) = F ∗(αεεε(u0) + β∂tεεε(u0)),

we deduce (3.6). Similarly, integrating (3.8) over (τ, t) where δ/2 ≤ τ ≤ δ ≤ t ≤ T are arbitrary,587

we deduce that588

sup
t∈(δ,T )

(∫

Ω

F ∗(GGG(TTT)) +
α|∂tu|

2

2
dx

)

+

∫ T

δ

β

2
‖∂ttu‖

2
2 dt

≤ C(α, β)

∫ T

δ
2

∫

Ω

|f |2 + |∂tu|
2 + |∂ttu0|

2 + |∂tu0|
2 + |TTT · ∂t(β∂tεεε(u0) + αεεε(u0))| dx dt

+ C(α, β)

∫

Ω

F ∗(αεεε(u(τ)) + β∂tεεε(u(τ))) + |∂tu(τ)|
2 dx.

(3.9)589

Integrating with respect to τ ∈ (δ/2, δ) and dividing by δ, we directly obtain (3.5).590

3.2. Spatial regularity. Here, we improve the spatial regularity of the weak solution. In591

particular, we prove a weighted bound on ∇TTT, which is a key tool for obtaining the existence of a592

weak solution for the limiting strain model, that is, in the case p = 1.593
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Lemma 3.2. Let the assumptions of Lemma 3.1 be satisfied. Also, assume that ∂tu0(0) ∈
W 1,2(Ω;Rd) and

∫ T

0

∫

Ω

|A(TTT)||TTT|2 + |A(TTT)||f |2 dx dt < ∞.

Then, for an arbitrary open set Ω′ ⊂ Ω′ ⊂ Ω, for any δ > 0, we have the following bound:594

sup
t∈(δ,T )

‖∂t∇u‖L2(Ω′) +
d
∑

k=1

∫ T

δ

∫

Ω′

(∂kTTT, ∂kTTT)A(TTT) dx dt

≤ C(Ω′, δ)

∫ T

0

∫

Ω

|TTT||GGG(TTT)|+ |A(TTT)||TTT|2 + |f |2 + |∇u|2 + |∂t∇u|2 + |A(TTT)||f |2 dx dt.

(3.10)595

If, additionally, u0 ∈ C1([0, T ];W 1,2(Ω;Rd)), then we also have596

sup
t∈(0,T )

‖∂t∇u‖L2(Ω′) +

d
∑

k=1

∫ T

0

∫

Ω′

(∂kTTT, ∂kTTT)A(TTT) dx dt

≤ C(Ω′)

∫ T

0

∫

Ω

|TTT||GGG(TTT)|+ |A(TTT)||TTT|2 + |f |2 + |∇u|2 + |∂t∇u|2 + |A(TTT)||f |2 dx dt

+ C‖∂t∇u0(0)‖
2
2.

(3.11)597

Proof. Fix an arbitrary nonnegative smooth compactly supported ϕ ∈ C∞
0 (Ω). For the test598

function in (1.5), we choose w := − div(ϕ2∇(αu+ β∂tu)). Then we integrate by parts to deduce599

the following identity:600

β

2

d

dt

∫

Ω

|∂t∇uϕ|2 dx+ α
d

dt

∫

Ω

∂t∇u · ∇uϕ2 dx

+

∫

Ω

d
∑

i,j,k=1

∂kTTTij∂j
(

ϕ2(α∂kui + β∂t∂kui)
)

dx

= −

∫

Ω

f · div
(

ϕ2∇(αu+ β∂tu)
)

dx+ α

∫

Ω

|∂t∇uϕ|2 dx.

(3.12)601

This can be rewritten in the more useful form602

d

dt

∫

Ω

β

4
|∂t∇uϕ|2 +

1

2β

∣

∣

∣
α∇uϕ+ β∂t∇uϕ

∣

∣

∣

2

dx+

∫

Ω

d
∑

i,j,k=1

∂kTTTij∂j
(

ϕ2(α∂kui + β∂t∂kui)
)

dx

= −

∫

Ω

f · div
(

ϕ2∇(αu+ β∂tu)
)

dx+ α

∫

Ω

|∂t∇uϕ|2 dx+
α2

2β2

∫

Ω

∂t∇u · ∇uϕ2 dx.

(3.13)

603

Next, we show that the second integral on the left-hand side is the key source of information. We604
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use (1.1b), integration by parts and the symmetry of TTT to observe that605

(3.14)
∫

Ω

d
∑

i,j,k=1

∂kTTTij∂j(ϕ
2(α∂kui + β∂t∂kui)) dx

=
d
∑

i,j,k=1

∫

Ω

∂kTTTij(ϕ
2(α∂k∂jui + β∂t∂k∂jui)) + 2∂kTTTijϕ∂jϕ(α∂kui + β∂t∂kui) dx

=

d
∑

i,j,k=1

∫

Ω

∂kTTTijϕ
2∂k(αεεεij(u) + β∂tεεεij(u)) + 4∂kTTTijϕ∂jϕ(αεεεik(u) + β∂tεεεik(u)) dx

− 2

d
∑

i,j,k=1

∫

Ω

∂kTTTijϕ∂jϕ(α∂iuk + β∂t∂iuk) dx

=

d
∑

i,j,k=1

∫

Ω

∂kTTTijϕ
2∂kGGGij(TTT)− 4TTTij∂k(ϕ∂jϕ)GGGik(TTT)− 4TTTijϕ∂jϕ∂kGGGik(TTT) dx

+

d
∑

i,j,k=1

∫

Ω

TTTij∂kj(ϕ
2)∂i(αuk + β∂tuk) dx+ 2

d
∑

i,j,k=1

∫

Ω

TTTijϕ∂jϕ∂i(α∂kuk + β∂t∂kuk) dx

=

∫

Ω

d
∑

k=1

(∂kTTTϕ, ∂kTTTϕ)A(TTT) − 4

d
∑

i,j,k=1

TTTij∂k(ϕ∂jϕ)GGGik(TTT)− 4

d
∑

i,j,k=1

TTTijϕ∂jϕ∂kGGGik(TTT) dx

−
d
∑

i,j,k=1

∫

Ω

∂jTTTij∂k(ϕ
2)∂i(αuk + β∂tuk) dx−

d
∑

i,j,k=1

∫

Ω

TTTij∂k(ϕ
2)∂ij(αuk + β∂tuk) dx

+ 2

d
∑

i,j,k=1

∫

Ω

TTTijϕ∂jϕ∂iGGGkk(TTT) dx

=:

6
∑

m=1

Im.

606

We need to determine what bounds can be deduced from (3.14). In particular, we show that the
terms I2, . . . , I6 can be bounded in terms of I1 and the data. The simplest bound is for I2. In
particular, it directly follows that

|I2| ≤ C(ϕ)

∫

Ω

|TTT| |GGG(TTT)| dx.

Letting δnk denote the Kronecker delta, in order to bound I3 we first rewrite it as

d
∑

i,j,k=1

TTTijϕ∂jϕ∂kGGGik(TTT) =

d
∑

i,j,k,l,m,n=1

δnkTTTijϕ∂jϕA
ik
lm(TTT)∂nTTTlm

=

d
∑

j,n=1





d
∑

i,k,l,m=1

Aik
lm(TTT)∂nTTTlmδnkTTTijϕ∂jϕ



 .

Using the Cauchy–Schwarz inequality and the fact that A generates a scalar product, applying
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Young’s inequality we find that

|I3| ≤ C

∫

Ω

∣

∣

∣

∣

∣

∣

d
∑

j,n=1





d
∑

i,k,l,m=1

Aik
lm(TTT)∂nTTTlmδnkTTTijϕ∂jϕ





∣

∣

∣

∣

∣

∣

dx

≤ C

∫

Ω

∣

∣

∣

∣

∣

d
∑

j,n=1





d
∑

i,k,l,m=1

Aik
lm(TTT)∂nTTTlmϕ∂nTTTikϕ





1
2

·





d
∑

i,k,l,m=1

Aik
lm(TTT)δnmTTTlj∂jϕδnkTTTij∂jϕ





1
2 ∣

∣

∣

∣

∣

dx

≤
I1
8

+ C(ϕ)

∫

Ω

|A(TTT)||TTT|2 dx.

The term I6 can be bounded in a very similar way. In particular, we have

|I6| ≤
I1
8

+ C(ϕ)

∫

Ω

|A(TTT)||TTT|2 dx.

For I4, we use the equation (1.1a) and Young’s inequality to obtain

|I4| =

∣

∣

∣

∣

∣

∣

d
∑

i,k=1

∫

Ω

(f i − ∂ttui)∂k(ϕ
2)∂i(αuk + β∂tuk) dx

∣

∣

∣

∣

∣

∣

≤ C(ϕ)

∫

Ω

|f |2 + |∂ttu|
2 + |∂t∇u|2 + |∇u|2 dx.

Finally, to evaluate I5, we first recall the following identity607

(3.15)
∂ij(αuk + β∂tuk)

= ∂i(αεεεjk(u) + β∂tεεεjk(u)) + ∂j(αεεεik(u) + β∂tεεεik(u))− ∂k(αεεεij(u) + β∂tεεεij(u)).
608

Then, we rewrite I5 with the help of (1.1b) to find that

I5 = −

d
∑

i,j,k=1

∫

Ω

TTTij∂k(ϕ
2) (∂iGGGjk(TTT) + ∂jGGGik(TTT)− ∂kGGGij(TTT)) dx.

Hence, we see that we are in the same situation as with the term I3 and we deduce that

|I5| ≤
I1
8

+ C(ϕ)

∫

Ω

|A(TTT)||TTT|2 dx.

Thus we have suitable bounds on the left-hand side of (3.13). We rewrite the first term on the609

right-hand side of (3.13) in the following way:610

∫

Ω

f · div(ϕ2(α∇u+ β∂t∇u)) dx

=

d
∑

i,j=1

∫

Ω

f i(∂j(ϕ
2)(α∂jui + β∂t∂jui) + ϕ2(α∂jjui + β∂t∂jjui)) dx

=

d
∑

i,j=1

∫

Ω

f i(∂j(ϕ
2)(α∂jui + β∂t∂jui) + ϕ2(2∂jGGGij(TTT)− ∂iGGGjj(TTT)) dx.

611
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Using Young’s inequality on the first term and a procedure similar to the one used for I3 for the612

second, we get613

∣

∣

∣

∣

∫

Ω

f · div(ϕ2(α∇u+ β∂t∇u)) dx

∣

∣

∣

∣

≤
I1
8

+ C(ϕ)

∫

Ω

|f |2 + |∇u|2 + |∂t∇u|2 + |A(TTT)||f |2 dx.

(3.16)614

Substituting the above bounds into (3.13) and using a similar procedure to the one used in615

the proof of Lemma 3.1, we deduce (3.11) and (3.10).616

4. Limiting strain - Proof of Theorem 1.2. As in the proof of Theorem 1.1, in order to617

prove Theorem 1.2 we first introduce an approximate problem. However, we are able to make use618

of the knowledge obtained from Theorem 1.1. Indeed, we define a function on R
d×d
sym by619

(4.1) GGGn(TTT) := GGG(TTT) + n−1TTT.620

Since GGG satisfies (A1)–(A3) with p = 1, it is evident that GGGn satisfies (A1)–(A3) with p = 2.621

Therefore, as a result of Theorem 1.1, there exists a couple (un,TTTn), fulfilling3622

un ∈ C1([0, T ];L2(Ω;Rd)) ∩W 1,2(0, T ;W 1,2(Ω;Rd)) ∩W 2,2(0, T ; (W 1,2
0 (Ω;Rd))∗),(4.2)623

TTTn ∈ L2(0, T ;L2(Ω;Rd×d
sym))(4.3)624625

and satisfying626

(4.4) 〈∂ttu
n,w〉+

∫

Ω

TTTn · ∇w dx =

∫

Ω

f ·w dx ∀w ∈ W 1,2
0 (Ω;Rd) for a.e. t ∈ (0, T ),627

and628

(4.5) αεεε(un) + β∂tεεε(u
n) = GGGn(TTTn) = GGG(TTTn) + n−1TTTn a.e. in Q.629

We note that we can replace the duality pairing by the integral over Ω in the term containing f

thanks to the assumed regularity of f . Moreover, we know that4

un = u0 on Γ ∪ ({0} × Ω), ∂tu
n = ∂tu0 on {0} × Ω.

We want to consider the limit as n → ∞ in order to prove the existence of a solution to the630

limiting strain problem in the sense of Theorem 1.2.631

4.1. A priori n-independent bounds. We start with bounds that are independent of the632

order of approximation. For this purpose, we use and mimic some of the steps from the preceding633

sections. We start with the first uniform bound. Setting w := β∂t(u
n −u0) +α(u−u0) in (4.4),634

applying the same algebraic manipulations as those used for (2.4), we deduce that635

β

4

d

dt

∫

Ω

|∂t(u
n − u0)|

2 +

∣

∣

∣

∣

∂t(u
n − u0) +

2α

β
(un − u0)

∣

∣

∣

∣

2

dx+

∫

Ω

GGGn(TTTn) ·TTTn dx

=

∫

Ω

TTTn · (αεεε(u0) + β∂tεεε(u0)) dx+ α

∫

Ω

|∂t(u
n − u0)|

2 dx

+

∫

Ω

(f − ∂ttu0) · (α(u
n − u0) + β∂t(u

n − u0)) dx+
2α2

β

∫

Ω

∂t(u
n − u0) · (u

n − u0) dx.

(4.6)

636

3We assume a slightly different restriction on u0 than in Theorem 1.1. However, the proof of Theorem 1.1 can
be easily adapted to this case.

4In case that Ω is not a Lipschitz domain, the identity below is not understood in the sense of traces but in the
sense that u− u0 ∈ W

1,1
0

(Ω;Rd) for almost all t ∈ (0, T ), where W
1,1
0

(Ω;Rd) defined as the closure of C∞
0

(Ω;Rd)

in the norm of W 1,1(Ω;Rd).
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In order to obtain the required a priori estimate, we need to use the safety strain condition. In637

particular, it follows from (1.13) that there exists a δ > 0 such that638

(4.7) |αεεε(u0) + β∂tεεε(u0)| ≤ L− 2δ a.e. in Q,639

where L is defined as in (1.9). Defining F (TTT) := φ(|TTT|), it follows from the convexity of φ that,640

for any δ̃ > 0, there exists a Cδ̃ such that, for all TTT ∈ R
d×d
sym,641

(4.8) F (TTT) ≥ (L− δ̃)|TTT| − Cδ̃.642

We choose δ̃ = δ as in (4.7) and let Cδ be the corresponding constant from (4.8). Since δ depends
in principle on u0 and F , we do not trace the dependence of C on δ in what follows. Consequently,
for the second term on the left-hand side of (4.6), we can use (3.4) and (4.5) to deduce that

GGGn(TTTn) ·TTTn = n−1|TTTn|2 + F (TTTn) + F ∗(GGG(TTTn)) ≥ (L− δ)|TTTn|+ n−1|TTTn|2 − C.

Furthermore, the first term on the right-hand side of (4.6) can be bounded by using (4.7) in the
following way:

∫

Ω

TTTn · (αεεε(u0) + β∂tεεε(u0)) dx ≤ (L− 2δ)‖TTTn‖1.

Therefore, it follows from (4.6), the above bounds and Hölder’s inequality that643

β

4

d

dt

∫

Ω

|∂t(u
n − u0)|

2 +

∣

∣

∣

∣

∂t(u
n − u0) +

2α

β
(un − u0)

∣

∣

∣

∣

2

dx+ δ‖TTTn‖1 + n−1‖TTTn‖22

≤ C

(

∫

Ω

β|∂t(u
n − u0)|

2 + β

∣

∣

∣

∣

∂t(u
n − u0) +

2α

β
(un − u0)

∣

∣

∣

∣

2

dx+ ‖f‖22 + ‖∂ttu0‖
2
2 + 1

)

.

(4.9)644

An application of Grönwall’s lemma yields645

(4.10) sup
t∈(0,T )

(

‖∂tu
n(t)‖22 + ‖un(t)‖22

)

+

∫ T

0

‖TTTn‖1 + n−1‖TTTn‖22 dt ≤ C(f ,u0),646

where we use assumption (1.12) regarding the data. It follows from (1.6) and the above bound647

that648

(4.11)

∫

Q

|αεεε(un) + β∂tεεε(u
n)|2 dx dt ≤

∫

Q

(L+ n−1|TTTn|)2 dx dt ≤ C(f ,u0).649

However, we know that650

|GGGn(TTTn) ·TTTn| ≤ L|TTTn|+
|TTTn|2

2
.651

652

Hence, as a result of (4.10), we have that653

(4.12)

∫

Q

|GGGn(TTTn) ·TTTn| dx dt ≤ C(f ,u0).654

Furthermore, arguing as with (2.6) and making use of (4.10), (4.11), we deduce that655

(4.13) sup
t∈(0,T )

‖un‖1,2 +

∫ T

0

‖∂tu
n‖21,2 dt ≤ C(f ,u0).656
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4.2. Regularity via n-independent bounds. The bounds (4.10), (4.12) and (4.13) are not
sufficient to pass to the limit n → ∞, since we only have a priori control on TTTn in a nonreflexive
space L1(Q;Rd×d). In particular, at best we have that the weak star limit of TTTn is a measure.
Therefore, the pointwise relation (1.20) is neither meaningful nor likely to be valid in this case.
Instead, we improve our information by using the regularity technique introduced in Section 3.
Namely, we use Lemma 3.1 and Lemma 3.2. First, we define an approximation Fn of the potential
F by

Fn(TTT) := F (TTT) +
|TTT|2

2n
.

We have that
∂Fn(TTT)

∂TTT
= GGGn(TTT) = GGG(TTT) + n−1TTT.

We now apply the results from Section 3 with p = 2, replacing (u, F,GGG) with the triple (un, Fn,GGGn).
Using the definition of GGGn, we define An in an analogous way to A. In particular, we write

(An(TTT
n))ijkl :=

∂

∂TTTn
kl

(

φ′(|TTTn|)

|TTTn|
TTTn

ij + n−1TTTn
ij

)

= δikδjl

(

n−1 +
φ′(|TTTn|)

|TTTn|

)

+

(

φ′′(|TTTn|)|TTTn| − φ′(|TTTn|)

|TTTn|

)

TTTn
ijTTT

n
kl

|TTTn|2
.

Consequently, using the fact that φ′(0) = 0 and φ′′(s) ≤ C(1 + s)−1, we see that657

(4.14) |An(TTT
n)| ≤ Cn−1 +

C

1 + |TTTn|
.658

With this in mind, we first discuss regularity with respect to time. We see that all assumptions659

of Lemma 3.1 are satisfied. Therefore we have, for every δ > 0, the following inequality:660

sup
t∈(δ,T )

∫

Ω

F ∗
n(GGGn(TTT

n)) dx+

∫ T

δ

‖∂ttu
n‖22 dt

≤ C(α, β)

(

∫ T

δ
2

∫

Ω

|f |22 + |∂tu
n|22 + |∂ttu0|

2
2 + |∂tu0|

2
2 + |TTTn · ∂t(β∂tεεε(u0) + αεεε(u0))| dx dt

)

+
C(α, β)

δ

∫ δ

0

∫

Ω

F ∗
n(αεεε(u

n(τ)) + β∂tεεε(u
n(τ))) + |∂tu

n(τ)|2 dx dτ.

(4.15)

661

We focus on the right-hand side. For the second integral on the right-hand side, it follows from
the properties of the convex conjugate function and the uniform bounds (4.10), (4.12), (4.13) that
we have

∫ δ

0

∫

Ω

F ∗
n(αεεε(u

n) + β∂tεεε(u
n)) + |∂tu

n|2 dx dτ =

∫ δ

0

∫

Ω

F ∗
n(GGGn(TTT

n)) + |∂tu
n|2 dx dτ

≤

∫ δ

0

∫

Ω

(

F ∗
n(GGGn(TTT

n)) + Fn(TTT
n)
)

+ |∂tu
n|2 dx dτ

=

∫

Q

GGGn(TTT
n) ·TTTn + |∂tu

n|2 dx dt

≤ C(u0,f),

using property (1.36) with (F,GGG) replaced by (Fn,GGGn) in order to deduce the second inequality.
For the first term on the right-hand side of (4.15), we use Hölder’s inequality, the assumptions on
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the data (1.12), (1.13), (1.14) and the uniform bound (4.10) in order to deduce that

∫ T

δ
2

∫

Ω

|f |22 + |∂tu
n|22 + |∂ttu0|

2
2 + |∂tu0|

2
2 + |TTTn · ∂t(β∂tεεε(u0) + αεεε(u0))| dx dt

≤ C(u0,f) + ‖|∂ttεεε(u0)|+ |∂tεεε(u0)|‖L∞(( δ
2
,T )×Ω)

∫ T

0

∫

Ω

|TTTn| dx dt

≤ C(u0,f).

It follows from the above bounds and (4.15) that, for every δ > 0, we have662

sup
t∈(δ,T )

∫

Ω

F ∗
n(GGGn(TTT

n)) dx+

∫ T

δ

‖∂ttu
n‖22 dt ≤ C(f ,u0).(4.16)663

Similarly, in case that (1.14) holds for δ = 0, we use (3.6). By an analogous computation to664

the above, we deduce that665

sup
t∈(0,T )

∫

Ω

F ∗
n(GGGn(TTT

n)) dx+

∫ T

0

‖∂ttu
n‖22 dt

≤ C(f ,u0) + C

∫

Ω

F ∗
n(αεεε(u0(0)) + β∂tεεε(u0(0))) dx

≤ C(f ,u0) + C

∫

Ω

F ∗(αεεε(u0(0)) + β∂tεεε(u0(0))) dx

≤ C(f ,u0),

(4.17)666

using the fact that F ∗
n ≤ F ∗ and assumptions (1.13), (1.14) with δ = 0.667

Next, we consider the spatial regularity estimates. For an arbitrary open set Ω′ ⊂ Ω′ ⊂ Ω and668

for any δ > 0, it follows from (3.10) that669

sup
t∈(δ,T )

‖∂t∇un‖L2(Ω′) +

d
∑

k=1

∫ T

δ

∫

Ω′

(∂kTTT
n, ∂kTTT

n)An(TTTn) dx dt

≤ C(Ω′, δ)

∫

Q

|TTTn||GGGn(TTT
n)|+ |An(TTT

n)||TTTn|2 + |f |2 + |∇un|2 + |∂t∇un|2 + |An(TTT
n)||f |2 dx dt.

(4.18)

670

Since |TTTn||GGGn(TTT
n)| = |TTTn ·GGGn(TTT

n)|, we can use (4.10), (4.12) and (4.13) to deduce that
∫

Q

|TTTn||GGGn(TTT
n)|+ |f |2 + |∇un|2 + |∂t∇un|2 dx dt ≤ C(u0,f).

It only remains to bound the terms involving An on the right-hand side of (4.18). To this end,
we note that

∫

Q

|An(TTT
n)||TTTn|2 + |An(TTT

n)||f |2 dx dt ≤ C

∫

Q

n−1|TTTn|2 + |TTTn|+ |f |2 ≤ C(u0,f),

where the last inequality follows from (4.10) and the assumptions on f . Using these inequalities671

for the terms appearing on the right-hand side of (4.18), we immediately deduce that672

sup
t∈(δ,T )

‖∂t∇un‖L2(Ω′) +

d
∑

k=1

∫ T

δ

∫

Ω′

(∂kTTT
n, ∂kTTT

n)An(TTTn) dx dt ≤ C(u0,f ,Ω
′).(4.19)673

Similarly, if u0 ∈ C1([0, T ];W 1,2(Ω;Rd)) we can use (3.11) and perform similar computations to674

find that675

sup
t∈(0,T )

‖∂t∇un‖L2(Ω′) +
d
∑

k=1

∫ T

0

∫

Ω′

(∂kTTT
n, ∂kTTT

n)An(TTTn) dx dt ≤ C(Ω′,u0,f).(4.20)676
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Next, we focus on the bounds on the second order spatial derivatives of ∂tu
n and un. It follows

from (4.5) and the Cauchy–Schwarz inequality that

|∂k(αεεε(u
n) + β∂tεεε(u

n))|2

= (∂k(αεεε(u
n) + β∂tεεε(u

n))) · ∂kGGGn(TTT
n)

= (∂k(αεεε(u
n) + β∂tεεε(u

n)), ∂kTTT
n)An(TTTn)

≤ (∂k(αεεε(u
n) + β∂tεεε(u

n)), ∂k(αεεε(u
n) + β∂tεεε(u

n)))
1
2

An(TTTn)(∂kTTT
n, ∂kTTT

n)
1
2

An(TTTn)

≤ C|∂k(αεεε(u
n) + β∂tεεε(u

n))|(∂kTTT
n, ∂kTTT

n)
1
2

An(TTTn).

Therefore,

|∂k(αεεε(u
n) + β∂tεεε(u

n))|2 ≤ C(∂kTTT
n, ∂kTTT

n)An(TTTn).

Using this and (4.19), simple algebraic manipulations imply that677

∫ T

δ

∫

Ω′

|∇(αεεε(un) + β∂tεεε(u
n))|2 dx dt ≤ C(u0,f ,Ω

′).(4.21)678

4.3. Convergence results as n → ∞ based on uniform bounds. From the uniform679

bounds (4.10), (4.12) and (4.13), we see that we can find a subsequence, not relabelled, such that680

un ⇀ u weakly in W 1,2(0, T ;W 1,2(Ω;Rd)),(4.22)681

un ∗
⇀ u weakly∗ in W 1,∞(0, T ;L2(Ω;Rd)),(4.23)682

n−1TTTn → 0 strongly in L2(0, T ;L2(Ω;Rd×d)).(4.24)683684

In addition, using the regularity estimates (4.16), (4.21), as well as the Aubin–Lions lemma, we685

deduce that, for every δ > 0,686

un ⇀ u weakly in W 2,2(δ, T ;L2(Ω;Rd)),(4.25)687

un ⇀ u weakly in W 1,2(δ, T ;W 2,2
loc (Ω;R

d)),(4.26)688

un → u strongly in W 1,2(δ, T ;W 1,2
loc (Ω;R

d)).(4.27)689690

Next, we focus on taking the limit in the constitutive relation (4.5). The mapping GGG is bounded691

so we have that692

GGG(TTTn)
∗
⇀ GGG weakly∗ in L∞(Q;Rd×d).(4.28)693694

We need to identify GGG. We note that from (4.5), (4.23) and (4.24), we must have695

(4.29) GGG = αεεε(u) + β∂tεεε(u) a.e. in Q.696

Next, we show that there exists a TTT such that GGG = GGG(TTT). To do so, we appeal to Chacon’s biting697

lemma and deduce from (4.10) that there exists a TTT ∈ L1(Q;Rd×d) and a nondecreasing sequence698

of sets Q1 ⊂ Q2 ⊂ · · · , with |Q \Qi| → 0 as i → ∞, such that, for each i ∈ N,699

TTTn ⇀ TTT weakly in L1(Qi;R
d×d).(4.30)700701

However, thanks to (4.27), (4.29) and Egoroff’s theorem, we know that for every ε > 0 and every
i ∈ N there exists a Qi,ε ⊂ Qi, with |Qi \Qi,ε| ≤ ε, such that

αεεε(un) + β∂tεεε(u
n) → GGG strongly in L∞(Qi,ε;R

d×d).
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Therefore, using the monotonicity of GGG and the above convergence result, we deduce, for an
arbitrary WWW ∈ L1(Q;Rd×d), that

0 ≤ lim
n→∞

∫

Qi,ε

(GGG(TTTn)−GGG(WWW)) · (TTTn −WWW) dx dt

=

∫

Qi,ε

GGG(WWW) · (WWW −TTT)−GGG ·WWW dx dt+ lim
n→∞

∫

Qi,ε

GGG(TTTn) ·TTTn dx dt

≤

∫

Qi,ε

GGG(WWW) · (WWW −TTT)−GGG ·WWW dx dt+ lim
n→∞

∫

Qi,ε

GGGn(TTT
n) ·TTTn dx dt

=

∫

Qi,ε

GGG(WWW) · (WWW −TTT)−GGG ·WWW dx dt+ lim
n→∞

∫

Qi,ε

(αεεε(un) + β∂tεεε(u
n)) ·TTTn dx dt

=

∫

Qi,ε

(GGG−GGG(WWW)) · (TTT−WWW) dx dt.

Since GGG is a monotone mapping and WWW is arbitrary, we use Minty’s method to see that

GGG = GGG(TTT) a.e. in Qi,ε.

Recalling that ε > 0 and i ∈ N are arbitrary, (1.20) follows, using (4.29) and the above identity.
Additionally, setting WWW := TTT in the above and using the fact that GGG = GGG(TTT), we see that

lim
n→∞

∫

Qi,ε

|(GGG(TTTn)−GGG(TTT)) · (TTTn −TTT)| dx dt = lim
n→∞

∫

Qi,ε

(GGG(TTTn)−GGG(TTT)) · (TTTn −TTT) dx dt = 0.

Consequently, we must have that

TTTn → TTT a.e. in Qi,ε,

as a result of the strict monotonicity of GGG. However, as before, since ε > 0 and i ∈ N are arbitrary,702

we deduce that703

TTTn → TTT a.e. in Q.(4.31)704705

Using (4.10), (4.31) and Fatou’s lemma, it follows that706

(4.32)

∫

Q

|TTT| dx dt ≤ C(u0,f).707

Next, we focus on the boundary and initial conditions for u. It is evident from the convergence
result (4.22), combined with the fact that un = u0 on Γ and un(0) = u0(0) on Ω, that we must
have u = u0 on Γ as well. Furthermore, it follows that

‖u(t)− u0(0)‖1,2 → 0 as t → 0+.

Concerning the attainment of the initial condition for ∂tu(0) we need to proceed slightly differently708

since we only have control on ∂ttu locally in (0, T ). We integrate (4.6) over a time interval (0, t),709

where 0 < t < T , and since we know that for each n the initial datum is attained we deduce that710

1

4

∫

Ω

β|∂t(u
n − u0)(t)|

2 + β

∣

∣

∣

∣

∂t(u
n − u0)(t) +

2α

β
(un − u0)(t)

∣

∣

∣

∣

2

dx

=

∫ t

0

∫

Ω

TTTn · ((αεεε(u0) + β∂tεεε(u0))−GGGn(TTT
n)) + α|∂t(u

n − u0)|
2 dx dτ

+

∫ t

0

∫

Ω

(f − ∂ttu0) · (α(u
n − u0) + β∂t(u

n − u0)) +
2α2

β
∂t(u

n − u0) · (u
n − u0) dx dτ.

(4.33)

711
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Our goal is to let n → ∞. Since t > 0, we can use the “local” convergence result (4.25) to let
n → ∞ in the left-hand side of (4.33). To bound also the right-hand side, we first use the safety
strain condition (1.13), which implies that there exists a TTT0 ∈ L1(Q;Rd×d) such that

αεεε(u0) + β∂tεεε(u0) = GGG(TTT0) a.e. in Q.

Using the monotonicity of GGG, we see that

TTTn · ((αεεε(u0) + β∂tεεε(u0))−GGGn(TTT
n)) ≤ TTTn · (GGG(TTT0)−GGG(TTTn)) ≤ TTT0 · (GGG(TTT0)−GGG(TTTn)).

Using the convergence results (4.22)–(4.29) applied to all terms in (4.33) with the above inequality712

yields the following:713

1

4

∫

Ω

β|∂t(u− u0)(t)|
2 + β

∣

∣

∣

∣

∂t(u− u0)(t) +
2α

β
(u− u0)(t)

∣

∣

∣

∣

2

dx

≤

∫ t

0

∫

Ω

TTT0 · ((αεεε(u0) + β∂tεεε(u0))−GGG(TTT)) + α|∂t(u− u0)|
2 dx dτ

+

∫ t

0

∫

Ω

(f − ∂ttu0) · (α(u− u0) + β∂t(u− u0)) +
2α2

β
∂t(u− u0) · (u− u0) dx dτ

≤ C

∫ t

0

‖TTT0‖1 + ‖f‖2 + ‖∂ttu0‖2 + 1dτ.

(4.34)714

Letting t → 0+, we see that

lim
t→0+

(‖u(t)− u0(0)‖
2
2 + ‖∂tu(t)− ∂tu0(0)‖

2
2) = 0.

In addition, it also follows from (4.25) that u ∈ C1([δ, T ];L2(Ω;Rd)) for every δ > 0, which715

combined with the above result gives that u ∈ C1([0, T ];L2(Ω;Rd)).716

4.4. Validity of the equation in the limit. To summarize the results so far, we have
found a couple (u,TTT) that satisfies (1.3)–(1.18) and (1.20), (1.21). It remains to show (1.19). To
do so, we use the method developed in [3]. Let g be a smooth nonnegative nonincreasing function
satisfying

g(s) =

{

1, for s ∈ [0, 1],

0, for s > 2.

For each k ∈ N, let us define

gk(s) := g(s/k).

It is clear that gk ր 1. Next let v ∈ C∞
0 (Q;Rd) be arbitrary but fixed. In particular, there exist717

a compact subset Ω′
⋐ Ω and a δ > 0 such that supp(v) ⊂ [δ, T − δ] × Ω′. Thanks to (4.25) and718

(4.31), all terms in (1.19) are well-defined for almost all t ∈ (0, T ) and we just need to check that719

the equality holds.720

We fix δ > 0. Using the properties of gk, we have721

I :=

∫

Q

∂ttu · v +TTT · ∇v − f · v dx dt

= lim
k→∞

∫

Q

∂ttu · vgk(|TTT|) +TTT · ∇vgk(|TTT|)− f · vgk(|TTT|) dx dt.

(4.35)722

Using (4.25), (4.30), the fact that TTTn ∈ L2(δ, T ;W 1,2
loc (Ω;R

d×d)) for every δ > 0, which follows723

from (4.19), and the fact that gk(|TTT
n|) is supported only in the set where |TTTn| ≤ 2k, we can rewrite724
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the right-hand side of (4.35) in the following way:725

I = lim
k→∞

lim
n→∞

∫

Q

∂ttu
n · vgk(|TTT

n|) +TTTn · ∇vgk(|TTT
n|)− f · vgk(|TTT

n|) dx dt

= lim
k→∞

lim
n→∞

∫

Q

∂ttu
n · vgk(|TTT

n|) +TTTn · ∇(vgk(|TTT
n|))− f · vgk(|TTT

n|) dx dt

− lim
k→∞

lim
n→∞

∫

Q

TTTn · (∇gk(|TTT
n|)⊗ v) dx dt

= − lim
k→∞

lim
n→∞

∫

Q

TTTn · (∇gk(|TTT
n|)⊗ v) dx dt,

(4.36)726

where for the last equality we have used (4.4) with w := vgk(|TTT
n|). This is a justified choice of727

test function by the following reasoning. We have TTTn ∈ L2(δ, T ;W 1,2
loc (Ω;R

d×d)). Hence, using the728

chain rule for weak derivatives, it follows that gk(|TTT
n|) ∈ L2(δ, T ;W 1,2

loc (Ω;R
d×d)). By the compact729

support property of v, we deduce that vgk(|TTT
n|) ∈ L2(0, T ;W 1,2(Ω;Rd)) with support contained730

in [δ, T − δ]× Ω′.731

It remains to show that the right-hand side of (4.36) vanishes. We define

Mk,n(s) :=

∫ s

0

g′k(t)
φ′(t)
t

+ n−1
dt ≤

∫ s

0

tg′k(t)

φ′(t)
dt =: Mk(s).

Then, using that |g′k(s)| ≤ Cs−1χ{s∈(k,2k)}, we see that732

(4.37) Mk(s)

{

≤ Cmin{s, k} for all s ≥ 0,

= 0 for s ≤ k.
733

Next, we use the structural assumption (A4) to rewrite the term under the limit in (4.36) as734

(4.38)

−

∫

Q

TTTn · (∇gk(|TTT
n|)⊗ v) dx dt

= −

∫

Q

GGGn(TTT
n) · (∇|TTTn| ⊗ v)

g′k(|TTT
n|)

φ′(|TTTn|)
|TTTn| + n−1

dx dt

= −

∫

Q

GGGn(TTT
n) · (∇Mk,n(|TTT

n|)⊗ v) dx dt

=

∫

Q

divGGGn(TTT
n) · vMk,n(|TTT

n|) dx dt+

∫

Q

GGGn(TTT
n) · ∇vMk,n(|TTT

n|) dx dt.

735

For the first term on the right-hand side of (4.38), we use the definition of An alongside the
Cauchy–Schwarz inequality to obtain

| divGGGn(TTT
n) · vMk,n(|TTT

n|)| =

∣

∣

∣

∣

∣

∣

d
∑

i,j,a,b=1

(An(TTT
n))ijab∂jTTT

n
abviMk,n(|TTT

n|)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

d
∑

m=1

d
∑

i,j,a,b=1

(An(TTT
n))ijab∂mTTTn

abδmjviMk,n(|TTT
n|)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

d
∑

m=1

(∂mTTTn, ∂mTTTn)
1
2

An(TTTn)





d
∑

i,j,a,b=1

(An(TTT
n))ijabδmjviδmavbM

2
k,n(|TTT

n|)





1
2

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

d
∑

m=1

(∂mTTTn, ∂mTTTn)
1
2

An(TTTn)

(

(n−1 +
C

1 + |TTTn|
)|v|2M2

k,n(|TTT
n|)

)
1
2

∣

∣

∣

∣

∣

.
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Using this bound in (4.38) and then in (4.36), recalling the fact that v is compactly supported,736

we deduce with the help of Hölder’s inequality and the uniform bound (4.18) that737

|I| ≤ lim
k→∞

lim
n→∞

∫

Q

∣

∣

∣

∣

∣

d
∑

m=1

(∂mTTTn, ∂mTTTn)
1
2

An(TTTn)

((

n−1 +
C

1 + |TTTn|

)

|v|2M2
k,n(|TTT

n|)

)
1
2

∣

∣

∣

∣

∣

dx dt

≤ C(v) lim
k→∞

lim
n→∞

(∫

Q

(

n−1 +
C

1 + |TTTn|

)

M2
k,n(|TTT

n|) dx dt

)
1
2

= C(v) lim
k→∞

(∫

Q

M2
k (|TTT|)

|TTT|
dx dt

)
1
2

,

(4.39)

738

where for the last equality we use (4.31) and the boundedness of Mk. Consequently, using that739

TTT ∈ L1(Q;Rd×d) and the structure of Mk (4.37), we deduce that740

|I| ≤ C(v) lim
k→∞

(∫

Q

M2
k (|TTT|)

|TTT|
dx dt

)
1
2

≤ C(v) lim
k→∞

(

∫

Q∩{|TTT|>k}

|TTT| dx dt

)
1
2

= 0.741

Since v is arbitrary, we see that (1.19) holds for almost all t ∈ (0, T ) and all smooth compactly742

supported w. Finally, using a weak∗ density argument based on [3, Lemma A.3] we deduce that743

(1.19) holds for an arbitrary w ∈ W 1,2
0 (Ω,Rd) fulfilling εεε(w) ∈ L∞(Q;Rd×d). This concludes the744

proof of the existence of a solution as asserted in Theorem 1.2.745

4.5. Uniqueness of solutions. It remains to prove the uniqueness of such weak solutions.746

Let (u1,TTT1) and (u2,TTT2) be two solutions emanating from the same data and denote u := u1−u2.747

Then it follows from (1.19) that, for almost all t ∈ (0, T ) and for every w ∈ W 1,∞
0 (Ω;Rd),748

(4.40)

∫

Ω

∂ttu ·w + (TTT1 −TTT2) · εεε(w) dx = 0.749

Since ∂tεεε(u) and εεε(u) belong to L∞(Ω;Rd×d) for almost all t ∈ (0, T ), we can again use the weak∗

density argument as in the previous section to deduce that (4.40) holds with w := αu + β∂tu.
Consequently, since we have

αu+ β∂tu = GGG(TTT1)−GGG(TTT2),

we can use the monotonicity of GGG and integration over (t0, t), with 0 < t0 < t < T , to deduce from
(4.40) that

0 ≥ 2

∫ t

t0

∫

Ω

∂ttu · (αu+ β∂tu) dx dτ

= β

∫

Ω

|∂tu(t)|
2 − |∂tu(t0)|

2 + 2α∂tu(t) · v(t)− 2αu(t0) · u(t0) dx− 2α

∫ t

t0

∫

Ω

|∂tu|
2 dx dτ.

We note that this procedure is rigorous for every such t0 > 0 thanks to the regularity of u1 and
u2 asserted in (1.15). Since u ∈ C1([0, T ];L2(Ω;Rd)) as a result of (1.15), we can use (1.21) and
let t0 → 0+ in the above inequality to deduce that

0 ≥ β

∫

Ω

|∂tu(t)|
2 + 2α∂tu(t) · u(t) dx− 2α

∫ t

0

∫

Ω

|∂tu|
2 dx dτ

= β

∫

Ω

|∂tu(t)|
2 + 2α∂tu(t) ·

(∫ t

0

∂tu(τ) dτ

)

dx− 2α

∫ t

0

∫

Ω

|∂tu|
2 dx dτ

≥
β

2

(

‖∂tu(t)‖
2
2 − C(α, β, T )

∫ t

0

‖∂tu(τ)‖
2
2 dτ

)

= e−tC(α,β,T ) d

dt

(

e−tC(α,β,T )

∫ t

0

‖∂tu(τ)‖
2
2 dτ

)

.
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Simple integration with respect to t then gives that ∂tu ≡ 0 almost everywhere in Q and conse-750

quently u1 = u2. By strict monotonicity, we necessarily also have that TTT1 = TTT2 almost everywhere751

in Q. Hence, uniqueness follows.752

REFERENCES753

[1] R. A. Adams, Sobolev Spaces, Academic Press, 1975.754
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[3] L. Beck, M. Buĺıček, J. Málek, and E. Süli, On the existence of integrable solutions to nonlinear elliptic758
systems and variational problems with linear growth, Arch. Ration. Mech. Anal., 225 (2017), pp. 717–769,759
https://doi.org/10.1007/s00205-017-1113-4, https://doi.org/10.1007/s00205-017-1113-4.760
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