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Abstract 

Plastic pollution in the terrestrial environment is emerging as another significant manmade 

threat to ecosystem function and health. Plastic contamination can range from the 

macro-to-nano scale, and environmental impacts are evident at each level. Although significant 

knowledge gaps remain regarding the interactions between the natural environment and nano- 

and micro-plastics (NMPs), there is an increasing body of evidence concerning detrimental 

effects on a wide range of taxa. The surface properties of NMPs lead to the adsorption of heavy 

metals, endocrine-disrupting chemicals, antibiotics and other persistent organic pollutants, 

which, therefore, can result in their co-migration in the terrestrial environment. Although 

airborne and dietary transmission routes of NMPs have been observed, their effects to human 

health are still not fully understood, which is of concern to the scientific community. This 

state-of-the-art review paper firstly examines available evidence for, and knowledge of, various 

sources of NMP contamination to the terrestrial environment. Attention then focuses on (i) the 

biological processes from source to soils and plants, (ii) potential impacts of NMPs on soil and 

subsurface ecosystems, (iii) trophic interactions and function, and (iv) implications for 

environmental and human health. The paper concludes by identifying knowledge gaps and 

presents recommendations on prioritised research needs. 
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Introduction 

All life on Earth, from microorganisms to people, is becoming increasingly exposed to plastic 

pollution. Society’s addiction to plastics, from uses in clothing to food packaging, is driving a 

spiral of destruction of the planetary ecosystem on a scale comparable to climate change, 

whilst simultaneously being intricately linked with it. The impact of plastic pollution in oceans, 

on coastlines, soils and freshwater environments, and ultimately in food, water and air, has 

become a hot topic worldwide, and increasingly for public-health specialists. Whilst the focus so 

far has predominantly been on the levels, types and impacts of plastics in marine environments, 

it is estimated that the levels of plastics entering terrestrial ecosystems are between 4 and 23 

times greater than those entering the oceans (Horton et al., 2017). The severity has heightened 

with the emergence of the COVID-19 pandemic, which has increased single-use plastic usage 

globally for personal protection and hygiene, and intensified the indiscriminate disposal of 

plastic wastes (Vaverková et al., 2021). 

Although no internationally agreed definition of their size range exists (Hartmann et al., 

2019), microplastics (MPs) are generally defined as plastic debris with particle sizes ranging 

between 100 nm and 5 mm (Galgani et al., 2013; Thompson et al., 2004), whereas plastic 

particles < 100 nm are referred to as nanoplastics (NPs) (Alimi et al., 2018; Jahnke et al., 

2017). While there remain significant knowledge gaps around the interactions between these 

plastics and the natural environment, and their impacts on ecosystem function and services, it is 

agreed that nano- and micro-plastics (NMPs) have detrimental effects on a broad range of 

species at different trophic levels, in both aquatic and terrestrial environments, including those 
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providing essential ecosystem services, such as earthworms (Browne et al., 2013; Lwanga et al., 

2016). These effects, similar to those evident in marine ecosystems, may be either direct or 

indirect, and are dependent on different characteristics, such as particle-size and surface 

properties, of the plastic particles themselves (de Souza Machado et al., 2018). For example, 

the surface properties of NMPs (e.g. hydrophobicity, high specific-surface area and surface 

morphology) lead to adsorption of heavy metals, endocrine-disrupting chemicals, antibiotics 

and other persistent organic pollutants (Su et al., 2021), and their co-migration in the terrestrial 

environment (Qi et al., 2020a). Migration of NMPs through the soil can occur via numerous 

mechanisms, including by the ingestion and egestion of soil organisms (e.g. earthworms), 

translocation by water through burrows and tubes, and tillage or soil wetting/drying cycles. 

Although understanding of the affects to human health is still in its infancy, the recent 

confirmation of plastics in human blood (Leslie et al., 2022) is of significant concern, and it is 

important that routes of transfer are identified to mitigate exposure. For example, NMPs 

ingested by soil organisms (such as earthworms) can enter the human food chain via predators, 

such as commercial poultry (viz., chicken) (Wang et al., 2020). Trophic transfer within the 

human food chain is also suggested to occur through the consumption of plants, with recent 

studies suggesting the transfer of NMPs from the soil into the edible parts of plants (viz., roots, 

leaves and fruit) (Karami et al., 2017; Oliveri Conti et al., 2020). A secondary route of exposure 

of NMPs from soil to humans through the consumption of plants may occur due to aeolian NMPs 

becoming deposited on leaves (Liu et al., 2020), or via consumption of livestock that have fed on 

aeolian-NMP-contaminated leaves. 
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Using the ‘Scopus search engine’, the Research article, Review, Conference paper and 

Book-chapter type papers published in the last 10 years were screened using five different 

keyword combinations: (i) “MPs in oceans”; (ii) “MPs in marine”; (iii) “MPs in seawater”; (iv) 

“MPs in terrestrial”; (v) “MPs ecotoxicological effects”. When plotted (Figure 1), the synthesis 

of data shows the dramatic increase in the numbers of publications for each category produced 

on yearly basis. Also, it can be realised that, compared to the other categories, the research 

works on MPs considering the marine environment are much greater, implying the current 

focus of researchers on MPs studies. Therefore, MPs in terrestrial areas also need to be 

explored, to get a better perspective of their presence in all environments. Furthermore, from 

the total of 32 publications available for the keywords “MPs ecotoxicological in terrestrial”, 

only 13 are review type papers, with very few of them concentrated on the ecotoxicological 

effects of MNPs on the terrestrial ecosystem. Hence, it necessitates a comprehensive review to 

critically analyse the existing literature, as done in the present article, with a leaning on 

environmental geotechnics aspects. 

This state-of-the-art review paper begins with an appraisal of available evidence for, and 

knowledge of, various sources of NMP contamination to the terrestrial environment. The focus 

then turns to NMP transport in the terrestrial environment, its impacts on soil properties, soil 

biology and subsurface ecosystems, and potential implications for human health. The paper 

concludes by identifying knowledge gaps in the literature, and presents recommendations on 

prioritised research needs. 

 

NMP sources and composition 
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The types and composition of NMPs entering the environment can vary significantly between 

the upstream sources from which they originate. Dominant sources of NMPs to soils include 

from industry, domestic households, transport, wastewater treatment plants (WWTPs), 

agriculture, horticulture and landfills (Figure 2). NMPs can be divided into two categories, 

primary and secondary. Primary NMPs are manufactured, and include, for example, microbeads 

for use in personal care products (Golwala et al. 2021). Secondary NMPs are formed from 

fragmentation of plastics through environmental, chemical and (or) biological processes, 

including, for instance, microfibres arising from synthetic textiles. The NMPs’ morphotype 

(fibre, fragment, bead or film) plays an important role in determining their fate and transport in 

the geoenvironment, as well as their impact on organisms that they interact with (Ren et al., 

2021; Shamskhany et al., 2021). 

WWTP practices have a significant role in the distribution of NMPs into the environment. 

Dominant morphotypes of plastic found in municipal wastewater are synthetic fibres, followed 

by fragments and films, and in some locations microbeads, when they are still permitted for use 

in personal care and domestic cleaning products (Golwala et al., 2021; Rasmussen et al., 2021; 

Ruffell et al., 2021). As well as being represented by different morphotypes, the MPs in 

wastewater consist of a broad range of polymer types; dominant ones being polyester (PEST), 

polyethylene (PE) and polypropylene (PP) (Ruffell et al., 2021). WWTPs can achieve a high 

MPs’ removal efficiency (80–99%), although much is physical removal, such that a large 

percentage of them end up in the sludge residue (Carr et al. 2016; Rasmussen et al., 2021). In the 

study by Rasmussen et al. (2021), a mass balance was performed for a large municipal WWTP in 
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Sweden (receiving 201.2 kg/day of plastic waste). They concluded that most plastics were 

removed at the screens entering the WWTP (the 20- and 2-mm bar screens respectively removed 

38.2% (equivalent to 76.8 kg/day) and 35.2% (equivalent to 70.8 kg/day) of the plastics), with 

13.6% (equivalent to 27.3 kg/day) contained in the sludge residue. Only a small proportion (0.7 

kg/day) was contained in the WWTP effluent. However, it should be noted that there was a large 

proportion missing from the mass balance (12.7% or 25.5 kg/day), attributed to sampling and 

analysis errors and also potential loss in the digesters and activated sludge process. The high 

removal by the screens emphasises the importance of adequate management of screen waste. In 

countries where the screened waste is incinerated, the potential for NMP release into the 

environment is small. However, many countries dispose of screened waste in landfills, which 

may have a much bigger impact on the environment through transport into groundwater. The fact 

that most NMPs end up in sludge or biosolids has large implications in the terrestrial 

environment, since biosolids are applied to land as soil conditioners and fertilisers. It has been 

estimated that the quantity of MPs annually applied to farmland in Europe through addition of 

sludge could be as high as 40,000–50,000 tonnes, and between 63,000 and 430,000 tonnes in 

North America (Nizzetto et al., 2016). More recent studies confirmed these numbers, with up to 

19,000 tonnes of MPs annually applied to agricultural soils in Australia (Ng et al., 2018). 

There is a lack of research on the extent of NMP release through on-site wastewater 

treatment systems; e.g. septic tank systems and package plants. It is logical that a concentration 

of NMPs occurs in these systems since they are not designed to remove plastic waste. NMPs end 

up entering the environment through the disposal or land-application field, or through sludge 
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removal. Disposal fields, normally comprising sand or fine gravel, are used to discharge effluent 

in a controlled manner into the sub-surface, such that any NMPs present will also be discharged 

into the disposal field. Effluent passes through the disposal field before entering the vadose 

(unsaturated) zone and then groundwater. The design of disposal fields is such that additional 

physical removal is achieved before reaching the groundwater. Removal largely depends on size 

and surface charge of the NMP particles. 

More research is needed to ascertain the NMP removal rates through WWTP and on-site 

wastewater-treatment systems. If the NMPs are removed and retained in the sludge, it normally 

(re-)enters the municipal wastewater treatment system, where the potential for removal has been 

explained above. 

Another source of NMPs is food production farms, where plastics are widely used, from 

netting to plastic mulch film. Although designed to withstand environmental conditions through 

incorporation of additives (such as ultraviolet (UV) stabilizers) in their manufacturing process, 

plastics degrade over time because of weathering and mechanical wear and tear, forming 

fragments (i.e. NMPs) that stay in the soil (Kasirajan and Ngouajio, 2012; Steinmetz et al., 2016). 

In some locations, it is common practice that, rather than being removed after the growing 

season, horticultural plastics (such as mulch film) are ploughed into the soil. Other sources of 

plastics in soils are the application of organic and inorganic fertilisers. For instance, many 

pelletized synthetic fertilisers possess polymer-based microcapsules (Katsumi et al., 2021). 

After their gradual breakdown, allowing slow release of the fertiliser, the synthetic polymer 

remains in the soils as NMPs. The application of natural organic fertilisers resulting from the 
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recycling of municipal green-waste (either compost or anaerobic digestate) also represents a 

significant source of plastic particles to soils because of the high levels of plastics that find their 

way into the food waste (Golwala et al., 2021; Weithmann et al., 2018). Although the role of 

agricultural and horticultural practices on the contribution of NMPs in soil have been identified, 

their levels are not fully understood and further research is needed to establish associated risks. 

There is evidence that landfills are defuse sources of NMPs to their immediate 

environment (Table 1), being identified in the surrounding air, groundwater, surface water and 

soil (O’Kelly et al., 2021). Unmanaged, old or legacy landfills do not include protective liners, 

covers, and leachate and gas collection systems, such that leachate can migrate into the 

environment. The leachate contains high levels of primary and secondary MPs due to 

mechanical fragmentation of larger plastic items, the presence of discarded products (including 

personal care and industrial cleaning products), as well as NMPs present in landfilled WWTP 

sludge (Guerranti et al., 2019; Sobhani et al., 2020). Dominant polymers found in leachate are 

PE and PP (see Table 1), accounting for almost 99.4% of NMPs present, mainly because: (i) 

the majority of the municipal plastic waste is derived from either PE or PP (Goli et al., 2020; 

He et al., 2019) due to their high usage levels; (ii) since the density of these polymers is <1.0 

g/cm3, they float and get transported by the leachates. The levels of MPs in solid refuse 

samples have been found to be significantly higher (62,000±23,000 MP particles/kg (Su et al., 

2019)) than those found in sewage sludge (4,196 and 15,385 MP particles/kg (Mahon et al., 

2017)). It should be kept in view that the physico-chemical attributes of NMPs generated in 

municipal solid waste (MSW) facilities would be distinctive, due to the presence of a mixture 
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of both conventional and biodegradable polymers. 

Vehicular transport also acts as a significant source of plastics to the environment 

(Schwarz et al., 2019), in the form of brake wear and tyre-wear particles (Evangeliou et al., 

2020). The wearing process depends on the vehicle and pavement characteristics and type of 

tyre (Grigoratos and Martini, 2014). Kole et al. (2017) reported movement of break- and 

tyre-wear particles owing to washout and runoff to freshwater and marine ecosystems. The size 

of these particles can be <10 µm, and thus they can also remain airborne for longer periods 

(Harrison et al., 2012). Apart from these sources, polymerized bitumen is another supply of 

NMPs (Rødland et al., 2022). 

Other potential sources of local MP contamination of soils and groundwater are the 

addition of synthetic polymer-based (usually PP) fibres, as strength enhancement (reinforcement) 

for ground improvement, and synthetic polymers, including waste-tyre-derived aggregates 

(TDAs) used, for instance, as partial replacements for natural soils and aggregates in the 

construction of road embankments and pavement subgrades, and as lightweight backfill to 

bridge abutments and retaining walls. As well as the MP particles derived from weathering and 

physical breakdown of the TDA additive in-situ, there is the potential toxicity of leachates 

containing heavy metals and other chemicals common in TDA materials, as additional sources of 

contamination to the terrestrial environment (Vaverková and O’Kelly, 2022). For instance, 

Tallec et al. (2022) emphasised that the use of rubber-based products (e.g. crumb rubber 

granulates) can induce “rubber contamination” by releasing micro-rubber and (or) constitutive 

compounds (added during the tyre manufacturing processes) which leach out by the action of 
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water. From the studies of Šourková et al. (2021a, 2021b), it is evident that leachates from waste 

tyre fractions are phytotoxic to highly phytotoxic for higher plants. 

Further geotechnical engineering examples include polystyrene (PS) based lightweight 

engineering fills (Abbasimaedeh et al., 2021; O’Kelly and Soltani, 2022b), or use of dredge 

sediments from water resources as fill materials (Monkul and Özhan, 2021). Dredged sediments 

may contain significant amounts of MPs owing to their free dispersion in the aquatic 

environment (Ji et al., 2021). Synthetic polymer-based fibres are also used as secondary 

additives to increase the ductility of stabilized soils that are mainly used as barriers in landfills or 

subgrade soils. Expanded polystyrene (EPS), as blocks (i.e. Geofoam), or as myriads of discrete 

beads mixed with soil in-situ, is a preferred lightweight fill for embankment construction over 

soft soil deposits, as retaining wall backfill and to protect culverts and buried pipelines. At 

end-of-life for earth structures constructed using soil–EPS beads mixtures or using myriads of 

discrete plastic fibres mixed randomly with soil in-situ, the EPS beads and plastic fibres 

contained therein are not alienable from the soil; hence they are not recyclable (Abbasimaedeh et 

al., 2021; O’Kelly and Soltani, 2022a, 2022b) and have potential to cause substantial local NMP 

contamination of soil and groundwater. Based on environmental concerns, and also due to the 

substantial deterioration in geomechanical behaviour/properties for increasing EPS additive 

content, Abbasimaedeh et al. (2021) went so far as to recommend that geotechnical engineering 

practice should discontinue the approach of adding particulate EPS beads to soil for producing 

uncemented lightened fills. 

Note that even though NPs and small MPs are widely present in the environment, they are 
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often not detected or accurately quantified in environmental matrices, including soils, because of 

current methodological and analytical limitations  identified as a major shortcoming for 

present research efforts (Goli et al., 2021; O’Kelly et al., 2021). 

 

NMP transport in terrestrial environment 

While NMP transport above ground is driven by wind and surface water movement, once 

entered in the soil matrix, the NMP horizontal and vertical migration are controlled by soil 

physical properties, soil biota, agronomic practises and hydrological conditions (i.e. rainfall 

frequency and intensity) (Rillig et al., 2017a). Due to the pore sizes of fine-grained soils being 

smaller than the size of many NMPs, a large proportion of NMPs are retained by the upper soil 

layer (Ren et al., 2021). However, owing to the absence of UV light and low stable 

temperatures, once in the subsurface, the NMPs can accumulate and remain unaltered for 

prolonged periods (Otake et al., 1995). Some studies have indicated that soils are not only 

NMP sinks, but they can also provide a feasible transport entryway to subsurface receptors via 

advective or colloidal transport. For instance, O’Connor et al. (2019) found that MPs can 

undergo significant vertical migration in sandy soils, with transport distances increasing for 

reducing MP particle size and (or) under wetting–drying cycles. Similar transport 

characteristics should be expected in soils with high proportions of macro-pores (e.g. 

bio-pore-rich loamy soils, organic-rich soils, leptosols and vertisols), for which preferential 

flow and transport can occur (Bläsing and Amelung, 2018). Vertical transport to deep soils and 

the vadose zone is further accentuated by bioturbation, in the form of fragmentation and 

size-selective transport (Huerta Lwanga et al., 2017; Rillig et al., 2017b; Zhu et al., 2018). In 
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this context, MPs are prone to degradation in terrestrial environments, which decreases their 

particle size, increases their specific surface area and oxygen-containing functional groups, and 

enhances the potential chance of attachment (i.e. via sorption, electrostatic force, etc.) of 

microorganisms, heavy metals and other pollutants present in soil (Golwala et al., 2021). 

 

Impacts on geoenvironment 

Once NMPs arrive on soils, one must consider the role of environmental conditions effecting 

their fate and potential impacts (see Figure 3). For instance, weathering due to UV radiation and 

hydrolysis affects the physical characteristics of plastics, including polymer structure changes, 

alteration of surface texture and promotion of fragmentation. Further, when considering NMP 

impacts on the terrestrial environment, one cannot only consider the physical NMPs themselves, 

but must also consider their associated chemicals. That is, in the manufacturing of plastics, 

various chemical additives, ranging from plasticisers to UV stabilisers, are included to suit the 

end-product use. This section of the paper focuses on NMP impacts on the soil properties, soil 

biology and subsurface ecosystems. 

 

Soil properties 

The impact of NMPs on the physical structure of the soil is beginning to be realised, especially in 

studies from China, where, since the late 1970s, there has been an increasingly common practice 

of plastic film mulching (PFM) for improving cash-crop yields (Huang et al., 2020; Ng et al., 

2018; Qi et al., 2020b). Studies have shown that PFM can have physical effects on soil 

ecosystems, including reduced soil porosity (Koskei et al., 2021), changed air circulation and 
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altered microbial communities (Li et al., 2014; Muroi et al., 2016), increased soil water-retention 

capacity (de Souza Machado et al., 2019), and greater greenhouse gas emissions (Cuello et al., 

2015). Additionally, Wang et al. (2016) found that the practice of PFM significantly reduces soil 

biomass carbon and nitrogen contents, soil metabolic activity, and microbial function and 

activity. Weathering and physical breakdown of plastic mulch film results in the formation and 

accumulation of NMPs within the soil matrix. The NMPs presence has also been shown to have 

a physical impact on soil mesofauna owing to the reduction in porosity, effectively causing their 

immobilisation (Kim and An, 2019). Luo et al. (2020) reported that physicochemical factors, 

especially the pH and soil organic carbon, play a role in the attachment of NMPs 

(0.047-µm-sized PS). Five soils were tested, and a strong positive correlation was seen with soil 

organic carbon and iron (II) oxide; i.e., the greater the soil organic carbon or Fe2O3 content, the 

higher sorptive capacity of NMPs to the soil. In contrast, the higher the clay content, the lower 

the sorption of NMPs to the soils. Luo et al. (2020) also reported that the sorption capacity of all 

the test soils decreased as pH increased. They concluded that the main attractive forces 

attributing to NMP sorption to soils were electrostatic interaction and hydrophobic interaction. A 

more recent study by Wang et al. (2022) agreed with these findings, and added that attachment of 

MPs was significantly correlated with the soils’ zeta potential. 

 

Soil biology 

Plastics that enter the environment will inevitably be colonised by microbial communities. In 

any food web, microbes are keystone organisms, often existing in biofilms to enhance survival 

and for protection from predation. In forming biofilms, microbes will interact with plastic in any 
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environment, as a surface to attach to, or, as a supplementary carbon source. Nevertheless, 

synthetic plastics are recalcitrant, and few studies have demonstrated actual plastic degradation 

directly arising from microbial action, most of them demonstrating that the additives used in 

plastic manufacture may be degraded, rather than the plastic polymer itself. Biodegradable 

plastics, manufactured with aliphatic PESTs (e.g. polyhydroxyalkanoate (PHA) and polylactic 

acid (PLA)) have been shown to degrade, although they may require specific conditions not 

present in the soils. Even though there are numerous studies demonstrating microbiomes 

(biofilms) associated with plastics across aquatic and terrestrial environments, the impact of 

plastics on these communities is sparsely investigated (Lear et al., 2021; Ng et al., 2021). A 

recent study demonstrated that distinct communities colonise MPs in soil (Zhang et al., 2019b), 

but it did not investigate the impact of this on the soil ecosystem. Ng et al. (2021) investigated 

the impact of polyethylene terephthalate (PET) and low-density PE (LDPE) MPs by comparing 

to a control soil from a forest environment. Shifts were observed in microbial composition, both 

between plastics and relative to the control soil, indicating that the chemical composition (as 

different plastics age in the soil) will have an impact on the soil microbiome. In addition, the 

presence of LDPE MPs resulted in a 7–8 fold increase in CO2 production compared with the 

control soil. 

A direct impact of colonisation of MPs with biofilm communities is degradation or 

fragmentation/disintegration. There is demonstrated evidence (predominantly in laboratory 

setting) that bacterial and fungal species can degrade MPs (Gambarini et al., 2021; Lear et al., 

2021; Ng et al., 2018; Wei and Zimmermann, 2017). Another consequence of colonisation is that 
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soil detritivores consume microbial biofilms and, hence, may also incidentally engulf MPs (Guo 

et al., 2020). Some studies have demonstrated that detritivores, such as earthworms, consume 

colonised organic matter (including MPs) over fresh material (Huerta Lwanga et al., 2017; Rillig 

et al., 2017a, 2017b), producing detrimental effects (Lwanga et al., 2016). These include 

intestinal problems, blockages and stopping vital nutrients from being taken in by the animal, or, 

alternatively, can give the animal a feeling of being full, so that they do not feed and starve as a 

result. However, detailed studies on the impacts of NMP ingestion by soil biota are limited. A 

reduction in activity in detritivores will change the soil physical properties, such as nutrient 

addition and bioturbidation. This could reduce soil structure and bioavailability of nutrients for 

plant growth. More studies are needed in this area to pinpoint exact impacts across biological 

function and ecosystem services. 

 

Sub-soil transport 

Although soils may be predominantly a sink for plastics, it is inevitable that degradation in 

solids will lead to NMPs becoming a source of NMPs in groundwater environments. Physical 

processes, such as described in section 3, can lead to contamination of the vadose zone and 

ultimately the groundwater environment. Recent studies have begun to illustrate the risk to 

groundwater from landfill sites and agricultural soils (Lwanga et al., 2022; Manikanda Bharath 

et al., 2021; Ren et al., 2021; Samandra et al., 2022; Zhang et al., 2022). Once in the 

groundwater environment, NMPs can be transported in significant quantities in alluvial 

aquifers (Goeppert and Goldscheider, 2021). There is a sparsity of other studies looking at the 

transport and fate of NMPs in groundwater (Viaroli et al., 2022). The potential of NMP 
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transport depends on the lithology and geochemical conditions, such as clay and colloidal 

materials present. Also, environmental factors and soil parameters (such as pH, primary cations 

and Fe mineral, and organic matter) influence the transport behaviour of MPs in the soil matrix 

(Ren et al., 2021). One of the key issues with the study of NMPs in groundwater is the lack of 

consistent methods for sampling and quantification (Viaroli et al., 2022). To date, only five 

articles (Goeppert and Goldscheider, 2021; Johnson et al., 2020; Panno et al., 2019; Selvam et 

al., 2021; Samandra et al., 2022) present sufficient information on the groundwater sampled 

and the hydrogeological information needed for assessment (Viaroli et al., 2022). The NMP 

concentrations varied by orders of magnitude in different aquifer materials, but, as expected, 

they followed a pattern of increasing concentration with large pore size or fractured systems 

present. Karstic systems are likely to have NMP-size distributions similar to those found in 

surface waters (Panno et al., 2019). Alluvial aquifers have been shown to transport a wide 

range of NMP sizes, down to 1-μm size (Goppert and Goldscheider, 2021). 

Furthermore, with very little known about the groundwater ecosystems themselves, the 

impact on the groundwater ecosystems present is unaccounted for, such that understanding the 

NMP effect on their function and its subsequent impact on the water cycle is currently 

unknown. The fact that globally around two billion people depend on groundwater resources 

makes this a critical issue to be urgently addressed. 

 

Ecotoxicity 

Studies on the impacts and ecotoxicological effects of NMPs on eukaryotic organisms is more 

common than for prokaryotes, with studies across springtails, earthworms, nematodes, 
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arthropods, isopods and mites. In a recent investigation on the plastic additive Bisphenol A, 

Gerhardt (2019) indicated acute and chronic toxicity effects on surface and groundwater 

crustaceans. Compared with detritivores, higher sensitivities were evident for filter-feeding 

crustacean, as may be expected for a dissolved toxin. Gerhardt (2019) concluded that the 

groundwater crustacean isopod Proasellus slavus was the most sensitive to both acute and 

chronic exposure, such that it could be a useful indicator species. Oxidative stress, 

histopathological changes and reproduction impediment have been indicated in response to MP 

exposure in the earthworm Eisenia andrei (Jiang et al., 2020; Kwak and An, 2021; Lackmann et 

al., 2022). Studies on predator–prey interactions at the higher levels of the food web are sparser, 

with most only showing indirect evidence (Helmberger et al., 2020). 

Until recently, flora had been largely overlooked regarding ecotoxicological effects from 

plastics, those exceptions concerning the terrestrial environment including the investigations by 

Allouzi et al. (2021), Mateos-Cárdenas et al. (2021) and Ng et al. (2021). For instance, 

Mateos-Cárdenas et al. (2021) showed that plants can adsorb or internalise NMPs, with the 

mechanisms suggested to be mostly due to electrostatic forces or entrapment in uneven surfaces 

on the plant. Studies have shown that NPs can also cross membrane boundaries and enter plant 

cells, suggesting that a toxicological effect is possible (Azeem et al., 2021; Luo et al., 2022; 

Mateos-Cárdenas et al., 2021). It has been noted that, to date, most of the studies on plant 

interactions and impacts have been performed in controlled laboratory environments and on 

single species. There is still work that is needed to assess the impact of NMPs in the environment 

and at an ecosystem level. In the limited studies conducted, to date, NMP effects have been 
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reported on plant germination, elongation growth and biomass. Studies that have investigated the 

toxic effects of plastic particles on plant photosynthesis have varied in their findings, with some 

finding no effect on photosynthetic activity in controlled experiments on single species (Dovidat 

et al., 2020; Mateos-Cárdenas et al., 2019), while others (Gao et al., 2019; Qi et al., 2018, 2020b) 

have found negative effects. This variability points to the sparsity of available data, and that 

further studies are required on a variety of plants and plastics, investigating pertinent 

environmental conditions. 

 

NMP impacts on human health 

The full extent of potential impacts, particularly on humans, of exposure to NMPs remains 

unknown. The current agreed routes of exposure of plastic particles for humans (see Figure 4) 

include (i) inhalation (Amato-Lourenço et al., 2020; Enyoh et al., 2019), synthetic fibres having 

been found in lung tissue (Pauly et al., 1998), and (ii) ingestion of water and food (both fresh and 

processed) (Daniel et al., 2020; Dessì et al., 2021; Kedzierski et al., 2020; Senathirajah et al., 

2021). There is currently no research supporting the ability of NMPs to penetrate the surface of 

the skin, but it is thought that they may enter the body via sweat glands, skin wounds or hair 

follicles (Schneider et al., 2009). 

Atmospheric NMPs have been demonstrated in multiple locations globally, with them 

found in the air above urban areas, as well as in remote locations. This supports the hypothesis 

that their global transportation occurs (Zhang et al., 2019a), although the process by which 

aeolian NMPs evolve from soils is not yet clear. It is assumed that NMPs behave similar to 

nanoparticles, microorganisms and organic material  these can be re-suspended from 
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terrestrial surfaces and transported over long distances (Griffin, 2007; Yang et al., 2016). 

Airborne synthetic fibres have been associated with respiratory diseases in humans (Prata, 2018; 

Turcotte et al., 2013), owing to (i) difficulties associated in clearing them from the respiratory 

system, (ii) the potential of the plastic to interact with other organic materials, (iii) through the 

release of chemical contaminants associated with the fibres (Enyoh et al., 2019). High levels of 

plastic fibres present within wastewater effluent (Cao et al., 2020; Dyachenko et al., 2017) and 

biosolids (Koutnik et al., 2021) applied to land may, therefore, pose a human health risk via 

inhalation after resuspension into the air, as well as other morphotypes also present (Enyoh et al., 

2019; Knobloch et al., 2021). 

It has been estimated that children and adults may ingest as many as 100,000 MP particles 

each day (Mohamed Nor et al., 2021), with other studies estimating an average ingest rate of 

0.1–5 g of MPs per week through various exposure pathways (Senathirajah et al., 2021). 

Internalisation of MPs through the dietary pathway has been confirmed by evidence of their 

presence within human stool and blood samples (Leslie et al., 2022; Schwabl et al., 2019). 

Animal studies have demonstrated the translocation of NMPs from the gut (Browne et al., 2008; 

Mattsson et al., 2017), although, to date, similar data has not been possible to determine this for 

humans. 

NMPs may be introduced into food during meal preparation (Knobloch et al., 2021; Zhang 

et al., 2020), or they may already be present within fresh food items. In addition to the potential 

health risk posed by NMPs within plant tissues when consumed, the presence of plastics within 

the soil facilitates the uptake of heavy metals into plants, which may pose a direct human health 

Downloaded by [ Theo Sarris] on [21/08/22]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript 
doi: 10.1680/jenge.22.00053 

22 

 

risk (Wang et al., 2021). However, there are huge uncertainties associated with detecting, 

identifying and characterising different NMPs (Goli et al., 2021) in food. 

Although there is still a need for far more research to determine the full impacts of NMPs 

on human health, there is sufficient evidence available to necessitate a precautionary approach to 

dealing with NMPs exposure. For instance, Ragusa et al. (2021) found plastic particles in all 

three layers of human placenta; the maternal side, foetal side and the chorioamniotic membrane. 

A better understanding of the potential damage that NMPs cause to humans will only begin to 

emerge when studies unravel their complex interactions with human organs. 

Direct harmful effects of NMPs may be physical (mechanical) and/or chemical 

(toxicological), while indirect risks are posed by the presence of microbes that may colonise the 

plastic surface. The potential human health risks are dependent on multiple factors, including the 

plastic particles’ size, morphology, age, associated chemicals (inherent and acquired) and 

microbes, and exposure pathway. These factors may work in isolation or in synergy, with some 

of them determined by the source of the NMPs and the land use of the soil that they have been 

applied to. For instance, wastewater effluent that may be applied to land contains (i) high levels 

of very diverse NMPs, (ii) a complex cocktail of organic and inorganic chemicals used in 

domestic and industrial processes, pharmaceuticals and personal care products (e.g. 

agrichemicals, antibiotics, biocides, UV sunscreens (Deblonde et al., 2011)), and (iii) a wide 

range of microorganisms, including potential human pathogens (Hansen et al., 2018). 

NMPs may pose direct physiological and microbial risks, together with a direct or indirect 

chemical risk. Within the soil matrix, associated chemicals, whether additives or acquired from 
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the environment, may leach from the plastics, become mobile and be taken up by plants, and 

therefore pose a potential health risk via ingestion (Al-Lihaibi et al., 2019), or their presence may 

facilitate the uptake of non-NMPs associated contaminants (Wang et al., 2021). Many of these 

chemicals have already been determined to pose toxicological effects in humans and animals. 

For instance, common additives in plastics (e.g. phthalates, Bisphenol A and Bisphenol S) are 

considered endocrine disrupting chemicals, having been linked with reproductive and 

developmental disorders, including breast cancer, blood infection, early onset of puberty and 

genital defects (Mishra et al., 2019; Ribeiro et al., 2019). With an increasing body of evidence 

showing that NMPs themselves are being taken up by plants (Bosker et al., 2019; Li et al., 2021; 

Liu et al., 2020), soils may present an exposure pathway to humans through diet. In addition to 

acting as a vector for associated chemicals, once inside the gastrointestinal tract, NMPs may 

translocate to other organs (Browne et al., 2013; Powell et al., 2010) causing physiological 

effects. For example, the accumulation of NMPs in the liver and kidneys causes disturbance of 

energy and lipid metabolism, and oxidative stress (Deng and Zhang, 2019). 

Although not fully understood, initial reports are identifying the enrichment of 

antimicrobial resistance genes (ARGs) and potential human pathogens on NMPs (Shi et al., 

2021) present in the leachate of landfills that accept high volumes of municipal biosolid waste. 

The pathogens that were found in the leachate and MP environment were Ochrobatrum 

anthropi, Acinetobacter iwoffii, A. baumannii, Afipia broomeae, Pseudomonas aeruginosa, 

Escherichia coli, Bacillus anthracis, Serratia marcescens and Aeromonas hydrophila. These 

are opportunistic human pathogens, which are linked to ARGs, and are responsible for 
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nosocomial infection, such as bacteraemia, secondary meningitis, urinary tract infection and 

pneumonia. The high NMPs’ load in wastewater effluent and biosolids, therefore, presents a 

potential high risk to microbiological human health, should they become associated with either 

food or water, or through direct contact of the contaminating soils, resulting in accidental 

ingestion. These changes to microbial communities may also cause significant changes in soil 

and subsoil ecosystem health. 

 

Concluding remarks and way forward 

In this paper, the authors reviewed available evidence for, and knowledge of, sources of plastic 

contamination to the terrestrial environment, its effects on key soil ecosystem functions and the 

potential for soil NMPs to enter the food chain through fauna and flora. Through the review, the 

following research gaps in the literature, and whose investigation will require concerted 

multidisciplinary effort, are identified: 

 Understanding NMP interactions with plants is still lacking, especially at an ecosystem 

level, with very few studies reporting on multiple species and environmental impacts — 

those that have been done show varied responses. 

 More studies are needed on the interaction of microbial biofilms in the soil environment 

and the potentials for pathogen survival and transport. 

 Studies on the whole soil ecosystem remain somewhat lacking, particularly trophic 

cascade implications in terrestrial environments. 

Although NMPs are widely present in the environment, they are often not detected or 

accurately quantified in environmental matrices (including soils) due to current methodological 
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and analytical limitations. This has been identified as a major shortcoming for present research 

efforts in quantifying the extent and amount of NMP contamination in soils and groundwater. 

There is also an urgent need to develop efficient remediation methods to improve the 

overall soil health. To date, efforts have concentrated on NMPs reduction at the source, which 

appears to be the most viable and efficient way to manage the risk, control the effects and limit 

further spreading of NMPs. Remediation of water and soil from NMP pollution is still at very 

early stages, with microbial biodegradation and bioremediation of certain plastic pollutants 

showing promise at the experimental stage. 
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Table 1. Concentrations of plastic particles identified in different components of landfills and their surrounding ecosystems 

 
Source/ecosystem 

component 
Location Size (µm) Avg. MPs concentration Salient observations Reference 

Leachate Shanghai, Wuxi, 

Suzhou and 

Changzhou, China  

100–5000 0.42–24.58a PE and PP were dominant MPs. 

99.36% of MPs were derived from fragmentation of 

plastic waste buried in landfills. 

77.48% of MPs sized between 0.1 and 1.0 mm. 

He et al. (2019) 

Shanghai, China 20–5000 8±3 

(4–13)a 

Dominant morphotype of MPs were fibres (60%) and 

film. 

Average MP concentration in young (<3 yr), medium 

(~10 yr) and old leachates (>20 yr) were 8, 10 and 4 MP 

particles/L, respectively. 

Observed 9 different polymer types present based on 

functional groups identified using FTIR spectroscopy. 

Su et al. (2019) 

Refuse Shanghai, China 20–5000 62,000±23,000 

(20,000–91,000)b 

MPs abundance in young (<3 y), medium (~10 y) and old 

leachates (>20 y) of 83,000±10,000, 68,000±6000 and 

36,000±14,000 MP particles/kg, respectively. 

Observed 15 different types of thermoplastic and 

thermoset polymers present. 

Most dominant shape of MPs were fibres (59.82%). 

Su et al. (2019) 

Compost Paris, France 0.45–5000† ‡ Used pyrolysis-gas chromatography-mass spectroscopy 

for detection of MPs presence in soils. 

Watteau et al. 

(2018) 
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Groundwater Chennai, India 0.45–5000 Perungudi site: 33 

(7–80)a 

Kodungaiyur site: 12 

(3–23)a 

90% of MPs were derived from buried plastics. 

Major polymer types in groundwater were PS and PP. 

Dominant colours of MPs were white (38%), black 

(27%), red (18%), green (8%), blue (6%). 

Manikanda 

Bharath et al. 

(2021) 

Soil Dhaka, Bangladesh 1–2000 ⸠ Samples were collected at two different depths: topsoil 

and 0–20 cm layer. 

Afrin et al. 

(2020) 

Lichen Tuscany, Italy <5000 Close, 79,000 (0–95,000)b; 

intermediate (i.e., 200 m 

distant), 13,000 

(0–15,000)b; 

remote (i.e., 1500 m 

distant), 7000 

(3000–9000)b 

Influence of landfill on MP concentration in lichen was 

determined; MP concentration reduced with increasing 

distance from landfill. 

Loppi et al. 

(2021) 

Note: FTIR, Fourier-transform infrared; PE, polyethylene; PP, polypropylene; PS, polystyrene. a MP particles/L; b MP particles/kg dry mass of sample/matrix tested. † Lower and upper 
boundaries of size range decided based on pore size of filter paper and apperature size of sieve, respectively, used in the experiments. ‡ Quantification cannot be obtained since, in this method, 
the MPs are degraded at higher temperatures before the detection stage, using mass spectrometry. ⸠ Not mentioned in original paper, as detection technique of FTIR, using KBr pellet method, 
cannot be used to quantify the MPs 
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Figure 1. Number of publications on various MP-related topics published in last 10 years (up 

to June 2022): (a) “MPs in oceans”; (b) “MPs in marine”; (c) “MPs in seawater”; (d) “MPs in 

terrestrial”; (e) “MPs ecotoxicological effects” 
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Figure 2. NMP transport and fate in relation to soil health 

 

 

Downloaded by [ Theo Sarris] on [21/08/22]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript 
doi: 10.1680/jenge.22.00053 

50 

 

 

Figure 3. Schematic representation of NMP effects and impacts on soil health 
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Figure 4. NMP routes of exposure to humans: the soil–air–soil cycle 
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