
Citation: Mansour, S.; Badr, A.O.;

Attia, M.A.; Sameh, M.A.; Kotb, H.;

Elgamli, E.; Shouran, M. Fuzzy Logic

Controller Equilibrium Base to

Enhance AGC System Performance

with Renewable Energy Disturbances.

Energies 2022, 15, 6709. https://

doi.org/10.3390/en15186709

Academic Editor: Oscar Barambones

Received: 13 August 2022

Accepted: 8 September 2022

Published: 14 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Fuzzy Logic Controller Equilibrium Base to Enhance AGC
System Performance with Renewable Energy Disturbances
Soha Mansour 1, Ahmed O. Badr 1 , Mahmoud A. Attia 1 , Mariam A. Sameh 2 , Hossam Kotb 3 ,
Elmazeg Elgamli 4,* and Mokhtar Shouran 4

1 Department of Electrical Power and Machines, Faculty of Engineering, Ain Shams University,
Cairo 11517, Egypt

2 Electrical Engineering Department, Faculty of Engineering, Future University in Egypt, Cairo 11835, Egypt
3 Department of Electrical Power and Machines, Faculty of Engineering, Alexandria University,

Alexandria 21544, Egypt
4 School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
* Correspondence: elgamlies@cardiff.ac.uk

Abstract: Owing to the various sources of complexity in the electrical power system, such as integrat-
ing intermittent renewable energy resources and widely spread nonlinear power system components,
which result in sudden changes in the power system operating conditions, the conventional PID
controller fails to track such dynamic challenges to mitigate the frequency deviation problem. Thus,
in this paper, a fuzzy PI controller is proposed to enhance the automatic generation control system
(AGC) against step disturbance, dynamic disturbance, and wind energy disturbance in a single area
system. The proposed controller is initialized by using Equilibrium Optimization and proved its
superiority through comparison with a classical PI optimized base. Results show that the fuzzy PI
controller can reduce the peak-to-peak deviation in the frequency by 30–59% under wind disturbance,
compared to a classical PI optimized base. Moreover, a fuzzy PID controller is also proposed and EO
initialized in this paper to compare with the PIDA optimized by several techniques in the two-area
system. Results show that the fuzzy PID controller can reduce the peak-to-peak deviation in the
frequency of area 1 by 30–50% and the deviation of frequency in area 2 by 13–48% under wave
disturbance, compared to the classical PIDA optimized base.

Keywords: fuzzy logic controller; equilibrium base; automatic generation control; renewable energy

1. Introduction

Recently, the power system is becoming more complex due to the integration of
renewable energy sources used by the continuous change in generated power, as well as the
constant rise in load demand and the variety of generating unit sizes. Moreover, one of the
main complex characteristics of the power system is the local and global interconnection
of power systems. These interconnections are made through inter-power lines, which are
very crucial for the power interchange between different control areas. To maintain the
maximum reliability and quality of the power system, the frequency and voltages are mainly
monitored and regulated. Two different types of control approaches are mainly used. One
is the automatic voltage regulator (AVR), and the other is the automatic generation control
(AGC). The AVR system aims to maintain the alternator’s output voltage at its supposed
value as well as reduce any expected variations in its value if exposed to a fault or unusual
condition. To achieve such an objective, AVR controls the exciter’s DC current, which is
connected to the alternator’s rotor, and this is quite an effective approach [1–5]. AGC is
another method used to stabilize the frequency tie-line power for various control areas as
well as to maintain power balance [6]. Both approaches are very effective. However, some
researchers prefer the AGC approach since it includes the effect of interconnected areas,
which is more likely to become a real case. Moreover, AGC plays a very essential role in
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electric power operation by maintaining the frequency and efficiency of the interconnected
power systems [7–11]. Several parameters can be used to control the frequency. One of
them is the governor droop (R), which is used to minimize the frequency’s steady-state
error when it is set to a specified limit, as mentioned in [12–15]. Subsequently, it is a
great necessity to have a well-designed controller for AGC. According to [16], there are
various control techniques that are used in AGC. They are classified into two classes: one is
nature-inspired metaheuristic techniques, and the other is robust control methods. Various
metaheuristic algorithms are employed to design the proper controller, such as genetic
algorithm (GA), particle swarm optimization (PSO), differential evaluation (DE), ant colony
optimization (ACO), and firefly algorithm (FA) [17–21]. They are preferred over other
control techniques due to their high accuracy and fast response. The PI controller is very
prevalent, due to its high availability in the industry. Therefore, it can be used if its gains
are properly chosen. Various optimization algorithms are used for tuning the gains of the PI
controller in AGC [22–28]. Furthermore, renewable energy sources are included in [29–32].
The control of AGC is generally studied for single or multi-area systems, as in [33–35].
Fuzzy logic controllers are proposed in [36–38]. Other controllers were proposed in [39–41].

In this paper, the fuzzy logic PI controller with Equilibrium Optimizer (EO) initial-
ization is used in AGC with and without the inclusion of a wind generator in a single
area system and is compared with a classical optimized PI controller. Moreover, the fuzzy
logic PID controller with Equilibrium Optimizer (EO) initialization is used in a two-area
system under step and wave energy disturbance and compared with the optimized PIDA
controller. The strategy of the proposed controller is to initialize the PI/PID controller gains
by using EO optimization then the fuzzy logic controller will update these gains to deal
with the input disturbances.

2. System Modeling

Since the frequency is a key indicator of the robustness of the power system, an
efficient load frequency control (LFC) is required to maintain the frequency at its nominal
level. Automatic generation control or AGC is a scheme used to regulate the system
frequency. The presented systems under study are single-area and two-area systems, as
shown in Figure 1. The main components of the system are the governor, the turbine, the
generator, the load, and a wind turbine to represent the dynamic disturbances imposed on
the system [42], which are explained in the following subsections. In the single-area system,
a fuzzy PI controller is presented and compared with the classical optimized-based PI
controllers, while in the two-area system, a fuzzy PID controller is presented and compared
with the classical optimized-based PIDA controllers.
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2.1. Governor Model

The governor model is represented using a first-order linear transfer function 1
1 + sTg

where Tg is the governor time constant.

2.2. Turbine Model

The turbine model is represented by a first-order linear transfer function 1
1 + sTch

where
Tch is the turbine time constant.

2.3. Generator/Load Model

The generator/load model is represented by a first-order linear transfer function
1

Ms + D and B = 1
R where D is the frequency sensitive coefficient, M is the constant of

inertia, R and is the speed regulation, and B is the frequency bias factor.
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2.4. Wind Disturbance Generator Model

The mechanically generated output power from the wind turbine generator is repre-
sented by the Equation (1):

Pwind =
1
2
× ρ× Cp × A×U3 (1)

where ρ is the flowing air density in kg/m3, Cp is the power coefficient, A is the swept area
in m2, and U is the wind speed in m/s. The variation in wind speed against time is shown
in Figure 2 [42].
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2.5. Proportional Integral Controller Model

A PI controller is employed for providing the control signal to adequately adjust the
frequency at its predetermined level. Its transfer function is represented by

G(s) = Kp + KIs (2)

An exponential time delay in the single-area system whose time constant equals 2 s is
added. The system parameters’ values are indicated in Table 1 [27].

Table 1. System parameters.

Symbol Description Value

R speed regulation 0.05
D frequency sensitive coefficient 1
B frequency bias factor 21

Tch turbine time constant 0.3 s
Tg governor time constant 0.1 s
M constant of inertia 10 s
Cp power coefficient 0.5
A swept area 5538.96 m2

3. Optimization Algorithms

There are several optimization algorithms that proved their effectiveness. In this study,
the authors chose to use an optimization algorithm named the Equilibrium Optimizer (EO)
for optimizing the proposed controller due to its high exploitation rate, fast convergence,
and high accuracy.
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3.1. Equilibrium Optimizer (EO)

Afshin Faramarzi developed a relatively new optimization algorithm in 2020. This
algorithm is called the Equilibrium Optimizer algorithm (EO) [43]. The inspiration for this
algorithm is performed by the balance models of control between volume and mass. These
balance models are used to estimate dynamic and equilibrium states. Most metaheuristic
algorithms usually have the same approach. A vector of suggested solutions is primarily
generated, then the main algorithm function is used to update the solution vector every

iteration. For EO, the volume equilibrium concentration parameter (
→

VC) is calculated

for each suggested solution for updating every iteration.
→

VC can be determined from
Equation (3) as follows.

→
VC =

→
VCeq +

→
(VC −

→
VCeq)·

→
F +

→
mg
→
α V

(
1−

→
F
)

(3)

Given that:→
VC is the concentration inside the volume;
V is the volume;
→

VCeq is the concentration at an equilibrium state;
→
mg is the mass generation rate;
→
α is the turnover rate, it is assumed to be a random vector in the interval of [0, 1];

While
→
F can be calculated using Equation (4) as follows:

→
F= s1 sign

(→
σ −0.5)

[
e−
→
α t − 1

]
(4)

Known that:
s1 is a constant value that control the exploration ability. It equals to 2;
→
σ is a random vector in the interval of [0, 1].

Moreover, it is time defined in terms of running iteration (I) and the maximum number
of iterations (Im) and diminishes with the number of iterations. It can be determined from
Equation (5).

t = (1 − I
Im

)
(s2

I
Im )

(5)

where
→
mg can be determined from Equation (6), while

→
mgi, to, and Pg are calculated from

Equations (7)–(9), respectively.

→
mg =

→
mgi e−

→
α (t−to)=

→
mgi

→
F (6)

→
to =

1
α

ln
(
−s1 sign (σ− 0.5)

[
1 − e−αt]) + t (7)

→
mgi=

→
C p(

→
VCeq−α

→
VC) (8)

→
Rv

{
0.5ω1

0
ω2 ≥ Pg
ω2 < Pg

(9)

Note that,
ω1 and ω2 are random numbers in the interval of [0, 1];
→
Rv is a vector constructed by the repetition;
Pg is the generation probability.

EO is used to optimize the PI/PID controller gains, and the flowchart in Figure 3
shows how it is used in this case [43].



Energies 2022, 15, 6709 6 of 18Energies 2022, 15, x FOR PEER REVIEW 6 of 20 
 

 

 
Figure 3. Flowchart of EO algorithm. Figure 3. Flowchart of EO algorithm.

3.2. Fuzzy EO PID/PI Controller

The fuzzy control technique was applied successfully as a soft computing method for
various decision-making applications such as load frequency control. Fuzzy systems mimic
the human reasoning behavior in which imprecise inputs are managed through IF-THEN
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rules to realize a precise output. Fuzzy control structures have been employed as a new
paradigm for automatic control succeeding the developing of fuzzy sets by L.A. Zadeh
1965 [44]. The fuzzy controller is treated as a nonlinear controller defined by linguistic rules
such as big and small instead of differential equations. Consequently, the fuzzy control
system exhibits remarkable performance with uncertain systems that embrace deficient
or vague information regardless of the model of the system [29]. Fuzzy logic deposits the
concept of infinite number of truth values manipulated between 0 and 1, unlike classical
logic which has only two truth values, 0 or 1.

Two types of fuzzy logic controller exist, namely type 1 (T1FLC) and type 2 (T2FLC).
T2FLC can deal with systems with more uncertainties to add more degrees of freedom
to cope with the rapid varying uncertainties. T1FLC can be viewed as first-order approx-
imation while T2FLC as second-order approximation of uncertainty [45,46]. T1FLC is
mainly composed of four fundamental blocks, namely fuzzification, inference engine or
mechanism, knowledge base, and defuzzification [47–49]. In T2FLC, an extra block is
added called the type reducer to be inserted between the defuzzification stage and the
inference stage [45].

Fuzzification is the conversion of the inputs from crisp values to linguistic variables.
Each crisp input is assigned a degree to the fuzzy subset they belong via the membership
function. The knowledge base contains the main rule which contains the IF-THEN fuzzy
rules, as well as the database which contains the membership functions of the fuzzy sets.
The inference mechanism is the decision-making part that performs the logic operations.
Defuzzification is obtaining non fuzzy crisp output from the aggregate fuzzy set to be
processed as a control signal. Various defuzzification methods such as Centroid Average,
Maximum Center Average, and Bisector are used. The most common inference engines are
Mamdani and Sugeno models. They are mainly different in the production stage, where
Mamdani has an output membership function whereas Sugeno uses weighted average
of the consequents to calculate the crisp output. The fuzzy inference process diagram is
shown in Figure 4 [45].
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Since a conventional PID controller possess linear characteristics, it fails to track
fast and dynamic changes in widely spread nonlinear power systems. Accordingly, the
integration of a PID controller with fuzzy logic as a hybrid controller can be an efficient
solution to handle complex and nonlinear systems [45,46].

In our study, PI and PID controllers were implemented using a fuzzy control system
to preserve the system frequency at its nominal value, which showed greater flexibility
and adaptability to track the system rapid changes. The generalized architecture of the
presented hybrid fuzzy controller is shown in Figure 5, where the system frequency error ∆f,
and the derivative of this error d∆f, are taken as inputs to the fuzzy controller. The hybrid
fuzzy logic controller has one output that is continuously and online tuned to cope with
any change in system frequency to acquire better dynamic and steady-state response. Based
on the problem domain, input and output triangular membership functions were chosen
for their simple and easy computation to generate the antecedents. Input membership
functions are illustrated in Figure 6, with five linguistic variables, namely Negative Big (NB),
Negative (N), Zero (Z), Positive (P), and Positive Big (PB), and twenty-five IF-THEN rules
as shown in Table 2, while the output membership function is illustrated in Figure 6c. The
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minimum-type implication method was utilized to produce the fuzzy consequents from
the antecedents. Then, the maximum-type aggregation method was applied to obtain the
output fuzzy set for each case. After that, the centroid method was used for defuzzification
to generate the control signal that is applied to the governor of the turbine to increase or
decrease the output generator frequency. The Mamdani fuzzy model was incorporated as
the inference engine.
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Table 2. Rules for the proposed controller.

Error

Change of
Error

NB N Z P PB

NB NB NB NB N Z
N NB NB N Z P
Z NB N Z P PB
P N Z P PB PB

PB Z P PB PB PB

4. Results

The results are divided into two sections. In the first section, a single area system is
presented where three test cases are studied. The first case is applying a step disturbance at
t = 10 s, as shown in Figure 7. The proposed fuzzy EO PI controller is used and compared
with a PI controller optimized once by a harmony search algorithm (HSA), once by a
genetic algorithm (GA), and finally by a gravitational search algorithm (GSA), as presented
in [42]. The second case is conducted by examining all the controllers used in case 1 against
dynamic reference, as shown in Figure 8. Finally, in the third case, the proposed controller
is examined without repeating the optimization against wind disturbance, as illustrated in
Figure 9 and compared with the PI controller in [42], but the optimization is repeated.
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Clearly, the proposed fuzzy EO PI has the lower overshoot with respect to PI-GA,
PI-GSA, and PI-HSA, by 18.65%, 15.88%, and 13.556%. The proposed controller output
signals are shown in Figure 11.
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It is clear from Figure 12 that the proposed controller has the best dynamic performance
over PI-GA, PI-GSA, and PI-HSA in [22]. The control signals of the proposed controller are
shown in Figure 13.
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4.1.3. Case 3

The frequency deviation results of case 3, which has the wind disturbance shown in
Figure 9 in addition to the step disturbance in Figure 7, are shown in Figure 14 and scoped
in Figure 15.
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It is clear from Figures 14 and 15 that the proposed controller has the lowest overshoot
and less oscillations than the methods presented in [22] without repeating the initialization.
It is obvious that the peak-to-peak oscillation with the proposed controller is lower than
PI-GA by 59%, PI-HSA by 47%, and PI-GSA by 30%. The proposed controller signals are
shown in Figure 16.
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The gains of the controllers in [42] and the initials of the proposed controller are
presented in Tables 3 and 4.

Table 3. Gains of controller in case 1 and 2.

Kp Ki

Fuzzy EO PI initials 0.4922 0.3648
GA PI 0.4218 0.2928

GSA PI 0.432 0.299
HSA PI 0.4430 0.3043

Table 4. Gains of controller in case 3.

Kp Ki

Fuzzy EO PI initials Same initial gains of Case 1
GA PI 0.5469 0.3922

GSA PI 0.4846 0.3321
HAS PI 0.5085 0.3532

4.2. Second Section

The model under study in this section is the two-area system presented in [50], as
shown in Figure 1b. Two cases are studied for the two-area system. In the first case,
the loading of area 1 is varied by 1%, while the disturbance in case 2 is the wave energy
disturbance presented in Figure 17.
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4.2.1. Case 1

In this case, 1% load change at area 1 is applied. The change in area 1 frequency (df1),
the change in area 2 frequency (df2), and the tie power (dP12) are shown in Figures 18–20.



Energies 2022, 15, 6709 14 of 18

Energies 2022, 15, x FOR PEER REVIEW 15 of 20 
 

 

 
Figure 17. Wave disturbance. 

4.2.1. Case 1 
In this case, 1% load change at area 1 is applied. The change in area 1 frequency (df1), 

the change in area 2 frequency (df2), and the tie power (dP12) are shown in Figures 18–
20. 

 
Figure 18. Change in area 1 frequency under 1% load change in area 1. Figure 18. Change in area 1 frequency under 1% load change in area 1.

Energies 2022, 15, x FOR PEER REVIEW 16 of 20 
 

 

 
Figure 19. Change in area 2 frequency under 1% load change in area 1. 

 
Figure 20. Change in power tie under 1% load change in area 1. 

From Figures 18–20, it is evident that the overshoot with the proposed controller is 
lower than PIDA-HSA by 55%, PIDA-SCA by 50%, and PIDA-TLBO by 42% in df1, while 
in df2, the overshoot with the proposed controller is lower than PIDA-HS by 50%, PIDA-
SCA by 46%, and PIDA-TLBO by 28%. Finally in case of tie power, the overshoot with the 
proposed controller is lower than PIDA-HSA by 50%, PIDA-SCA by 40%, and PIDA-
TLBO by 15%. Moreover, the proposed controller has more smoothing performance than 
the PIDA presented in [50].  

4.2.2. Case 2 
In this case, wave energy disturbance is applied to the system. The change in area 1 

frequency (df1), the change in area 2 frequency (df2), and the tie power (dP12) are pre-
sented in Figures 21–23.  

Figure 19. Change in area 2 frequency under 1% load change in area 1.

Energies 2022, 15, x FOR PEER REVIEW 16 of 20 
 

 

 
Figure 19. Change in area 2 frequency under 1% load change in area 1. 

 
Figure 20. Change in power tie under 1% load change in area 1. 

From Figures 18–20, it is evident that the overshoot with the proposed controller is 
lower than PIDA-HSA by 55%, PIDA-SCA by 50%, and PIDA-TLBO by 42% in df1, while 
in df2, the overshoot with the proposed controller is lower than PIDA-HS by 50%, PIDA-
SCA by 46%, and PIDA-TLBO by 28%. Finally in case of tie power, the overshoot with the 
proposed controller is lower than PIDA-HSA by 50%, PIDA-SCA by 40%, and PIDA-
TLBO by 15%. Moreover, the proposed controller has more smoothing performance than 
the PIDA presented in [50].  

4.2.2. Case 2 
In this case, wave energy disturbance is applied to the system. The change in area 1 

frequency (df1), the change in area 2 frequency (df2), and the tie power (dP12) are pre-
sented in Figures 21–23.  

Figure 20. Change in power tie under 1% load change in area 1.

From Figures 18–20, it is evident that the overshoot with the proposed controller is
lower than PIDA-HSA by 55%, PIDA-SCA by 50%, and PIDA-TLBO by 42% in df1, while in
df2, the overshoot with the proposed controller is lower than PIDA-HS by 50%, PIDA-SCA
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by 46%, and PIDA-TLBO by 28%. Finally in case of tie power, the overshoot with the
proposed controller is lower than PIDA-HSA by 50%, PIDA-SCA by 40%, and PIDA-TLBO
by 15%. Moreover, the proposed controller has more smoothing performance than the
PIDA presented in [50].

4.2.2. Case 2

In this case, wave energy disturbance is applied to the system. The change in area 1
frequency (df1), the change in area 2 frequency (df2), and the tie power (dP12) are presented
in Figures 21–23.
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From Figures 21–23, it is obvious that the peak-to-peak oscillation with the proposed
controller is lower than PIDA-HSA by 50%, PIDA-SCA by 41%, and PIDA-TLBO by 30%
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in df1. In df2, the peak-to-peak oscillation with the proposed controller is lower than
PIDA-HS by 48%, PIDA-SCA by 35%, and PIDA-TLBO by 13%. Finally, in the case of tie
power, the peak-to-peak oscillation with the proposed controller is lower than PIDA-HSA
by 43%, PIDA-SCA by 23%, and PIDA-TLBO [50] by 20%.

5. Conclusions

A fuzzy PI/PID controller is proposed in this article to enhance the AGC system perfor-
mance. The initialization of the controller gains was conducted by EO optimization. First,
the validation of the proposed fuzzy PI controller was performed through comparison with
PI-TLBO base, PI-HSA base, and PI-GSA base under step, dynamic, and wind generator
disturbances in a single-area system. The proposed controller proved its superiority, where
the system has better overshoot, dynamic performance, and less oscillations than the other
methods. Moreover, the proposed controller proved its robustness through the auto-tuning
of the gains. Finally, the proposed fuzzy PID controller also proved its superiority over the
PIDA-TLBO, PIDA-SCA, and PIDA-HSA under step and wave energy disturbance in the
two-area system.
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