
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/15 3 0 6 9/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Ling, Jiaxin,  Li, Xiaojun,  Li, H aijia ng  , S h e n,  Yi, Rui, Yi a n d  Zhu,  H e h u a  2 0 2 2.  Da t a

a c q uisi tion-in t e r p r e t a tion-a g g r e g a tion  for  dyn a mic  d e sign  of r ock  t u n n el s u p po r t .

Auto m a tion  in  Cons t r u c tion  1 4 3  , 1 0 4 5 7 7.  1 0.1 0 1 6/j.au t con.20 2 2.10 4 5 7 7  

P u blish e r s  p a g e:  h t t p://dx.doi.o rg/10.10 1 6/j.au t con.20 2 2.1 0 4 5 7 7  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



 

 

Data acquisition-interpretation-aggregation for dynamic design of 1 

rock tunnel support 2 

Jiaxin Ling a, Xiaojun Li a,*, Haijiang Li b,*, Yi Shen a, Yi Rui a, Hehua Zhu a 3 

a Department of Geotechnical Engineering, Tongji University, 1239 Siping Road, 4 

Shanghai 200092, China  5 

b School of Engineering, Cardiff University, UK 6 

Abstract: During the rock tunnel construction, one of the critical aspects lies on 7 

the support design to secure the construction safety. Due to the extreme complex 8 

underground geological and geotechnical condition, the support design needs to be 9 

dynamic and ideally should consider all related data and information comprehensively 10 

and timely. Different Internet of things (IoT) and other related information technologies 11 

(IT) have been widely applied during tunnel construction to collect a large amount of 12 

monitoring data, which in turn demands real time or just-in-time (JIT) data processing 13 

for decision making. To understand the state-of-the-art IoT-based dynamic tunnel 14 

support design, a comprehensive review is conducted from the perspectives of real time 15 

or just-in-time data acquisition, data interpretation and data aggregation. For different 16 

types of technologies, their time consumptions, technology strengths and drawbacks 17 

were thoroughly analyzed in a full and seamless “data acquisition-interpretation-18 

aggregation” workflow linking to the dynamic tunnel support optimum design. As a 19 

result of the review, three primary research gaps are identified, i.e., the high time 20 

consumption of data interpretation, dilemmas of conventional and AI-supported 21 

aggregation methods, and long retrieval time for similar design cases. Focusing on these 22 

three gaps, three key concepts, namely, time consumption, accuracy, and degree of 23 

automation, are proposed as key indicators for the tunnel support design. A conceptual 24 

framework, just-in-time  tunnel support design is further proposed, where the most 25 

appropriate and efficient methods can be conceptually integrated and lead towards 26 

technical implementation. This review contributes to the comprehensive understanding 27 

of timely dynamic tunnel support design and provides future insights of promoting JIT 28 
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tunnel support optimum design. 29 
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1 Introduction 32 

The drill and blast (D&B) method is a typical and conventional method for the 33 

excavation of tunnels in rocks as it enables the flexibility to excavate varying tunnel 34 

cross-sections and possibility of adapting to changing rock mass conditions [1,2]. The 35 

design of tunnels constructed using the D&B method involves many aspects, including 36 

the determination of the geometric layout, and shape and size of the profile; nonetheless, 37 

the design of the support used on site is a key issue[3]. 38 

Tunneling, as a typical geotechnical engineering, is characterized by a high level 39 

of uncertainty, posing a unique challenge to design work compared to other civil 40 

engineering projects [4,5]. As the comprehensive interpretation of the geological and 41 

geotechnical characteristics of the underground environment is difficult, the design of 42 

rock tunnel support is generally composed of preliminary and final design stages [6]. 43 

In the preliminary design stage, engineers determine support systems and parameters 44 

based on the sparse data collected from geological investigations (e.g., the ground 45 

surface survey, borehole investigation). However, owing to the sparsity of the data, 46 

inherently, the design scheme of the support may fail when unanticipated geological 47 

conditions are encountered during tunneling, which is proved by many accidents arising 48 

from incomplete geological knowledge [7]. Hence, engineers must optimize the support 49 

parameters according to the data exposed by excavation to complete the final design of 50 

the support. In particular, the optimization of the support parameters depends on the 51 

geology of the tunnel face, deformation of the surrounding rock and stress-strain in 52 

support structures [8]. The design method, which implements the final design of the 53 

support by revising the preliminary design using the exposed geological conditions and 54 

various unanticipated conditions during the construction process, is also called the 55 

dynamic design of the support [6,9]. It is worth mentioning that the concept of the 56 



 

 

dynamic design of the tunnel support has been suggested by several national standards 57 

and specifications [10,11]. 58 

The dynamic design of the support of the tunnel excavated by the D&B method 59 

faces one critical technical challenges: the quick response of the support, which stems 60 

from the fact that untimely support under poor geological conditions may pose a 61 

significantly higher risk to the tunnel stability [12]. Hence, the acquisition of the data 62 

exposed by excavation, interpretation, and aggregation of the data during the tunnel 63 

construction should be fast. Here, the term “aggregation” instead of the term “analysis” 64 

is used because the processing of the interpreted data in tunnel engineering includes 65 

both the conventional analyses, such as the numerical analysis, and informatics-related 66 

methods. Indeed, the term “aggregation” incorporates the meaning of conventional 67 

analysis and new-emerging informatics-based processing. The prerequisite for an 68 

optimal determination of the support parameters in the construction process is an 69 

appropriate estimate of the exposed data as well as the mechanical response [5]. 70 

Therefore, firstly, an efficient on-site data acquisition method can significantly 71 

contribute to the dynamic design of the tunnel support. Conventionally, the data on or 72 

ahead the tunnel face are sketched by field engineers using hand-held equipment, such 73 

as a geological compass, measuring tape and roughness profile gauge [13], which is 74 

time-consuming and error-prone. With the advancement of IoT in recent years, 75 

techniques such as digital photogrammetry (DP) [13,14] and terrestrial laser scanning 76 

(TLS) [15,16] have been introduced into the tunnel support design because of their great 77 

potential to shorten the data acquisition time and improve the data acquisition accuracy. 78 

In addition, many practical engineering cases have demonstrated the advantages of IoT 79 

in assisting the efficient acquisition of exposed data on site [16,17]. Based on the 80 

acquired raw data, several efficient interpretation methods have been proposed to obtain 81 

the required information, such as discontinuity and water inflow information, which 82 

can reduce errors in manual interpretations. Another key concern affecting the dynamic 83 

design of the support is the aggregation of interpreted data. Conventional aggregation 84 



 

 

methods include empirical, numerical and analytical analysis, the combination of which 85 

has also been adopted in some complex cases, where numerical and analytical methods 86 

are used to verify the parameters provided by empirical methods [6]. However, the 87 

selection of proper mathematical parameters and sensitivity to the mesh and boundary 88 

effects may cost the numerical and analytical models a long period of time to yield [18]. 89 

Hence, aggregation methods, such as simplified analytical models [18] and the 90 

parallelization of numerical models [19], which are more intuitive and computationally 91 

efficient, are gradually developed to assist the design of the tunnel support,. In addition, 92 

several artificial intelligence (AI)-based computational methods, such as genetic 93 

algorithm (GA) and artificial neural network (ANN), have been used to complement 94 

the results from construction sites to optimize the support design in a short period of 95 

time, because AI offers predictive capabilities to improve the efficiency and reliability 96 

of the design process [20]. Moreover, the advancements in IoT and IT have 97 

demonstrated conceivable benefits in the dynamic design of the tunnel support. The 98 

focuses on the capabilities of data acquisition, data interpretation and data aggregation 99 

have reached an unprecedented level owing to their increasing dependence on IoT and 100 

IT. Indeed, IoT-based acquisition approaches integrated with IT-driven interpretation 101 

and aggregation solutions provide a new direction for the dynamic design of the tunnel 102 

support. 103 

Due to the popularity of applying dynamic design in the construction process of 104 

tunnels using the D&B method, several review articles have summarized the state-of-105 

the-art advancements in the rock mass blastability [21], automatic extraction of 106 

discontinuity parameters [22] and tunnel ahead prospecting [23]. Although these 107 

reviews have summarized some aspects of the dynamic design and information-based 108 

tunnel construction, certain limitations exist that (1) none of the existing studies 109 

thoroughly summarize the comprehensive aspects of the dynamic design of the tunnel 110 

support from data acquisition to data interpretation and aggregation. In addition, the use 111 

of IoT in the dynamic design of the tunnel support has brought a paradigm shift to rock 112 



 

 

engineering design [6]. However, none of the existing reviews were conducted from the 113 

perspective of IoT-based dynamic design of the tunnel support; (2) key research 114 

directions of the techniques and their applications in the design of the tunnel support 115 

have not been discussed. To address these knowledge gaps, this study aims to provide 116 

a thorough review of IoT-based dynamic design of the tunnel support, with a focus on 117 

the quick acquisition of data during construction, interpretation of the raw data, and 118 

aggregation of the interpreted data. In addition, research gaps are discussed, and the 119 

conceptual framework of the JIT design of rock tunnel support is proposed. 120 

2 Research methodology 121 

This study provides an in-depth overview and analysis of the recent advances in 122 

IoT-based dynamic design of the tunnel support. To address the existing knowledge 123 

gaps, the research approach of the study is divided into four steps, as presented in 124 

Fig.1: 125 

 126 

Fig.1 Flow chart of research methodology 127 

1) Clarify the scope of the study: The IoT-based dynamic design of the support in 128 

rock tunnels constructed by the D&B method was the primary research aim; therefore, 129 

literatures regarding tunnels constructed by a tunnel boring machine (TBM) were not 130 

considered. Moreover, the emphasis of the study focused on the optimization of the 131 

support parameters using on-site data, so studies that employed data from the 132 



 

 

preliminary stage to determine support schemes were not reviewed. 133 

2) Collect academic publications: Studies on the fast acquisition, interpretation, 134 

and aggregation of on-site data during tunneling were thoroughly reviewed. Two 135 

comprehensive and representative academic databases, Scopus and Web of Science 136 

(WoS), were adopted as sources of literature. The first screening of the literature 137 

retrieval started with searching keywords and key strings including “tunnel support 138 

design”, “information technology”, “Internet of thing”, “artificial intelligence”, 139 

“dynamic design” and “tunnel face information”. Subsequently, the search results 140 

were analyzed using the title, keywords, and abstract to retain the most appropriate 141 

literature within the scope of this study. Moreover, some additional keywords, such as 142 

“photogrammetry” and “measurement while drilling (MWD)”, were identified. Hence, 143 

a second screening using the new keywords and key strings was performed as a 144 

supplementary search. The results of the second search were manually filtered to 145 

identify appropriate studies; 83 publications were identified. Fig.2 shows the yearly 146 

distribution of the 83 bibliographic records in the Scopus and WoS databases. Before 147 

2017, few studies were conducted on the quick acquisition, interpretation, and 148 

aggregation of data during the tunnel construction. However, the peak points occurred 149 

after 2018. With the advancement of IoT, more studies were conducted on the quick 150 

acquisition, interpretation, and aggregation of data concerning the dynamic design of 151 

the tunnel support. 152 

 153 

Fig.2 Year and number of reviewed articles on design of tunnel support. 154 

Additionally, we used CiteSpace, a Java application for analyzing and visualizing 155 



 

 

co-citation networks, to conduct a scientometric analysis [24]. A network of co-156 

occurring keywords was generated using CiteSpace containing 192 nodes and 671 157 

links, as shown in Fig.3. In this network, the label size was determined by the 158 

frequency of the keyword in the bibliometric record. The top 10 frequently-used 159 

keywords are “photogrammetry”, “rock mass”, “prediction”, “light detection and 160 

ranging (LiDAR)”, “convolutional neural network”, “3D point cloud”, “stability 161 

analysis”, “tunnel face”, “ground penetrating radar” and “crack detection”. It can be 162 

seen that keywords, such as the photogrammetry, LiDAR, and ground penetrating 163 

radar, that were associated with the fast data acquisition methods appeared most 164 

frequently, followed by data aggregation methods, such as the convolutional neural 165 

network and stability analysis. Furthermore, the results verified that the literature was 166 

dominantly reviewed from the data acquisition, interpretation, and aggregation point 167 

of view. 168 

 169 

Fig.3 Network of co-occurring keywords in the reviewed papers 170 

3) Conduct the literature analysis: The reviewed studies were analyzed concerning 171 

the theme of IoT-based dynamic design of the tunnel support. The analysis included 172 

the quick acquisition of on-site data using different IoT-enabled equipment, 173 

interpretation of the acquired data, and optimization of the support parameters using 174 



 

 

efficient computational aggregation methods. 175 

4) Develop the conceptual framework: First, the framework was defined and 176 

overviewed; subsequently, the research gaps of the existing studies were identified. 177 

Accordingly, the key concepts influencing the design of the tunnel support were 178 

summarized. Finally, a conceptual framework was developed to completely elucidate 179 

the steps required for the JIT design of the tunnel support. Additionally, future 180 

perspectives of the proposed JIT design of the tunnel support were discussed. 181 

The dynamic design of the support is usually associated with the “information-182 

based construction” and “new Austrian tunneling method (NATM)” terms. Therefore, 183 

the relationships and differences between these terms need to be clarified to 184 

profoundly comprehend the meaning of the dynamic design of the tunnel support. The 185 

relationships between dynamic design of tunnel support, NATM and information-186 

based construction are presented in Fig.4. 187 

 188 

Fig.4 Relationships and differences between the dynamic design of the tunnel support, 189 

NATM and information-based construction 190 

NATM was first proposed in 1964 [25] and its fundamental principle is to 191 

maximize the capacity of surrounding rock to sustain its own weight in the 192 

construction process. After several years of development, NATM has incorporated 193 

many existing excavation and support methods. However, one of its core parts is 194 

timely monitoring and measurement of the surrounding rock and structure [8]. 195 



 

 

Moreover, shotcrete, bolts, and monitoring are considered to be the key elements of 196 

NATM in the construction of rock tunnels. 197 

Information-based construction refers to the application of IT in tunnel 198 

construction to collect, store and process on-site data to provide a decision-making 199 

basis for the design and construction processes [26]. Similar to NATM, information-200 

based construction also includes monitoring and measurement using different 201 

intelligent sensors. Moreover, advanced geological forecast and on-site data 202 

acquisition using different intelligent measuring equipment are within the scope of the 203 

information-based construction. 204 

As mentioned above, the dynamic design of the support is a process, in which the 205 

preliminary design is optimized based on the data exposed during construction. It 206 

relies on the ahead geological prospecting, measurement of tunnel face data, and 207 

monitoring data, which are the outcome of information-based construction and NATM. 208 

Accordingly, forward and back analysis can be conducted using these data. Moreover, 209 

the quick dynamic design of tunnel supports primarily depends on the tunnel face and 210 

ahead geological prospecting data, because the monitoring data might need a long 211 

duration [27]. In this study, we investigated the quick acquisition of tunnel face and 212 

advanced geological data of NATM or information-based construction; in addition, 213 

we considered the corresponding efficient interpretation and aggregation methods to 214 

provide a profound comprehension of the dynamic design of the tunnel support. 215 

3 Quick acquisition of data during construction 216 

Two types of data acquisition methods have been used to obtain on-site data 217 

quickly: noncontact measuring techniques to record tunnel face data, and ahead 218 

geological prospecting techniques to reflect geological/hydrogeological conditions in 219 

front of the tunnel face. The application of IoT in the quick acquisition of data during 220 

the construction process of a rock tunnel from these two aspects are discussed. 221 

3.1 Digital photogrammetry 222 

The recording of on-site tunnel face data typically involves handheld tools, such 223 



 

 

as measuring tapes and geological compass-clinometers, which need to be operated 224 

manually [13]. In most cases, this tedious process is labor-intensive, error-prone and 225 

more importantly, time-consuming [28]. Due to the simplicity of obtaining data and the 226 

possibility of interpreting data accurately, DP has been employed in rock engineering 227 

since the 1970s [29]; in addition, it has been used in tunnel sites in many countries, such 228 

as Italy [30], China [17,31], Spain [32]. This approach has been satisfactorily adapted 229 

to tunneling activities because uncertain geological conditions require regular and 230 

frequent updates to geological surveys. Accordingly, photogrammetry techniques, such 231 

as the structure-from-motion technique, and aggregation algorithms have been 232 

gradually developed to enable faster and more accurate data acquisition. 233 

In the tunnels constructed using the D&B method, after blasting and mucking, a 234 

digital camera is typically placed to the tunnel face to be mapped. Generally, the camera 235 

is placed in front of the tunnel face, and images of the tunnel face are recorded from a 236 

certain point of view, as shown in Fig.5 (a). Monocular image systems have been widely 237 

adopted in earlier studies, and many image processing algorithms have been introduced 238 

to extract the required data accordingly. Due to the simplicity of DP, each image of the 239 

tunnel face usually needs less than 1 min to be captured [33]. However, monocular 240 

image systems can only record 2-dimensional (2D) data, failing to record relevant 3-241 

dimensional (3D) data of the exposed rock mass. Hence, binocular image system and 242 

structure from motion technology, which can acquire 3D data using multiple images 243 

from different views [32,34], as shown in Fig.5 (b) and (c), have been gradually and 244 

widely used in the acquisition of the tunnel face data. The entire process, from the 245 

preparation to camera displacements and capturing pictures, usually takes 246 

approximately 10 ~ 30 min [32,35,36]. Huang et al. [28] demonstrated that the time 247 

required to acquire the tunnel face data using DP was approximately 1 h because 248 

additional procedures, such as the arrangement of control points and use of a total 249 

station to survey the control points, were included. By comparison, the conventional 250 

manual sketch of the exposed tunnel face data can take as long as 4 h to acquire the data 251 



 

 

due to the dark and narrow environment of the underground tunnel [28]. Thus, the 252 

application of DP in acquiring the tunnel face data during construction can significantly 253 

improve the efficiency of data acquisition. 254 

  

(a) (b) 

 

(c) 

Fig.5 Different layouts of digital cameras: (a) Monocular image system [17]. (b) 

Binocular image system [37]. (c) Structure from motion technique [30] 

3.2 Terrestrial laser scanning 255 

With the advancements in LiDAR, TLS technology has proven to be a useful and 256 

efficient noncontact tool for the acquisition of rock mass data, which functions using 257 

the controlled steering of a laser beam coupled to a high-speed motorized system that 258 

incrementally scans a specific field of view using a rotating mirror [38-40]. In principle, 259 

laser pulses transmitted by scanners are reflected off physical objects; thus, they 260 

generate a large number of 3D data points (point cloud data) that record the position (x, 261 

y, z) in the space and reflectivity (i) of the physical objects [41]. Processing and 262 

aggregation can be conducted using the generated point cloud data to extract the 263 

required information. Compared with DP, TLS is less prone to occlusions, and its 264 

measurement accuracy is not affected by lighting conditions [42]. Hence, whilst TLS 265 



 

 

has far found limited use in the rock tunnel due to the specialist equipment required, 266 

the fact that the measurement accuracy can be guaranteed makes it a promising 267 

technique for application in rock tunnel construction. Indeed, TLS has been applied in 268 

many tunnel construction sites, such as Yuexi [43], Sandvika and Fossvein [16] and 269 

Monte Seco [44] tunnels. Fig.6 depicts the setup of the TLS equipment at a construction 270 

site in Norway. 271 

 272 

Fig.6 LiDAR scanning of a tunnel face with a diameter of 10m in Oslo, Norway [41]. 273 

The time required to scan the tunnel face varies from site to site because the size 274 

of the tunnel face to be scanned, distance between the scanner and tunnel face, and 275 

resolution of the point cloud can affect the scanning time [45]. Generally, with an 276 

acceptable point cloud resolution, the time required to scan a tunnel face can be 277 

controlled within 10 min. In [16], the best operational condition was a resolution 278 

accuracy of 6 mm, which required 3 min to scan a tunnel face with a diameter of 10 m. 279 

Similarly, in [45], the time required to scan a tunnel face with a diameter of 13 m and 280 

achieve an appropriate resolution was 5 min and 12 s. In some cases, the scanning time 281 

can exceed 30 min to achieve a higher resolution accuracy of 3 mm [39]. 282 

3.3 Measurement while drilling technology 283 

In recent decades, the MWD technology has been increasingly used for data 284 

acquisition and support optimization during the information-based construction in the 285 

D&B tunneling industry. MWD is a technique that captures the responses of drilling 286 

parameters on a real time basis, while drilling is underway to expand the knowledge of 287 

structural and mechanical properties of the penetrated rock [46-48]. It monitors drilling 288 



 

 

parameters, such as drilling depth, rotation speed, rotation pressure, penetration rate, 289 

percussive pressure, feed pressure, damping/stabilizer pressure, and water/flush 290 

pressure [46,47]. Compared with other subsurface exploration methods, such as DP and 291 

TLS, MWD (1) offers a lower-cost approach to obtain high-resolution data as both DP 292 

and TLS require an expensive camera or scanner to perform the field work; (2) provides 293 

a better and more accurate description of the hidden volume of the rock mass because 294 

TLS and DP mainly portray the information on the visible portion, which may result in 295 

over-estimation of rock mass quality in some cases due to weathering of the tunnel face 296 

or poor blasting practices; and, (3) permits faster insight into the structural and 297 

mechanical parameters of the rock mass without slowing down the excavation process 298 

as data are recorded during the drilling operation [46,49]. Hence, MWD has been 299 

increasingly applied to characterize rock masses and provide a basis for the dynamic 300 

design of the tunnel support. With these advantages, MWD technologies have been 301 

widely used in rock tunnels in many countries, such as Sweden [1,2], Norway [50], 302 

Austria [49]. 303 

The collection of MWD data relies on machinery for tunnel face drilling, that is, 304 

jumbo, during the information-based construction. Fig.7 shows a jumbo at a 305 

construction site in Stockholm. As the acquisition of MWD data is completed during 306 

the drilling operation, the time spent to collect and analyze data is greatly reduced, 307 

which is primarily owing to data processing and aggregation. Generally, data processing 308 

involves data importation, noise reduction, parameters extraction and variation 309 

detection [49]. Some recent methods consider all effects of the drilling process [47]. 310 

Hence, the time spent during the entire process should depend on the algorithm used 311 

and data size; however, none of the reviewed studies specifically reported the consumed 312 

time. Nevertheless, the entire time span of MWD-enabled support design is relatively 313 

short, as the processing of MWD data is easier than that of images. 314 



 

 

 315 

Fig.7 Jumbo at a construction site [47] 316 

3.4 Other ahead geological prospecting technologies 317 

Ahead geological prospecting is a technique that predicts lithological and 318 

structural heterogeneities in front of the tunnel face within a certain range [23]. During 319 

tunnel construction, it has become an essential routine that ahead geological 320 

prospecting needs to be performed after the exposure of the new tunnel face to obtain 321 

the quantitative and qualitative information of the rock mass, which can provide reliable 322 

basis for the optimization of the original support schemes [10]. Likewise, this 323 

information-based construction approach should also be a quick-response process from 324 

data acquisition to data interpretation, as the time interval between the mucking of the 325 

previous round and drilling of the next round at the construction site is often 326 

considerably short. Therefore, advanced geological prospecting techniques have been 327 

developed and increasingly applied in the construction of D&B tunnels. In general, 328 

ahead geological prospecting techniques consist of destructive and nondestructive 329 

techniques. MWD is one typical example of destructive-ahead prospecting techniques; 330 

thus, the destructive-ahead prospecting techniques were not considered in this study. A 331 

detailed and comprehensive overview of the application of advanced geological 332 

prospecting techniques in tunneling, with an emphasis on the principles, technical 333 

levels, trends, and key problems was summarized by Li et al. [23].Here, different types 334 

of ahead geological prospecting technologies and time of acquisition are presented. 335 

Based on the detection range, ahead prospecting techniques can be divided into 336 

short-distance prospecting (<30m, e.g., ground penetrating radar (GPR)), moderate-337 



 

 

distance prospecting (<60m, e.g., transient electromagnetic method (TEM)), and long-338 

distance prospecting (<120m, e.g., tunnel seismic prediction (TSP)) [23]. The time 339 

required for each technique to collect on-site data varies slightly. The use of GPR, TSP, 340 

and TEM involves the setup of the instrument, layout of the measuring line/blasting 341 

points/measuring point, collection of signals, and processing of the acquired data. None 342 

of the literature reviewed mentioned a specific time that each technique requires to 343 

acquire data. Thus, we interviewed experienced engineers, and realized that GPR and 344 

TEM need less than 2 h to collect data depending on the size of the excavation face, 345 

length of the measuring line, and number of measuring points, whereas TSP consumes 346 

a longer time to acquire data as the explosion holes need to be drilled on the wall. 347 

4 Interpretation of acquired on-site raw data 348 

Raw data, such as images and waves, can be obtained using the acquisition 349 

methods, as described in Section 3. Here, different interpretation methods for extracting 350 

the required information from the raw data and contribution of the interpreted data to 351 

the dynamic design of the tunnel support are discussed. 352 

4.1 Interpretation of DP data 353 

Table 1 summarizes the application of DP in rock tunnel construction. 354 

Table 1 Summary of the application of DP in data acquisition 355 

Refs Information extracted Approach Time required Contribution 

[14] Discontinuity length, orientation, 

separation width, JRC value 

Region growing NAa Calculation of GSI 

rating 

[51] Discontinuity trace feature point based, 

point cloud data 

<2min to extract data Calculation of RMR 

or Q value 

[13] Discontinuity trace ravine-line based NA NA 

[30] Orientation of joint sets Rockscan software Less than 10min to 

collect the images 

Characterization of 

rock masses 

[52] Position, shape, spacing of joint 

set, trace length 

Siro 6.0 software NA NA 

[17] Fracture length, dip angel, 

intensity and density of the 

fracture traces 

Deep learning 8h 23min to train model 

and 0.44s/image for 

testing 

Rock mass 

classification 

[37] Discontinuity orientation, trace, 

spacing, roughness, aperture 

Improved K-means 

clustering, point 

NA Calculation of RMR 

and GSI 



 

 

cloud data 

[53] Joint set, joint spacing, joint angle Edge detection NA Calculation of RQD 

[54] Discontinuity orientation Improved K-means 

clustering, point 

cloud data 

about 2.5h to extract 

data from 382,085 facets 

NA 

[31] 5 types of rock structures deep learning 2.163s/image for 

classification 

Automated rock 

classification 

[55] Discontinuity network 

emplacement 

Edge detection NA Identification of 

block geometry 

[56] Geological features such as joints 

and cracks 

Edge detection NA Rock mass rating 

[29] Mean trace length, total trace 

length, total spacing 

Edge and line 

detection 

NA Calculation of RQD 

[57] Joint and bedding spacing, joint 

condition 

Improved K-means 

clustering, point 

cloud data 

NA Calculation of RQD 

and RMR value 

[58] Weak interlayer Deep learning 0.633s/image for testing NA 

[34] The location, dip direction and dip 

angle of joints 

Point cloud data, 

Halcon software 

NA 3D stability analysis 

[59] Shotcrete thickness Comparison of 

different images 

NA Mapping shotcrete 

thickness 

[60] Weak interlayers and fracture 

traces 

Machine learning 300s ~ 700s Assessing the rock 

mass quality 

[61] Water inflow Deep learning, 

CNN 

9.85h to train model and 

0.428s/image for testing 

Calculation of RMR 

value 

[62] Length and mean spacing of the 

trace line 

Edge detection NA Calculation of Rock 

Block Index 

[63] Deterministic structural planes, 

joint orientation data 

GeoSMA-3D 

software 

Within 10 minutes Stability analysis of 

tunnel blocks 

[28] Dip and dip direction of the 

discontinuity 

CAE Sirovision 

software 

About 1h to acquire data 

and 1.5h for post-

processing 

Stability analysis 

[32] Dip and dip direction of 

discontinuity sets 

Discontinuity Set 

Extractor software 

About 30 min to 

photograph and 22h to 

process 169 photos 

Characterization of 

rock mass 

[35] Dip and dip direction of the 

discontinuity 

Grouping 

algorithm, point 

cloud data 

10min to collect data 

and 15min 34s to 

operate 

Characterization of 

rock tunnel face 

[36] Dip angle, spacing and length of 

the joints 

Manual sketch About 20min to collect 

68 images 

Calculation of RQD 

[64] Rock mass structure categories Deep learning, 

CNN 

NA Characterization of 

rock mass 



 

 

[65] Number and spacing of rock joint 

groups 

Deep learning NA Calculation of basic 

quality (BQ)value 

[66] Dip, dip direction, trace length and 

spacing of joints 

Manual sketch NA Calculation of RBI 

value 

[33] Dip, dip direction and trace length 

of joints 

ShapeMetriX3D 

software 

1min to collect data Stability analysis 

[67] Rock mass fractures Edge detection NA Classification of 

surrounding rock of 

the tunnel face 

a NA: not available. 356 

Based on the images obtained using DP, several interpretation algorithms have 357 

been developed to extract information accurately and timely. Table 1 shows that two 358 

different types of processing methods have been used to interpret the images and extract 359 

the required information; some methods use raw images and some methods employ the 360 

point cloud data. The former focuses on the direct extraction of information from the 361 

obtained images while the latter converts images into a 3D point cloud for extraction. 362 

As listed in Table 1, raw-image-based methods include the region-growing [14], ravine-363 

line-based [13], and edge detection [29,53,55,56,62,67] methods. Since the principles 364 

of these methods are not the focus of this paper, details of the algorithms, such as the 365 

pros and cons, are not discussed here (see [22] for details). In addition, with 366 

advancements in AI, different AI branches, such as deep learning, have benefited the 367 

timely interpretation of the obtained images. Chen et al. extracted fracture trace 368 

(fracture length, dip angle, intensity and density of the fracture traces) [17], weak 369 

interlayer [58] and water inflow [61] information on the tunnel face from more than 370 

3000 raw images using convolutional neural network (CNN) methods. The time to train 371 

the model in the three cases was more than 8 h; however, the time required to test the 372 

model after a successful train was less than 1 s per image, which was computationally 373 

efficient. Moreover, Chen et al. [31] used a CNN-based method to classify the rock 374 

structure into five categories using approximately 3,000 raw images captured from 150 375 

tunnel faces, where the time to classify a new image after the model training was only 376 

about 0.33 s. The latter one, i.e. methods using point cloud data, has also been used by 377 



 

 

several studies to extract 3D data of the tunnel face for less dependence on the image 378 

quality and camera calibration [51]. The images were first converted into point cloud 379 

data, and the corresponding aggregation was then conducted based on the point cloud 380 

data. Chen et al. [54] used an improved K-means clustering method to extract the 381 

discontinuity orientation from tunnel face 3D point clouds; the time consumed to 382 

extract information from 382,085 facets was about 2.5 h. To reduce the need for manual 383 

intervention and improve computational efficiency, Chen et al. [35] proposed a semi-384 

automatic discontinuity characterization method using 3D point clouds; the operation 385 

time was approximately 15 min. Similarly, Zhang et al. [51] extracted the discontinuity 386 

trace information using trace feature point; the total processing time was less than 2 387 

min. Meanwhile, commercial software and open-source programs, such as Rockscan 388 

[30], GeoSMA-3D [63], CAE Sirovision [28] and Discontinuity Set Extractor (DSE) 389 

[32], have been gradually developed and applied in the acquisition and interpretation 390 

of tunnel face data,. However, the interpretation of images in some software packages 391 

may experience a long time as the generation of a high density point cloud is 392 

computationally expensive [32]. 393 

In terms of the information extracted, as presented in Tab.1 and Fig.8 (a), 394 

discontinuity-related (including joint and fracture) studies account for 84% of the 395 

reviewed publications, where the length, dip angle, dip direction, spacing, density, and 396 

number of discontinuity sets are the main parameters to be extracted. Based on the 397 

extracted discontinuity information, two typical subsequent analysis are the 398 

characterization and stability analysis of the rock mass. As shown in Fig.8 (b), the 399 

characterization of the rock mass accounts for 2/3 of the subsequent analysis of the 400 

extracted information. This analysis usually involves the calculation of the rock quality 401 

designation (RQD) value [29,36,53,57], rock mass rating (RMR) value [37,51,57], 402 

geological strength index (GSI) value [14,37], and other rock mass rating systems. In 403 

addition, RMR has been widely used in many rock tunnel projects as a crucial indicator 404 

to define the support parameters [68]. In the RMR system, six basic parameters are used 405 



 

 

to classify the rock mass; these parameters are the uniaxial compressive strength (UCS) 406 

of rocks, RQD value, discontinuity spacing, discontinuity condition, groundwater 407 

condition, and discontinuity orientation with respect to the opening axis, while the 408 

estimation of RQD is related to the spacing and number of the discontinuities [37]: 409 
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where 1s , 2s , …, 
n

s  denote the mean spacing of each discontinuity set, 
r

N  denotes 412 

the number of discontinuities and S  is the measuring area. 413 

Obviously, the extracted discontinuity information can be applied to calculate the 414 

value of RQD or RMR, thereby determining the support parameters. For instance, Lemy 415 

et al. [29] extracted the trace length and spacing information from images and used 416 

them to calculate RQD value. Li et al. [37] conducted research on the automatic 417 

extraction of the discontinuity orientation, spacing, trace, roughness, and aperture, 418 

which were used to calculate RMR and GSI. The other application of the extracted 419 

discontinuity information is to analyze the stability of the surrounding rock mass of the 420 

tunnel [28,33,34,63], which accounts for 13% of the subsequent analysis, as shown in 421 

Fig.7 (b). Huang et al. [28] used the coordinates and orientations of joints to generate a 422 

3D discrete model and investigate the stability of the surrounding rock of the tunnel; 423 

their study results could guide the installation of tunnel supports. Zhu et al. [34] 424 

integrated the 3D discontinuous deformation analysis (DDA) with DP to analyze the 425 

stability of tunnels in blocky rock mass. The integrated system can support the high-426 

precision design of tunnels in construction. Similarly, Wang et al. [63] performed a 3D 427 

stability analysis of tunnel blocks using the discontinuity information and the analysis 428 

results provided a guidance for the adjustment of support parameters. 429 

In addition to the discontinuity information, the extraction of water inflow [61] 430 

information on the tunnel face during construction has also been studied. The 431 

groundwater condition is a key parameter in the RMR system; therefore, after extraction 432 



 

 

of the water inflow information, calculation of the RMR value was subsequently 433 

conducted, which could provide a basis for the determination of the support parameters. 434 

Moreover, some studies attempted to directly classify and characterize rock masses 435 

without calculating the RMR or other rating system values. Chen et al. [31] employed 436 

geological images of tunnel faces and a CNN to present an automated interpretation 437 

method for classifying five types of rock structures, including the mosaic, granular, 438 

layered, block, and fragmentation structures. The experimental results showed that the 439 

proposed method was optimal and efficient for automated classification of rock 440 

structures. Similar study has also been conducted by Qin et al. [64]. After classification 441 

of the rock mass structure, the support parameters can be determined accordingly. 442 

  

(a) (b) 

Fig.8 (a) Proportion of extracted information from images in the reviewed literature. 443 

(b) Different subsequent analysis methods after the extraction of tunnel face data. 444 

4.2 Interpretation of TLS data 445 

Fekete and Diederichs [41] introduced a basic and general processing to interpret 446 

the point cloud data collected by TLS. The proposed workflow included 1) reducing 447 

the dataset to the zone of interest, 2) creating a surface model, 3) aligning with scans of 448 

previous face position or geo-reference to the absolute coordinate system, and 4) 449 

interpreting and extracting the data. Similar to the scan time, even based on the same 450 

processing workflow, the processing time of the point cloud data can significantly vary 451 

for different projects from 1 h [69] to several hours [39], depending on the chosen 452 

algorithm and size (up to GBs) of the point cloud data. 453 

A brief summary of different categories of information extracted using TLS during 454 

the rock tunnel construction is presented in Table 2. Similar to DP, most of the 455 



 

 

information extracted using TLS, including the dip, dip direction, spacing, roughness, 456 

trace length, and trace density, is related to discontinuity. In addition, the 457 

characterization of the rock mass and stability analysis of the tunnel system are the main 458 

applications of discontinuity information. Monsalve et al. [45] applied the extracted 459 

discontinuity information to characterize the rock mass and generated a discrete fracture 460 

network for each discontinuity set for further discontinuous modeling and calculation. 461 

Fekete et al. [41] integrated TLS with discontinuous modelling to analyze the stability 462 

of a tunnel in blocky rock mass, the result of which can influence the support scheme. 463 

Therefore, the usage of the extracted discontinuity using DP and TLS is similar. 464 

Table 2 Examples of literature on different categories of the extracted information 465 

using TLS 466 

Category Detailed information Refs 

Discontinuity information Orientation, location, spacing [16] 

Dip, dip direction [39] 

Location, orientation, joint set spacing, joint roughness [41] 

Dip, dip direction, trace length, trace area [45] 

Dip, dip direction [69] 

Orientation, trace length, frequency, spacing, trace density [70] 

Traces and orientations [44] 

Dip, dip direction [71] 

Discontinuity trace [43] 

Profile information Tunnel profile geometry [15] 

Support evaluation [16] 

Tunnel deformation [71] 

Overprofile, deformation of the shotcrete [72] 

Overbreak, contour roughness [73] 

The other scenario where TLS-enabled information can contribute to the dynamic 467 

design of the tunnel support is to employ tunnel profile geometry information to 468 

evaluate or modify the support schemes. As presented in Table 2, several examples have 469 

been listed regarding this topic. Fekete et al. [16] used the scanned data to produce rock 470 

and final support profiles, where the rock face was scanned twice (pre- and post- 471 

shotcreting) to allow a direct comparison of the shotcrete thickness, as illustrated in 472 

Fig.9. The shotcrete thickness needs to be optimized if the comparison result is not 473 



 

 

acceptable or an overbreak is detected. Kim and Bruland [73] proposed Tunnel Contour 474 

Quality Index (TCI) based on TLS for the effective management of tunnel contour 475 

quality, whose roughness can affect the shotcrete volume or rock bolts. In the studies 476 

carried out by Xu et al. [71] and Walton et al. [72], deformation of the excavated section 477 

and as-built shotcrete thickness were detected using TLS, the time spent was relatively 478 

long, that is, about one month. It should be noted that they do provide valuable 479 

instructions on the optimization of the support schemes; however, they are beyond the 480 

scope of the study due to the long acquisition time. Such is also the case in some 481 

literature using long-term monitoring results of the as-built tunnel structure, as 482 

mentioned above in Section 2. 483 

 484 

Fig.9 (a) Rock model. (b) Shotcrete Lidar model. (c) Longitudinal and cross-section 485 

showing detailed comparison of profiles with shotcrete thickness. (d) Shotcrete 486 



 

 

thickness contoured onto rock model [16] 487 

4.3 Interpretation of MWD data 488 

One of the most widespread applications where MWD data contribute to the 489 

dynamic design of the support during tunnel construction is to characterize the rock 490 

mass and provide support parameters accordingly (see Table 3). A case study was 491 

reported by Galende-Hernandez et al. [74] where ten kinds of MWD variables, 492 

including the penetration rate, hammer pressure, water pressure, and seven other 493 

variables, were processed and analyzed using machine learning and computational 494 

intelligence techniques to estimate the RMR value. The results were applied to a D&B 495 

tunnel and exhibited a satisfactory performance. Similarly, van Eldert et al. [75] used 496 

MWD fracturing index (FI) to characterize the rock mass for grouting purposes. 497 

However, neither of the studies mentioned the design of the support in the context, nor 498 

directly determined the relationship between the rock mass grade and support 499 

parameters. To establish correlations between MWD data and installed rock support, 500 

van Eldert et al. [1,2] correlated the weighted normalized penetration rate and rotation 501 

pressure with the RQD and Q values. Subsequently, the normalized penetration rate and 502 

rotation pressure were employed to predict the rock support parameters (bolt spacing, 503 

bolt length and concrete thickness), as illustrated in Fig.10. The results were compared 504 

with those of the Q-value-based method, which exhibited a reasonable correlation. 505 

Therefore, the FI value can be used as an indicator to predict the rock support. 506 

 507 



 

 

 508 

Fig.10 (a)-(c): Visualizations of the MWD parameters, bolt spacing and sprayed 509 

concrete thickness [2]. (PR: penetration rate, RP: rotation pressure) 510 

In addition to the characterization of the rock mass, another key application of the 511 

MWD data to assist the support design is to detect the potential overbreak zones. 512 

Navarro et al. [50] developed a nonlinear multivariable model to predict the excavated 513 

mean distance and lookout distance as functions of the normalized penetration rate, 514 

rotation speed, hammer pressure, water flow, and rotation pressure parameters. The 515 

predicted excavated mean and lookout distances can be considered as a damage 516 

measure to predict the high risk of potential over- or under-excavated zones produced 517 

by blasting in the contour of a tunnel, thus reinforcing the support if necessary. 518 

Table 3 Examples of literature on different usages of the MWD-enabled data during 519 

tunnel construction 520 

Category Details Refs 



 

 

Rock mass characterization Calculation of RQD and Q value to determine the bolt 

spacing and concrete thickness 

[1] 

Calculation of FI and investigation of relationship 

with Q system to predict bolt length, bolt spacing and 

concrete thickness 

[2] 

Estimation of RMR value [74] 

Calculation of FI [75] 

Overbreak zone detection Prediction of the excavated mean distance and the 

lookout distance 

[50] 

 521 

4.4 Interpretation of other ahead geological prospecting data 522 

Processing the acquired raw data using the geological prospecting technologies 523 

depends on the computational power of the computer, specific software, processing 524 

algorithm and size of the data. According to the interviewed domain experts and 525 

engineers, data processing can be accomplished in 2 h. As for the acquired data by 526 

ahead geological prospecting technologies and its contribution to the dynamic design 527 

of the tunnel support, a brief summary of the application of ahead geological 528 

prospecting techniques in timely data interpretation during tunnel construction is given 529 

in Table 4. Using the high-frequency electromagnetic pulse, GPR satisfactorily 530 

responds to rock structures, such as faults, lithological interfaces, and fracture belts [76]. 531 

Hence, some studies were conducted using GPR to detect seismic and nonseismic 532 

geological features [77], karst geological anomalies [78], and the position and shape of 533 

catastrophic geological body [79]. Based on the detection result, the original support 534 

schemes can be modified. In addition, Qin et al. [80] introduced an automatic 535 

recognition method to directly identify steel ribs, voids, and initial linings from GPR 536 

images using CNN methods to control the quality of the support, which is a critical 537 

issue in guaranteeing the safety of both tunnel structures and construction operations.  538 

In contrast to GPR, TSP exploits seismic waves that are excited by small-scale 539 

artificial blasting to predict unfavorable geology conditions. Parameters of the seismic 540 

waves include the longitudinal wave (P-wave) velocity, transverse wave (S-wave) 541 

velocity, magnitude of the wave, wave type, wave depth, wave direction and so on, as 542 



 

 

shown in Table 4. One of the key applications of TSP-based data is the classification 543 

and characterization of rock masses. Bu et al. [81] used P-wave velocity, as well as 544 

Poison’s ratio and Young’s modulus, to classify the rock mass ahead of the tunnel face 545 

into 5 grades. Shi et al. [82] combined P- and S-wave velocity with Poisson’s ratio and 546 

Young’s modulus to classify the rock mass using the fuzzy analytic hierarchy process 547 

method. Moreover, the calculation of the RMR value of the rock mass using TSP data, 548 

e.g. P- and S-wave velocity, wave magnitude, wave depth and direction, has been 549 

carried out by several studies [83-85], where the rock bolts, shotcrete and steel sets can 550 

be determined directly according to the different RMR values. In addition to the 551 

characterization of rock masses, TSP has also been integrated with stability analysis to 552 

provide a guidance for support design. Fan et al. [86] conducted the discrete element 553 

method (DEM) to analyze the deformation and displacement of the rock mass using the 554 

discontinuous geological interface information collected by TSP. The analysis results 555 

could have practical guiding significance for the design of the support. 556 

Comprehensive prospecting methods have been proposed and applied in 557 

construction because each prospecting technique has its advantages and disadvantages. 558 

Cao et al. [87] determined the support type and method dynamically during tunnel 559 

construction based on the TSP and GPR data. After the detection of well-developed 560 

structure planes, such as faults and folds, along with the abundant water, steel frame, 561 

steel meshes, and shotcrete thickness were optimized accordingly. Bu et al. [76] and 562 

Nie et al. [88] combined GPR and TEM to detect the position and spatial distribution 563 

pattern of water-rich areas. These results provide an effective reference for the 564 

implementation of dynamic design and construction schemes. 565 

Table 4 Summary of ahead geological prospecting techniques in data acquisition 566 

Techniques Detected data Contribution Refs 

GPR Seismic and non-seismic 

geological features 

NA [77] 

Different types of karst geological 

anomalies 

NA [78] 

Steel ribs, voids, and initial linings Quality control of the support [80] 



 

 

Position and shape of catastrophic 

geological body 

NA [79] 

TSP P- and S-wave velocity ratio, 

Poisson’s ratio, Young’s modulus 

Classification of the rock 

mass 

[81] 

P- and S-wave velocity ratio, 

Poisson’s ratio, Young’s modulus 

Classification of the 

surrounding rock mass 

[82] 

Discontinuous geological interface 

information 

Stability analysis of the 

surrounding rock 

[86] 

Unstable ground conditions Calculation of RMR value [83] 

P- and S-wave velocity, wave 

magnitude, wave depth, direction 

Calculation of RMR value [84] 

P- and S-wave velocity, wave 

magnitude, wave depth, direction 

Calculation of RMR value [85] 

GPR, TSP Faults, folds, groundwater Modification of steel frame, 

steel meshes, shotcrete 

thickness and bolt 

[87] 

GPR, TEM Position and spatial distribution 

pattern of the water-rich area 

NA [76] 

GPR, TEM, ER Weathered area NA [88] 

 567 

5 Data aggregation for support parameters determination 568 

Sections 3 & 4 focus on the quick acquisition of the data on the construction site 569 

and the corresponding interpretation, such as the interpretation of rock mass parameters 570 

from images and interpretation of geological anomalies from the TSP waves. Although 571 

some studies examined the corresponding aggregation of the interpretation results, such 572 

as the calculation of RMR, this study attempted to simplify the process from the 573 

interpretation results to support schemes. With the increasing development of IT, 574 

multiple computer- and AI-aided aggregations have been applied to optimize support 575 

schemes from multiple sources of data. Here, another key issue of the dynamic design 576 

of rock tunnel supports, that is, the efficient aggregation of the data exposed by 577 

excavation using computer- or AI-aided methods, is discussed. The relationship 578 

between Section 4 and Section 5 are shown in Fig.11. 579 



 

 

 580 

Fig.11 Relationship between Section 4 and Section 5 581 

5.1 Conventional methods 582 

Generally, three traditional methods are mainly used in the determination of the 583 

tunnel support parameters: empirical, numerical and analytical methods [89,90]. The 584 

empirical method refers to the determination of the design parameters based on the pre-585 

existing standard methods or pre-existing experience [6], which can be quantified by 586 

rock mass classification systems such as afore-mentioned RMR and Q value. Upon the 587 

classification of the newly exposed rock mass, the corresponding support parameters 588 

can be determined. Some examples of using rock mass classification systems to 589 

determine support parameters have been discussed in Section 4. 590 

Numerical methods employ both the computational hardware and software to 591 

evaluate the rock mass behavior and its effects on the support systems, including the 592 

finite element method (FEM) and DEM. Due to its ability to simulate the stresses and 593 

deformations that develop in the support system, it has become a powerful and widely 594 

used tool to design rock tunnel support [18]. Sopacı and Akgün [91] used a 2D FEM 595 

program to analyze the total induced displacement and percentage of yielded elements 596 

of the tunnel; the results were used to optimize the empirically determined support 597 

parameters. Similarly, Kanik et al. [92] applied a 2D FEM software to calculate the 598 

thickness of the plastic zone and total displacements of the tunnel, whose supports were 599 

estimated using both RMR14 and RMR89. According to the analysis results, as shown 600 

in Fig.12, the support systems obtained from the RMR14 version suggests more realistic 601 

support element for fair rock masses and great horizontal stress values. In the study 602 



 

 

carried out by Aygar and Gokceoglu [93], NATM principles were entirely reflected in 603 

the calculations and the input parameters of the numerical models were the 604 

interpretation results of the geotechnical monitoring task performed during the 605 

construction. Total displacements, vertical displacement, horizontal displacement and 606 

the yielding zone were calculated using 2D FEM methods to get the optimal support 607 

system. 608 

  

(a) (b) 

Fig.12 Thickness of plastic zone after installation of support systems suggested by: 

(a) RMR14; (b) RMR89. [92] 

However, 2D numerical methods can not accurately solve the support optimization 609 

problem as in essence, the support optimization problem is a mechanical problem with 610 

three-dimensional effect. The comparison study conducted by Kaya and Sayin [90] 611 

revealed that 3D FEM analysis gave the better solution in tunnel support design 612 

compared to 2D FEM analysis. Hence, 3D numerical analysis has been carried out by 613 

many researchers regarding tunnel support design. Theoretically, Zhang and Zhu [94] 614 

proposed a 3D version of the Hoek-Brown strength criterion, i.e. generalized Zhang-615 

Zhu (GZZ) strength criterion, which considered the intermediate principal stress 616 



 

 

compared with the original 2D Hoek-Brown strength criterion. Based on the GZZ 617 

strength criterion, Xu et al. [95] used analytical and numerical methods to investigate 618 

the interaction between tunnel support and surrounding rock and predict the 619 

deformability of the surrounding rock. With the advancement in the numerical software, 620 

many research endeavors have been allocated to 3D numerical analysis based on this 621 

approach. Feng et al. [9] and Xing et al. [96] used the 3D numerical analysis to get the 622 

optimal length and spacing of the rock bolt, and investigate the displacements and 623 

stresses of the tunnel, respectively. Hsiao et al. [97] used the computer program FLAC-624 

3D to simulate the tunnel construction and the numerical results were used for support 625 

optimization. In the study carried out by Sun et al. [98], the surrounding rock stress 626 

release rate was considered in the calculation to obtain the stability of tunnel lining 627 

support, which was also implemented in FLAC-3D. In terms of the time consumed, the 628 

computational time of the numerical analysis depends on many factors such as mesh 629 

numbers and mesh size, ranging from several minutes to several hours. 630 

Last but not least, analytical methods that use mathematical and mechanical tools 631 

to calculate the stress distribution state of the surrounding supported or unsupported 632 

rock are widely used in the design of rock tunnel supports. Compared with the 633 

numerical methods, analytical methods rely on a number of assumptions and 634 

simplifications to formulate the analysis, therefore are simpler, more intuitive, and 635 

computationally efficient [18,99]. Su et al. [100] used convergence confinement 636 

method (CCM), which is a useful and effective analytical method to simulate the 637 

mechanical behavior of the rock mass during tunneling and analyze the stability of the 638 

tunnel and its supports. The results provide a guidance for the optimization of the rock 639 

bolts and shotcrete parameters, such as elasticity modulus, diameter, longitudinal 640 

spacing, bolt length, Young’s modulus, Poisson’s ratio, bending strength, and shotcrete 641 

thickness. To overcome the limitation of hydrostatic loading simplification that CCM 642 

may encounter in the tunnel support design, Mitelmam and Elmo [18] adopted 643 

equivalent boundary beam (EBB) method to readily compute the distribution of field 644 



 

 

stresses between the ground and support system, the results of which were used to 645 

optimize the lining thickness and rock bolt. In this study, the comparison between the 646 

efficiency of the proposed EBB method and the efficiency of the FEM method was also 647 

conducted. The results for the proposed EBB method were generated almost 648 

instantaneously while the simple FEM models would take about 10 min to be setup and 649 

calculated. Hence, it can be seen that in some simple and simplified situation, analytical 650 

methods outperform other methods from the perspective of computational efficiency.  651 

5.2 AI-supported methods 652 

Conventional methods are appropriate candidates for designing tunnel support 653 

when the available data for projects are sparse [20]. However, the increasing amounts 654 

of data collected from the construction site are posing a challenge to conventional 655 

analysis methods as the accuracy and efficiency are easily affected [20]. Herein lies an 656 

opportunity to integrate AI methods into the existing best practices of the rock tunnel 657 

support design to make the best use of the large amount of data, as AI can solve complex 658 

engineering problems by learning patterns of data inputs and outputs presented to the 659 

models to produce meaningful interpretation [101]. Hence, AI is gaining momentum in 660 

the design of rock tunnel support, and different AI techniques have been used in the 661 

literature, such as artificial neural network (ANN) [102-105], genetic algorithm (GA) 662 

[106-108], particle swarm optimization (PSO) [104,109,110], support vector machine 663 

(SVM) [111,112] and so on. For these techniques, the development of the principles 664 

and of the mathematic models have been introduced and discussed in the existing 665 

studies [101,113], which therefore are excluded in this subsection. Details of the 666 

application of AI in the design of the support from the collected literature are 667 

summarized in Tab.5. 668 

Table 5 Applications of AI techniques in the design of the rock tunnel support  669 

Refs AI techniques Description of applications 

[114] Expert system, Fuzzy set Prediction of rock bolt, shotcrete, wire meshes 

parameters 

[108] GA, SVM Classification of BQ value 

[109] PSO Optimization of anchoring parameters 



 

 

[106] GA Optimization of steel rib supports 

[111] SVM Selection of pre-determined support patterns 

[115] SVM, ANN Calculation of shotcrete thickness, diameter of bolt, 

and length of bolt 

[103] ANN Selection of one of the support patterns from 6 pre-

determined patterns 

[110] SVM, PSO Optimization of shotcrete thickness and shotcrete 

Young’s modulus 

[107] GA, SVM Prediction of RMR value 

[112] SVM Classification of surrounding rock mass 

[104] ANN, GA, PSO Characterization of rock mass quality 

[105] ANN Establishment of relationship between rock quality 

and support parameters  

[116] Neuro-fuzzy inference system Prediction of RMR value 

[117] Expert system, machine 

learning 

Establishment of relationship between rock mass 

quality and support parameters 

[102] ANN Prediction of shotcrete, rock bolt, steel mesh, steel 

arch and advanced small pipe 

[118] Expert system, ANN, Case-

based reasoning 

Prediction of shotcrete, rock bolt, and steel mesh 

[119] Expert system Prediction of rock bolt, steel mesh and shotcrete 

It can be seen from Table 5 that one of the scenarios where AI is applied to solve 670 

support design problem is, likewise, the characterization of the rock mass, which is used 671 

as the indicator of the corresponding support parameters. Liu et al. [108] introduced GA 672 

and SVM coupling algorithm to get the improved BQ value. Similarly, Gholami et al. 673 

[107] and Wang et al. [112] also used SVM to predict the RMR value of the rock mass 674 

and classify the surrounding rock in a timely manner, respectively. In addition to SVM 675 

method, Liu et al. [104] used ANN model to predict the rock mass quality using MWD 676 

data and Sebbeh-Newton et al. [116] adopted neuro-fuzzy inference system to predict 677 

basic RMR value using on-site data. None specific study reported the time used but it 678 

can be speculated that the process to get the results using these AI techniques is timely 679 

as it has provided real-time assistance for design alternations in the construction site 680 

[112]. 681 

Other studies listed in Tab.5 focus on the direct optimization or selection of 682 

support patterns without classifying rock mass. Global optimization algorithms such as 683 



 

 

PSO and GA are used by Li et al. [109] and Alvarez-Fernandez et al. [106] to optimize 684 

the anchorage and steel rib parameters respectively, where little computational cost was 685 

needed as the implementation of both GA and PSO is easy and simple. The second type 686 

which is usually used in the literature to directly optimize the support parameters is the 687 

classification model such as SVM. For example, Liu et al. [115] used 16 factors such 688 

as density of joint and discontinuity orientation as input variables of SVM network to 689 

get the shotcrete thickness, diameter, length and spacing of rock bolt, diameter and 690 

spacing of wire mesh. SVM was also integrated with numerical analysis and PSO by 691 

Jiang et al. [110] to represent the nonlinear relationship between the surrounding rock 692 

mechanical parameters and displacements, which provided a real-time and quantitative 693 

approach to optimize shotcrete parameters.  694 

Given the advantage of computing a mapping from a multivariate space of 695 

information to another [120], the ANN model is thus widely used in the support design 696 

to describe the end-to-end relationship between rock parameters and support parameters. 697 

ANN model has superiority in the support design problem as it is able to consider 698 

qualitative descriptive information in tunnel design problems such as rock grade and 699 

weathering grade, and the applied data can be imperfect and erroneous [102]. Xia et al. 700 

[102] introduced ANN method into tunnel support design earlier and verified the 701 

feasibility and reliability of ANN-supported support design. Using 9 parameters 702 

including geological factors, tunnel width and buried depth as inputs, 13 kinds of 703 

support parameters were outputted by ANN. Similarly, Nie et al. [105] mapped the 704 

relationship between rock conditions, the sequential excavation parameters and support 705 

parameters using ANN. The results illustrates the feasibility of the proposed ANN-706 

based design method with much less computing time compared with numerical 707 

methods. In a different way, Liu et al. [103] explored the correlation between MWD 708 

data and support patterns using ANN and found that a neural network with a 6-30-6 709 

topology structure was optimum, whose calculation time was approximately 10 min. 710 

The calculation result was to select one of the support patterns from 6 pre-determined 711 



 

 

patterns.  712 

Last but not least, expert system is also adopted by many researchers to solve the 713 

support design problem, as a large amount of historical data and cases within the scope 714 

of tunnel support design exist. As early as the last century, Madhu et al. [114] 715 

constructed an expert system using rule-based reasoning, i.e., knowledge being 716 

represented as “if-then” rules in the system. Data uncertainty was treated using a fuzzy 717 

set analysis. The application of the expert system elucidated that the recommended rock 718 

bolt, shotcrete and wire mesh parameters were in line with those actually used. Similarly, 719 

Wang et al. [119] constructed an expert system which took into account 8 factors such 720 

as joint orientations and water inflow information. Later, many researchers endeavor to 721 

integrate expert system with other techniques to enhance the robustness and improve 722 

the accuracy of the established expert system. Wang [117] combined expert system with 723 

machine learning to get the support parameters from 5 types of input data including 724 

buried depth, tunnel face stability grade, surrounding rock grade and others. Qiao and 725 

Wei [118] integrated expert system with ANN and case-based reasoning to avoid the 726 

bias that a single method is prone to. Using this comprehensive method, the shotcrete, 727 

rock bolt and steel mesh parameters were determined and were close to the ones in 728 

practice.  729 

6 Conceptual framework of JIT design of rock tunnel support  730 

According to the reviewed studies, the advancement of IoT and IT technologies 731 

has improved the performance of support design tasks in the rock tunnel construction 732 

concerning the time and accuracy. Here, a brief definition and overview of the proposed 733 

conceptual framework are presented, and research gaps are identified accordingly. 734 

Subsequently, the conceptual framework for the JIT design of tunnel supports, 735 

including key concepts and future perspectives, is developed. 736 

6.1 Framework definition and overview 737 

The existing academic and industrial-based studies have proved that an accurate, 738 

safe, and particularly JIT design of rock tunnel supports can fulfill the safety, stability, 739 



 

 

and other requirements for certain underground conditions [3,10,11]. The “just-in-time” 740 

concept originates from the manufacturing workflow with an aim to reduce the flow 741 

time and costs of production systems and distribution of materials [121], and then has 742 

been introduced into computer science industry. For instance, a JIT compiler is used to 743 

improve the runtime performance, which gives an equivalent sequence of the native 744 

code as soon as the bytecode sequences are given [122]. Similarly, here, we use the 745 

term “just-in-time” to denote the intrinsic requirement of the rock tunnel support as the 746 

support parameters need to be determined as soon as the hidden volume of the rock 747 

mass, the structural surface, the underground water and the mechanical response of 748 

surrounding rock, are exposed during tunnel construction. The JIT design of the tunnel 749 

support implies that once the data during construction are available in time, the revision 750 

of the preliminary design can also be available in time. Hence, in the JIT design of the 751 

tunnel support, data acquisition, interpretation and aggregation all need to be in time. 752 

The flowchart of the dynamic design of the support can be seen in Fig.13. It can 753 

be seen that the dynamic design of the tunnel support focuses on the revision of the 754 

preliminary design using the exposed geological and various unanticipated conditions 755 

during the construction process. By comparison, the JIT design of the tunnel support is 756 

a higher requirement for the dynamic design of the tunnel support, that is, as mentioned 757 

above, the revision of the tunnel support schemes should be available in time as soon 758 

as the new data are available during the construction process. 759 

 760 

Fig.13 Flowchart of dynamic design of the support in rock tunnel 761 

In this paper, we provide a broad overview of currently state-of-the-art techniques 762 

used in the design of the tunnel support during tunnel construction. In previous sections, 763 

the contribution of each technique to the JIT design of the rock tunnel support was 764 



 

 

thoroughly discussed. A brief summary of the workflow and average time requirements 765 

for the support design in the current practice is given in Fig.14.  766 

 767 

Fig.14 Workflow and average time requirements for support design in current 768 

practice. 769 

To sum up, the optimization of the support schemes during rock tunnel 770 

construction can be divided into three steps, i.e., acquisition of on-site raw data, 771 

interpretation of the data and the aggregation of the interpretation results to obtain new 772 

support schemes. As discussed in Sections 4 and 5, one of the key parameters that we 773 

consider in the process of JIT design of the tunnel support is the time required to 774 

accomplish the task. It can be seen that the time it takes to accomplish each step is 775 

closely related to the size of the tunnel face, IoT technique employed to acquire data, 776 

and IT technique used to analyze the information, ranging from several seconds to 777 

several hours. For instance, generally, it takes less than 30 min for DP to collect on-site 778 

data [30] while it may take more than 1 h for TSP to acquire data, as illustrated in Fig.14. 779 

In addition to time consumption, other important factors that may influence the 780 

performance of the JIT design of the tunnel support, such as the information category 781 

and algorithm accuracy, have also been discussed. There exist some parallels in the 782 

techniques used in each step. As can be seen from Section 4 and 5, the dominant 783 

information that each technique extracts from raw data is the discontinuity information, 784 



 

 

followed by profile information. Then, the majority of the literature samples use these 785 

information to conduct rock mass characterization and stability analysis, based on 786 

which the support parameters can be determined accordingly. 787 

6.2 Research gaps 788 

Three major shortcomings of current JIT design of the tunnel support have been 789 

identified from the literature examples, which are discussed in detail below. 790 

6.2.1 High time consumption of data interpretation 791 

The application of IoT technologies, including DP, TLS and MWD technologies, 792 

has enabled the quick acquisition of on-site data, which is the foundation of the JIT 793 

design of the tunnel support. However, the corresponding interpretation of the collected 794 

raw data may consume a considerable time in some cases, which is typically illustrated 795 

in the interpretation of the point cloud data. With a triangular mesh size of 4 cm and 796 

382,085 facets, the interpretation of the point cloud takes about 2.5h in a workstation 797 

(the Intel Core i7-2600 CPU and 16GB RAM) [54]. To interpret the point cloud data 798 

with the recommended resolution of 7.5mm at 5 m, the processing time of the point 799 

cloud was approximately 5 h [39]. The time to process high-density point cloud data in 800 

some cases can exceed 20 h, even with a high-powered computer (Intel Core i7-6700 801 

CPU and 16GB RAM) [32]. In addition to the interpretation of point cloud data, the 802 

processing of digital images can also take a high computational time, as seen in [28] 803 

where 1.5 hours were needed for post-processing. The relatively high time cost can 804 

hinder the performance of the JIT design of the tunnel support as the intrinsic quick-805 

response requirement cannot be guaranteed.  806 

6.2.2 Dilemmas of conventional and AI-supported aggregation methods 807 

Empirical, numerical and analytical approaches are the dominant methods which 808 

are used in practice to obtain the optimal support parameters. However, through 809 

literature examples, some limitations have been identified that can pose challenges to 810 

the JIT design of the tunnel support. 811 

(1) Limitation of empirical classification approaches 812 



 

 

As discussed, the majority of the literature used the extracted discontinuity or 813 

water inflow information to characterize the rock mass, then gave the support scheme 814 

from the predefined schemes. This is a one-to-one process, i.e., one class of surrounding 815 

rock mass corresponds to a specific type of support parameters. As can be seen from 816 

Table 6, the one-to-one relationship between the RMR values and corresponding 817 

recommended types of support in a practical tunnel project is obvious [123]. This 818 

common practice simply produces a qualitative ranking process for the rock mass and 819 

neglects the stresses or deformations that develop in the support system [18], which 820 

therefore tends to yield inaccurate and resource-wasting support schemes. Indeed, the 821 

newly exposed data, such as the discontinuity information, can be used to not only 822 

characterize the rock mass but also to quantitatively evaluate the entire support-rock 823 

system stability (see [34]), whose result can be used as an indicator to optimize the 824 

support parameters in detail. Unfortunately, most studies using the empirical 825 

classification method fail to further integrate the on-site information with more precise 826 

analysis methods to improve the accuracy of the JIT design of the tunnel support. 827 

Table 6 Recommended types of support based on RMR system [123] 828 

RMR value Anchoring   20mm Shotcrete Ribs 

81-100 - - - 

61-80 Locally bolts in crown, 3m long, 

spaced 2.5m, with occasional wire 

mesh 

50 mm in crown where 

required 

- 

41-60 Systematic bolts 4m long, spaced 1.5-

2 m in crown and walls with wire 

mesh in crown 

50-100 mm in crown, 

30 mm in sides 

- 

21-40 Systematic bolts 4-5 m long, spaced 1-

1.5 m in crown and walls with wire 

mesh 

100-150 mm in crown, 

100 mm in sides 

Light ribs spaced 1.5m 

where required 

<20 Systematic bolts 5-6 m long, spaced 1-

1.5 m in crown and walls with wire 

mesh. Bolt invert 

150-200 mm in crown, 

150mm in sides and 50 

mm in face 

Medium to heavy ribs 

spaced 0.75m with steel 

lagging and fore poling if 

required. Close invert 

(2) Shortcomings of numerical and analytical approaches 829 

The limitations of empirical methods do not apply to numerical and analytical 830 



 

 

approaches; thus, both the numerical and analytical approaches have been widely used 831 

in practice to improve the accuracy or efficiency of the computation. However, the 832 

numerical analysis of the support parameters is sensitive to the mesh and boundary 833 

effects, which may require considerable time to yield results [96]. Moreover, the 834 

modelling process of numerical analysis can also be time-consuming as various factors 835 

need to be taken into account. In comparison, analytical approaches provide a simpler 836 

and more computationally efficient way to aggregate data with various simplified 837 

hypotheses, which, in turn, limits the application of analytical methods as the simplified 838 

conditions are seldom the case in most rock tunnel problems [96]. 839 

(3) Scarcity of the AI-supported methods 840 

The use of AI techniques, such as optimization algorithms, ANN and expert 841 

system, has greatly improved the performance of the JIT design of the tunnel support 842 

concerning the computational time [105] and accuracy [20]. Contrary to our initial 843 

expectation that many studies were conducted on the AI-supported JIT design of tunnel 844 

supports, actually, only 12 literature using AI to directly optimize support parameters 845 

were collected, excluding the studies that used AI to classify the rock mass. Moreover, 846 

Published between 2002 and 2005, four of these studies [102,115,118,119] used ANN 847 

and an expert system to find the optimal support parameters. Consequently, AI has been 848 

widely adopted in the entire process of the JIT design of tunnel supports, such as 849 

interpretation of on-site raw data. In addition, it is a powerful tool to describe the end-850 

to-end relationship between the rock and support parameters [120]; however, studies 851 

that directly use AI to establish relationships between newly exposed data and support 852 

parameters are scarce. 853 

6.2.3 Long retrieval time for similar design cases 854 

According to the current standards and specifications [10,11], the pre-existing 855 

experience or cases of rock engineering support design can be reused if the new tunnel 856 

project encounters similar geological conditions as before. Therefore, it challenges 857 

designers/engineers to recall and search past similar projects and extract associated 858 



 

 

information [118]. This process is subjective and error-prone, as designers/engineers 859 

rely on their own experience and comprehension to retrieve and edit similar cases. 860 

Moreover, manual retrieval is time-consuming; therefore, some researchers have 861 

attempted to use computer-aided approaches to improve the accuracy the efficiency of 862 

the process (see examples in [117,118]). However, the concerns that how to convert the 863 

textual cases or knowledge into computer-interpretable data formats and how to retrieve 864 

the cases accurately still have not been fully addressed, which influences the 865 

performance of the JIT design of the tunnel support. 866 

6.3 Key concepts 867 

Three key performance indicators that can be used to evaluate the performance of 868 

the JIT design of tunnel supports during the rock tunnel construction process are 869 

discussed. 870 

(1) Time consumption 871 

Support is installed during the construction process after the face is excavated, and 872 

the muck is loaded. According to engineering experience, the time for “acquisition-873 

interpretation-aggregation” of the support design is extremely limited [16] as mucking 874 

and risk removal can consume approximately 2-3 h, accounting for over 50% of the 875 

cycle time; thus, the time allocated to the support design is only approximately 1 h. 876 

Hence, under such circumstance, the JIT design of the tunnel support requires the 877 

“acquisition-interpretation-aggregation” workflow to be finished within 1 h. Otherwise, 878 

the working hours can be increased and the overall construction period can be easily 879 

delayed. However, as stated in Section 6.2, in certain cases, some design approaches 880 

fail to meet the “time” requirement of the JIT design of the tunnel support. 881 

(2) Accuracy 882 

Inaccurate support parameters adversely affect the safety guarantee in poor rock 883 

mass conditions and waste both the support structures and manpower in fair rock mass 884 

conditions. As the JIT design of the tunnel support consists of “acquisition”, 885 

“interpretation” and “aggregation”, the accuracy of the JIT design of the tunnel support 886 



 

 

can be explained by many aspects, such as the resolution of the acquired data [16] and 887 

the accuracy of the interpretation [61] and aggregation [103] algorithms. That’s to say, 888 

higher-resolution data, as well as more appropriate and accurate interpretation and 889 

aggregation methods, tends to improve the performance of the corresponding JIT 890 

design of the tunnel support. 891 

(3) Degree of automation 892 

Automation in the support design is composed of many aspects in the “acquisition-893 

interpretation-aggregation” workflow, such as the application of automatic machinery 894 

[47], automatic model generation [32], automatic information extraction [17,53,54] and 895 

automatic information aggregation [117]. The degree of automation significantly 896 

affects the performance of the JIT design of the tunnel support. For instance, one of the 897 

primary difficulties in the implementation of discontinuous numerical methods for rock 898 

mass is generating discontinuous models [34]. If the model is generated automatically 899 

and accurately, the overall computational efficiency shall be greatly improved. Hence, 900 

higher degree of automation can, to some extent, improve the performance of the JIT 901 

design of the tunnel support. 902 

6.4 Conceptual framework and future perspectives 903 

Considering the time, accuracy and automation requirements of the JIT design of 904 

the tunnel support, a conceptual framework for the JIT design of the tunnel support is 905 

presented in Fig.15. The entire framework considers the pros and cons of each 906 

technique used in the “acquisition-interpretation-aggregation” workflow. The left part 907 

of Fig.15 shows the workflow of the “acquisition-interpretation-aggregation”, whose 908 

relationship with the construction site is presented in the right part. 909 
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Fig.15 Conceptual framework for JIT design of the tunnel support during rock tunnel 911 

construction 912 

Using intelligent acquisition methods such as DP, TLS and GPR, on-site data can 913 

be collected in various forms. Then, based on the efficient and accurate methods 914 

presented in Section 4, e.g. edge detection and deep learning, the discontinuity, water 915 

inflow and profile information can be interpreted. In the third step, the information is 916 

used as inputs to automatically generate numerical models or obtain support parameters 917 

using AI methods. The final support schemes can be constructed by intelligent jumbos 918 

at the construction site. Once again, after the drilling and the measurement, the data on 919 

the new tunnel face are collected and a new round of the JIT design of the tunnel support 920 

is to be performed. Moreover, the employed techniques and aggregation algorithms in 921 

the proposed framework, such as the application of the IoT technique in the rock tunnel 922 

construction and performance of the algorithm on construction data, were individually 923 

validated in the reviewed studies. Hence, the reviewed studies can be considered as a 924 

validation of the proposed framework; thus, they reflect the rationality of the proposed 925 

framework. 926 

Regarding the research gaps listed in Subsection 6.2, to accomplish the JIT design 927 



 

 

of the tunnel support in Fig.15 with an excellent performance, some possible 928 

improvements are needed to remedy the listed limitations. 929 

(1) Adoption of the state-of-the-art deep learning technologies: Our literature 930 

review revealed that machine learning and deep learning technologies are particularly 931 

successful in tasks associated with the image interpretation as they provide a high 932 

accuracy and reasonable computational time [17,31,58,61,80]. Other studies have also 933 

demonstrated the effectiveness of deep learning in the interpretation of point cloud data 934 

[124]. Hence, regarding the challenge that the interpretation of data in some cases is 935 

time-consuming, future researches can explore to use deep learning or other machine 936 

learning approaches to accelerate the interpretation of point cloud data. 937 

(2) Automatic generation of numerical models: An important factor affecting 938 

the efficiency of numerical simulation is the model generation. Generally, the model is 939 

generated manually using multiple pieces of information such as discontinuity 940 

information [90,97], which is time-consuming and error-prone. The efficiency can be 941 

greatly improved with the automatic generation of the model using certain structural 942 

and surrounding rock mass information. In fact, Monsalve et al. [45] used the 943 

interpreted information from TLS and generated a discrete fracture network for 944 

discontinuous analysis, which indicated that the numerical model could be generated 945 

automatically using on-site interpreted information. Further studies are needed to 946 

investigate automatic integration of the geological, geotechnical, and hydrological 947 

information into numerical models, and improvement of the effectiveness of methods. 948 

(3) Employment of parallel computing and cloud computing: Parallel and 949 

cloud computing are the computational methods aiming at improving computational 950 

speed to solve complex computing problems. Wang et al. [19,125] used parallelization 951 

and cloud computing to solve the problem of contact detection and computational 952 

efficiency in 3D DDA, which is considered as one of the most powerful numerical 953 

methods. Taking this as an example, further studies can integrate parallel and cloud 954 

computing into the “acquisition-interpretation-aggregation” workflow, such as 955 



 

 

continuous/discontinuous numerical analysis, to improve the computation speed. 956 

(4) Using ANN to directly get optimal support parameters: ANN has been 957 

proved to be an effective and powerful tool to model the nonlinear relationship between 958 

support parameters and geological information [102,105]. Previous studies using ANN 959 

relied on the information that exposed during the preliminary design stage. Hence, the 960 

nonlinear relationship between the multi-source information exposed during 961 

construction and support parameters can be explored, which can reduce labor cost and 962 

improve construction efficiency. 963 

(5) Using ontology to represent knowledge: The structured representation of 964 

knowledge forms the basis of knowledge retrieval and reasoning. As an emerging 965 

technology, ontology is widely used for knowledge sharing and reuse for its great 966 

potential to address the problems related to holistic structural design [126]. Hence, 967 

using ontology to represent tunnel design knowledge and design cases can be beneficial 968 

for subsequent knowledge retrieval and reasoning. In addition, rule- and case-based 969 

reasoning can be conducted to obtain the most appropriate support schemes based on 970 

the structured knowledge. 971 

7 Conclusions 972 

This study presents a critical review on the design of the support during rock tunnel 973 

construction from three perspectives: acquisition of on-site data, interpretation of raw 974 

data and aggregation of interpreted data. The applications of IoT and IT in these three 975 

perspectives have been thoroughly reviewed, including the time each technique costs, 976 

its strengths and drawbacks, and its contribution to the design of the support. Based on 977 

the review results, this study develops a conceptual framework for the JIT design of the 978 

tunnel support, where research gaps, key concepts and possibilities of improvement 979 

have been identified. 980 

The overall challenges when performing the JIT design of the tunnel support have 981 

been discussed. Time consumption, accuracy and degree of automation are three key 982 

concepts in the JIT design of the tunnel support. Some appropriate and efficient 983 



 

 

methods to realize the JIT design of the tunnel support have been highlighted and 984 

recommended as follows: DP and TLS approaches for acquisition of tunnel face data, 985 

GPR and TEM approaches for acquisition of data in front of the tunnel face, edge 986 

detection, clustering and deep learning method for data interpretation, automatic model 987 

generation for numerical analysis, and AI-supported techniques for data aggregation.  988 

The adoption of the state-of-the-art AI technologies, such as ANN and deep 989 

learning technologies, can significantly improve the efficiency of interpretation and 990 

aggregation. Parallel computing and cloud computing are also promising areas that can 991 

accelerate the computations involved in interpretation and aggregation. In addition, the 992 

ontology technology can be employed in the design of the tunnel support to ease the 993 

knowledge representation and reuse, thereby improving the performance of the support 994 

design. The proposed framework for the JIT design of the tunnel support is a starting 995 

point aiming to lead follow-up researches. The validation of the details in the proposed 996 

framework shall be implemented correspondingly in future studies. In addition, the 997 

feasibility of the proposed framework should be verified through practical applications 998 

in engineering projects. Moreover, this review study contributes to elucidating the 999 

current state of the dynamic design of the tunnel support research and providing 1000 

profound insights into the JIT design of the tunnel support research. 1001 
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