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A B S T R A C T   

Earthquakes often affect buildings that did comply with regulations in force at the time of design, prompting the 
need for new approaches addressing the complex structural dynamics of seismic design. In this paper, we 
demonstrate how strucural resilience can be appraised to inform optimization pathways by utilising artificial 
neural networks, augmented with evolutionary computation. This involves efficient multi-layer computational 
models, to learn complex multi-aspects structural dynamics, through several levels of abstraction. By means of 
single and multi-objective optimization, an existing structural system is modelled with an accuracy in excess of 
98% to simulate its structural loading behaviour, while a performance-based approach is used to determine the 
optimum parameter settings to maximize its earthquake resilience. We have used the 2008 Wenchuan Earth-
quake as a case study. Our results demonstrate that an estimated structural design cost increase of 20% can lead 
to a damage reduction of up to 75%, which drastically reduces the risk of fatality.   

1. Introduction 

Earthquakes constitute a major threat for many countries in the 
world, putting at stake our buildings and infrastructures, and conse-
quently human lives. Building regulations are constantly informed by 
lessons learnt from earthquake events and technological developments 
in engineering, often enforcing stringent regulatory compliance as a 
standard requirement for design and post-disaster structural retrofitting. 
However, despite an abundant research in resilience [1] and a stringent 
seismic regulatory landscape, earthquakes are still causing significant 
human and economic losses in different regions of the world, as illus-
trated in Fig. 1. 

Fig. 1 provides a comparison in terms of Richter magnitude, death 
toll and financial losses across the most impacting seismic events since 
the beginning of the 20th century. However, a distinction is made be-
tween seismic events before and after 1980, as the implementation of 
performance-based regulatory frameworks was initiated at the begin-
ning of that decade [12]. Fig. 1 evidences how losses endured in the 
aftermath of major seismic events are still significant and comparable to 
events that took place prior to the introduction of performance-based 
structural design (PBD). A meaningful observation is how some coun-
tries featured in the “post-1980” seismic events may not have 

implemented PBD and the proposed distinction is not necessarily neat, 
given that not all countries may update their regulatory framework in a 
similar timeframe. 

Nonetheless, the key message evidenced by Fig. 1 is the insufficiency 
of the the past and current regulatory provision to ensure – especially for 
the existing building stock – sufficient safeguard to human lives in face 
of seismic hazards. On a general basis, the regulatory framework of a 
nation would undergo improvements and resvisions if proven ineffective 
after a significant seismic event. However, this is not the case for all 
countries. 

Another finding that can be gathered from Fig. 1 is that the impact of 
the analysed earthquakes over time did not reduce with the expected 
improvements of building regulatory frameworks. Nowadays, secondary 
to the human safeguard, it is of paramount importance to also account 
for the environmental impact of such seismic disasters. It is crucial to 
develop a strategy for building design which allows to tailor the struc-
ture to the hazard features and existing (or intended, for those buildings 
undergoing seismic restoration) geometry in order to optimize the usage 
of construction material and consequently reducing the waste as a result 
of the minimized damage. 

The shift from prescriptive to performance-based regulations [13] 
involved some substantial changes in structural design. Whilst 
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prescriptive design represents a determinist approach with defined 
provisions, performance-based design (PBD) entails the achiement of a 
local or global level of performance which is independent from the 
features or solicitations affecting a single structural member [14]. A 
noteworthy advantage of performance-based approaches over pre-
scriptive regulations lies in the ease of integration with Machine 
Learning (ML), including optimization techniques [13,15]. As exten-
sively highlighted in the literature [15,16], in a performance-based 
approach the design is conditional on the attainment of a specific 
target and therefore trial-and-error processes are generally adopted. 
Through a series of consecutive approximations, design variables and 
parameters are refined at each iterations, eventually leading to the so-
lution which best complies with both regulatory requirements and 
project-related constraints (e.g., time, costs, resources). The integration 
of machine learning techniques finds its natural application in this 
domain since certain tasks can be easily automated [15], especially 
given the availability of engineering analysis tools that publish their 
own API (Application Programming Interface), thus promoting inter-
operability. Nonethelss, current performance-based regulatory frame-
works still retain some prescriptive features, that don’t fully exploit 
design optioneering [17,18]. This is a gap where machine learning can 
provide informed and actionable solutions. 

The paper aims to demonstrate that a performance-based approach 
to earthquake structural design supported by machine learning, which 
involves optimizing the governing variables of a structure, yields an 
enhanced earthquake resilience than current prescriptive approaches to 
earthquake design. The research focusses on reinforced-concrete (RC) 
framed buildings and uses an evidence-based methodology to under-
stand the causes that lead to a given state-of-damage through an 
analytical and neural network-based approach. The research is based on 
the 2008 Wenchuan Earthquake in China, with a registered magnitude 
of Mw 7.9 [19]. 

The understanding of the causes of damage can help (a) explore if 
these would have been avoided/attenuated if the structural dimen-
sioning was optimized while complying with existing earthquake regu-
lations, and (b) inform future practice, including design of new buildings 
or structural retrofitting of existing ones. 

The main contributions of this research is a systems engineering 
methodology that (a) leverages high precision point cloud data along-
side existing documentation (including drawings), (b) promotes inte-
gration and interoperability with structural software, and thus enables 
multi-aspects engineering analysis, (c) exploits neural networks and 
genetic algorithm techniques for building features’ investigation, 
structural performance prediction and optimization, (d) harnesses on 
real-time data to promote a more reliable and tailored performance 
monitoring; and (e) proposes a scalable framework independent from 

regulatory frameworks specifications or structural analysis algorithms. 
The proposed research is such to allow integration of different structural 
analysis methods or alternative regulatory frameworks with minimum 
modifications within the core algorithm. 

The paper is structured into eight sections. Following this introduc-
tion, Section 2 summarizes related literature, while Section 3 outlines 
the overall methodology adopted for the proposed research. Section 4 
provides a concise overview of the selected case-study building, while 
the detailed workflow and algorithms used in the research are detailed 
in Section 5. Section 6 elaborates on the results obtained from the per-
formed experiments and relevant obversations are presented in Section 
7. Finally, Chapter 8 provides concluding remarks, including limitations 
and future research. 

2. Related work 

This section summarizes the related work that underpins the 
research with a focus on (a) the selection of Engineering Demand Pa-
rameters (EDPs), (b) machine learning techniques and (c) dimension-
ality reduction strategies applied to structural engineering. 

2.1. Selection of engineering Demand parameters 

Performance-based analysis is adopted through the use of Engi-
neering Demand Parameters [20]. These are generally identified as 
values resulting from structural analysis which are (i) representative of 
the building performance and (ii) used for building regulation compli-
ance [20]. It is therefore through the benchmark of the EDP that 
structural performance is evaluated. However, in order to identify which 
EDP to consider, a thorough literature review has been conducted. 

The literature broadly groups them into two categories, namely local 
or global EDPs according to the structural element to which they refer. 
Examples of local EDPs can be chord rotations or node displacements, 
while the inter-storey drift ratio (IDR) is classified as global as involving 
the structure in its entirety. Specifically, the IDR is defined as the relative 
displacement between two consecutive floors divided by the storey 
height. Research has further shown how the seismic performance of a 
building can be represented and benchmarked by adopting 
displacement-based indicators [15]. 

Grounding on the above considerations, displacement-based EDP are 
deemed as the most authoritative and reliable method to assess the 
seismic performance of a building. However, in order to identify which 
of the EDP to consider for the current research work, an extensive 
literature review has been conducted to understand their effectiveness 
and use across different research. In this context, a series of authoritative 
design codes [21]–[24] have been analysed, as well as two relevant 

Fig. 1. Comparison between pre-1980 and post-1980 seismic events in terms of (a) Richter magnitude MW, (b) human, and (c) economic losses. The pre-1980 events 
included in the review are enumerated as follows: 1-Valdivia, 1960 (Chile)[data source: USGS]; 2- Prince William Sound, 1964 (Alaska) [data source: USGS]; 3-Kam-
chatka, 1952 (Russia) [data source: USGS]; 4- Ecuador-Colombia, 1906 (Ecuador) [data source: USGS]; 5- Rat Islands, 1964 (Alaska) [data source: USGS]; 6-Tang-
shan, 1976 (China) [NGDC] [2]. The post-1980 seismic events considered consist in the following: 1- Rudbar, 1990 (Iran); 2-Izmit (Kocaeli), 1999 (Turkey) [3]; 3- 
Kashmir, 2005 (Pakistan) [4]; 4-Sumatra, 2004 (Indonesia) [5,6]; 5-Sichuan (Wenchuan), 2008 (China)[7,8]; 6-Port-Au-Prince, 2010 (Haiti) [9,10]; 7-Tohoku, 2011 
(Japan) [11] [additional data source: USGS]. 
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research approaches, namely by Ghobarah [25] and Calvi [26] discussed 
below. 

In order to benchmark the damage on buildings, Limit States are 
defined and associated to specific drift values [15]. Table 1 summarizes 
different limit values regarding the IDR in accordance with a series of 
authoritative design codes but also research by Ghobarah [25] and Calvi 
[26]. Both approaches include IDR as the primary indicator for the 
plasticity of the structure. Ghobarah proposes different limit states in 
relation to a series of ductility levels of infilled RC frames using the IDR 
as an indicator. The advantage of Ghobarah’s approach lies in providing 
a coefficient that can be adopted for a quick estimation of damage based 
on a formerly performed simulation. Therefore, this approach can be 
useful for instance to provide an overview across a series of buildings, 
but it does not provide a clear quantification or qualification of the 
damage undergone by the structure. 

Calvi devises classes of vulnerability for both RC (i.e., frame) and 
masonry (i.e., load bearing wall) structures developing an approach to 
estimate the damage to a building introducing a series of limit states 
then adopted to discretize seismic spectra combined with probability 
distribution. Calvi further accounts for the variation of the elastic 
seismic spectra due to energy dissipation through the introduction of a 
bespoke corrective factor. 

With respect to regulatory frameworks, Eurocode 8 adopts IDR to 
quantify the damage in the context of Serviceability Limit Status (SLS), 
while the EDP for ultimate conditions (i.e., ULS) consists in chord ro-
tations. With respect to IDR limitations, Eurocode 8 distinguishes be-
tween elements having different levels of ductility, increasing 
accordingly from 0.5 % to 1.5 %. Italian building codes differentiate the 
requested verifications according to the building function and the LS. 
Ministerial Decree 17 January 2018 [24] shows that global rigidity 
verifications are requested for specific building functions and limited to 
serviceability limit states (SLE). It also distinguishes between the level of 
anchoring of the infill and the frame, providing different limit values for 

the IDR. With respect to ULS, the ductile capacity and the overall sta-
bility must be further investigated with more in-depth techniques which 
are outside the scope of this research. 

Finally, in light of the above analysis it is worth highlighting that the 
regulatory framework chosen for this research is the Eurocodes. This is 
due to a series of factors, such as: (i) integration within the framework of 
IDR; (ii) differentiation of IDR ranges according to limit states; and (iii) 
more restrictive limitations compared to other regulatory frameworks. 

2.2. Machine learning techniques applied to structural engineering 

Research evidences that the adoption of Artificial Neural Networks 
(ANN) and Genetic Algorithms (GA) is well established in the domain of 
structural engineering [28] for design optimization and damage fore-
casting both in static and dynamic conditions. 

Artificial neural networks consist of biology-inspired mathematical 
abstractions which rely on the exchange of information across simple 
entities, the neurons [29], which once trained are able to perform high- 
accuracy data forecasting with a dramatic drop in simulation times. 
Genetic algorithms (GA) represent a class of evolutionary computing 
techniques that use metaheuristic and natural selection for complex 
optimisation problems. The advantages of GA over other evolutionary 
computing techniques are manifold. Firstly, the overall simplicity of the 
optimization process [30], which mainly relies on an iterative selection 
of individuals across different generations based on the best fitness 
provided in relation to the minimization objective. Furthermore, GAs 
provide more accurate results when dealing with multi-modal convex 
problems, enabling a smoother search for the global optimum and 
therefore outperforming traditional approaches [30]. 

The numerous applications of intelligent ensembles in the engi-
neering domain [28] stretch from a single element to a whole structure 
[31,32]. Some research employ GA to optimize the shear capacity and 
location of dampers in a structure under seismic actions and adopting 

Table 1 
Inter-storey drifts limits according to different building regulations and literature.  

FEMA 356 [27] DS Immediate 
occupancy 

Life Safety Near collapse  

EDP IDR IDR IDR  
δ 1 % transient 

or negligible 
2 % transient 
1 % permanent 

4 % transient or permanent  

Eurocode 8 [22] DS SLS (serviceability) ULS (ultimate)  
EDP IDR IDR Chord rotations  
δ 0.5 %, 0.75 %, 1 % 0.5 %, 0.75 %, 1 

%  

SEAOC Vision 2000 [23] DS Fully operational Operational Life Safe Near Collapse Collapse  
EDP IDR IDR IDR IDR IDR  
δ <0.2 % transient 

Permanent 
negligible 

<0.5 % transient 
Permanent 
negligible 

<1.5 % 
transient 
<0.5 % 
permanent 

<2.5 % transient or 
permanent 

>2.5 % transient or 
permanent  

DM 2018 (Ministerial Decree) – Technical 
Building Regulations [24] 

DS SLE (serviceability) SLU (ultimate)   

SLO (operational) SLD (damage) SLV (life safeguard) SLC (collapse)  
EDP IDR IDR Ductility, resistance and stability verifications  
δ 2/3 IDRSLD 0.5 %, 0.75 %, 1 %  

Calvi [26] DS LS1 LS2 LS3 LS4 (collapse)  
EDP IDR IDR IDR IDR  
δ 0.1 %≤ δ ≤ 0.3 % 0.3 %< δ ≤ 0.5 % 0.5 %< δ ≤ 1.5 % >1.5 %  

Ghobarah [25] DS Repairable 
damage 

Irreparable damage Severe damage/Life safe Collapse  

EDP IDR IDR IDR IDR  
δ 0.2 ≤ δ ≤ 0.4 % 0.4 %< δ ≤ 0.7 % 0.7 %< δ ≤ 0.8 % >0.8 %  
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inter-storey drift ratio (IDR) as a benchmark for performance [33]. 
Research also evidences the application of machine learning to damage 
prediction in RC frames though the adoption of a multi-layer ANN [32] 
MATLAB and Opensees are combined to perform reliability assessment 
targeting IDR as a performance indicator; however the rigid ANN ar-
chitecture limits the applicability to only one type of building configu-
ration [34]. 

From an industry perspective, the application of machine learning 
tends to be limited in day-to-day engineering practices. Buro Happold 
used Autodesk Robot for topology optimization [35,36]. However, their 
proposed tool doesn’t have the capacity to perform predictions on 
structural performance and is limited to the optimization of the building 
topology. Also, existing commercial solutions such as Galapagos [37] 
and Karamba [38] suffer from significant limitations, including opti-
mization running time [39], as a consequence of the computational 
demand of their underpinning evolutionary algorithms. 

Overall, it is observed how existing approaches have limited appli-
cations in terms of material or analysis strategies, therefore reducing the 
scalability of the methodology. Similarly, there is often few imple-
mentations of existing simulation software for structural analysis or 
when those are considered, a consistent lack of integration between the 
two is observed hence resulting in fragmented applications. 

2.3. Dimensionality reduction strategies 

Dimensionality-reduction strategies represent a key process when 
dealing with relatively large datasets as they allow to identify a smaller 
number of parameters that can account for the variability of the whole 
dataset [40]. These algorithms are generally adopted in combination 
with other techniques, oftentimes for ANN training in order to avert 
overfitting. 

In the domain of structural engineering, Principal Component 
Analysis (PCA) represents the most established dimensionality reduction 
algorithm. It is widely implemented in the domain of vibration analysis 
for building seismic performance [41,42]. Here, frequency–response 
functions are generated and then reduced through PCA to be adopted for 
ANN training in order to perform data prediction. PCA is also employed 
in combination with sensitivity analysis to investigate relevant factors 
for local infills seismic failure [43], as well as when adopting modal 
analysis techniques [44]. 

Linear approaches such as PCA have been proven sometimes to fail to 
capture the real variability of the dataset when the interrelations be-
tween the variables are too complex. To resolve these shortcomings, 
nonlinear approaches can be adopted, including Kernel PCA (KPCA), 
Laplacian Eigenmaps, and Maximum Variance Unfolding. Nonlinear 
analyses are generally more accurate when dealing with real-world 
problems. PCA is widely employed in engineering-related applications 
given the ease of use and the reliability of results. 

Similarly to §2.2, it is worth observing how existing approaches in 
structural engineering tend to perform the structural analysis separately 
from the machine learning tasks, leading to time-consuming and re-
petitive calculations that also increase the likelihood for inaccuracies. 

3. Methodology 

The methodology involves a case-study based approach using the 
2008 Wenchuan Earthquake. The following research questions (RQ) are 
posited: 

RQ1. How structural design parameters can be inferred to accurately 
characterise and model a seismically compromised building? 

RQ2. How dimensionality-reduction can be achieved to identify a 
subset of parameters that account for the complex behaviour of a 
structure under earthquake loading? 

RQ3. Can these sensitive parameters inform the development of 
machine learning techniques to assess and enhance the structural per-
formance of a building? 

The above research questions translates into the following three 
main stages, as illustrated in Fig. 2:  

• Stage 1: Identification of unknown design and as-built parameters.  
• Stage 2: Structural sensitivity analysis for dimensionality reduction.  
• Stage 3: Structural behavior optimization using Neural Networks and 

Genetic Algorithms. 

The data sources used for the research include: 
• Displacement time-series of the Wenchuan seismic event (source: 

IRIS, Wilber 3 database). 
• Acquired 3D point-cloud data of the entire site. 
• Photographic materials and on-site observations gathered during 

two field trips. 
• Satellite imagery (source: Landsat/Copernicus and DigitalGlobe). 
As illustrated in Fig. 2, the preliminary knowledge investigation 

involved data collection, through a 3D laser scanning campaign, and two 
field investigations in Wenchuan (China), which informed the devel-
opment of a digital model of the site and a selected subset of buildings, as 
well as their structural appraisal. Point cloud data has been registered 
and imported in an architectural/BIM modelling tool to deliver an ac-
curate parametric building model. In parallel to these tasks, veloc-
ity–time series (from the IRIS database) and the pseudo-acceleration 
(PSA) spectra in three dimensions (i.e., x,y,z) were collected to simulate 
the seismic action once implemented into the structural simulation tool. 

In order to automate the structural analysis and perform the neces-
sary optimization tasks, the analysis involved reliance on the structural 
simulation tool API, as well as manipulation of the BIM objects and their 
properties [45]. The main computational work in all stages (1 to 3) 
involved the adoption of artificial intelligence (AI) techniques, namely 
genetic algorithms (GA) and Artificial Neural Networks (ANN). 

4. Case study: Building investigation 

This section provides a description of the Beichuan Hotel located in 
Old Beichuan in China (Fig. 3a) and a diagnostic of the failure mecha-
nisms triggered by the seismic hazard. This section is provided in the aim 
to fulfil the ensuing objectives: (i) to benchmark the proposed building 
model with the real case-study structure; (ii) to present the relevant 
building features used to characterize the digital model of the case-study 
building; (iii) to describe the rationale of the analysis mode employed to 
obtain the deformed configuration for the modelled building used for 
the current research work. 

The Hotel is a masonry-infilled RC frame structure composed of two 
main blocks. The Hotel is a masonry-infilled reinforced concrete (RC) 
frame structure composed by two main blocks featured by different el-
evations. The lower block serves as a garage, while the other hosts the 
reception services. The building does not exhibit lateral-force resisting 
technologies such as shear walls. The only lateral-force resisting system 
which appears to have been implemented at design stage is façade 
masonry infills. However, having these only been provided for part of 
the façade height, their impact is mostly detrimental to the overall 
building behaviour leading in fact to reduce the effective length of 
columns and hence increasing their stiffness (and reducing their 
ductility as a result). 

The building features significant geometric irregularities, both in- 
plan and in-height which have contributed to the disrupted configura-
tion evidenced in Fig. 3a. The latter exhibits a classic soft-storey failure 
due to torsional action resulting from the torque generated by the lever 
arm created by the centre of mass and the centre of stiffness which – 
given the irregular geometry – may be significantly apart from each 
other. 

This consideration was then validated by the ensuing simulation 
illustrated in Fig. 3b. This led to a maximum displacement in the junc-
tion between the two blocks, i.e. in the corner column highlighted in 
Fig. 3. Fig. 4 further illustrates the geometry of building in its as-built 
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configuration prior to the deformation due to 2008 seismic event. 
The research focusses on the superstructure of the selected building, 

which based on in-situ surveying doesn’t present any differential- 
settlement failure. This suggests the adoption of a deep foundation 
system. Satellite imagery analysis evidences that the date of construc-
tion was between 2001 and 2010. Consequently, the regulatory frame-
work used at design stage was identified as the Chinese Code for Seismic 
Design GB 50011–2001. A first visual assessment helped identify a 
torsional mechanism initiating a soft-storey phenomenon in the first 

storey. 
Based on the analysed Chinese Building Code it was gathered that for 

the functionality and typology of the structure, the most likely concrete 
class used at design stage would be C30. In terms of the frame members 
features, the columns have been surveyed to be 45x45 cm of section, 
whereas the beams featured a 45x70 cm section. Differently, the roof 
beams dimensions been gathered drawing upon the photographic ma-
terial and point cloud data, inferring therefore a member section of 
45x30 cm. 

Fig. 2. Overall methodology. GA = Genetic Algorithm, ANN = Artificial Neural Network, PCA = Principal Component Analysis, GUI = Graphic User Interface.  

Fig. 3. Beichuan Hotel, following the earthquake (a) and top view of building model with torsional mechanism as per first mode (b).  

Fig. 4. Beichuan Hotel, overlapping of point-could and digital model.  
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The masonry infills are emulated with by-directional struts disposed 
as a St. Andrew’s cross [46]–[48]. This technique entails the charac-
terization of two diagonally disposed struts and it is widely established 
as able to reliably account for the masonry stiffening capabilities [27,49] 
as presented in Fig. 5.The struts’ features are calculated as presented in 
Equations (1) and (2), adopting the approach proposed by Stafford- 
Smith and Carter [50,51]. Equation (1) shows how the relative infill 
to frame stiffness, represented by the product λH, is calculated based on 
Stafford Smith and Carter formulation [50], where Em and Ec respec-
tively represent the Young modules of masonry and concrete for the 
infill and the frame. I stands for the second area moment of the column 
while t and ϑ represent the thickness of the infill and the angle of the 
diagonal to horizontal. The final strut section “a” (where a represents the 
section side dimension) is calculated using the Mainstone [52] approach 
formulated by Equation (2) and as shown in Fig. 5, where D represents 
the diagonal length between two opposite nodes of the masonry infills. 
Equations 1–4 are factored into the optimization algorithm both for 
investigation and resilience enhancement strategies in Stage 3. 

λH =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
Em • t • sin2ϑ
4 • Ec • Icol • h

]
4

√

(1)  

a = 0.175 • D(λH)
− 0.4 (2) 

Considering that Chinese regulations do not provide a methodology 
to estimate the value the masonry characteristic compressive resistance 
fk and given the low incidence of masonry in the building’s facades, it is 
herein chosen to adopt the formulation proposed by Eurocode 6 [53]. 
Therefore, in the absence of site-specific data regarding fk [53,54], the 
Young and shear moduli are calculated respectively according to 
Equations (3) and (4). Equation (3) shows how to attain the value for 
masonry elastic modulus Em according to regulations stated in Eurocode 
6 [53], and fk was inferred based on experimental trials on blocks 
equivalent to the ones identified in the site [54]. 

First, the debris from other buildings located in the same site have 
been analysed to identify equivalent blocks in order to define the ty-
pology (e.g., hollow, semi-hollow) and the dimensions. A comparative 
analysis across five different manufacturers producing infill hollow 
blocks of similar dimensions have been performed. The resulting loading 
for the Beichuan Hotel masonry blocks was calculated via interpolation 
yielding to a value of 11 KN/m3. 

Grounding on these data, a review of existing literature has been 
conducted in order to determine masonry properties based on the 
defined geometry, density and weight [54]. Eventually, given the lack of 
a mathematical formulation to estimate the shear modulus G in Chinese 
Building Codes, its value has been calculated according to Equation (4), 

narrowing down the number of independent variables needed to char-
acterize the masonry properties to one, namely fk. 

Em = 1000 • fk (3)  

G = 0.4 • Em (4) 

As a result, the properties used to characterize the masonry infills 
used for this research are the following:  

• Load: 11 KN/m3;  
• Shear Modulus, G: 680 MPa;  
• Young Modulus, Em: 1700 MPa. 

The present research involved the application of linear elastic (i.e., 
modal) analysis. This is due to the unavailability of a detailed enough set 
of data to characterize the properties necessary to perform a nonlinear 
simulation. Deploying such algorithm with data inferred featuring an 
excessive level of uncertainty would have resulted in inaccurate and 
unreliable findings. 

5. Proposed approach for seismic resilience enhancement 

The proposed methodology as described earlier in the paper involves 
3 stages: (a) investigation of unknown parameters, (b) sensitivity anal-
ysis, and (c) optimum calculation of the unknown parameters. Each of 
these stages is elaborated below. 

Stage 1: Investigation on unknown design parameters. 
Table 3 summarizes the scenarios devised to validate the proposed 

methodology by simultaneously answering the first research question. 
This is attained by performing single (i.e., SO) and multi (i.e., MO) 
optimization where the objective is the minimization of the discrepancy 
between the EDP value derived from the optimization EDPGA and the 
known one EDPREAL, as per Equation (5).Table 4. 

Minimize|EDPGA − EDPREAL| (5) 

Any object within the model is univocally identified by means of a 
label. As a result, when manipulating such objects as part of the research 
work, multiple actions are performed which can result in the alteration 
of such labels. As an example, if a new object (e.g., a column) is created 

Fig. 5. Illustration of the equivalent struts method [48].  

Table 3 
Scenario description.  

Scenario Features Description 

Name S1_SO_PL 
Description The size of main frame elements (i.e., beams and 

columns) is investigated without operating on the 
material features 

Number of variables 4 
Design variables Beams and columns’ height (i.e., BH, CH) and width 

(i.e., BB, CB) 
Constraints Assumption of square columns’ section given field 

investigation (CB = CH). 
BH > 1.2 CB 
30 ≤ BH ≤ 80 cm 
30 ≤ CB ≤ 50 cm 
CB, BH ∈ ℕ 

Variables following to 
constraints application 

2: CB (=CH), BH 

Research question 
applicability 

RQ1, RQ2, RQ3  

GA settings 
Objective Minimize |EDPGA − EDPREAL|

Number of generations (GA) 30 
Population number 80 
Average simulation time 45 s 
Average optimum number of 

generations 
10÷15 

Stopping criterion |EDPGA − EDPREAL| ≤ 0.001 cm  
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and in order to feature it with all necessary properties such as e.g., 
material or section, it needs to be associated to a label. Two methodol-
ogies are considered in this research for the creation of new labels, one 
automated (i.e., automated label, “-AL”) and the other one requiring 
user input (i.e., provided labels “-PL”). 

Considering the example of the aforementioned label pertaining a 
new section for a column, in the case of “-AL” the algorithm would fetch 
the section dimensions from the new element and automatically 
construct the string and the resulting label object. On the contrary, the 
“-PL” scenario would require the algorithm to prompt the user to insert 
the section details as input for the label string and object. 

In terms of optimization strategies instead, another distinction is to 
be highlighted. Whereas single-objective (SO) optimization aggregates 
the displacement (or IDR) in its three spatial directions (i.e., x,y,z) in one 
value consisting in their sum. Conversely, the multi-objective optimi-
zation strategy adopts the displacement (i.e., absolute node displace-
ment or IDR) in each direction as an individual objective. 

With respect to the automated detection of section labels (i.e., -AL), 
case-specific constraints were introduced in the detection algorithm. 
The number of design variables involved in the GA is known based on 
the number of unknown parameters to be investigated, which in this 
specific scenario coincides with all the section-related dimensions of the 
frame. Based on field investigation, the columns’ section is square (CB =
CH), and its side equals the beams’ section base (CB = CH = BB). 
Therefore, the investigated variables consist of 2 different columns’ ty-
pologies (i.e., CB1 and CB2) and 3 beams’ heights (i.e., BH1, BH2, BH3) 
based on the building’s topology and 3D laser scanning data. The array V 
providing the input values for each iteration of the GA is represented in 
Equation (6); however for the case study, it is considered n = 2 and m =
3. 

V = [CB1CB2⋯CBnBH1BH2⋯BHm] (6) 

With each constraint condition representing an inequality, Equation 
7 can be then formulated in a matrix form. To overcome the case- 
specificity of the constraint definition, Equation 7 shows how the 
different coefficients Ri were calculated based on the model values of the 
investigated variables in order to establish a proportional relationship 
across the dimension of the elements. 

CBi
CB1

≤ Rk,
BHj
CB1

≤ Rk i = 2, … n; j = 1…m; k = 1…(i + j-1) (7). 
The final matrix containing the inequalities, hence constraints re-

lationships, is then formulated in Equation (8). This is needed to 
establish a cap for the variation of geometrical features. The values of 
the individual variables range according to their pre-defined lower and 
upper bounds. 
⎡

⎢
⎢
⎣

− R1 1 0 ⋯ 0
− R2 0 1 ⋯ 0

⋮ ⋮ ⋮ ⋯ 0
− Rk 0 0 ⋯ 1

⎤

⎥
⎥
⎦V ≤

⎡

⎢
⎢
⎣

0
0
⋮
0

⎤

⎥
⎥
⎦ (8) 

Table 3 details the scenario in relation to the genetic algorithm 
specifications where the established constraints are evidence-based. It is 
therefore assumed that the post-seismic displacement is measurable by 
means, for instance, of in-place sensors or 3D laser scanning. In this 
specific case, the number of variables has been reduced to two as the 
columns’ section was observed to be square and physically corre-
sponding to the beam width. The GA objective is the minimization of the 
discrepancy between the EDP value derived from the optimization 
EDPGA and the known one EDPREAL. 

Stage 2: Sensitivity analysis and neural network design. 
This section summarizes the dimensionality-reduction process, 

which aids the identification of the key governing variables for struc-
tural performance. This stage answers the second research question and 
it is structured into two related phases: (a) sensitivity analysis and (b) 
ANN engine creation. 

The structural building model in Robot is iteratively invoked via 
COM-based APIs in MATLAB [45] for a total of 1000 simulations, and 
relevant outputs are collected in a matrix. The matrix is then elaborated 
in MATLAB using Principal Component Analysis (PCA) in order to 
perform the dimensionality reduction process. The relevant outputs are 
the variance and coefficient matrixes [55]. However, the number of PCs 
to be considered is determined by the total variance represented by the 
cumulative sum of each PC’s variance. The number of PCs representing 
at least 99 % of the entire data set consists in the final PC number that is 
going to be adopted as input for the neural network training. 

It is worth noting that we have used 1000 samples of simulations to 
benchmark the ANN and the node displacement data is based on the 
results of the individual ANN. The accuracy of the ANN is presented in 
Table 6. 

The output of the neural network is adopted in one case as IDR and in 
the other in terms of node displacement. Both have been used as ob-
jectives in the first stage of the research (i.e., investigation of unknown 
parameters) while in this context, they consist in the target for the ANN 
training. In order to investigate the benefit of adopting multi-layer 
neural networks, a set of simulations was conducted adopting a trial- 
and-error approach. The selected artificial net consists in a back-
propagation feedforward neural network featured by 4 hidden layers 

Table 4 
Scenario 1, cases. SO: single-objective optimization, MO: multi-objective opti-
mization, PL: provided labels, AL: automated labels’ detection, IDR: inter-storey- 
drift ratio; CB,CH = columns’ section sizes; BB,BH = beams’ section width and 
height.  

Scenario ID Number of 
investigated 
unknown 
parameters 

Investigated 
unknown 
parameters 

User 
interaction 

Benchmark 
(EDP) 

S1_SO_PL 2 CB, BH X Node 
displacement 

S1_MO_1P_PL 2 CB, BH X Node 
displacement 

S1_MO_1P_AL variable ALL FRAME 
SECTIONS  

Node 
displacement 

S1_MO_IDR_PL 2 CB, BH X IDR  

Table 5 
Damage scale addressing earthquake disruption level to RC structures.  

Damage 
Index 

FEMA 356 SEAOC Vision 
2000 

Eurocode 8 Calvi 
(1999) 

D0 – –  – 
D1 Immediate 

occupancy 
IDR ≤ 1 % or 
negligible, 
transient or 
permanent 

IDR < 0.2 % 
transient 
Permanent 
negligible 

IDR ≤ 0.5 
% 

Damage ≤
LS1 
IDR ≤ 0.1 
% 

D2 IDR < 0.5 % 
transient 
Permanent 
negligible 

LS1 <
Damage ≤
LS2 
0.1 % <
IDR ≤ 0.3 
% 

D3 Life safety 
IDR ≤ 2 % 
transient 
IDR ≤ 1 % 
permanent 

IDR < 1.5 % 
transient 
IDR < 0.5 % 
permanent 

Chord 
rotations 

LS2 <
Damage ≤
LS3 
0.3 % <
IDR ≤ 0.5 
% 

D4 Near collapse 
IDR < 4 % 
transient or 
permanent 

IDR < 2.5 % 
transient or 
permanent 

LS3 <
Damage ≤
LS4 
0.5 % <
IDR ≤ 1.5 
% 

D5 IDR > 2.5 % 
transient or 
permanent 

Damage >
LS4 
IDR > 1.5 
%  
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and trained using a Bayesian regression algorithm, given its more ac-
curate performance with a potentially noisy data set [31]. The ‘’logsig’’ 
activation function is adopted for information exchange between the 
neurons, given its more reliable performance in the case of multilayer 
ANNs [56]. 

As part of this stage, it is also noteworthy illustrating the rationale 
behind the ANNs devised for the proposed methodology. As presented in 
Table 6, 11 different neural network structures were considered in this 
stage and calibrated based on the variables (i.e., EDPs) proposed in stage 
1. 

The combination of ANN-GA is then adopted to perform the pro-
posed experiments. The devised neural networks were trained using the 
IDR and the node displacement (ND) as targets and calibrated on the 
variables proposed in stage 1. The number of hidden layers and neurons 
were adjusted to maximise the performance and reduce the likelihood of 
overfitting. This was attained by reducing the number of neurons for 
each hidden layer when increasing their number. 

A comparison between the performance obtained during test, 
training and the overall one is presented in Table 6. Table 6 also outlines 
the accuracy of the proposed neural networks in terms of precision 
during the calibration stage adopting the variables investigated in stage 
1. Globally, the IDR outperforms the ND in terms of overall performance 
and accuracy although in some instances, the ND exhibits a lower 
discrepancy between training and test phases. Despite that, the highest 
accuracy is attained by experiment 11 adopting IDR as the target, where 
an accuracy of 98 % is achieved, and an approximate discrepancy be-
tween training and test stages consists in about 3 %. 

The results also evidence how the ND performs better for single or 
double-layer neural networks, whereas the IDR exhibits a consistently 
stable performance and an increasing accuracy when introducing neural 

networks techniques. However, it is observed how a single layer ANN for 
the IDR provides better performance than a 4-layer ANN even though 
the results attained by the latter are 2 % more accurate. Fig. 6 shows to 
this regard the plots for the ANN trained with the IDR target devised for 
experiment 11. It is observed how a good fit is achieved as the dataset 
appears well distributed along the 45◦ degrees line. Grounding on these 
observations, the neural network devised for experiment 11 is then 
adopted. 

Stage 3: Optimum calculation of the unknown parameters. 
This section describes the methodology adopted to replace the 

structural simulation engine with a mulit-layer intelligent surrogate. 
The process starts from the identification of design variables and their 
initialization. Next, the GA iteratively optimizes the unknown parame-
ters thanks to the implemented neural network which replaces the 
structural simulation tool. Analogously to Stage 1, the benchmark pro-
cess for the GA entails the minimization of the discrepancy between the 
target IDR and the one attained by the ANN model. A dedicated neural 
network, the Reinforcement ANN, is then trained in order to provide 
reinforcement percentages data based on frame sections and infill fea-
tures. The optimum design variables resulting from the GA-ANN utili-
zation correspond to the input array for the reinforcement ANN. Both 
the Design ANN and the Reinforcement one are trained as part of Stage 2 
and the resulting multi-layer ANNs are adopted across this stage to 
identify the optimum design variables (e.g., frame-related features, 
longitudinal and shear reinforcement percentages). 

The integration of the reinforcement ANN benefits both post-disaster 
structural assessment and investigation phases, but it can also be 
adopted as a predictive performance-based tool for a specific event by 
adjusting the performance indicator (i.e., IDR). The proposed strategy 
does not require user input, apart from the Target IDR needed to 

Table 6 
Overview of ANNs adopted to perform the trial-and-error process to identify the optimum structure of the final neural network.  

ID Layers Neurons, Layers {: } R2 Training [%] R2 Test [%] R2 overall [%] Results accuracy [%] 

IDR-ANN ND-ANN IDR-ANN ND-ANN IDR-ANN ND-ANN IDR-ANN ND-ANN 

1 1 20  99.44  97.08  94.62  90.42  98.72  96.04 96 94 
2 2 10  98.99  97.65  93.36  89.98  98.13  96.31 91 96 
3 2 2  97.65  97.48  95.44  97.36  97.31  97.47 93 85 
4 2 8  98.63  94.51  95.18  94.6  98.1  94.52 88 65 
5 3 3  97.67  94.9  93.62  94.56  96.99  94.85 83 91 
6 3 8  99.06  97.65  90.91  91.03  97.76  96.47 93 92 
7 3 10  99.52  99.54  91.23  77.09  98.16  94.34 94 93 
8 4 8  99.42  99.5  89.77  84.69  97.8  96.91 92 97 
9 4 6  98.8  99.04  93.46  92.5  97.82  97.95 95 95 
10 4 20{1}, 1 {2, 4}  98.93  99.04  90.96  89.32  97.65  97.31 96 85 
11 4 5{1,2}, 2 {3,4}  98.31  96.23  95.07  95.76  97.82  96.16 98 65 
Mean accuracy 92.49 86.90  

Fig. 6. Training (a), Test (b) and overall (c) performance of the Design neural network devised for the 11th experiment.  
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establish building regulatory compliance. As previously outlined in 
Section 2, the regulatory framework chosen to validate this research 
work is the Eurocodes and specifically for shear reinforcement design a 
capacity design approach has been adopted. 

The process is iterated until the optimum values are achieved in 
compliance with existing regulations. In this case, it is considered the 
maximum 4 % of reinforcement areas prescribed by Eurocode 2 [57]. 
Different benchmarks for the IDR were adopted in accordance with the 
reviewed authoritative building regulations and the correlation between 
building damage, and IDR is presented in Table 5. 

In order to fully characterize the frame performance, reinforcement 
data were collected as follows: 

• Identification of the storey with the highest IDR; 
• Within the storey, selection of the most stressed beam Bn and 

column Cn based on the maximum value between shear and moment 
achieved for a specific load combination Lc, as in Equations (9) and (10). 
With respect to beams, the maximum moment and shear is picked be-
tween the middle span and supports given the inversion of the diagram 
in those positions; 

Cn= C(argmax(S(LC),My(LC)) (9)  

Bn= B(argmax(S(LC),My(LC)) (10) 

• The reinforcement is then calculated in 5 points for the previously 
selected elements and specifically to the most demanding load combi-
nation along the beam/column; 

• The maximum value for both shear and moment reinforcement is 
then selected out of the minimum required values, as outlined in Eqs. 
(11) and (12). Longitudinal reinforcement is represented in percentage 
while stirrups are calculated in mm2/m of beam’s length. 

Acol,R = max(min
(
As,R(Cn)

))
(11)  

Abeam,R = max(min
(
As,R(Bn)

))
(12) 

A consideration worth mentioning is related to the reinforcement 
calculation pertaining to each face of the section. On one side – based on 
the performed site investigations – the original design does not appear to 
be reflected in the frame design (e.g., section sizing and reinforcement 
provision) the geometric irregularities as well as the impact on such 
aspect of the seismic spectrum. On the contrary, the proposed algorithm 

yields to a reinforcement provision which allows to provide the opti-
mum performance (i.e., IDR) also taking into account potential geo-
metric irregularities of the structure. 

In order to factor the complexity of a buildings’ structural system, 
three different datasets were generated as presented in Fig. 7 by grad-
ually expanding the set of variables from the geometry to the loads, but 
also considering infills-related parameters. When the variables are not 
changed, their initial value in the model is preserved and considered for 
calculation. The masonry infill load Wi on the frame at each new iter-
ation results from the product between the factor R and the load from 
the previous iteration, as shown in Equation (13). This stems from the 
assumption of constant masonry density, which is an approximation 
adopted for this research. The multiplying factor R is instead defined as 
the ratio between the infill thicknesses of two subsequent iterations, as 
in Equation (13). 

R =
tti− 1

tt
,Wi = R •Wi− 1 (13)  

6. Results 

This section presents the results following the application of the 
proposed methodology. The results reported in this section will address 
the following objectives: 

• Investigation of the specific building features through the inte-
gration of commercial structural behaviour simulation tools and a pro-
posed machine learning module. 

• Calculation of optimum values for a specific set of variables which 
promote a more risk-based seismic design of RC structures. 

• Damage forecasting and assessment at the building level and 
consequent cost implications. 

6.1. Investigated geometrical frame features 

Stage 1 entails the investigation of the variables hypothesised as 
unknown adopting both node displacement and IDR as objective for the 
GA. These results are plotted in Fig. 8. Overall, the best-fit results from 
the scenarios where a specific set of labels are investigated (i.e., -PL), 
rather than where the whole set of building section typologies is 
involved (i.e., S1_MO_1P_AL). This is perhaps due to the highest vari-
ables number entailed in the latter scenario and consequently resulting 

Fig. 7. Variables and approaches involved in the generation of each data set produced throughout stage 3.  
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in lower accuracy. Node displacement appears to be a more represen-
tative EDP compared to IDR, however, it is worth noting that the latter is 
mostly accepted by in-force building regulations. 

6.2. Optimised values for structural building features 

This section presents the validation and deployment of the meth-
odology proposed for Stage 3, which represents an evolution of Stage 1, 
and entails the integration of the Design ANN into the GA to replace the 
structural simulation tool. 

6.2.1. As-built values vs neural network results 
This section presents the validation of the methodology proposed for 

Stage 3, which represents an evolution of Stage 1, and entails the inte-
gration of the Design ANN into the genetic algorithm to replace the 
structural simulation tool. As anticipated in previous sections, two 
different EDPs were initially considered, however, the IDR was selected 
as the most appropriate both because of the results achieved and its 
adoption in various building regulations. Removing the equality 
constraint for section geometry, the number of investigated variables 
grows up to 6. 

Fig. 6 represents a comparison across the values for the six consid-
ered building features as attained adopting node displacement and IDR 
as EDPs. Fig. 9 shows that despite the increase of variable number, the 
neural network still provides a considerably reliable level of accuracy. 

This drops though in relation to the masonry characteristic 
compressive resistance (i.e. fk) and the infills’ thickness (i.e., tt). 
Coherently with the real failure mechanism of the building and its ir-
regularities in elevation, the algorithm selects the first storey as the one 
featured with the highest IDR therefore confirming the consistency be-
tween the results attained and the as-built situation. Grounding on the 
above, the ANN adopting the IDR as a benchmark is selected to calculate 
the optimum values for the analysed building features. 

6.2.2. Calculation of optimum frame and optimum reinforcement 
This section presents the results of the combination of the Design 

ANN in the context of the GA and the subsequent reinforcement calcu-
lation using the pertinent neural network engine (i.e., Reinforcement 

ANN). Given the impact of frame elements’ inertia on the seismic per-
formance, the discrepancy between horizontal (i.e., beams) and vertical 
(i.e., columns) dimension of structural elements is factored in the opti-
mization process. These results are plotted in Fig. 10 for the three 
different datasets displaying an evident correlation between the level of 
damage (i.e., IDR) and the section inertia discrepancy. While Fig. 8a and 
8b exhibit a consistent trend, Fig. 10c shows an anomaly in relation to 
the unconstrained dataset in correspondence to the 2 % IDR, which can 
be explained by analysing Fig. 8. 

Analysing the inertia of the structural elements separately in Fig. 8 it 
can be observed that (i) the discrepancy across the dataset its maximum 
for the 2 % IDR as in Fig. 10c and (ii) beams appear to be mainly 
accountable for the dynamic inertia discrepancy in seismic conditions. 
In detail, regarding frame elements, a lower level of damage (e.g., IDR 
equal to 0.5 %, hence damage level 1/2) could have been achieved 
enhancing the columns’ shear capacity in terms of inertia, as it can be 
seen in Figs. 10 and 11. 

Fig. 12 shows the stirrups’ area percentage for the most stressed 
structural members for the storey registering the highest IDR as per al-
gorithm detection. Fig. 13 presents instead the stirrups’s area in relation 
to the corner column as highlighted is Section 3. Due to surveying lim-
itations, only the columns reinforcement data are available for com-
parison. Fig. 11 shows that across the three datasets a negligible 
discrepancy exists between the real stirrup area for columns (i.e., 
AsB_column) and the percentage resulting from the algorithm. 

On the contrary, Fig. 14 reveals a significant deficiency of longitu-
dinal reinforcement for columns. Given the non-variability across the 
three datasets in relation to this parameter, Fig. 13 presents only the 
output regarding the first dataset. Fig. 14 shows a breakdown of section 
sizing across the three different data sets generated using the GA-ANN 
framework and compared with the as-built condition (i.e., AsB) rela-
tively to the IDR value of 2 %, being the effective damage level under-
gone by the building. This is limited to the constrained scenario where 
one of the column’s sides (i.e., CH) is imposed as equal to the beam’s 
base (i.e., BB) and therefore being more consistent for a comparison with 
the as-built configuration. It is worth noting that the second data set D2 
appears to always provide a more convenient solution rather than one 
effectively adopted in the building. 

Fig. 15 also highlights the potential for a twofold risk-reduction and 
financial benefit. Considering the current state of damage coinciding 
with a 2 % IDR and comparing it with the sections resulting from the 
second data set and specifically with the 0.5 % IDR, it is evident how an 
optimization-based technique would have entailed an overall approxi-
mate increase of 20 % of concrete volume adopted for construction. 
Correspondingly, an IDR reduction of up to 75 % can be obtained with 
an estimated cost increase of 20 %. 

Based on the above results, it is therefore possible to devise the 
optimized column section while benchmarking this with the as-built 
one, as presented respectively in Fig. 16b and 16a. The optimized col-
umn section is devised regarding dataset 1, an IDR of 0.5 % (i.e., damage 
levels 1/2) and an overall minimum longitudinal reinforcement area of 
1.7218 %. Through the introduction of 12 φ20 bars, an overall per-
centage of longitudinal reinforcement corresponding to 1.752 % is 
achieved, satisfying the minimum required area. Thanks to the intro-
duction of 4-arms stirrups, the optimized section exhibits a better 
binding through the longitudinal bars compared to the as-built section. 
The Chinese seismic code adopted for design, the GB 50010–2001, 
prescribes a minimum longitudinal reinforcement area of 0.2 % for each 
column’s side. Besides, specifically for corner columns, the requested 
minimum total area is 0.8 %. The as-built columns’ longitudinal rein-
forcement for each column’s side approximately corresponds to the 
percentage of 0.22 % and the total of 16φ12 in the whole section cor-
responds to 0.89 %, proving the regulatory compliance. 

With respect to shear reinforcement, the Chinese seismic code GB 
50010–2001 provides indications relatively to the minimum re-
quirements for hoops. Considering a hoop diameter φ6, the most likely 

Fig. 8. Comparison between values attained across the different investigation 
algorithms for stage 1. 

Fig. 9. Comparisons between results attained through the artificial neural 
network (ANN) engine and the effective values. fk: characteristic compressive 
resistance of masonry [N/ mm2]; tt: masonry infill thickness [cm]; CB,CH,BB, 
BH: frame sections [cm]. 
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spacing corresponds to either 6 or 8 times the diameter of the hoop, as it 
appears lower than 10–15 cm following to site investigations. As a 
result, and given the above considerations, the sections were effectively 
designed in accordance to in-effect building regulations. 

7. Discussion 

The previous section has evidenced how the adoption of an 
optimization-based approach can effectively benefit seismic design. The 
results also suggest that regulatory compliance does not necessarily 
guarantee a high level resilience of a structure to seismic stressors. The 
building characteristics (i.e., frame sizes and masonry properties) and 
performance-related variables were calculated based on an imposed 
EDP, namely the inter-storey drift ratio (IDR). 

Fig. 10. Inertia discrepancy of frame section elements (i.e., beams and columns) in relation to the first (a), second (b) and third (c) set of data.  

Fig. 11. Inertia section values for individual variables (i.e., beams and col-
umns) in relation to the third set of data. 

Fig. 12. Stirrups density of most stressed column and beam for the storey registering the highest IDR, respectively relatively to the first (a), second (b) and third (c) 
data sets. MS = most stressed. 

Fig. 13. Stirrups density corner column and beam for the storey registering the highest IDR, respectively relatively to the first D1 (a), second D2 (b) and third D3 (c) 
data sets. 
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The final decision to adopt the IDR as main EDP – and to discard the 
node displacement – for structural performance assessment was vali-
dated by the data presented in this research but it could be expected 
given the nature of this particular indicator. As a matter of fact, the IDR 
provides a relative representation of the structural displacement 
whereas the node displacement only accounts for the absolute 
displacement of a particular point (i.e., node) of the structure. Utilizing 
the node displacement could have led to an underestimation of the level 
of stress for the structural members, particularly relevant for the case- 
study proposed in this research where the soft-storey behaviour led to 
a displacement-induced failure of the structure. 

Considering the real IDR registered for the Beichuan Hotel, 

corresponding to 2 %, it is evident that the building reinforcement has 
been consistently under dimensioned. This is evident from the frame 
sections representation, with a clear steel area deficiency. Conversely, 
the stirrups density appears to be comparable in relation to the mini-
mum required values, as shown in Figs. 12 and 13. The columns’ sec-
tions calculated adopting the combination of GA-ANN show how the 
longitudinal reinforcement percentage displayed in Figs. 12 and 13 can 
be distributed across the corner column section. This is relevant when 
compared to the as-built situation, reinforcing the effective section in its 
current form. Overall, despite regulatory compliance, the as-built 
configuration performed inefficiently under the seismic action. 

Comparing Figs. 11 and 12, it can noted how both the singularity 
column and the most stressed element of the storey featuring the highest 
IDR undergo significant shear stress. Nonetheless, columns exhibit a 
higher fluctuation in stirrups density than beams, specifically for the 
corner column element. This leads to two considerations: (a) the con-
sistency with a seismically stressed RC frame where columns supply the 
majority of shear resistance, given the generally higher horizontal 
seismic acceleration component compared to the vertical one; (b) the 
coherence between results and the hypothesis of a layout irregularity 
leading to a concentrated deformation in the portion corresponding to a 
change in rigidity. This coincides with the height variation in the two 
blocks as in Fig. 1a, which leads to local surge in the shear action of the 
analysed corner column and globally to torsional mechanisms triggering 
the soft-storey phenomenon. 

The data set that best fits the frame sizing individually is the first one, 
and specifically the constrained option, given its consistency with the 
real frame geometry in relation to the equality between the beam’s 

Fig. 14. Longitudinal reinforcement percentage of most stressed beam and 
column for the storey registering the highest IDR, respectively relatively to the 
first dataset. MS = most stressed. 

Fig. 15. Comparison between as-built (AsB) condition and different frame section sizing across the three data sets in constrained conditions for CB (a), CH = BB (b) 
and BH (c). 

Fig. 16. Comparison between current column section for a 2% IDR (a) the calculated one for a 0.5% of IDR (b).  
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section base and one column’s side. Nevertheless, the consideration of 
the frame alone in this particular analysis would be inaccurate, given the 
significant contribution to the overall stability and rigidity of the 
structure provided by the infills [46,47]. As a result, it would be more 
representative for this case-study to consider the third dataset as it 
factors in the infills’ contribution to the overall structural stability 
favouring the adoption of leaner frame sections and a more cost- 
effective material allocation, but preserving the benefits in terms of 
resilience enhancement. 

However, an IDR of 2 % as in the as-built configuration is not a 
desirable option. It can, therefore, be acknowledged that in order to 
pursue a significantly lower level of damage such as 1 or 2 (i.e., IDR 
imposed of 0.5 %), it is necessary to adopt a bespoke design that factors 
in the dynamic capacity of the structure. Therefore, for an expected IDR 
of 0.5 %, the optimum section parameters can be fetched from Fig. 13a. 
In a complementary way, the sections’ second area moment discrepancy 
for a target IDR of 0.5 % is significantly low and notably, much lower 
than the one registered for an IDR of 2 %. This shows the consistency 
with the hypothesis of a direct relationship between the endured dam-
age in the form of IDR and second area moment discrepancy between 
vertical (i.e., columns) and horizontal (i.e., beams) frame elements. 
Furthermore, an increase in structural resilience is ensured where the 
second area moment is higher for columns than it is for beams, albeit this 
appears more evident in the case of the constrained scenario. 

The resulting second area moment discrepancy and the section sizing 
show how the structure’s dynamic behaviour would have benefitted 
from the adoption of the proposed approach in terms of costs and per-
formance, based on two factors: (i) the simultaneous compliance to 
building regulations and (ii) the selection of the optimum option across a 
much broader set of options compared to the ones that could be 
considered through manual calculations. Nonetheless, it has to be noted 
that an expected damage level of 1 or 2 on the proposed scale would 
entail higher costs given the need to increase the resilience of the 
structure to dynamically withstand the seismic action. 

This is confirmed by Fig. 15a, where the frame geometry only is 
optimized, preserving the existing values for masonry and infill prop-
erties. However, Fig. 15a also exhibits a requirement of significantly 
consistent columns’ sections across the three data sets, even in corre-
spondence with the highest IDR where it would be expected for the 
structure to be leaner and more deformable. This is motivated by the 
significantly higher shear stress that columns undergo during seismic 
hazards. Where the infills are not optimized and preserved in their 
original form, such as in the case of the first dataset, the frame has to 
supply the necessary stiffness. However, being unable to do so, a sig-
nificant damage increase is registered, justifying the results of the first 
dataset. It is evident with respect to the three data sets how the 
consideration of infills features benefits more columns than beams, 
confirming the above-mentioned considerations. 

It is worth mentioning that it was not possible to retrieve the original 
design material such as calculation reports or blue prints and therefore 
most of the information pertaining reinforcement provision have been 
acquired via site investigation. Based on this, it was possible to 
acknowledge that the reinforcement provision was symmetrical within 
the section, conversely to what it would have been expected considering 
the geometric irregularities of the structures. This yields to consider that 
no distinction was made at the design stage to differentiate in terms of 
solicitation the top and bottom face of the frame members. 

On the contrary, the proposed algorithm does not pose a constraint in 
terms of this aspect, allowing the opportunity for the reinforcement and 
section geometry to be combined in the optimum way such to provide 
the best performance given a target IDR. 

The potential for a twofold risk-reduction and financial benefit ap-
pears when analysing Fig. 15. Considering the current state of damage 
coinciding with a 2 % IDR and comparing it with the sections resulting 
from the second data set, it is evident how an optimization-based 
technique would have entailed an overall approximate increase of 20 

% of concrete volume. Similarly, referring to Fig. 12 and assuming a 
target IDR of 0.5 % for the second data set, the main increase in mate-
rials, hence in cost, can be attributed to columns. In fact, Fig. 13b and 
15c illustrate how moving from an IDR of 2 % to 0.5 %, the beam’s 
section and one of the column’s sides remain also unchanged. However, 
the main increase in material and hence in cost can be attributed to the 
other column’s side, as shown in Fig. 15a. This is consistent with the 
above considerations that columns account for the majority of seismic 
resistance. Therefore, an approximate 20 % of the additional cost could 
result in a reduction to up to a fourth of the damage. 

8. Conclusion 

The paper argues that earthquakes often affect buildings that did 
comply with regulations in force at the time of design and evidences the 
potential of adopting machine learning and optimization strategies to 
enhance the seismic resilience of buildings, while promoting an 
informed cost / risk reduction analysis. 

As such, the paper proposed an evidence-based methodology to 
assess and enhance the seismic resilience of RC buildings using neural 
networks and optimization techniques, involving three main stages: (i) 
investigation of unknown design and as-built variables, (ii) dimension-
ality reduction and sensitivity analysis to determine the variables gov-
erning the building dynamic performance, and (iii) calculation of the 
optimum value for a specific set of variables. 

The contribution of 3D laser scanning techniques has been extremely 
beneficial to determine accurate measurements in the absence of 
documentation. As such, the proposed approach can also inform struc-
tural retrofitting strategies. 

The proposed research demonstrates how an multi-layer neural 
network approach and optimization-based technique can effectively 
lead to resilience enhancement with a clear reduction of the risk factor 
to occupants. The proposed methodology can be applied at the building 
level for structural assessment both through the design and post-disaster 
diagnostic phases. Overall, the contributions provided by the current 
work to the existing body of knowledge can be summarized as follows:  

• Devising a generic and scalable methodology applicable both to new 
and existing structures, hence suitable for risk-based design but also 
in the event of post-disaster assessment;  

• Providing a viable tool for engineers to enhance building structural 
surveys and thus avoiding often time-consuming bureaucratic pro-
cesses and hurdles, exacerbated by the lack of technical 
documentation;  

• Developing a methodology that can be easily integrated with other 
disciplines (e.g., architecture) while promoting a holistic approach to 
the design/post-disaster assessment of a structure;  

• Creating a process that can exploits recent advances in both building 
engineering and computational structural analysis, augmented with 
machine learning;  

• Presenting a fully scalable methodology which can be used featuring 
several analyses algorithms (e.g., linear, nonlinear) simply by 
customizing the relevant parameters through the API. 

In sum, the devised research work stands out given its comprehen-
sive approach in tackling structural analysis, as opposed to traditional 
techniques seldom involving all the above aspects simultaneously. 
Additionally, its transferability and potential for integration with any 
architectural or structural behaviour simulation tool – as well as regu-
latory frameworks – makes it advantageous for practical applications. 
The proposed research is also suitable for applications using different 
analyses algorithms (e.g., nonlinear) from the one presented herein. For 
this scope, the user shall customise the relevant analysis setting via the 
API prior to performing the simulation. 

Finally, a limitation of this study is identified in the way costs are 
accounted for. Namely, in order to extensively quantify costs it would be 
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necessary to consider the Expected Annual Loss function in conjunction 
with a quantity surveying report of the predicted costs connected to the 
optimized layout. It is in fact acknowledged that the relationship be-
tween building’s layout and costs is not linear as there are several 
additional cost-related variables to be considered in terms of construc-
tion site, material provision, design and maintenance. Our approach 
estimates cost reduction based on the amount of construction material 
for a specific layout. Future work could consider integrating the devel-
opment of a cost analysis based on material quantity takeoff facilitated 
by a BIM-based design. 
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G. Cerè et al.                                                                                                                                                                                                                                     

http://refhub.elsevier.com/S2352-0124(22)00889-X/h0005
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0005
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0005
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0015
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0015
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0015
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0020
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0020
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0020
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0025
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0025
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0025
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0030
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0030
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0035
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0040
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0040
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0045
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0045
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0050
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0055
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0055
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0055
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0055
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0060
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0060
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0065
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0065
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0070
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0070
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0075
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0075
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0080
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0080
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0085
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0085
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0090
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0090
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0095
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0095
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0100
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0100
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0100
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0130
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0130
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0145
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0145
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0150
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0150
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0155
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0155
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0160
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0160
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0165
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0165
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0170
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0170
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0180
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0180
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0190
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0190
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0195
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0195
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0200
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0200
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0205
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0205
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0205
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0210
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0210
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0210
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0215
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0215
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0215
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0220
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0220
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0225
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0225
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0225
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0235
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0235
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0235
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0245
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0245
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0245
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0250
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0250
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0255
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0255
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0260
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0260
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0275
http://refhub.elsevier.com/S2352-0124(22)00889-X/h0275

	A machine learning approach to appraise and enhance the structural resilience of buildings to seismic hazards
	1 Introduction
	2 Related work
	2.1 Selection of engineering Demand parameters
	2.2 Machine learning techniques applied to structural engineering
	2.3 Dimensionality reduction strategies

	3 Methodology
	4 Case study: Building investigation
	5 Proposed approach for seismic resilience enhancement
	6 Results
	6.1 Investigated geometrical frame features
	6.2 Optimised values for structural building features
	6.2.1 As-built values vs neural network results
	6.2.2 Calculation of optimum frame and optimum reinforcement


	7 Discussion
	8 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	References


