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Abstract 

Several recent multi-compartment diffusion MRI investigations and modelling strategies have 

utilized the orientationally-averaged, or spherical mean, diffusion-weighted signal to study tissue 

microstructure of the central nervous system. Most experimental designs sample a large number 

of diffusion weighted directions in order to calculate the spherical mean signal, however, 

sampling a subset of these directions may increase scanning efficiency and enable either a 

decrease in scan time or the ability to sample more diffusion weightings. Here, we aim to 

determine the minimum number of gradient directions needed for a robust measurement of the 

spherical mean signal. We used computer simulations to characterize the variation of the 

measured spherical mean signal as a function of the number of gradient directions, while also 

investigating the effects of diffusion weighting (b-value), signal-to-noise ratio (SNR), available 

hardware, and spherical mean fitting strategy. We then utilize empirically acquired data in the 

brain and spinal cord to validate simulations, showing experimental results are in good 

agreement with simulations. We summarize these results by providing an intuitive lookup table 

to facilitate the determination of the minimal number of sampling directions needed for robust 

spherical mean measurements, and give recommendations based on SNR and experimental 

conditions.  
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Introduction 

Diffusion MRI is an imaging technique sensitive to the microscopic details of tissue 

architecture, which is composed of combinations of micro-environments with potentially 

different cell types, geometries, and diffusion characteristics. Towards this end, multi-

compartment diffusion models have been developed that aim to infer biophysical properties of 

the tissue, for example compartmental volume fractions and diffusivities, in addition to tissue 

anisotropy or orientation (Assaf and Basser, 2005; Assaf et al., 2008; Dong et al., 2020; Hansen 



et al., 2013; Jelescu et al., 2015; Jespersen et al., 2007; Sotiropoulos et al., 2012; Zhang et al., 

2012). However, simultaneous estimation of anisotropy and other biophysical properties is 

challenging due to a large number of unknown parameters and possible degeneracies in the 

model fitting (Jelescu et al., 2016). Recently, it has been shown that averaging the diffusion 

weighted signal over all gradient directions factors out the effects of tissue orientation and 

facilitates analytic derivations of tissue microstructure from this “spherical mean” or “powder 

averaged” signal. 

These spherical mean techniques have been applied in microscopic diffusion anisotropy 

imaging (Kaden et al., 2016a; Kaden et al., 2016b), fiber ball imaging (McKinnon et al., 2018), 

apparent fiber density imaging (Raffelt et al., 2012), rotationally invariant modeling (Novikov et 

al., 2018; Veraart et al., 2018b), power-law scaling (McKinnon et al., 2017; Veraart et al., 

2018a), axonal radii estimation (Veraart et al., 2020; Veraart et al., 2021), and soma density 

imaging (Palombo et al., 2020). Robust model fitting requires an adequate number of directions 

to ensure an accurate measurement of the orientation-averaged signal. For this reason, most 

studies employ a large number of gradient directions, with typically 60-200+ directions sampled 

for each diffusion weighting. However, this is not always feasible for clinical scan protocols with 

limited scan time, where tradeoffs between scan time and robust measurements must be 

considered. The aim of the current work is to determine the minimum number of sampling 

directions for a robust measurement of the spherical mean signal at different b-values and 

different SNRs.  

Few previous studies have investigated the effect of sampling schemes on the spherical 

mean signal (Afzali et al., 2021; By et al., 2018; Devan et al., 2020; Kaden et al., 2016a; Li et al., 

2018; McKinnon et al., 2018). Of particular interest, Li et al. (Li et al., 2018) employed 

computer simulations of a 2-compartment model to determine the minimum number of gradient 

directions for robust spherical mean measures, considering both b-values and signal to noise ratio 

(SNR). They find that the spherical mean signal can be measured accurately with very few 

gradient directions, and that this required number of directions increases with increasing b-value 

and decreasing SNR. Here, we extend this work, and generalize the computer simulation 

framework to different diffusion models and underlying tissue microstructure, different hardware 

and available gradient strengths, a wider range of SNR, and several spherical mean derivation 

strategies. We then confirm simulation results on empirically collected diffusion data in the brain 

and spinal cord, with various diffusion weightings and SNR, and provide recommended minimal 

sampling directions depending on experimental and biological conditions.   

 

Methods 

 

Theory 

We simulated signal using three models of diffusion in tissue (1) the widely used two-

compartment model of intra- and extra-axonal spaces (2-compartment) typically used in white 

matter, (2) a compartment model for soma and neurite density imaging (SANDI) that may be 

used for both white and gray matter imaging, and (3) and a model that enables estimating an 

effective axonal radius within each voxel (finite-radius). Below, for each model we give the 

expressions for the diffusion weighted signal (S) along a gradient direction (g), for a fiber 

population pointing in the direction (n), as well as for the signal (𝑆̅) averaged over all gradient 

directions. 

 



2-compartment model 

The widely used two compartment model of intra- and extra-axonal spaces can be 

expressed as a function of b-value (b) and gradient direction (g) as: 

 

𝑆(𝑏, 𝒈) = 	𝑆! ∙ [𝑉"# ∙ 𝑒$%&!"# $%'&!"∥ $&!"# (∙(𝒏∙𝒈)% + (1 − 𝑉"#) ∙ 𝑒$%&&'# $%(&&'∥ $&&'# )∙(𝒏∙𝒈)%] 
 

where 𝑆! is the signal for b=0, and 𝐷"#∥ , 𝐷"#/ , 𝐷01∥ , 𝐷01/  are intra-axonal axial diffusivity, intra-

axonal radial diffusivity, extra-axonal axial diffusivity, and extra-axonal radial diffusivity, 

respectively. Following previous studies (Kaden et al., 2016a; McKinnon et al., 2018; Szafer et 

al., 1995) we assumed zero radial diffusivity (i.e., stick-like intra-axonal compartment), 𝐷"#/ = 0, 

tortuosity constraints on the extra-axonal compartment, 𝐷01/ = (1 − 𝑉"#) ∙ 	𝐷01∥ , and equal axial 

diffusivities, 𝐷"#∥ = 𝐷01∥ = 𝜆 to constrain the model. From this, the ground truth signal averaged 

over all directions can be expressed as: 

𝑆̅(𝑏) = 𝑆! ∙ [𝑉"#√𝜋 erf:√𝑏𝜆;2√𝑏𝜆 + (1 − 𝑉"#) ∙ √𝜋 ∙ erf:=𝑏𝜆𝑉"#;2=𝑏𝜆𝑉"# ∙ 𝑒$%2(3$4!")] 
 

Where erf is the error function. 

 

SANDI model 

The SANDI model (Palombo et al., 2020) presents a simple addition to the two-

compartment model, modeling the intra-axonal compartment as zero-radius sticks (as above), an 

intra-soma compartment as impermeable spheres, and an extra-axonal compartment. The signal 

again, can be expressed as a function of b-value (b) and gradient direction (g) as:   

 𝑆(𝑏, 𝒈)𝑆! = (1 − 𝑓05) ?𝑓"# ∙ 𝑒$%&!"# $%(&!"∥ $&!"# )∙(𝒏∙𝒈)% 	+ (1 − 𝑓"#)
∙ 𝑒𝑥𝑝 B−2(𝛾𝑔)6𝐷"7 E 𝛼8$9𝑎86 𝑟76 − 2

:

8;3
× [2𝛿]

− 2 + 𝑒$<(% &!)(=$>) − 2𝑒$<(% &!)> − 2𝑒$<(% &!)= + 𝑒$<(% &!)(=?>)𝛼86 𝐷"7 KL +	𝑓05𝑒$%&&* 
where 𝑆!, 𝐷"#∥ , 𝐷"#/ , 𝐷01∥ , 𝐷01/  are the same as above, with an additional two free parameters 𝐷"7 
and 𝑟7 that describe the intra-soma diffusivity and radius, respectively. Here, 𝛿 and Δ are the 

diffusion gradient pulse width and separation, g the magnitude of diffusion 

gradient pulse, 𝛼8 the mth root of the equation (α𝑟7)$3𝐽+
%

(α𝑟7) = 𝐽,
%

(α𝑟7), with 𝐽#(𝑥) the Bessel 

function of the first kind. For simplicity, only a single radius, 𝑟7, is considered as representative 

of all soma in an MRI voxel. It is important to note two things: (1) that intra-soma and extra-

axonal signal decay does not depend on orientation, g; and (2) the signal attenuation due to soma 

depends on the diffusion gradient pulse strength, width, and separation, which varies by 

scanner/hardware. The ground truth, direction averaged signal as a function of b-value becomes:  

 



𝑆̅(𝑏) = (1 − 𝑓05) ?𝑓"# ∙ 𝑉"#√𝜋 erf:=𝑏𝐷"#;2=𝑏𝐷"# 	+ (1 − 𝑓"#)
∙ 𝑒𝑥𝑝 B−2(𝛾𝑔)6𝐷"7 E 𝛼8$9𝑎86 𝑟76 − 2

:

8;3
× [2𝛿]

− 2 + 𝑒$<(% &!)(=$>) − 2𝑒$<(% &!)> − 2𝑒$<(% &!)= + 𝑒$<(% &!)(=?>)𝛼86 𝐷"7 KL +	𝑓05𝑒$%&&* 
 

Finite Radius model 

Rather than assuming a zero-radius axonal component, it has recently been shown that 

the diffusion MRI signal may be sensitive to axon radii, after eliminating confounding factors of 

orientation dispersion (through spherical averaging) and extra-axonal water (at a high b-value) 

(Veraart et al., 2018a; Veraart et al., 2020). With a non-zero radius, 𝐷"#/  no longer equals zero, 

and as above, the intra-axonal signal as a function of b-value (b) and gradient direction (g) 

becomes: 

 𝑆(𝑏, 𝒈) = 	𝑆! ∙ [𝑉"# ∙ 𝑒$%&!"# $%(&!"∥ $&!"# )∙(𝒏∙𝒈)%] 
As described in detail in (Veraart et al., 2018a; Veraart et al., 2020), the spherical mean signal as 

a function of b-value (b) is then:   

𝑆̅(𝑏) = 	𝑆! ∙ [𝑉"# ∙ P 𝜋4 ∙ 𝐷"#∥ ∙ 𝑒$%&!"
# 𝑏$3/6] 

From an estimate of 𝐷"#∥  from the orientation-averaged signal, the MR-effective radius can be 

calculated as 𝑟AB = (9CD 𝛿(Δ − 𝛿/3)𝐷"#∥ 𝐷"#/ )3/9 .  Again, the sensitivity to axonal radii depends 

on diffusion pulse width and separation that is constrained by hardware. Note, finite-radius 

simulations were performed assuming complete attenuation for extra-axonal signal. 

 

Simulations 

 Simulations were performed by varying and isolating several experimental and biological 

factors: (1) the tissue model, (2) tissue microstructure features, (3) the number of sampled 

gradient directions, (4) b-values, (5) SNR, (6) the spherical mean calculation, and (7) scanner 

hardware.  

For each tissue model, diffusion-weighted signals were simulated with gradient directions 

g approximately evenly distributed on a unit sphere (Jones et al., 1999), varying the number of 

directions N from 6 to 120. The spherical mean signal 𝑆̅ was computed in two ways (Afzali et 

al., 2021), first as the arithmetic mean of the signal over all directions and second as the zeroth-

order and zeroth-degree spherical harmonic coefficient. For each value of N, 1,000 different 

uniformly-oriented directions of a fiber population n were simulated, from which the mean and 

standard deviation of 𝑆̅  were calculated. Following (Li et al., 2018), the criteria to determine the 

minimum number of sampling directions Nmin was based on the relative standard deviation 

(RSD), defined as the ratio of the standard deviation to the mean, which indicates a measure of 

precision of the spherical mean measurement. We determine Nmin as the minimum number of 

directions to achieve 𝑅𝑆𝐷(𝑆̅	) ≤ 5% to achieve sufficient spherical sampling. 



Simulations were performed in MATLAB with diffusion weighting b-value varied from 1 

to 12 ms/um2. The simulated parameters were varied for each model to cover a wide range of 

possible central nervous system tissue microstructures. For the 2-compartment model, 𝑉"# =[0.4	0.6	0.8], 𝜆 = [1.5	2	2.5] um2/ms, with fixed parameters 𝑆! = 1. For SANDI, 𝑓"# =[0.2	0.5	0.8], i.e., 𝑠𝑜𝑚𝑎	𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 1 − [0.2	0.5	0.8],  𝑟7 = [4	8	12] um, with fixed parameters 𝑆! = 1, 𝐷"# = 2.5 um2/ms, 𝐷"7 = 3 um2/ms, 𝑓05 = 0.2, 𝐷05= 1 um2/ms. For the Finite radius 

model 𝑟AB = [1	3	5] um, with fixed parameters of 𝑆! = 1, 𝑉"# = 1, 𝐷"#∥ = 2.5 um2/ms. For the 

SANDI and Finite-Radius models, simulations were performed for two potential imaging 

gradients, an 80mT/m gradient system ( 𝛿 = 25 ms and Δ = 45 ms) that is common in most 

scanners, and a 300mT/m system (Jones et al., 2018) (𝛿 = 8.5 ms and Δ = 24 ms).  

To investigate the effect of SNR on Nmin, complex Gaussian noise was added to the 

simulated signal 𝑆(𝑏, 𝒈), and the magnitude of the noisy signal was considered the measured 

signal 𝑀(𝑏, 𝒈), from which the mean measured signal 𝑀c  was computed. Signal was corrupted 

for SNR levels of 10, 20, 30, 40, 50, 100, and infinity (no corruption). Rician bias corrected 

signal was also assessed, with corrected signal amplitude 𝐴(𝑏, 𝒈) = =𝑀6(𝑔, 𝒃) − 2𝜎6 with 𝜎 =1/𝑆𝑁𝑅 as the noise level. Unless otherwise noted, primary results focus on the 2-compartment 

model with common hardware (80mT/m) and SANDI and Finite-Radius results on the 

connectome scanner (300mT/m), with arithmetic averaging fit of the measured signal. Additional 

results on the 80mT/m scanner, fitting with spherical harmonic coefficients, and Rician bias 

corrected signal are given in supplementary figures.  

 

Empirical data 

Empirically acquired human data were used to demonstrate the accuracy of subsampling 

for spherical mean calculation and to confirm simulation results.  

The first dataset was high-quality HCP data from the MGH-USC Adult Diffusion Dataset 

acquired on a customized Siemens 3T Connectom Scanner with 300mT/m gradient system. 

Diffusion data were acquired with 4 different b-values: 1ms/um2 (64 directions), 3ms/um2 (64 

directions), 5ms/um2 (128 directions), and 10ms/um2 (128 directions). This dataset has 

previously been used to investigate the SANDI model (Palombo et al., 2020). 

 The second dataset was the Multiple Acquisitions for Standardization of Structural 

Imaging Validation and Evaluation (MASSIVE) dataset (Froeling et al., 2017) acquired at UMC 

Utrecht on a 3T Philips Achieva with an 80mT/m gradient system. While the full acquisition is 

quite exhaustive with over 8000 volumes over 5 b-values, we selected 2 b-values from a session 

acquired at 1ms/um2 (125 directions) and 3ms/um2 (125 directions), an acquisition typical for 

fitting the 2-compartment model.  

 The third dataset was acquired on the cervical spinal cord at Vanderbilt University 

Medical Center on a 3T Philips Achieva with an 80mT/m gradient system. Diffusion data were 

acquired with 3 different b-values: 1ms/um2 (64 directions), 3ms/um2 (64 directions), and 

5ms/um2 (64 directions). All three datasets were preprocessed for motion, eddy currents, and 

susceptibility distortions (Jenkinson et al., 2012). 

 For all datasets, subsamples were chosen based on simulation results, selecting the 

minimum number of directions for which RSD first falls below 5%. The dirorder command from 

the MRTrix3 software package was used to ensure a near-uniform selection of a subset of 

gradients. Because subsets cannot be perfectly uniform, spherical mean derivation for empirical 

datasets was based on spherical harmonic fits. The relative percent difference between 𝑀c  from 

the full dataset and 𝑀c′ from the subsampled dataset was calculated as 100	 ×	|𝑀c −𝑀c′|/𝑀c .  



 

Results 

Diffusion MRI signal decay depends on model, microstructure, and hardware 

Figure 1 shows the expected spherical mean diffusion MRI signal as a function of b-

value for the 2-compartment model (top), SANDI model (middle), and finite-radius model 

(bottom), for the range of simulated microstructural configurations, and for both the clinical and 

connectome gradients. As expected, the signal depends on the assumed model, tissue parameters, 

and hardware. In all cases, signal decays significantly at high b-values, with a higher non-

vanishing signal observed for higher intra-axonal fractions, higher soma fractions with smaller 

radii, and smaller axon radii.  

 

 

Figure 1. The expected diffusion MRI signal as a function of b-value (ms/um2), for a 2-

compartment model (A), 3-compartment soma model (B), and finite axonal radius model (C). 

Different ground truth geometries were simulated in this study, varying the intra-axonal volume 

fraction (Vin), intra-axonal diffusivity (lambda), soma radius (Rs), and axon radius (R). For the 

3-compartment and axonal radius model, a connectome-like acquisition was simulated with 

300mT/m gradients and is shown as a solid line, while a clinical-like acquisition with 80mT/m is 

shown as a dashed line. 

 

Increasing number of gradient directions decreases variability of the spherical mean signal 

 Figure 2 shows the measured signal magnitude M and its variation over 1000 simulation 

directions as a function of the number of gradient directions for all 3 models and 3 selected SNR 

realizations. The solid lines are the ground truth spherical mean signals based on equations 2, 4, 

and 6. In all cases, the variability of the measured signal decreased with increasing number of 

directions and takes longer to converge for higher b-values and lower SNR. The measured signal 

did not always converge to the ground truth value due to Rician noise, and although Rician bias 

correction reduced bias, variance of the spherical mean signal around the mean is similar 

(Supplementary Figure 1). Similarly, estimating the spherical mean signal through spherical 

harmonic basis coefficients did not dramatically change simulations results (Supplementary 

Figure 2), as the sampling directions are already maximally uniformly sampled. Results for 

SANDI and Finite-radius models of tissue with clinical gradients (80mT/m) are also shown in 

supplementary results (Supplementary Figure 3). 

 The calculated RSD is shown in Figure 3, again for all models and 3 noise realizations at 

selected b-values. In agreement with previous observations, the RSD quickly decreases with 

increasing number of directions, with higher b-values and lower SNR taking longer to decrease, 

and converging at a higher RSD. Results for Rician-bias corrected signal, and estimation of 

spherical mean through spherical harmonic coefficients are given in Supplementary Figure 4 and 

5 (with observations in agreement with Figure 3). The RSD is then used to determine the 

minimal number of N needed for RSD(M)<5%.  

 

 

Figure 2. Dependence of the measured signal on the number of gradient directions. For the 2-

compartment model (top), SANDI model (middle), and finite-radius model (bottom), the ground 

truth signal is shown as a solid line, while mean +/-  standard deviation of the measured noisy 

signal is shown as box plots. Examples were chosen for select SNRs (Infinity, 30, 10), b-values 



(1, 3, 5, and 10 ms/um2), and tissue microstructure (2-COMP: 𝑉"# = 0.6, 𝜆 = 2 um2/ms; 

SANDI: 𝑓"# = 0.5,  𝑟7 = 8	um; Finite radius model 𝑟AB = 1 um). 

 

 

 

Figure 3. RSD decreases with increasing directions. Dependence of the calculated RSD on the 

number of gradient directions is shown for the 2-compartment model (top), SANDI model 

(middle), and finite-radius model (bottom). Examples were chosen for select SNRs (Infinity, 30, 

10), b-values (1, 3, 5, and 10 ms/um2), and tissue microstructure (2-COMP: 𝑉"# = 0.6, 𝜆 = 2 

um2/ms; SANDI: 𝑓"# = 0.5,  𝑟7 = 8	um; Finite radius model 𝑟AB = 1 um). 

 

 

 

2-compartment model: Nmin depends on SNR and microstructure 

 The minimal number of sampling directions, assuming a 2-compartment model of signal 

decay, is shown in Figure 4, shown varying SNR within a plot (top) and varying tissue 

microstructure within a plot (bottom). In general, sampling requirements increase linearly with b-

value. Tissue microstructure also influences the calculated Nmin, where tissue having smaller 

intra-axonal signal fraction requires more sampling directions. Nmin is greater effected by SNR. 

When SNR>=30, very few sampling directions (N<40) are required, even at high b-value. 

However, at low SNR, Nmin very quickly increases, requiring >40 directions even at low to 

moderate b-values.  

 

 

Figure 4. The minimal number of sampling directions for robust spherical mean depends on 

microstructure and image SNR. The minimal number of directions as a function of b-value are 

shown for the 2-compartment model, with varying SNR (top), and varying tissue microstructure 

(bottom). 

 

 

SANDI model: varying SNR and microstructure 

 Figure 5 shows the minimal sampling directions for the SANDI model (300mT/m 

gradients). Again, Nmin is influenced by tissue microstructure, and to a greater extent SNR. 

Larger radii with a larger soma volume fraction (i.e. smaller intra-axonal fraction) require more 

sampling directions. In most conditions, at high SNR and with moderate volume fractions, Nmin 

remains <40.  

 

 

Figure 5. The minimal number of sampling directions for robust spherical mean depends on 

microstructure and image SNR. The minimal number of directions as a function of b-value are 

shown for the SANDI model, with varying SNR (top), and varying tissue microstructure (bottom). 

 

 

Finite radius model: varying SNR and microstructure 

 The minimal number of sampling directions for the finite-radius model is shown in 

Figure 6. With MR-derived radii on the order of 1-3um (as expected in the brain), sampling 



directions increase with increasing b-value, again requiring <40 directions for high b-value. 

However, Nmin increases for larger radii, and also at low SNR.  

 

 

Figure 6. The minimal number of sampling directions for robust spherical mean depends on 

microstructure and image SNR. The minimal number of directions as a function of b-value are 

shown for the finite-radius model, with varying SNR (top), and varying tissue microstructure 

(bottom). 

 

 

Choosing sampling directions 

 Table 1 provides the minimal number of sampling directions based on all simulations 

with all investigated degrees of freedom. Importantly, Table 1 enables a simple lookup for 

planning and designing a spherical mean experiment. For example, you would first select your 

model (i.e., underlying tissue microstructure assumptions). Second, you would determine the 

expected SNR. Third, you would select the b-values you plan to sample, typically determined in 

the literature through a sensitivity or optimization procedure. Given these choices, the minimum 

sampling directions are given in column format, over the range of possible tissue environments. 

For convenience we have highlighted typical microstructure for in vivo human white matter in 

blue and gray matter in green. However, a conservative approach would be to select the worst-

case scenario, i.e., the largest Nmin appearing in that column. We have also provided example 

direction sets as supplementary information, generated by using an electrostatic repulsion 

algorithm described in (Jones et al., 1999) and implemented using the dirgen command in 

MRtrix3 (Tournier et al., 2019). 

 As an example, with the MGH dataset, we may be interested in performing SANDI 

analysis with b-values of 1, 3, 5, and 10 ms/um2 as described in SANDI’s initial implementation 

(Palombo et al., 2020). Given an SNR~50, and an analysis focusing on gray matter only, one 

would select 6, 10, 30, and 48 directions. As described in detail in the discussion, oversampling 

is likely necessary due to variation in tissue and non-optimal distributions of sampling directions.   

 

Table 1. The minimal number of sampling directions. 

 

 

Empirical data: brain  

 Simulation results were validated on two example human brain datasets, shown in Figure 

7. For the MGH dataset, we used subsets of 6 directions for b=1 ms/um2, 12 directions for b=3 

ms/um2, 20 directions at b=5 ms/um2, and 40 directions for b=10 ms/um2. Visually, the 

subsampled spherical mean signal is similar to that from the fully sampled dataset, with whole 

brain relative differences of 3.5 ± 3.4%, 4.8 ± 4.3%, 4.9 ± 4.0%, and 4.2 ± 3.2%, respectively 

(with greater RSD observed in the low SNR center of the brain compared to the periphery given 

typical patterns of coil sensitivity (Farrell et al., 2007)). Similar results are observed for the 

MASSIVE selected data, which may be typical of a 2-compartment fit. Here, b-values of 1 

ms/um2 and 3 ms/um2 were subsampled from 125 and 125 directions to 6 and 14 directions, 

respectively, resulting in whole brain relative differences of 4.3 ± 4.0%, 4.1 ± 3.6%, 

respectively. Thus, experimental results were in good agreement with simulation results in the 

brain.  



 

 

Figure 7. The spherical mean signal can be accurately measured with a subset of the data in the 

brain. For both an example SANDI acquisition (left; SNR~50) and 2-compartment model 

acquisition (right;  SNR~40), the spherical mean for a full dataset and subset is shown, and 

relative percent difference calculated.  

 

 

Empirical data: spinal cord  

 Similar experiments were performed in the spinal cord, a central nervous system structure 

that has been much less investigated with multi-compartment modeling than the brain. Figure 8 

shows subsampling of the in vivo human cervical spinal cord. Subsampling was performed at 

b=1, 3, and 5 ms/um2 with 8, 26, 32 directions, and evaluated against the full sampling of 64 

directions each. Visually, the mean signal shows similar contrast and magnitude as the fully 

sampled signal, with whole cord relative differences of 4.5 ± 3.5%, 4.8 ± 3.5%, and 4.7 ± 3.5%, 

respectively. Again, experimental results are in line with expected values of variation from 

simulations. 

 

 

Figure 8. The spherical mean signal can be accurately measured with a subset of the data in the 

spinal cord. For a 2-compartment model acquisition (SNR~20), the spherical mean for a full 

dataset and subset is shown, and relative percent difference calculated.  

 

 

Discussion 

 In this work we have shown that the spherical mean can be measured accurately with a 

subset of gradient directions, typically much less than what is typically performed in most 

research studies. Acquiring fewer gradient directions at a given b-value may result in significant 

scan time reductions or enable acquisition of more b-values that will better condition spherical 

mean model fitting. Reducing scan time can be particularly beneficial in clinical imaging 

sessions, or for diffusion MRI that requires cardiac or respiratory gating (e.g., the spinal cord) 

where acquiring 50-100 images at multiple b-values is infeasible.    

 Our lookup table provides a convenient way to determine the minimal number of 

sampling directions that may be required for a particular study. By selecting the assumed tissue 

compartments (or the model that will be used), and the expected SNR of the scan, one can 

quickly determine the minimal sampling directions given a wide range of possible tissue features 

present in the voxel. Because this is the ‘minimal’ number of directions, some oversampling may 

be necessary, and we suggest selecting the most conservative estimate of directions from the 

table, unless analysis is restricted to a specific tissue type. Further, because many scanner 

direction sets are not perfectly uniformly distributed, it is better to use a slightly larger sampling 

to guarantee reasonable coverage. Even then, significant scan time savings are possible, reducing 

acquisitions by 2x-10x from currently used protocols depending on b-value. In agreement with 

studies on deriving the spherical mean signal (Afzali et al., 2021), we suggest fitting using 

spherical harmonic based methods, or similar, so that results are not biased by acquired diffusion 

directions. Finally, if the biology of the tissue in combination with acquisition conditions is 

expected to decrease the signal, for example larger radii, larger volume fractions of high 



diffusivity compartments, and higher b-values, the number of sampling directions should be 

increased accordingly. We have provided direction sets (Jones et al., 1999), ranging from 6-150 

directions, as supplementary resources.  

Our results directly reproduce those from Li et al (Li et al., 2018), and expand upon these 

for different SNR, modeling, spherical mean fitting, and hardware conditions. Moreover, these 

results nicely parallel other recent works on subsampling for spherical mean. Schiavi et al. 

(Schiavi et al., 2022) recently showed that the SANDI protocol is feasible on clinical scanners, 

significantly undersampling those compared to the original SANDI proposal and the use of the 

MGH Connectom data. Notably, the chosen directions agree with the current suggestions, 

ranging from as few as 6 to as many as 40 diffusion directions as b-value increases from 0.5 to 6 

ms/um2. The original implementation and description of the 2-compartment spherical mean 

model also investigated subsets of the data (Kaden et al., 2016a), finding that 50 directions 

resulted in minimal error and no bias compared to 500+ directions, and we extend this by 

showing that fewer than 50 are often adequate. Finally, in the spinal cord, work by By et al. (By 

et al., 2018), showed feasibility of reducing scan time by a factor of 2 (from 64 to 32 directions) 

with minimal bias in spherical mean measures, saving ~9 minutes of scanning. Studies on 

efficient and optimal sampling are necessary to enable widespread use and validation of these 

models, much like the early studies on optimizing diffusion tensor imaging strategies (Farrell et 

al., 2007; Jones et al., 1999; Landman et al., 2007). 

 When designing an acquisition scheme, it is important to consider the precision needed. 

Here, we chose RSD as a summary statistic of variation over expected value, and empirically 

chose 5% as a baseline (Li et al., 2018). Investigating the effect of variance, and variance at each 

b-value, is beyond the scope of the current work, and will be specific to the model and 

assumptions. Different precision may be necessary for different b-values due to higher sensitivity 

of the signal for different compartments, and RSD<5% may not be enough. We additionally 

include tables for RSD<2.5% as supplementary material, but note that this is also empirically 

chosen. Other measures of precision could be chosen, for example normalized to the b=0 signal 

itself,or normalized by expected change in attenuation at a given b-value. Finally, we chose to 

present primary results where RSD is calculated based on the noisy measured signal rather than 

the Rician bias corrected signal. Because Rician bias correction decreases the signal, this will 

increase RSD and subsequent minimal number of directions, however the variance (with the 

Rician bias correction used here) remains the same.  

 

Conclusion 

In this study, we characterized the variation of the spherical mean diffusion MRI signal 

as a function of the number of gradient directions. The minimal number of sampling directions 

for robust measurement was determined, and depends on b-value, underlying tissue 

microstructure, and SNR. We present an intuitive way to determine the recommended minimal 

number of directions to ensure robust measurements when designing a spherical mean based 

diffusion protocol.   

 

Acknowledgements 

This work was supported by the National Institutes of Health under award numbers 

K01EB032898, R01EB017230, R01NS117816, and in part byViSE/VICTR VR3029 and the 

National Center for Research Resources,Grant UL1 RR024975-01. M.P. is supported by the 

UKRI Future Leaders Fellowship MR/T020296/2. 



 

 

Afzali, M., Knutsson, H., Ozarslan, E., Jones, D.K., 2021. Computing the orientational-average of 

diffusion-weighted MRI signals: a comparison of different techniques. Sci Rep 11, 14345. 

Assaf, Y., Basser, P.J., 2005. Composite hindered and restricted model of diffusion (CHARMED) 

MR imaging of the human brain. Neuroimage 27, 48-58. 

Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., Basser, P.J., 2008. AxCaliber: a method for measuring 

axon diameter distribution from diffusion MRI. Magn Reson Med 59, 1347-1354. 

By, S., Xu, J., Box, B.A., Bagnato, F.R., Smith, S.A., 2018. Multi-compartmental diffusion 

characterization of the human cervical spinal cord in vivo using the spherical mean technique. 

NMR Biomed 31, e3894. 

Devan, S.P., Jiang, X., Bagnato, F., Xu, J., 2020. Optimization and numerical evaluation of multi-

compartment diffusion MRI using the spherical mean technique for practical multiple sclerosis 

imaging. Magn Reson Imaging 74, 56-63. 

Dong, J.W., Jelescu, I.O., Ades-Aron, B., Novikov, D.S., Friedman, K., Babb, J.S., Osorio, R.S., 

Galvin, J.E., Shepherd, T.M., Fieremans, E., 2020. Diffusion MRI biomarkers of white matter 

microstructure vary nonmonotonically with increasing cerebral amyloid deposition. Neurobiol 

Aging 89, 118-128. 

Farrell, J.A., Landman, B.A., Jones, C.K., Smith, S.A., Prince, J.L., van Zijl, P.C., Mori, S., 2007. 

Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-

derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 

T. J Magn Reson Imaging 26, 756-767. 

Froeling, M., Tax, C.M.W., Vos, S.B., Luijten, P.R., Leemans, A., 2017. "MASSIVE" brain dataset: 

Multiple acquisitions for standardization of structural imaging validation and evaluation. Magn 

Reson Med 77, 1797-1809. 

Hansen, M.B., Jespersen, S.N., Leigland, L.A., Kroenke, C.D., 2013. Using diffusion anisotropy to 

characterize neuronal morphology in gray matter: the orientation distribution of axons and 

dendrites in the NeuroMorpho.org database. Front Integr Neurosci 7, 31. 

Jelescu, I.O., Veraart, J., Adisetiyo, V., Milla, S.S., Novikov, D.S., Fieremans, E., 2015. One 

diffusion acquisition and different white matter models: how does microstructure change in 

human early development based on WMTI and NODDI? Neuroimage 107, 242-256. 

Jelescu, I.O., Veraart, J., Fieremans, E., Novikov, D.S., 2016. Degeneracy in model parameter 

estimation for multi-compartmental diffusion in neuronal tissue. NMR Biomed 29, 33-47. 

Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M., 2012. Fsl. 

Neuroimage 62, 782-790. 

Jespersen, S.N., Kroenke, C.D., Østergaard, L., Ackerman, J.J., Yablonskiy, D.A., 2007. Modeling 

dendrite density from magnetic resonance diffusion measurements. Neuroimage 34, 1473-

1486. 

Jones, D.K., Alexander, D.C., Bowtell, R., Cercignani, M., Dell'Acqua, F., McHugh, D.J., Miller, 

K.L., Palombo, M., Parker, G.J.M., Rudrapatna, U.S., Tax, C.M.W., 2018. Microstructural imaging 

of the human brain with a 'super-scanner': 10 key advantages of ultra-strong gradients for 

diffusion MRI. Neuroimage 182, 8-38. 

Jones, D.K., Horsfield, M.A., Simmons, A., 1999. Optimal strategies for measuring diffusion in 

anisotropic systems by magnetic resonance imaging. Magn Reson Med 42, 515-525. 



Kaden, E., Kelm, N.D., Carson, R.P., Does, M.D., Alexander, D.C., 2016a. Multi-compartment 

microscopic diffusion imaging. Neuroimage 139, 346-359. 

Kaden, E., Kruggel, F., Alexander, D.C., 2016b. Quantitative mapping of the per-axon diffusion 

coefficients in brain white matter. Magn Reson Med 75, 1752-1763. 

Landman, B.A., Farrell, J.A., Jones, C.K., Smith, S.A., Prince, J.L., Mori, S., 2007. Effects of 

diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean 

diffusivity, and principal eigenvector measurements at 1.5T. Neuroimage 36, 1123-1138. 

Li, H., Chow, H.M., Chugani, D.C., Chugani, H.T., 2018. Minimal number of gradient directions 

for robust measurement of spherical mean diffusion weighted signal. Magn Reson Imaging 54, 

148-152. 

McKinnon, E.T., Helpern, J.A., Jensen, J.H., 2018. Modeling white matter microstructure with 

fiber ball imaging. Neuroimage 176, 11-21. 

McKinnon, E.T., Jensen, J.H., Glenn, G.R., Helpern, J.A., 2017. Dependence on b-value of the 

direction-averaged diffusion-weighted imaging signal in brain. Magn Reson Imaging 36, 121-

127. 

Novikov, D.S., Veraart, J., Jelescu, I.O., Fieremans, E., 2018. Rotationally-invariant mapping of 

scalar and orientational metrics of neuronal microstructure with diffusion MRI. Neuroimage 

174, 518-538. 

Palombo, M., Ianus, A., Guerreri, M., Nunes, D., Alexander, D.C., Shemesh, N., Zhang, H., 2020. 

SANDI: A compartment-based model for non-invasive apparent soma and neurite imaging by 

diffusion MRI. Neuroimage 215, 116835. 

Raffelt, D., Tournier, J.D., Rose, S., Ridgway, G.R., Henderson, R., Crozier, S., Salvado, O., 

Connelly, A., 2012. Apparent Fibre Density: a novel measure for the analysis of diffusion-

weighted magnetic resonance images. Neuroimage 59, 3976-3994. 

Schiavi, S., Palombo, M., Zacà, D., Tazza, F., Lapucci, C., Castellan, L., Costagli, M., Inglese, M., 

2022. Dissecting brain grey and white matter microstructure: a novel clinical diffusion MRI 

protocol. bioRxiv, 2022.2004.2008.487640. 

Sotiropoulos, S.N., Behrens, T.E., Jbabdi, S., 2012. Ball and rackets: Inferring fiber fanning from 

diffusion-weighted MRI. Neuroimage 60, 1412-1425. 

Szafer, A., Zhong, J., Gore, J.C., 1995. Theoretical model for water diffusion in tissues. Magn 

Reson Med 33, 697-712. 

Tournier, J.D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., Christiaens, D., 

Jeurissen, B., Yeh, C.H., Connelly, A., 2019. MRtrix3: A fast, flexible and open software 

framework for medical image processing and visualisation. Neuroimage 202, 116137. 

Veraart, J., Fieremans, E., Rudrapatna, U., Jones, D., Novikov, D., 2018a. Breaking the power law 

scaling of the dMRI signal on the Connectom scanner reveals its sensitivity to axon diameters. 

International Society of Magnetic Resonance in Medicine, Paris, France. 

Veraart, J., Novikov, D.S., Fieremans, E., 2018b. TE dependent Diffusion Imaging (TEdDI) 

distinguishes between compartmental T2 relaxation times. Neuroimage 182, 360-369. 

Veraart, J., Nunes, D., Rudrapatna, U., Fieremans, E., Jones, D.K., Novikov, D.S., Shemesh, N., 

2020. Nonivasive quantification of axon radii using diffusion MRI. Elife 9. 

Veraart, J., Raven, E.P., Edwards, L.J., Weiskopf, N., Jones, D.K., 2021. The variability of MR axon 

radii estimates in the human white matter. Hum Brain Mapp 42, 2201-2213. 



Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C., 2012. NODDI: practical in 

vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61, 

1000-1016. 

 


