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Abstract: User satisfaction with a product plays a direct role in the purchasing decisions. With the
enrichment of material life and the growth of individual requirements, this satisfaction is derived
from the requirement for functionality to aesthetics. Conventional product design methods normally
focus on achieving the required functions where its design specifications are mainly related to certain
functional or usability requirements. In recent years, researchers have made efforts to develop
methods for supporting aesthetic design activities during the product conceptual design phase.
However, most of these methods hardly consider product aesthetics or the consumers’ emotional
needs. Therefore, this study proposed a user-driven conceptual design specification integrating
functional reasoning with aesthetic information analysis. The method consisted of two tasks, the
construction of a mapping model and the implementation of the mapping model. Firstly, the
mapping model was constructed for capturing the relationships between initial design specifications
and user experience (UX). Secondly, the proposed design specifications were selected, refined, and
optimized based on the mapping model. A case study on digital camera design was carried out
to demonstrate the feasibility and effectiveness of the proposed method. The results showed that,
compared with the initial design specification candidates, the UX was enhanced by applying the
improved design specifications.

Keywords: product design; user experience; design specification; aesthetic design; functional design

1. Introduction

For today’s consumer products, functions are no longer the only factors that lead to
a user’s purchasing decision. With the core technologies of a product becoming mature
in the market, the aesthetic aspect of a product becomes another determinative factor for
companies to raise their product’s competitiveness. In recent years, many researchers
started to propose methods to support the aesthetic design activities during the product
conceptual design phase. However, few studies could guide integrating aesthetic and func-
tional information in their applications. In most conceptual design studies, the functional
aspect and the aesthetic aspect of design information are usually considered separately.
In fact, product aesthetics and its practical functions are usually closely related to each
other. The internal structures of a product associated with its supported functions largely
determine the product form. In industrial design, appearance design, and other design
processes, users’ needs for aesthetics are often perceptual and descriptive. These descrip-
tive needs are summarized into qualitative, descriptive information as design specs (as
opposed to quantitative function and usability specifications). For novice designers, the
transition from qualitative design requirements to design shapes is difficult. The transition
between them often relies on the designer’s subjective judgment in combination with his
own experience. Therefore, a holistic consideration is required to improve the conceptual
design with integrated functional and aesthetic information.
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1.1. Motivation

Integrating functional and aesthetic information in conceptual design is not an easy
task. The first mission is to quantify both the functional and aesthetic design information.
In general, functional design information is relatively easy to be formed into technical
descriptions or values of certain functions. There are plenty of studies that focused on
the representation of function and structure elements [1–5]. In comparison, quantifying
aesthetic design information would be more difficult. Some studies used basic geometric
dimensions to describe a product’s form [6–8]. However, such a way of description could
only be able to indicate the physical information of a product’s aesthetics. The psychological
aspect of a product including both the implied emotions that are conveyed in the product
appearance and the design aesthetics of arranging design elements in the visual design
composition could hardly be represented. These approaches are more applicable to the
engineering research paradigm and less applicable to the aesthetic design practice. In
industrial design practice, stylists often have disciplinary backgrounds in design and art.
Their design thinking often revolves around theories related to aesthetic laws, with less
awareness of geometric parameters and other descriptions. In an attempt to translate users’
feelings towards product form elements, Kansei Engineering [9] has been proposed. In
Kansei Engineering, Kansei adjectives are used to indicate certain emotions on a product.
Semantic differentials (SD) [10] are implemented to quantify the degree that users would
perceive the corresponding emotions from the product’s appearance. However, Kansei
Engineering could not support the descriptions on the arrangement of design elements,
especially the use of aesthetic design principles on product form design composition.
The aesthetic design principles are well-recognized design fundamentals that provide
strategies for visual design compositions [11–14]. They are commonly applied by designers
to choose and arrange design elements, assisting in the creation of art forms, buildings, and
commercial products [15,16]. Hence, it would be necessary to include the information of
applying aesthetic design principles to represent aesthetic design information.

The second mission is to compare and select functional and aesthetic information. In
this mission, design trade-offs would be made among the information of function, usability,
and aesthetics. For example, how to balance the smart and slim appearance of a laptop
against its functionality structures such as a built-in DVD drive or a large hard drive.
To handle this issue, comprehensive evaluation criteria are required to cover both the
functional and aesthetic design aspects. User experience (UX) is a broad term that could
reflect all aspects of the interaction between a user and a product [17–20]. Different from the
concept of usability, UX covers a wider field including function, emotion, affect, hedonism,
aesthetics, etc. [21–23]. This suggests that UX includes both the functional and aesthetic
aspects of design information. Thus, employing UX could be practicable for the integration
of functional and aesthetic design.

1.2. Objective

Based on the above considerations, the objective of this study is to propose a novel
method that combines Kansei engineering and aesthetic design principles to quantify aes-
thetic design specs to improve design specifications by integrating functional and aesthetic
information based on UX. The proposed method is designed for consumer products, such
as mobile phones, digital cameras, and other electronic products, which are already mature
in the market. For these products, function, usability, and aesthetic aspects are vitally
important. In product conceptual design, design specifications are established with a set of
precise descriptions of product requirements in terms of function, usability, and aesthetics.
The proposed method mainly focuses on the activity of establishing design specifications
to evaluate and generate improved design specifications for further development.

1.3. Contributions

The main contributions of the methods proposed in this paper are as follows: (1) The
user driven conceptual design specification proposed in this paper is oriented toward con-
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sumer product design and can realize the integration of aesthetic information analysis and
functional reasoning. (2) Based on combining function, usability, and aesthetic information,
this method pays attention to emotional response and aesthetic rules of design elements
and establishes design specifications through user experience, which makes up the gap
between user experience and conceptual design.

1.4. Structure of the Paper

The remainder of the paper is organized as follows: Section 2 provides an introduction
to product design specifications, in terms of function, usability and aesthetics, and user
experience. Section 3 describes the proposed framework of integrating functional and
aesthetic design specifications. Section 4 presents the implementation procedure for the
proposed method with a camera design case study. Section 5 gives brief conclusions and
several future suggestions for this study.

2. Related Works
2.1. Product Conceptual Design
2.1.1. Function and Usability Related Conceptual Design

The process of conceptual design includes activities of identifying customer needs,
establishing design specifications, concept generation and downstream conceptual design
activities (concept selection, evaluation, and validation) [24]. During the conceptual design
process, customer needs are collected from target customers and formulated into a hierarchy
of primary, secondary and (if necessary) tertiary needs. The weighting of each need
will also be established. Based on the identified customer needs, design specifications
will be determined by the design team using precise descriptions of what the product
has to have to satisfy the customer needs. The downstream conceptual design activities
will begin with a set of customer needs and design specifications and result in a set
of design concepts from which the design team will make a final selection, evaluation,
and validation. In general, most studies about user requirement analysis and design
specification establishment are usually related to functional and usability information and
do not combine the functional and aesthetic aspects of design information. For example, the
Kano model [25–29], Quality Function Deployment [27,30,31], Needs-metrics [24], Affinity
Diagram [32], Conjoint Analysis [33–35], etc.

2.1.2. Aesthetics Related Conceptual Design

Studies on supporting the aesthetics of conceptual design based on the evaluation
criteria for product appearance can be classified into the group that focuses on emotional
responses and the group of the aesthetic rules of design elements constitution.

To handle users’ emotional responses, Kansei engineering is one of the methodologies.
It is defined as “translating technology of a consumer’s feeling (Kansei) of the product
to the design elements” [9,36,37]. Three important issues are addressed in this method:
(1) how to capture user’s affective needs of the product, (2) how to analyse captured data,
trying to find mappings between products and affective needs, (3) how to interpret cap-
tured data and improve product design in the following design processes. To acquire the
user’s emotional needs, the Semantic Differential (SD) is used as the main method with a
number of collected Kansei words. A survey or an experiment is then conducted to find
the mappings between physical design elements and Kansei words. Various kinds of at-
tempts have been made to extend the Kansei Engineering approach. Chen and Chuang [38]
proposed to integrate robust design method and Kano model into Kansei Engineering to
enhance the subjective quality of aesthetics and user satisfaction. Smith and Smith [39]
implemented the Latent Semantic Engineering approach to create a semantic space model
that improves the matching accuracy between users’ Kansei requirements and product
designs. To adjust the inconsistency between different users’ understanding of Kansei tags,
Huang et al. [40] proposed a basic-emotion based SD method to obtain data for establish-
ing the mapping between products and Kansei tags. Yang and Shieh [41] implemented
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support vector regression to map the relationship between user affective responses and
product form features. Considering the social, environmental and economic performance,
Hartono [42] developed a modified Kansei Engineering-based approach to understand
and satisfy customers’ emotional needs. Kansei Engineering is successfully in identifying
user-preferred design elements, however, may not be very usefully in placing and arrang-
ing design elements. Some other studies have also explored to deal with user’s emotional
responses, such as integrating affective design with defining engineering specifications [43],
affective computing [44–46], emotional and cognitive design for mass personalization [47].
The way of arranging and placing design elements is already decided following that of the
original design samples selected by the design team. However, few studies considered the
way of combining functional and aesthetic design.

The subject of beauty in placing and arranging design elements has been studied for
centuries. Certain lines, proportions, shapes and colours were regarded to be inherently
beautiful according to human cognition [48]. Many design theories influenced the notion of
design beauty has been built such as the golden section. One famous pioneer of product de-
sign is the Bauhaus’ teaching theory which is embraced Gestalt psychology and attempted
to build a new sensitivity based on design elements such as line, colour, text, etc. [11,49,50].
In Gestalt psychology, scholars believed that “the perception of the whole is greater than a
sum of individual parts”, meaning that things that are orderly, balanced, unified exuding an
overall sense of feeling will be more preferred by people to perceive [51–53]. Referred to the
perspective of Gestalt psychology, many aesthetic design principles were developed to aid
the placing and arranging of design elements for pleasing design production. Stebbing [54]
summarized the most-mentioned terms related to aesthetic design principles and recog-
nized that Contrast, Rhythm, Balance, and Proportion (CRBP) are basic design principles
on visual composition. Nonetheless, aesthetic design principles lack the consideration of
expressing emotional information like metaphors and feelings in design forms [15].

2.2. User Experience
2.2.1. Concept of UX

The concept of user experience (UX) emerged in the field of Human-Computer In-
teraction. It is defined as “a person’s perceptions and responses that result from the use
and/or anticipated use of a product, system or service [55]”. It is an elaborated form
of satisfaction [56,57]. Law and van Schaik [56] interpreted UX that it constructs as a
user’s perceived hedonic quality, pragmatic quality, aesthetics and overall goodness of the
product. Tractinsky and Hassenzahl [58] defined UX scope into perspectives beyond the
instrumental, emotion and affect, and the experiential, and suggested UX as an outcome
of the user’s internal state, designed characteristics, and use of context. Crilly et al. [59]
claimed that users’ personal characteristics, cultural background, and life experience in-
fluence the user’s cognitive process (semantic interpretation and symbolic association), as
a consequence, influence user’s affect and behaviour. Benyon [60] considered that all the
sensations, feelings, thoughts, and actions of engaging in activities are included in UX.

To achieve the ultimate goal of UX research—finding ways of improving UX of prod-
ucts or services, many studies have been conducted. Basically, the motivations of UX
research can be classified into three groups: defining UX, evaluation methods, UX predic-
tion. The research goal of defining UX usually is aimed at understanding the fundamental
concepts of UX. They designate evaluation methods to explore the nature and dimensions
of UX. For example, through a survey evaluation method, Law et al. [61] came up with the
conclusion that UX is dynamic, subjective and context-dependent; Park et al. [62] proposed
three main elements of UX, including usability, affect, and user’s subjective value (user
value) and their correlated sub-elements for mobile phones through in-depth interview and
evaluation; Battarbee and Koskinen [63] evaluated UX data from a real case of the service
company to illustrate their argument of co-experience—the social interaction effects on
UX. Yang et al. [64] defined UX that it includes users’ affective and cognitive perspectives.
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In this work, a faceted conceptual model is proposed to explain and illustrate the crucial
factors of UX.

The second group, the evaluation methods, focuses on the methodology that is being
applied to data acquisition and analysis of UX evaluation [65,66]. Kujala et al. [67] pro-
posed a UX curve as a method for modelling and evaluating long-term UX by recording
the chronological order of UX. Liang et al. [68] tried to minimize and structure online
review statements into a facet UX model as well as to evaluate each aspect of the model.
Xu, Zhou et al. [69] chose fuzzy Petri Nets to build an activity-based UX model for evaluat-
ing the causal relations between users’ affective responses and cognitive processes.

The third group emphasizes the prediction of UX. Law [70] organized UX prediction
into two types: UX-behaviour-loop and UX-factor-quality-loop. The former aims to predict
the acceptance of a specific set of user experiences of the product, which indicates the
probability that the user is willing to buy the product. This type of prediction is usually ap-
propriate for relative matured or ready-to-market products. For example, Staiano et al. [71]
proposed an automatic system for predicting user behaviour through UX assessment of
tracking users’ facial expressions. The type of the latter allows people to predict UX qual-
ities that are preferred among users by specifying certain UX factors, in other words, to
elicit requirements and establish criteria for conceptual design. Bargas et al. [72] conducted
empirical studies of UX and found that only a smaller group of publications have covered
this research field. A similar conclusion has also been made in Vermeeren, Law et al. ’s
study [56]. Souza et al. [73] used mouse-tracking and artificial intelligence techniques to
evaluate UX. Similar studies can be found in [74].

Current research on UX mainly targets understanding UX features and undertaking
UX evaluation of existing products. Little attention has been paid by researchers to develop
a UX integration method for conceptual design stages [56,75–77]. Additionally, in the
research of UX prediction, most of the publications focused on the user need and imagined
applications of product concepts, i.e., the evaluation and validation of product concepts [72].
Few studies explored ways to support the establishment of design specifications through
the assessment of UX. This suggests a significant gap between current UX evaluation and
the process of deriving a product concept.

2.2.2. UX Measurement for Products

To reveal how products provide the user experience of people, the hedonic/pragmatic
model proposed by Hassenzahl [78] is one common recognized UX model. It is a content-
oriented model of user experience. In this model, two dimensions of product quality are
addressed that will influence people to perceive interactive products, namely pragmatic
quality and hedonic quality. Pragmatic quality refers to the product qualities that support
the achievement of intended action by using a product, which is related to the utility
and usability of products. Hedonic quality emphasized the pleasures and satisfactions
brought by achieving an intended action, which focusses on the question of why people
own and use a certain product. The two dimensions were suggested to be independent by
Hassenzahl and Monk‘s study [79].

To measure the performance of user experience under the UX model, Hassenzahl et al. [80]
advocated that needs fulfilment can act as a major source of good experience with interac-
tive products. Through experiments on ten psychological needs proposed by Sheldon et al. [81],
they found a clear relationship between the degree of need fulfilment and positive affect.
Following this idea, Korber et al. [82] presented a measurement method of UX relying on
the fulfilment of psychological needs and conducted three online surveys based on the
method. Besides, Laugwitz et al. [83] developed a user experience questionnaire (UEQ)
constructed from attractiveness, pragmatic quality (perspicuity, efficiency, dependability)
and hedonic quality (stimulation, novelty). The UEQ scale has been successfully applied
to measure UX in different scenarios [84–86]. Minge et al. [87] introduced a new ques-
tionnaire, called meCUE (components model of user experience), to measure UX. This
questionnaire has four modules for validation, including user emotions, instrumental and
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non-instrumental product perceptions, consequences of usage, and an overall judgment of
attractiveness. However, the above studies mainly focus on the measurement and quantify-
ing of user experiences, and do not include the improvement of product quality based on
UX measurement results.

In summary, few studies integrate both functional and aesthetic aspects of design
information in product conceptual design. In studies of UX, few studies address the UX
evaluation method for conceptual design stages, especially on supporting the establishment
of design specifications through UX assessment.

3. Methodology

A framework for the proposed method is presented in this section. The main purpose
of the method is to improve the design by integrating functional and aesthetic design
specifications based on the user experience of target users. Figure 1 illustrates the proposed
framework consisting of two tasks. The first task aims to develop a mapping model that
captures the relationships between initial design specifications and UX of existing design
samples. The second task focuses on implementing the mapping model, i.e., to integrate
and refine proposed function and aesthetic design specifications to select and improve
design specifications. It is important to note that the aesthetics here emphasizes the design
method of product design, which is mainly concerned with the design of physical, shaped
products, and emphasizes the appearance design and hardware and software configuration
of products more than the internal design of the product, such as the GUI.
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Figure 1. A User-driven Conceptual Design Specification.

3.1. Developing a Mapping Model

In the first task, three variables which are design samples, initial design specifications,
and UX indicators, would contribute to the mapping model. Design samples are usually
selected from existing design cases with different attributes of design specifications. De-
sign specifications contain a list of design attributes and values that indicate the design
requirements. For design samples of the same product type, their design attributes would
be the same while the design values may be different depending on the design samples
themselves. Concerning today’s consumer products, such as electronic products, the design
attributes can be classified into function, usability, and aesthetics [88,89] with respect to de-
scribing the functional, ergonomic, and aesthetic aspects of design requirements. Figure 2a
shows an example of the design specifications of the compact digital camera. To obtain the
values of design specification attributes from design samples, function and usability speci-
fications which contain technical descriptions usually can be collected directly from design
documents. However, appearance specifications would be hard to acquire. Appearance
specifications could be classified into aspects of emotion and aesthetic indicators. Emotion
reflects the expression of implied emotions in the product aesthetics. For example, a prod-
uct in pink colour communicates more feelings of “feminine” than a grey-coloured product
and is usually designed for the ladies. Aesthetic indicator describes the arrangement of
design elements regarding implementing aesthetic design principles in the visual design
composition. For instance, if the aesthetic indicator “contrast” is suggested to be low then
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the designer may like to avoid the use of conflicting or opposite colour combinations in
colour design.
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In the proposed method, the collection of aesthetic information relies on the involve-
ment of both users and designers. Experimental studies are conducted to acquire informa-
tion of emotion and aesthetic indicators from users and designers. Emotion adjectives and
aesthetic design principles are applied as criteria for users and designers to evaluate and
quantify the information of emotion and aesthetic indicators, respectively. UX indicators
help designers to measure the performance of UX with certain UX dimensions. Existing
UX studies hold the assumption that need fulfilment could be viewed as a major source of
good UX [80]. For example, “making a call” may offer a satisfying experience for a person
who likes to contact their friends. Some UX studies also suggested that investigating need
fulfilment could be implemented to measure UX and generate UX indicators [49,83,84].
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Hence, UX indicators are derived from psychological need-satisfaction items with values
indicating satisfactory levels. UX indicators, based on their definitions, can be divided
into need fulfilment of the pragmatic quality and hedonic quality of a product. Pragmatic
quality refers to the user-perceived ability to achieve the intended action, such as the
ability to “reach a destination”. Hedonic quality focuses on a higher-level perception. It
underlines the pleasures and satisfactions that are bought out by achieving the action. For
example, “reach a destination by a luxury car” and “reach a destination by a rusty car”
may offer people different levels of satisfaction that result in different hedonic qualities.
Following the studies of UX measurement (Section 2.2.2) and based on the scenario of the
conceptual design of electronic products, the attributes of UX indicators are derived from
the fulfilment of seven psychological needs regarding the pragmatic aspect and hedonic
aspect of product quality (Figure 2b). In the evaluation of need fulfilment, users would
indicate their satisfaction level of each psychological need. The satisfactory level is then
converted to the value of the corresponding UX indicator attribute.

The mapping model is constructed with the input of design specifications and the
output of UX indicators. UX indicators could be viewed as the criteria to compare and
evaluate design specifications. As UX indicators are not equivalent and make different
contributions to the assessment of design specifications, the relationship between design
specifications and UX indicators would be non-linear. Additionally, design specifications
and UX indicators may contain many attributes resulting in a large variation in data
composition. Thus, a relatively large amount of data is required. To increase the efficiency
of mapping model construction, pre-processing on reducing data dimensions to identify
crucial design variables would be required.

3.2. Implementing the Mapping Model

The second task addresses the implementation of the mapping model constructed
in the first task to improve design specifications. Candidates of design specifications are
firstly proposed by the design team for improvement. In the activity of establishing design
specifications, based on the collected user requirements, the design team lists the idea and
marginally acceptable design values for each design specification feature. According to
these values, the design team proposes several combinations of design specifications as
design specification candidates that would contribute to different potential design concepts.

3.2.1. Evaluating and Selecting Design Specifications

Two scenarios are considered to improve the proposed specifications. The first scenario
(Figure 3a) is to evaluate and select the proposed design specifications based on predicted
UX indicators. To improve the proposed design specifications, trade-offs would be made
between function, usability, and aesthetic specifications. The mapping model could help
the design team to make decisions by predicting the user experience of the proposed
design specifications. From the mapping model, the corresponding UX indicators of the
proposed design specifications could be calculated. The predicted UX indicators could
serve as the benchmark for the design team to select the proposed design specifications for
further development.

3.2.2. Optimizing Design Specifications

The second scenario (Figure 3b) is to optimize the proposed design specifications that
would result in better UX. To accomplish the optimization, genetic algorithm (GA) which
is a preferred optimization search tool for design parameter optimization could be used
to find the optimal design specification combinations with enhanced UX indicators based
on the mapping model. Optimizing design specifications to improve UX is among the
more complex nonlinear optimization problems. In recent years, heuristic optimization
algorithms have performed very well in solving many complex optimization problems.
The optimization process begins with an initial design specification population containing
the parameter sets of the proposed design specifications to be improved. On the initial loop
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of the search, the mapping model is used to generate corresponding UX indicators of the
proposed design specifications. The evaluation function is used to evaluate the overall UX
performance based on UX indicators. The evaluation function could be determined by the
design team to reflect the weighting of each UX indicator. The evaluation results are used
to calculate the fitness values for each design specification. The fitness value directs GA
to find optimal design specification combinations and determines the probability that a
design specification will be selected as a parent for reproduction. After the fitness values of
all the initial design specification populations are calculated, GA operators which consist
of selection, crossover, and mutation are performed to gradually improve the performance
of the population. The optimization process will repeat until a termination condition
is satisfied. The termination condition could be a specific number of generations or the
minimum amount of change in fitness values from one generation to the next. In this way,
the improved design specification combinations could be found with enhanced UX.
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4. Case Study

In this section, a case study is provided to exam the feasibility of the proposed method
for improving design specifications based on UX. The detailed procedure of this case study
is presented as follows.

4.1. Problem Statement

The case study was about the conceptual design of the compact digital camera. The
goal was to establish improved design specifications of both function, usability, and aesthet-
ics for the compact digital camera design. Based on the proposed method, the first task was
to construct the mapping model. The second task was to implement the mapping model,
i.e., to improve design specifications with integrated functional and aesthetic information.
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4.2. Data Acquisition

To construct the mapping model, the first step was to select design samples and collect
data of design specifications and UX indicators. Twenty-eight popular compact digital
cameras with various design features were chosen from the market.

The next step was to decide the design attributes of camera design specifications. The
main design attributes of function, usability, and aesthetics were determined and are pre-
sented in Figure 4. The design values of function and usability specifications were obtained
from the camera manufacturer websites. Based on the attributes of function, usability and
aesthetics, the values of basic function, secondary function, portability, and display were ob-
tained. To access the aesthetics design specifications, surveys were conducted among users
and designers. The user survey aimed to capture user-perceived emotions from product
forms. The user survey was conducted online and consisted of an introduction, questions
on demographic information and semantic differential scales to investigate user perception
of the emotional adjective “Retro”. The emotional adjective “Retro”, which indicates what
the aesthetics style looks like from the recent past, was selected from advertisements and
magazines as the emotional adjective. The four views (front, top, left and 3D) of design
samples were presented to the participated users. Figure 5 shows the survey question
(one question) on “Retro” presented to the participants. Totally, 46 sets of valid data were
obtained from the user survey. The designer survey was similar to the user survey for most
parts. The difference was that the designer survey aimed to investigate design intentions
on applying the aesthetic design principle. The principal attribute “Contrast” means that
the juxtaposition of relative different elements to create a visual discord in composition
was chosen for evaluating digital cameras. Fifteen designers participated in the survey and
eight sets of valid data were collected from them.
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To measure UX of selected design samples, the attributes of UX indicators for evaluat-
ing the compact digital camera were determined (Figure 4).

To measure the UX of selected design samples, user experience indicators for evaluat-
ing digital cameras should be determined. Based on the need-satisfaction items proposed
by Sheldon et al. [81] and the camera design scenarios, “Autonomy”, “Competence”,
“Meaning”, “Stimulation”, “Luxury”, “Self-esteem”, and “Popularity” were selected as
UX indicators. A six-month UX evaluation survey was published on Amazon Mechanical
Turk to collect UX metric values for a sample of 28 designs (we prepared 40 design samples
but ended up keeping 28 designs because some sample cameras did not receive enough
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responses). Survey participants were required to have experience with at least one camera
from the provided list to be eligible to participate and were asked to respond only to
cameras with which they had experience. The survey asked the participants to indicate
how they agree that the descriptions of each UX indicator could reflect their own experience
of using one of the sample cameras with semantic differential scales. The UX survey for the
28 design samples yielded 300 valid responses. All 300 responses were manually checked
to eliminate any obvious errors (e.g., responses where all respondents selected the same
option, responses with omitted choices, etc.)

4.3. Mapping Model Construction
4.3.1. Pre-Processing by PCA

After the step of data acquisition, the mapping model was ready to be constructed. The
mapping problem is between multiple inputs and outputs among a relatively large number
of attributes. Thus, pre-processing for reducing the data dimensions was required in this
case study. Principle component analysis (PCA) was frequently used to handle complex
multivariate data and provide a compact representation of the data [90]. It obtains a linear
combination of attributes (refer to the principal components) with a lower-dimensional
space that reveals the data structure. In PCA, data reduction is accomplished by neglecting
the less important vector directions in which the variances of the design sample are not
significant. In general, PCA could not provide well interpretable components. However,
to facilitate the interpretation, rotation of the components could be performed once the
number of principal components is decided. Varimax rotation [91,92] is one of the popular
rotation methods. It simplifies the interpretation and provides clear insights into how the
attributes make up each component. In the case study, PCA with Varimax rotation was
implemented to reduce the dimensions of UX indicators. Four principal components that
accounted for 90.17% of the design samples’ total variance were extracted from UX indica-
tors. Table 1 shows the total variance explained of PCA results of the seven UX indicators.
Table 2 illustrates the Varimax rotation results of the four principal components of UX
indicators. UX indicator attribute “meaning” which loaded on two components higher
than 0.50 without clear primary components was suggested to be removed. Attribute pairs
“autonomy and competence” and “luxury and popularity” were found that largely loaded
on the second and the first principal components, respectively. They were suggested to be
merged into two combined attributes. The final four attributes for UX indicators were “au-
tonomy/competence”, “stimulation”, “luxury/popularity”, and “self-esteem” (Figure 4).

Table 1. Total variance explained of PCA results.

Component
Initial Eigenvalues

Total % of Variance Cumulative %

1 3.882 55.458 55.458

2 1.413 20.189 75.647

3 0.616 8.802 84.449

4 0.401 5.723 90.172

Table 2. Varimax rotation results of principal components of UX indicators.

Component

1 2 3 4

Autonomy 0.354 0.806 0.246 0.154

Competence −0.050 0.895 0.132 0.307

Meaning 0.715 0.540 0.023 0.190

Stimulation 0.125 0.424 0.255 0.840

Luxury 0.812 0.233 0.370 −0.119

Self-esteem 0.305 0.227 0.869 0.255

Popularity 0.915 −0.072 0.167 0.177
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4.3.2. Proposed Model for Construction

Facing the problem of multiple variable modelling, artificial neural networks (NN)
are commonly adapted in design studies. It is a well-known data processing system that
contains many simple, highly interconnected processing elements which are called neurons
in an architecture inspired by the structure of the human brain. As the nature of the neural
network in the brain is nonlinear, the NN can be used to derive non-linear mappings
between a set of input and output variables. In the case study, considering the relatively
large number of input variables, an integrated model using multiple linear superposition
and NN was proposed. Figure 6 presents the proposed model for the case study. The input
attributes were simplified into 3 variables (F (function), U (usability), and A (aesthetics)) by
constructing a multiple linear superposition between F, U, A and their attributes (design
specification attributes F1, F2, F3, . . . , U1, U2, U3, . . . , A1, A2, A3, . . . ). An NN model
was then constructed with the input of F, U, and A and the output of the UX indicators. GA
was applied to search for the optimal values of the unknown parameters (a1, a2, a3, . . . , b1,
b2, b3, . . . , c1, c2, c3, . . . ) in the multiple linear superpositions. In the GA optimization,
the mean squared error of the NN model was used to determine the optimal value of
the unknown parameters. To avoid the overfitting problem, 3-fold cross-validation (CV)
was employed to train the NN model and obtain suitable parameters for the multiple
linear superpositions.
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Figure 6. Proposed model with multiple linear superposition and NN.

4.3.3. Experimental Results

The NN model was constructed with two layers. The NN structure was defined
to contain three neurons in the input layer, four neurons in the hidden layer, and four
neurons in the output layer. The training algorithm was set as Levenberg-Marquardt
backpropagation. Figure 7 shows the GA optimization results on selecting the optimal
parameters of the multiple linear superposition. Parameters with larger values reflected
greater importance of design specification attributes in calculating function, usability,
and appearance. For example, “portability” with the parameter value of 0.83 was more
important than “display” with the parameter value of 0.17 in determining usability. Based
on the optimized parameters of the multiple linear superpositions, the NN model was
constructed. To train the NN model, 80% of the total data was defined as the training data
and the other 20% data was used as the testing data. The mean squared error of the testing
results for the NN model was 0.0687.
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4.4. Mapping Model Implementation

In the case study, two scenarios for implementing the mapping model were presented.
The first scenario was to select camera design specifications among three design speci-
fication candidates that were proposed by the design team. Table 3 presents the values
of the three design specification candidates for selection. From the mapping model, the
corresponding UX indicators were predicted and illustrated in Figure 8. Among the three
candidates, Candidate 1 had the highest values on “autonomy/competence”, “stimula-
tion”, “self-esteem”, and “average UX (mean value of the four UX indicators)” compared
to Candidate 2 and Candidate 3. However, for “luxury/popularity”, Candidate 1 had a
relatively lower value than Candidate 2. The results suggested that Candidate 1 would
result in the best UX performance. However, Candidate 1 needed to be further improved
to raise the value on “luxury/popularity”.

Table 3. Proposed design specification candidates for selection.

Basic Function Secondary Function Portability Display Retro Contrast

Candidate 1 0.231 0.283 1.000 0.000 0.300 0.607

Candidate 2 0.346 0.914 0.800 1.000 0.524 0.214

Candidate 3 0.398 0.478 0.415 0.000 0.567 0.393
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The second scenario was to perform optimization of design specification candidates.
Candidate 1 was chosen for further improvement in this scenario. GA was implemented to
improve the design specifications of Candidate 1. The search mechanism began with an
initial population containing design specification values of Candidate 1. The parameters
of GA mainly include selection using stochastic uniform random uniform distribution,
crossover using scattered crossover function, and mutation using Gaussian mutation opera-
tion. The constructed mapping model (NN model) was applied to evaluate each generated
chromosome. The weightings to calculate the fitness value were defined as 0.15, 0.15, 0.4
and 0.3 for UX indicators “autonomy/competence”, “stimulation”, “luxury/popularity”,
and “self-esteem” accordingly. GA iterations were then performed. The results of the GA
optimization are presented in Figure 9. Based on the improved specifications, the value of
“average UX” was increased from 0.675 to 0.787. The value of “luxury/popularity” was
increased from 0.517 to 0.641.
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4.5. Discussion

This case study focused on the conceptual design problem of compact digital cameras.
In the case study, the proposed approach to improve design specifications with integrated
functional and aesthetic information is demonstrated. An integrated model with multiple
linear superpositions and NN was proposed to construct the mappings between initial de-
sign specifications and UX indicators of cameras. GA was applied to search for the optimal
parameters of the multiple linear superpositions. Based on the constructed mapping model,
three proposed candidates of camera design specifications were evaluated. One candidate
was selected and further improved through GA optimization. The value of “average UX”
was increased from 0.675 to 0.787, which proved the improved design specifications were
feasible and effective. In addition, we also realized in the case that there are many other
algorithms besides GA that can achieve the same purpose, and we will try to use other
algorithms for further optimization in the future.

5. Conclusions

In this study, a method was proposed to improve design specifications integrating
functional and aesthetic design information based on UX. The method consisted of the
development of a mapping model and the implementation of the mapping model. The
relationships between initial design specifications including function, usability, and aesthet-
ics and UX were constructed in the mapping model. The implementation of the mapping
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model included the selection and optimization of proposed design specifications. The
proposed method was demonstrated by a camera design case study. The proposed method
makes an early attempt to improve design specification with integrated functional and
aesthetic information. It combined function, usability, and aesthetic aspect, focusing on
both the emotional response and the aesthetic rules of design elements constitution in
the aesthetic aspect. The method bridges the gap between UX and conceptual design by
applying UX to support establishing design specifications of conceptual design. In future
research, studies on the improvement of design concepts such as forms and structures
based on UX could be considered.
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