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Abstract Abstract

Abstract

The first step in rescuing and mitigating the losses from natural or man-made dis-

asters is to assess damaged assets, including services, utilities and infrastructure,

such as buildings. However, manual visual analysis of the affected buildings can

be time consuming and labour intensive. Automatic detection of buildings, on

the other hand, has the potential to overcome the limitations of conventional ap-

proaches. This thesis reviews the existing methods for the automated detection of

objects using multi-source geospatial data and presents two novel post processing

techniques. Effective building segmentation and recognition techniques are also

investigated. Artificial intelligence techniques have been used to identify building

boundaries in automated building-detection applications. Compared with other

neural network models, the convolutional neural network (CNN) architectures

based on supervised and unsupervised approaches provide better results by look-

ing at the image details as spatial information of the entity in the frame. This

research incorporates the improved semantic detection ability of Region-based

Convolutional Neural Network (Mask R-CNN) and the segmentation refining ca-

pability of the conditional random field (CRF)s. Mask R-CNN uses a pre-trained

network to recognise the boundary boxes around buildings. It also provides con-

tour key points around buildings that are masked in satellite images. This thesis

proposes two novel post-processing techniques that operate by modifying and de-

tecting the building’s relative orientation properties and combining the key points

predicted by the two head neural networks to modify the predicted contour with
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Abstract

the help of the proposed novel snap algorithms. The results show significant

improvements in the accuracy of boundary detection compared with the state-of-

the-art techniques of 2.5%, 4.6% and 1% for F1-Score, Intersection over Union

also known as Jacard coefficient (IoU), and overall pixel accuracy, respectively.

CNNs have proven to be powerful tools for a wide range of image processing tasks

where they can be used to automatically learn mid-level and high-level concepts

from raw data, such as images. Finally, the results highlight the potential of

further approaches to these applications, such as the planning of infrastructure.
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Chapter 1

Introduction

This chapter introduces the purpose of this research. In addition, it explains the

need for better techniques to exploit the power of more than one artificial neural

network and describes the building boundary refining post-processing techniques

for automatic building detection. Then it explains the motivation behind ex-

ploiting the information available within building satellite imagery in the form

of vectorised boundary data. This chapter also explores some of the problem

associated with the existing techniques for automatic building detection. Finally,

this chapter presents the main objectives of the research, lists the contributions

that have been made, and outlines the structure of this thesis.

1.1 Background

Most buildings follow a rigid geometrical structure. Consequently, the top views of

a building usually have a definite shape (e.g., rectangular, square or a combination

of any other geometrical shape). This narrows down the entire shape of the

building into a smaller space, where the task will be to estimate a path that allows

this shape to be maintained. To navigate through the shape of the building, it is

necessary to know its contours and major corner points.

Following the rapid development of spaceborne imaging, geospatial object detec-

tion of remote sensing imagery has attracted increasing interest. However, most

of the previously proposed object detectors are very sensitive to object defor-

mations, such as scaling and rotation. Recently, geospatial object detection has

1
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received considerable attention in the remote-sensing community. The main chal-

lenges and difficulties are that objects in optical remote sensing imagery usually

suffer from misrepresentations that are caused by scaling, offset, rotation, illumi-

nation, and atmospheric conditions, which inevitably degrade the performance of

the detection [1].

Academic research in this area can be roughly categorised by template matching-

based, object-based, and machine learning-based methods [2]. Unfortunately,

these approaches mostly fail to capture rotation-related properties for small-scale

training samples. Object detection in very high resolution (VHR) remote sensing

images determines whether or not a given aerial or satellite image includes one

or more objects belonging to the class of interest and then detects the locations

of each predicted object in the image [2]. In remote sensing, the term ’object’

mainly refers to man-made objects with clear borders that are independent of

backdrop (e.g., buildings, cars, storage tanks, etc.). Meanwhile, object detection

in remote sensing images is a prominent image processing issue that is essential for

strategic planning and recreational applications. However, this is still a difficult

challenge thanks to the varying visual presentation of objects caused by occlusion,

lighting, shadow, perspective fluctuation, resolution, polarisation, noise, and so

on. Furthermore, the enormous expansion in the quantity and intensity of remote

sensing images causes incredibly high processing costs, which raises the complex-

ities of object detection for near-real-time applications. While object detection

and semantic segmentation have made significant progress in recent years, the

issue of instance segmentation remains complicated. In the remote sensing field

of extreme segmentation, the target needs to not only detect individual object

instances, but is also required to provide a mask for each instance with geospatial

information (e.g., the coordinate points and the orientation of the objects).

Given the strength of meta-algorithms, this thesis will demonstrate some of the

methods (e.g., segmentation) that will act as a meta-algorithm in terms of speed,

2
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accuracy, and simplicity. These methods may be used in both future research

of instance segmentation and in many other applications of instance-level under-

standing.

Over the last few years, instance segmentation approaches have been commonly

classified into two groups. The first group includes the popular Region-based

Convolutional Neural Network (Mask R-CNN) methods [3], which typically begin

with a proposal for segmentation levels. Classifiers are then trained to classify

these proposals into somatic classes. The second group includes the successful

fully convolutional networks (FCN) methods [4]. They typically begin with full

image somatic segmentation results and then learn a particular split to divide

them into individual instances.

Figure 1.1 illustrates building roof tops, which has two separate structures joined

under one roof. As can be seen, the image has a high amount of shadow on the

top side. It also has a dark region between the region where the building changes

from one section to another. These types of shadows around the building’s image

provide challenges to artificial intelligence (AI) based methods, and the way in

which they classify and detect the contours around the boundaries of buildings.

Another example of some of the challenges that are faced when using this tech-

nique, as can be seen in this image in the figure above, is that there are trees

over a small part of the roof top, which cover the top view and hide the edge of

the building. These types of obstructions also pose challenges to the AI based

methods that are used to classify and detect the contours around the boundaries

of buildings.

The current state of the art segmentation networks are able to identify the location

of a building and its segmentation mask on a given image. Although it is easy to

obtain the contour of the building using the available segmentation mask, it may

not be possible to maintain the rigid geometrical structure.

3
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Figure 1.1: Top mosaic 09cm R RGB from VHR satellite imagery that

shows buildings with useful geometrical information (source: area 8,

Vaihingen, Germany dataset).

Achieving higher accuracy when dealing with the building structure is also im-

portant because it will provide improved engineering estimates (i.e., the size, ori-

entation, and shape) of the building to achieve the many goals of the applications

that were mentioned earlier.

One of the motivations for this research work was to understand the challenges

faced by the current AI based methods that are used to detect the accurate

contours of buildings and then improve this accuracy by utilising the geometrical

information available within building images.

As can be seen in Figure 1.1, buildings have some very useful information that
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is available in the form of corner points and principal directions. Hence, this

research is motivated by the need to extract and utilise the key corner points and

directional information to refine the contours that are detected by post-processing

with the help of AI based approaches to reach the outputs.

1.2 Associated Problems

Although automatic building detection techniques use feature extraction and ob-

ject detection techniques, they rely heavily on object segmentation. Moreover, a

number of deep learning techniques are exploited for automatic building detec-

tion tasks. While traditional deep learning techniques use supervised learning,

recent deep learning techniques (e.g., pre-training a convolutional neural network

(CNN), generative adversarial networks (GAN), etc.) provide better unsupervised

results for images without labels.

VHR images of buildings contain a lot of useful information (e.g., roof boundaries,

shapes, edges, corners etc.), which has been the focus of the prior art in building

detection. Many satellite images contain buildings of different scales and sizes,

which are available together in a single image. Similarly, some relative directional

information is available, which can be exploited. Therefore, a different perspective

is required to look for more semantic information in building images; for example,

a great deal of semantic information is available, such as ‘roof tops’, ‘building

wall’, ‘single hip’, ‘multiple hips’, ‘hexagonal gazebo’, ‘shed’, and so on [5].

While many types of building data sources are available (e.g., Light Detection

and Ranging (LiDAR), digital elevation model (DEM), digital terrain modelling

(DTM), and point cloud data etc.), the complexity of processing these types of

data using various artificial neural networks to detect building boundaries, and

to then further classify and extract semantic information from it, is high. In

addition, because the amount of data to be processed is so large, the computa-
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Figure 1.2: Comparison between DTM and DSM.

tional power required and the training time needed are significant. Traditional

remote sensing classification algorithms are often manually developed during their

feature design, using simple structure and architecture classifiers. Feature extrac-

tion is performed on small imaging areas (e.g., objects, regions, image patches, or

super-pixels), employing specific algorithms. The original spectral feature space

is then transmuted into a compact, abstract illustration. This will result in spa-

tial characteristics that can even have a significant impact on the performance of

a classifier.

Several techniques can be used to extract levels of details (LoD) from building

data. In particular, many researchers have attempted to utilise AI approaches

by extracting the available semantic information and processing different data

sources. The primary focus of these approaches and their associated problems

are as follows:

• Computational complexity in the significant high-dimensional data process-

ing.

• A lack of data uniqueness or performance.

• A reduction the computational difficulty of training an actual detection

method.
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• Verifying normalisation to various detection methods.

This thesis aims to assess these problems. It also describes some recent theoretical

and practical developments over the last few years. Based on these issues, this

thesis aims to address the following research questions and hypotheses:

• What are the optimum data types to extract the appropriate LoD

information from buildings?

The primary aim of many recently published research papers in the field of

automatic building detection has been to process different remote sensing

data (e.g., LiDAR, DEM, DTM, point cloud and satellite images) to extract

building roof top information for detection.

Therefore, the first hypothesis of this research work states: "Satel-

lite imagery data is sufficient to provide accurate LoD information for roof

top detection."

• Can a novel method be developed based on deep learning tech-

niques to detect complex building boundaries using VHR remotely

sensed images?

Therefore, the second hypothesis of this research work states: "An

architecture method that is based on deep learning techniques can be used

to classify and extract localised contours around building boundaries using

VHR remotely-sensed images."

• Can post-processing techniques improve the output of the deep

learning methods to extract further information from the detected

buildings?

The published research papers in the field of automatic building detection

have focused on improving the output using post-processing techniques com-

bined with classification. They have used smoothed image classification by
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averaging over segmented regions or by employing a conditional random

field (CRF) approach. Zhao et al.[6] proposed a contour-preserving CNN

method for semantic segmentation and post-processing to smooth the classi-

fication results. Marmanis and Fu [7] used FCN-based approaches for dense

classification and CRF to refine region boundaries. These methods have

used post-processing to fix, refine and smooth the boundary issues caused

by CNN models.

Therefore, the third hypothesis of this research work states: "Post-

processing techniques can significantly improve the output for detection

accuracy."

• Can any of the deep learning architecture-based features that are available

be converted into vectors to support the post-processing calculation to de-

termine functional geometrical building information for LoD information

extraction?

Kaiming He and a team of researchers developed Mask R-CNN [3], which is a

well-known and influential deep learning architecture, to explore Facebook.

This architecture outputs three primary detection features: bounding box,

mask and keypoint. Keypoint detection in images comes from a desire to

extract facial emotions and a heatmap from an image. A heatmap is a

vector that contains primarily zero values, and has the same height and

width as the input image. A keypoint is a positive pixel in the middle

of the image. Networks can then be trained to look for frequent patterns

around this keypoint and learn how to detect them in images. Each class

has its own heatmap to avoid keypoint clusters that can disrupt training.

Therefore, the fourth hypothesis of this research work states: "Detection of

the vectors performed by deep learning architecture-based can provide vital

information to help post-processing determine useful geometrical informa-

tion for building detection."
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1.3 Objectives

1.3 Objectives

The main objective of this PhD research is to extract high-level details of objects,

particularly buildings, using high-resolution satellite imagery with ground truth

data. This thesis develops deep learning neural network architectures that are

adapted to meet remote sensing requirements, such as detecting accurate shapes

and the geospatial information of objects in a large urban area. To attain this

aim, the following specific objectives are posed:

1 To review state-of-the-art methodologies, obstacles and results achieved

through various methods, which are compared and illustrated to identify

viable alternatives for automated urban objects extraction from contempo-

rary satellite imaging data.

2 To use less computationally demanding satellite imagery with ground truth

information to classify and help extract useful building information in the

form of accurate boundaries and direction information.

3 To devise architectures that are based on deep learning techniques to help

classify and extract localised contours around building boundaries.

4 To develop deep learning neural network architectures using VHR imagery

with ground truth data.

5 To develop post-processing techniques that can extract the directional vec-

torised information that is available in the building boundary images, which

should improve the accuracy of roof top detection.

6 To extract building orientation direction with a high level of accuracy using

these post-processing techniques.

7 To validate the trained deep learning neural network model using test im-

ages to evaluate unsupervised results for the building boundaries using these

test models.
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8 To validate the developing post-processing techniques on the extracted

building boundaries and confirm that the detection accuracies have im-

proved.

9 To suggest future directions of research.

1.4 Contributions

The main contributions of this research are that by only using existing VHR satel-

lite images with ground truth data, a deep learning neural network architecture

model was developed and used to propose viable solutions. The models achieved

an overall pixel accuracy of approximately 93%, and 94% for automated urban

extraction object. The contributions that have been derived from this study were

obtained by using a Mask R-CNN approach with novel post-processing techniques,

which included:

1 The first contribution is that the Mask R-CNN approach that is used in

this research differs in many aspects when compared to other contemporary

approaches. The proposed method uses (Mask R-CNN with recently devel-

oped deep and deeper backbone architectures sizes such as residual neural

network (ResNet)-50 or ResNet-101 has been used as the feature backbone.

The model with backbone size ResNet-50 contains two structural heads

that can predict the masks and the keypoints to exploit the directional in-

formation that can be learned during the training process from the building

images. As a result, high accuracy semantic segmentation of the buildings is

achieved compared with the previous GAN model. Moreover, by increasing

the model’s size by upgrading the backbone using the aResNet-101, a further

improvement in semantic segmentation of the building is achieved, which

increases overall pixel accuracy by approximately 93%, and 94%. Finally,

additional improvements are obtained by applying CRF-based on the final
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output for both model sizes, which increased the accuracy of the predicted

results accuracy by approximately 0.8%, and 0.9%.

2 The second contribution of this research is development of novel post-

processing techniques (method 1) to detect the semantic segmentation of

buildings to improve the shape of the building’s boundaries. Both methods

proposed rounds of snapping contour algorithms. Meanwhile, each round

selected reference lines based on all of the lines within the contour’s prox-

imity before, during and after the training setup. Following the detection of

these lines, another round of voting algorithms selects new references with

the maximum support in a particular direction or angle. Updated reference

lines serve as a new foundation for snapping contoured procedures to up-

date the initial round. As a result, the precision and overall accuracy of

building shape output are improved by 2%, and 0.5%, respectively, com-

pared with the output obtained by the GAN model, giving a total overall

pixel accuracy of 93.6%, and 94.5%.

3 The third contribution of this work is to provide novel post-processing tech-

niques (method 2), which will be divided into three stages. The proposed

algorithm will group the predicted keypoints and contour points at a cer-

tain distance in the first stage. Common reference points are found for the

building using the lines through the adjacent keypoints. The second stage

of the algorithm finds the orientation of the building by calculating the

North azimuth angle of each line and joining the adjacent keypoints aligned

to the North azimuth direction. The algorithm selects the reference that

supports the maximum number of angles based on the new reference point

using these angles. Finally, the third stage manipulates a point that can be

used as a fixed reference point for the keypoints selected to compare all of

the lines’ directions passing through these points and reference one with re-

spect to the azimuth direction. As a result, one or more of these lines, which
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contained the maximum number of angle directions based on azimuth, will

be selected and act as a known side of the building’s perimeters. When one

side of the building is defined, the other sides can be calculated as parallel

or perpendicular to the assigned reference line. The proposed algorithm

adopts a modified snap contour procedure and this significantly improves

the accuracy of the boundaries by approximately 5.8%, 2.4%, 3.8%, and 1%

of the Precision, F1-score, IOU and overall pixel accuracy, respectively, to

achieve a total overall pixel accuracy of 94.0%, and 95.2%. This approach

has helped achieve a competitive result when compared with the state-of-

the-art in the literature.

1.5 Organisation of This Thesis

This thesis contains six chapters, including the present chapter. A brief descrip-

tion of each of the chapters follows:

Chapter 2 - Research Background: This chapter reviews the literature re-

lated to automatic building detection techniques, focusing on common image

processing techniques that are based on advanced state-of-the-art AI-based ap-

proaches. This chapter also provides an overview of the deep learning and post-

processing techniques using the novel methodology that has evolved throughout

the research work described in this thesis.

Chapter 3 - Methodology: This chapter explains the philosophical approach

of the research methods that have been adopted and refined to develop a new ap-

proach to detect accurate building boundaries by using a powerful combination

of artificial neural networks and novel post-processing techniques to exploit the

vectorised information that is inherently available in satellite images of buildings.

This chapter presents the design of the research in the form of the experimental

setup and theoretical methodological framework. It also describes their working
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to justify several aspects of the proposed methodology. Finally, this chapter dis-

cusses some of the performance metrics that are used to evaluate the performance

of the proposed methods with respect to state-of-the-art techniques.

Chapter 4 - Results: This chapter presents the findings of the research. In par-

ticular, it discusses the results with respect to the improvements that have been

achieved. First, the results achieved using GAN-pix2pix based approaches are

discussed, together with the results attained from a combination of self-attention-

GAN (SAGAN) and post-processing using CRF and the proposed building bound-

ary refinement technique. This chapter also discusses the results obtained using

Mask R-CNN and various post-processing techniques involving CRF and the pro-

posed building boundary refinement techniques. The results are presented in the

form of building images to provide visual qualitative feedback on the boundaries

detected by the proposed algorithms, and also in the form of a comparison of

various performance metrics. Finally, this chapter will also provide some insights

related to the requirements of computational time and training behaviour.

Chapter 5 - Discussion: This chapter discusses the research findings and the

implications of the results, particularly the results obtained from utilising the

power of combined neural networks with the proposed post-processing techniques.

This chapter will also discuss the practical applications and limitations of this

research. In addition, it critically evaluates this study in terms of how well the

findings address the original research questions.

Chapter 6 - Conclusion and Future Work: This chapter presents the key-

points of this thesis by summarising what was achieved, highlighting the key

findings, and reviewing its contributions to the growing body of knowledge on

this subject. The conclusions drawn from the research findings are provided in

this chapter, together with some indications of how these findings might be useful

for both researchers and practitioners. Some recommendations for future work

are also given.
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Finally, this thesis includes appendixes for reference and to detail the software

setup, which includes a list of the various software programs that were used to

achieve the desired research work. A list of the research publications drawn from

this thesis are also included as an appendix.

1.6 Summary

This thesis consists of six main chapters, chapter one includes the research back-

ground and motivation for this research. chapter two presents the associated prob-

lems of the research, including the research hypothesis. chapter three presents

the scope of the research, and chapter four presents study objectives. chapter five

provides the scientific contribution of the present.
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Chapter 2

Literature Review

2.1 Introduction

Automatic building detection has emerged as an essential tool in a wide range of

applications, such as land utilisation mapping, change detection, urban planning

and disaster management. Meanwhile, automatic building detection system re-

search has evolved from traditional image segmentation processing on 2D images

to the complex 3D reconstruction of buildings using sophisticated 3D LiDAR,

multi-spectral, multi-imagery data. While the amount of information being pro-

cessed is heading towards “Big Data”, the spatial pattern has often benefited

from multi-core graphics cards. Further progress is also provided in the form of

sophisticated image processing and computer vision algorithms. Having a range

of data sources available in different forms (e.g., LiDAR, satellite imagery, in-

frared, DTM, point cloud, terrestrial laser scanning (TLS), synthetic-aperture

radar (SAR), etc.) can assist in identifying and visualising complex features by

providing faster early detection. Image processing and machine learning based

techniques rely on post-processing techniques and supervised methods in which

the dataset needs to be properly labelled for classification. Moreover, the lat-

est AI techniques provide us with an opportunity to work on unsupervised data

without labelling.

The research set out in this thesis focuses on utilising VHR remote sensing im-

ages, along with ground truth with advanced deep learning techniques, to provide

accurate automatic building detection. The rest of this chapter is organised as

follows. Section 2.2 reviews the relevant literature: Section 2.3 describes the satel-
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lite imagery dataset that will be used for the research work. Section 2.3 reviews

the various image processing and machine learning techniques in the literature of

automatic building detection. Section 2.4 reviews the artificial intelligence-based

techniques that are available in the literature on automatic building detection.

Finally, Section 2.5 examines the various parameters that have been used to

compare the performance of the different methodologies available for automatic

building detection.

2.2 Review of the Methods Literature

A systematic review of the literature was undertaken to explore all aspects of

automatic building detection techniques. This review begins with an exploratory

reconnaissance, involving a preliminary literature search that explored the meth-

ods and data sources that have been used with the satellite imagery of buildings

and their details (e.g., roofs, walls, etc.). The main topics that have been identified

are automatic building extraction, rooftop print extraction, and the boundaries

of planar segmentation and/or extraction of building geometry. This preliminary

search showed the possibility of sub-dividing the area of investigation and then se-

lecting the most relevant aspects for a detailed systematic review. A preliminary

search for relevant publications on automatic building extraction was conducted

using Google Scholar, Science Direct, Scopus, and Web of Science. An advanced

search of these databases was then conducted by categorising the keywords into

three-word groups and combining them using the Boolean operator ‘AND’, as

shown in Table 2.1. The search was conducted in two stages. In the first stage,

keywords associated with the model, objectives, and geographical extent were

used.
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Table 2.1: Keywords used in the advanced search
Data source Aims Technique

LiDAR imaging Terrestrial laser scanning Superpixels

Multi-spectral imagery Urban environment Image segmentation

Multi-sensor fusion 3D roof reconstruction Edge detection

Point cloud Automatic object extraction Colour histogram

digital terrain Building detection Clustering

Deep learning segmentation

Pattern recognition neural network

In the second stage, the model, objectives, methods, and analysis measures were

applied. The initial search results from each stage were renewed by applying the

following inclusion criteria:

• Publications in the English language only.

• Publications related to the reconstruction of buildings (as opposed to med-

ical usage).

• Publications from peer reviewed scientific journals in the remote sensing

field.

• The literature was updated where new papers in the above areas were pub-

lished during the time the research was conducted.

In this manner, 138 papers were excluded and 219 articles were retained for the

analysis. These articles were then grouped under intersections between the data

source, segmentation, and object detection, as outlined in Table 2.2. Content

analysis was used for all of the analyses conducted in this research. The next

steps in the search were undertaken with the objective of extracting pertinent

information on 3D modelling for building extraction. An examination of the

titles and abstracts of the articles was undertaken to identify data sources and

categorised under: (a) infrared (IR) with Red, Green, and Blue (RGB) indexed
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2.2 Review of the Methods Literature

maps; (b) multi-spectral imagery including fluorescence; and (c) LiDAR. This

examination narrowed the number of articles down to 194. The final step involved

a thorough reading of each article to analyse its content, focusing specifically on

automatic object extraction for many different dimensions as a complete system.

This step further narrowed down the number of relevant articles to 51, as shown

in Table 2.3.
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Table 2.2: Data sources for object- and pixel-based techniques.
Data source Segmentation and object detection-based technique

2D 3D Artificial

pixel-based spatial image-based voxel-based volume-based object-based neural Total

grouping pixels network

RGB a,b [8–26] [27–69] [70–93] – – [94] [95–110] 99 (45%)

Infrared with RGB c [111] – [112] – – [113] [114–120] 9 (4%)

Multi-spectral imagery [121–123] [124] [125–127] [128–130] [131] – [132–135] 11 (5%)

LiDARd [136–139] [1, 140–143] [144–146] [147–151] [152–158] [159–167] [168–171] 30 (14%)

LiDARS+RGB – [172–175] [176, 177] – [178] [179] [180] 8 (4%)

LiDARs+Multi-spectral [181, 182] [183, 184] [185–188] [189, 190] [191, 192] [193, 194] [195] 13 (6%)

All sources, including LiDARe [196] [197–199] [200–202] – – [203–206] [207–214] 15 (7%)

Other sensorsf,g [215] [216–218] [219–221] [222–225] [226–228] [229] [230–253] 34 (16%)

Number 28 (13%) 56 (26%) 37 (17%) 11 (5%) 12 (5%) 16 (7%) 59 (27%) 219 (100%)

a “Image segmentation”, “colour histogram”, and “edge detection” were more relevant for processing 2D images.
b “Superpixels” are now more relevant for processing 2D images.
c Many references for “urban environment” were associated to a greater extent with using (indexed maps) in GIS.
d Many references for “terrestrial laser scanning” were associated with building construction technologies and using LiDAR as a measurement tool.
e This category was more relevant to “3D roof reconstruction”, and the studies involved non-relevant data, such as synthetic aperture radar“SAR” images.
f “multi-sensor fusion” and “mutual information.” were not as relevant, and could not be used separately
f,g“SAR” and magnetic resonance imaging “MRI” sensors were included in the “other sensors” category to demonstrate the differences in processing methods.
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Table 2.3: Automatic building detection techniques that use multiple

data sources.
Processing methods Spectral (colour) Multiple images with LiDAR Publications

used bases in or Texture map Digital Elevation Modelling (DEM)

Discontinuity[d] or Similarity[s] and Digital Terrain Modelling (DTM) height map

Global thresholding ✓ ✓ ✓ [254–256]

Variable thresholding – ✓ – [257]

Multiple thresholding ✓ – ✓ [258–262]

Canny edge detecting ✓ ✓ – [263, 264]

Edge detection multi-methods ✓ ✓ – [265, 266]

Region growing methods ✓ ✓ – [267–271]

Splitting and merging methods ✓ ✓ – [272–276]

Hard clustering – ✓ ✓ [277–280]

Soft clustering ✓ – ✓ [281–283]

Watershed – ✓ ✓ [284, 285]

Partial differential equation – – ✓ [286]

Artificial neural network – ✓ ✓ [287–292]

Convolutional neural network-based ✓ ✓ ✓ [3, 7, 293–302]

All of the above results could be categorised in two main common factors, which

are: the first is that all publications used satellite imagery as their primary data

sources; the second is that all pixels classification methods can be classified as

discontinuity-based or similarity-based. The literature was further narrowed down

by focusing on studies that use VHR remote sensing images. The following section

will present different aspects of satellite imagery, accompanied by well-known

methodologies for pixel classification.

2.3 Satellite Imagery Data

Satellite images have been accessible by the general public since 1972, starting

with the launch of Landsat-1, which was initially known as ERTS-1 [303]. Various

types of sensors have since been introduced. SPOT-1 HRV was launched in 1986

and is still one of the most significant optical sensors from the perspective of sur-

vey and mapping because it enables stereo-coverage. Furthermore, SPOT-1 HRV

was designed to support topographic mapping along with 3D map construction
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[303]. IKONOS was launched in 1999. A number of imaging satellites have since

been launched that provide images with even better resolutions. The WorldView-

3 state-of-the-art satellite was launched in August 2014, which allows images with

a resolution of up to 31cm to be taken. These improvements have allowed satellite

imagery to become widely available for many uses, including urban planning, and

mapping and 3D modelling of cities. Furthermore, due to their increased avail-

ability, competition has increased among the providers of those images, leading

to lower costs for the users.

Pixel size determines spatial resolution. Furthermore, when selecting satellite

images for a specific application, it is necessary to reconcile the trade-off between

spatial and temporal resolution requirements [304]. For instance, a high tempo-

ral resolution is critical in emergency situations such as hurricanes and landslides

because emergency situations can quickly change, necessitating frequent obser-

vations throughout the day. Meanwhile, planning applications for urban infras-

tructure changes require spatial understanding over a longer time period [305], so

annual observations may suffice. Nonetheless, both of these examples may neces-

sitate high spatial resolution images to allow for a thorough examination of these

processes [306]. In other cases, such as monitoring rapidly changing situations

like the weather, a high temporal resolution is required. As a result, operational

weather forecasts require high temporal resolution satellite observations, even if

this reduces spatial resolution. As a result, each remote sensing application has

its own set of resolution requirements that must be met [307].

While the terms used for specific resolutions differ, a description of some the most

commonly used terms follows; as put forward by reference [303]. Satellite image

classification considers the resolution required, including low resolution of ≥30m

and < 300m, medium resolution of ≥ 5m and < 30m, high resolution of ≥1.0m

and < 5.0 m, and VHR of < 1m. Table 2.4 illustrates some of the high resolution

satellite optical image sensors that are now available for use. These sensors pro-
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Table 2.4: Commercially available satellite imagery and sensors

Satellite
Bands

Pan1/MS2

Resolution

Pan/MS(m)

Launch

Date
Organisation

IKONOS 1/4 0.82/3.2 1999 GeoEye Inc., (DigitalGlobe Inc),USA

Quick Bird 1/4 0.61/2.44 2001 DigitalGlobe, (DigitalGlobe Inc., 1992),USA

WorldView-1 1/- 0.45/- 2007 DigitalGlobe, (DigitalGlobe Inc.),USA

GeoEye-1 1/4 0.41/1.65 2008 GeoEye Inc.,(DigitalGlobe Inc.) ,USA

WorldView-2 1/8 0.46/1.8 2009 DigitalGlobe, (DigitalGlobe Inc.),USA

Pleiades-1A+&1B 1/4 0.7/2.8 2011 (Astrium Services) Airbus Defence and Space, France

KOMPSAT 3 1/4 0.7/2.8 2012 Korea Aerospace Research Institute, South Korea

SkySat-1 1/4 0.9/2.0 2013 Skybox Imaging, USA

SkySat-2 1/4 0.9/2.0 2014 Skybox Imaging, USA

WorldView-3 1/28 0.31/1.24 2014 DigitalGlobe, USA (DigitalGlobe Inc.)

1 “Pan :Panchromatic ”
2 “MS : Multispectral.”

vide imagery of the Earth’s surface by sensing reflectance in both the visible and

near-visible regions of the electromagnetic spectrum1. While only passive sensors

are used, this table clearly shows that the maximum resolution of civilian use

satellite imagery has now reached 0.31m, which was achieved by WorldView-3.

Given that VHR satellite images have been used to conduct this current research,

this is the main focus of the following table, despite the availability of higher

resolution data from other sources (e.g., aerial imagery or LiDAR2).

A single band can cover the visible parts of the electromagnetic spectrum. In

a double band spectrum for remote sensing, there are three or more bands in

the narrow wavelength range within the visible and near visible range, including

infrared and parts of the electromagnetic spectrum [309]. Satellite imagery is

beneficial for the extraction of the required information regarding urban segmen-

tation [310]. A wide range of free satellite imagery sources are available, such
1A multi-spectral image is made up of several channels, each of which contain radiation

measured in specific wavelength ranges for each pixel [308], and LiDAR.
2involves using sensors that transmit energy in a narrow frequency range as shown in Ta-

ble 2.3.
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as USGS, LandViewer, and NASA Earthdata Search. Satellite images are a rich

data resource because they provide three bands or more of representation of all of

the layout, including buildings and trees. In addition, many other useful aspects

are revealed in these images (e.g., shadows), which can be used as features for

the 3D representation of objects in the image [311].

The complexity of building recognition from satellite images can be attributed to

the wide variety of building shapes and sizes, various roof covering materials, the

existence of multiple objects of similar shapes on the satellite image, and also roof

overhangs that hide the actual building edge and interference from surrounding

objects and their shadows [311]. Acknowledging these issues, this research aims

to explore the development of effective building segmentation and recognition

methods using VHR remote sensing satellite images. The results will provide a

solid basis for further research in this area by shedding light on the level of detail

that is most suitable for automatic object extraction, building detection, and 3D

roof reconstruction in urban environments [312].

The dataset that is used in this research work comprises VHR satellite imagery

that is taken using state-of-the-art approaches, because these types of images

are typically used due to their high resolution, which includes all details in the

pixels, as well as spatial information location data, for example, true orthophoto

(TOP) These images represent an area of Vaihingen (a city in Germany), and

was taken by the German Association of Photogrammetry and Remote Sensing

Digital Government Policy Framework (DGPF). These datasets consist of very

high resolution true orthophoto (TOP) tiles and corresponding digital surface

models (DSMs) derived from dense image matching techniques. Furthermore,

unlike normal images, these are Near Infrared Region (NIR) images and differ

from normal RGB images because they contain a near infrared channel instead

of the normal blue channel. There are 33 images in the dataset, which are known

as tiles. Each tile represents a major area of the city. The tiles are roughly
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2500×2000 pixels and have been taken with a ground sampling of uniform distance

of 9cm.

2.4 Image Processing Techniques for Automatic

Building Detection

Several approaches can be used to solve the problems associated with rooftop

detection and building reconstruction segmentation. One of the most common

involves the detection of linear features in various images, the subsequent compar-

ison of these features, and the construction of a 3D model based on the results of

the comparison [266]. This approach can provide excellent results if information

from multiple images can be collected, it simply requires several images of the

same area. However, alternative approaches are needed because in many cases it

is not possible to collect such images, including because observation satellites can

have fairly orbital periods.

Another approach involves using the structural, contextual and spectral informa-

tion of the image [256, 257, 260, 265]. This image processing technique approach

assumes that only one image is used to detect buildings. Contour detection algo-

rithms are used to achieve the required result, which involve various modifications

to filter [308, 313]; in fact, the last two infamous methods can both be used for

edge detection. In addition, the colour and brightness of individual elements can

be analysed to further increase the accuracy.

Some algorithms find and conduct shadow analysis, which can lead to high ac-

curacy. However, their accuracies are low when compared to methods based on

LiDAR data analysis. Consequently, the use of these algorithms is not advised for

the 3D reconstruction of buildings. Another approach for the automatic recon-

struction of 3D building roof models has been presented by integrating airborne
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LiDAR data and optical multi-view aerial imagery [144]. A coarse-to-fine LiDAR

data segmentation is proposed to separate a building’s LiDAR points into a set

of roof planar segments, which involves initial segmentation using normal point

estimation and segmentation refinement. A point-based integration mechanism

is then proposed for 3D step line determination by incorporating the segmented

rooftop points and 2D lines extracted from the optical multi-view aerial images,

with which 3D roof models are reconstructed.

Another approach focuses on building a dense height matrix using digital terrain

modelling DTM and DEM. This requires the use of several images. In this case,

the height-map can be estimated directly, with sub-millimetre accuracy. Algo-

rithms based on this approach provide a high percentage of object detection and

a low probability of false positivesv[261, 277]. For machine learning, the trend is

usually that a higher percentage of object detection is more than 90% percent; in

addition, regarding the main matrix to compare the results when the false posi-

tive is measured and found to be low, the accuracy will be high, and vice versa.

The details of the matrix used are presented in Chapter Three.

As mentioned earlier, several segmentation methods can be used to automate the

extraction of buildings by drawing on multiple data sources; which are shown in

Table 2.2.

Threshold and clustering are the most commonly used techniques in the similarity

approach for LiDAR data, such as in [142]. These approaches have been taken into

consideration for automatic building detection and localisation. They have also

been compared and evaluated using high-spatial-resolution images and LiDAR

data with threshold-based to classify objects. The thresholding-based approach

is based on two threshold values: the first refers to the minimum height to be

considered as a building, which is defined using the LiDAR data; and the second

refers to the presence of vegetation, which is defined by the spectral response.

Object-based classification follows a standard object-based image classification
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scheme, such as segmentation and clustering, to extract the target features.

Following the detection process that was explained earlier, the DTM and DEM

can be processed to detect and reconstruct buildings. However, such generalised

methods for image extraction [267, 271, 289] provide rather inaccurate results.

In addition, the construction of an exact elevation matrix implies a complete

orientation of the images. Furthermore, the construction of the exact elevation

matrix means that the images are fully oriented (i.e., all the points correspond

between the image time requirements).

Automatic building detection using different sources of data (e.g., LiDAR, DTM,

DEM, multi-spectral data or fusion data) requires huge computation. In fact,

achieving 2D and 3D reconstruction needs different sources of data, which requires

high GPU power and computational time.

While many feature extraction techniques are available for 2D image processing,

Table 2.2 describes some of the 2D feature extraction and segmentation techniques

that are used in the automatic building detection literature.

2.4.1 Discontinuity-based Approaches

In a discontinuity-based approach, "the partitions or sub-division of an image is

based on some abrupt changes in the intensity level of images "[314]. Furthermore,

discontinuity-based segmentation usually involves either isolated points detection,

line detection or edge detection. Point detection is the simplest form of discon-

tinuity that is found in digital images, and these discontinuities can be detected

by running a mask over each point on a particular image [314] as can be seen

in Figure 2.1. Line detection is the next complex discontinuity approach, which

involves the use of two masks that will reveal the lines of pixels in a specific di-

rection. In other words, by using a line detector mask, it is possible to discover

all of the lines oriented in a certain direction that are one pixel thick. However,
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and most relevant to the current research, edge detection is the most commonly

used approach and it is very useful for detecting discontinuities in an image.

For most practical applications, isolated points and lines with the same pixel

thickness are rare; that is, in most cases finding an isolated point or line with the

same pixel value is almost impossible when referring to the image intensity and

contrast. Therefore, edge detection is commonly used for grey level discontinuity

segmentation. An edge forms the boundary between two areas with distinct

levels of intensity. For example, if an image changes from dark to white, then the

changes in intensity (first-order and second-order derivatives) can be examined

to find the intensity and gradient of the edge [314].

9∑
i=0

wi zi (2.1)

where:

- wi is filter weight ;

- zi is pixel magnitude

Edge detection and line extraction algorithms: Edges are areas where the

goal is to identify points in an image in which the image brightness changes sharply

or edges can characterise boundaries, and are therefore a problem of fundamental

importance in building detection. Edges in images are areas with strong intensity

contrasts, with a jump in intensity from one pixel to the next.

• The “Canny edge detector "[263, 264] is the most popular edge detection

technique and it uses a multi-stage algorithm to detect a wide range of

edges on images. It was developed in 1987 by John F. Canny. For the

Canny algorithm, a Gaussian filter is first applied for smoothness [79], and

then magnitude of the equation
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z1 z2 z3

z4 z5 z6

z7 z8 z9

(a) sub-image

-1 -1 -1

-1 8 -1

-1 -1 -1

(b) detection point

-1 -1 -1

2 2 2

-1 -1 -1

(c) horizontal line

-1 2 -1

-1 2 -1

-1 2 -1

(e) vertical line

-1 -1 2

-1 2 -1

2 -1 -1

(f) diagonal +45

2 -1 -1

-1 2 -1

-1 -1 2

(g) diagonal −45

Figure 2.1: Discontinuity approach common masks used to detection

objects.

The Canny edge detection algorithm’s process can be broken down into five

steps:

1-Use a Gaussian filter kernel of size 2k + 1 2k + 1 is given by Equation 2.3

to smooth the image and remove noise . 2-Identify the image’s intensity

gradients calculated by Equation 2.4. 3-Use gradient magnitude threshold-

ing or lower bound cut-off suppression to eliminate spurious edge detection

responses calculated by Equation 2.5. 4-Use a double threshold to identify

potential edges. consequently Track edge by hysteresis to complete edge

detection by suppressing all weak edges that are not connected to strong

edges.

G(x) =
1√
2πσ

e−
x2

2σ2 (2.2)

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (2.3)

Equations 2.2 and 2.3 from [79] show the Gaussian distribution in the 1D

and 2D cases, where σ is the distribution’s standard deviation. The idea

28



2.4 Image Processing Techniques for Automatic Building Detection

behind Gaussian smoothing is to use these distributions as a point spread

function to create a filtering mask, and then blur an image using convolu-

tion. Since images are typically stored as discrete pixel values, a discrete

Gaussian function estimation on the filtering mask would be required before

conducting the convolution.

m =
√

G2
x +G2

y (2.4)

θ = arctan
Gy

Gx

(2.5)

where:

- m is the magnitude and direction of gradient ;

- G is Gaussian filter ;

- Gx direction coordinates of the point being considered inX;

- Gy direction coordinates of the point being considered in Y ;

After that, no maximum suppression is applied to press out the pixels that

are not maximum. This results in edge pixels being provided.

• The “Hough transform-based edge detector ”[313] is a well-known edge de-

tection technique, which works on the principle of transforming the spatial

image data into parametric data. It then uses a voting scheme to select the

regions in the parametric space with the majority of points available. The

simplest form of the Hough transform finds lines and works by converting

the image pixels into the parametric space of (θ and p). As shown in Figure

2.2, three points have fallen on a single line available on image spatial (x,y)

plane maps on a single point (p0,θ0). Similarly, all of the points falling on

the line in (x,y) are mapped onto a single point (p0,θ0).

• Mean shift segmentation [301]: This method is similar to region split and

merge, which converts the image into homogeneous tiles based on the closest

neighbour’s pixel values and calculates the similarity inside each pixel group.
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Figure 2.2: Hough transform: (a) Cartesian coordinate, and (b) polar

coordinate system parameter.

This method is based on defining a window with a specific circular size

centred on a specific pixel in the image. The defined window is shifted based

on the mean value of the pixels’ intensity in the window. The calculated

mean value will be used to find the magnitude and direction for shifting

the original window for the next iteration. This is repeated until the result

converges and the vector value change is so small that it does not need,

effectively, to be shifted any more. Finally, the mean colour of the final

iteration will be assigned to the starting location of the window’s initial

location. The previous operation tries to smooth the image by finding the

mode inside a specific local region in the image, and it later applies the mode

value to the whole specific region. This technique leads to better results in

segmentation than using a thresholding method because it maintains the

edges of the objects and removes the noise that is not related to the building.

• Corner Detection Algorithm [297]: In images, a corner is a junction of

two edges, where an edge is a sudden change in image brightness. The

corner detection algorithms, such as the Harris corner detector, assume

that corners are related to local maxima at each pixel of the image. If the
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local maximum is higher than a certain threshold, then the pixel is declared

a corner.

• Enhanced snake model [112]: The snake model, also known as active con-

tour modelling using energy minimising, is a deformable spline that is influ-

enced by constraint and image forces that pull it towards object contours

and internal forces that resist deformation. Snakes may be understood as

a special case of the general technique of matching a deformable model to

an image by means of energy minimisation. In 2D, the active shape model

represents a discrete version of this approach, which takes advantage of the

point distribution model to restrict the shape range to an explicit domain

that is learnt from a training set. The enhanced snake model works based

on a dot that is selected within the object to be segmented using the snake

convergence techniques, along with providing a means to convergence to the

concave, as explained in the next section.

2.4.2 Similarity-based Approaches

Similarity-based approaches facilitate the generalisation of several machine learn-

ing and pattern recognition methods, and can support the development of a

framework for classification. Furthermore, these approaches focus on a group

of pixels with similar correlation characteristics. While discontinuity focuses on a

single area of interest and examines the neighbouring pixel to build up a picture,

similarity-based approaches start with a group of pixels that have some common

correlation regarding the area of interest (e.g., pixel value, colour or location). A

brief description of these approaches follows:

• “Pixel grouping process" [268, 270] is a fundamental technique that works

on connecting or grouping pixels that have similarity in one object. The
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similarity of pixels is decided based on the similarity of a pixel’s intensity

values compared to its neighbouring pixels’ intensity values.

• “Connected pixel analysis" [239] is a technique that looks at four or eight

neighbours of the central pixel and then puts the neighbouring pixel into a

set of similar pixels. In this way, various sets of pixels are grouped which

have similar intensity values. Similar values of pixels are usually available

on building boundaries. Hence, this technique is used to determine the

boundaries of the buildings.

• “Region growing approach" [267–271] is a region-based image segmentation,

also known as pixel-based image segmentation. It examines neighbouring

pixels for initial seed points and then calculates whether or not those pixels

can be added to the region.

• “Region splitting and merging method" [272–276] is a technique in which

an image is first subdivided into a set of arbitrary disjointed regions. The

regions are merged back if some similarity criteria are met. However, if the

similarity criteria are not met, then the regions are further split into more

small regions. A similarity check is again done and a decision of merging

the regions or further splitting into smaller regions will be made. The same

method is repeated until various regions having similarity check satisfied

are procured. In the case of buildings, most of the roofs will have similar

regions. Hence, after applying this method, roofs regions will be extracted.

• Region growing by voting [286] is a method that relies on a line extrac-

tion algorithm, such as the Hough transform (as explained in the discon-

tinuity approach). However, it works differently than the pixel grouping

method. The pixel grouping methods fail on high resolution images, such

as IKONOS. In the voting strategy, the algorithm focuses on the lines of the

buildings by taking a point on the roof of the building as a starting point

and then defines a small area around that point. The lines near the starting
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point are extracted using a line extraction algorithm and then, based on

their location and orientation, ‘voting’ is used to opt out the best line to be

used for building extraction.

• Watershed method [284, 285] uses a greyscale image that is based on catch-

ment basins and watershed lines.

• Morphology operations, such as differential morphological profile (DMP)

are also used in building detection [133]; DMP is used to supply image

structural information. Information related to the building’s assumed size

and position is inferred from the DMP. The DMP is also used to detect the

building’s shadow, which is consequently used to provide appropriate data

about the proposed size and position of the related building.

• “Clustering" is an unsupervised method that is used to classify the pixels of

an image into multiple determined numbers of classes. In hard clustering,

each pixel is allocated to one particular class, whereas in soft clustering a

probability is set for each pixel for every class. The pose clustering method

[315] performs object recognition by determining hypothetical object poses

and finding clusters of the poses in the space of legal object position. This

method is based on a voting process in which the majority position of com-

ponents in an edge are used to determine the position and location of that

edge. Pose clustering is also called hypothesis accumulation and generalised

Hough transform, which is characterised by a “parallel” accumulation of low

level evidence followed by a maxima or clustering step that selects the pose

hypotheses with strong support from the set of evidence. Various methods

can be used for the building extraction to be achieved.

For example, the following method has been used: first, effective segmenta-

tion of the building region was used to extract the components of a build-

ing roof’s outline from its background; and second, pose clustering is then
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used to adjust the direction of roof outline components and building corner

locations[280].

Also within the scope of clustering, the following approaches can be used:

• Threshold-based approach : The main process tools in similarity approaches

are briefly described in the following:

1 “Global thresholding" [254–256] is used to produce a binary image by defin-

ing a pixel intensity threshold: values below the threshold are changed to

zero and above the threshold set as one.

2 Variable thresholding [257] is a kind of adaptive thresholding in which the

value of the threshold varies for every sub-image; whereas multiple thresh-

olding marks multiple levels of thresholds, which sets the same value for

every pixel between certain thresholds.

3 Spectrum thresholding works in the frequency domain. Basically, the spa-

tial information available in the image is converted into a frequency or

multi-resolution spectrum with the help of Fourier analysis [316] or wavelet

transform based approaches [217, 218]. The power spectrum is computed

from the frequency domain and a threshold is used to separate out different

spectrum having similarity using filters. The filtered spectral information

is then transformed back in to spatial images and can be used further for

object detection.

At the end of the processing techniques for automatic building detection section,

there is a comparative analysis of various image segmentation techniques based on

the discontinuity-based approach and similarity-based approaches. To evaluate

these two approaches, with the state of the literature with respect to an important

aspect:
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• The performance of the algorithms or methods, in terms of computational

power and detection features accurately.

• The performance with complex images as well as complex data sources.

• The simplicity of using them in computer vision and applying post-processing

manipulation with machine learning outputs.

2.5 Artificial neural networks (ANNs) in Remote

Sensing: An Overview

In recent years, object detection tasks have become widespread. One explanation

for this may be the highly effective meta-algorithms that have resulted from AI

developments over the past decade, which have provided a foundation for several

further developments, such as CNN, FCN [4], Region-based Convolutional Neural

Network (R-CNN) [317], and so on. In the case of semantic segmentation, the

same reasoning applies. The convolution neural network from the FCN system

can be used it as a meta-algorithm for this problem. Since the publication of

the fully convolutional network FCN in 2015, nearly all semantic segmentation

methods have been based on some form of a fully convolutional network.

Given the strength of meta-algorithms, this thesis will demonstrate some of the

methods (e.g., segmentation) that will act as a meta-algorithm in terms of speed,

accuracy, and simplicity. These methods may be used in both future research

of instance segmentation and in many other applications of instance-level under-

standing.

Over the last few years, instance segmentation approaches have been commonly

classified into two groups. The first group includes the popular R-CNN methods,

which typically begin with a proposal for segmentation levels. Classifiers are then

trained to classify these proposals into somatic classes. The second group includes
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the successful FCN methods. They typically begin with full image somatic seg-

mentation results and then learn a particular split to divide them into individual

instances.

What exactly is Mask R-CNN? Simply, it is the best combination between the

two groups. Mask R-CNN is a fast R-CNN method that incorporates a FCN on

each region of interest (RoI). As a result, it serves as an algorithm for a complex

problem. Another advantage of Mask R-CNN is the aligning region of interest

(RoIAlign) process, which is an improved version of the regular region of interest

pooling (RoIPool) operation. The RoI-align operation does not struggle with con-

densation. Naturally, the regions must be mapped onto the future map, and then

linear interpolation must be used to extract a fixed-dimensional output. Because

there is no condensation, no information is lost in this phase. In contrast to the

popular RoIPool operation, the original RoIPool operation was not engineered

for segmentation. Because it is designed for object detection bounding box, some

pixel-to-pixel precision has been lost, such as in the case of using GAN. In addi-

tion, theRoIPool process divides the image into pixel-by-pixel alignment due to

the pooling, which results in some information loss. The ROI-Align operation

has resolved these issues (e.g., segmentation). Another aspect of Mask R-CNN

is that FCNs are naturally constructed in a pixel-to-pixel alignment fashion due

to fully convolutional head for predicting masks.Recent research has shown that

convolution neural feature representations are highly effective in large-scale image

recognition, object detection, and semantic segmentation [318–320]. A few extra

convolution layers on each RoI helps to predict a very accurate mask and simul-

taneously helped to resize these regions to identify objects with a softmax classi-

fier. Mask R-CNN is a meta-algorithm that can support several implementations

in various fields and applications that, due to the Mask R-CNN, can be com-

patible with many other advances, such as highlighting mining and many other

developments to the backbone architecture such as ResNet or residual neural net-

work NeXt (ResNeXt) has been used as the feature backbone [321], and feature
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pyramid network (FPN) has been used as the backbone in [322]. Mask-RCNN

achieved instance segmentation contribution results when used on the COCO

dataset, which are comparable to the first three winners of the cocoa competi-

tion in the previous three years. Given that Mask-RCNN is a meta-algorithm,

it can easily support the improvements of their architectures, such as replacing

the features from ResNet to ResNeXt [321]. The Mask R-CNN framework also

enhances object detection. The results of bounding box detection on the COCO

dataset are shown. When comparing RoIAlign activity to RoIPool with FPN as a

reference, RoIAlign increases by about one point. Due to multitask learning, the

training Mask R-CNN and the bounding box will see another round of one-point

improvement. However, some images are extremely difficult to segment because

(for example) several objects are surrounded by other objects in the same group,

which can be a complex case for semantic segmentation.

Disconnected objects are another problematic case that Mask R-CNN faces, which

can pose a problem for those mass loads that are dependent on grouping. Mean-

while, Mask R-CNN effects can detect and segment tiny objects in another ex-

ample. After seeing all of these outcomes, one may believe that rivalry has been

resolved, but this is not the case. There are also many failure events. For example,

the detection of masks can continue to fail if segmentation detection continues

to fail, then the detection of segmentation may also fail. Missing items and false

masks are another possibility. More importantly, understanding is not solved; for

example, a building may look similar to a large truck when viewed from above.

Mask R-CNN can easily be expanded to perform additional tasks, such as object

keypoint detection. As a result, the extension makes it much easier to display a

specific object’s keypoints as a single hot mask or ground-truth mask, and then

the Mask R-CNN framework can be used to execute this objective. In other

words, this approach is a single framework that can support bounding box detec-

tion, Mask segmentation, and keypoint detection, which meets the remote sensing

requirement mentioned earlier. The previous sections highlight evaluative short-
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comings with regard to spatial fusion, remote sensing, and big data for urban

modelling. In general, this review examines the current state of the research in

this area to identify the knowledge gaps and propose future research directions,

such as whether or not it is advisable to solve the problem using ANNs or ma-

chine learning. Machine learning is a process through which a machine becomes

capable of predicting required outputs for a given input, and ANN architecture is

used in the learning process. Overall, each ANN architecture consists of a num-

ber of layers. Each layer consists of multiple nodes, known as neurons, that are

connected with the following layer through weights. These weights are optimised

to the input map with a given output label during training or learning. In 1958,

the psychologist Frank Rosenblatt invented the first ANN, known as the Percep-

tron, which was intended to model how visual data is processed by the human

brain and how object recognition is learned. The Perceptron generated a lot of

excitement in machine learning research and related industries thanks to many

breakthrough results in areas such as computer vision (an AI field which trains

computers to interpret and comprehend the visual world) and image processing

(a method of performing certain operations on images to extract some useful in-

formation from them). Although the concepts of ANN and machine learning have

been around for a long time, they were not useful initially because of hardware

limitations. However, thanks to the advances made in hardware from the start

of 21st century, and especially after 2010, it is now possible to implement these

complex architectures. graphics processing Units (GPUs) can apply parallel pro-

cessing to a task to speed up the process and reduce the computational time. In

addition, hardware components can have huge amount of random access memory

random access memory (RAM).

38



2.5 ANNs in Remote Sensing: An Overview

2.5.1 Artificial Neural Networks (ANN) and Deep neural

networks (DNN)

Recently, computational advances, coupled with huge dataset availability, have

brought a promising new option to the ANN family, called DNN. Basically, DNN

is a subset of ANN. While ANN can be shallow or deep depending on how many

layers between input and output, DNN has multiple hidden layers (thus the ex-

pression deep);see the flowchart in Figure 2.3. Due to the availability of this

big data, efficient parallel processing hardware and parameter optimisation tech-

niques, DNN have shown promising potential in a variety of machine learning

tasks(e.g., pattern recognition). Furthermore, 2D and 3D feature extraction and

classification techniques have been used as supervised or unsupervised methods

using deep learning. Single or multi-data types and prepossessing have been used

(e.g., data-augmentation, RoI extraction, image cropping, etc.). The feature maps

are directly fed into a softmax classifier for classification before receiving the final

outputs.

2.5.2 Convolutional Neural Network (CNN)

CNN have been one of the most influential innovations in the field of computer

vision. They have performed much better than traditional computer vision and

they have produced state-of-the-art results. These neural networks have also

proven to be successful in many different real-life case studies and applications,

such as image classification, object detection, segmentation and face recognition.

Figure 2.4 shows a CNN, which typically has convolution layers, max pooling

layers and ReLU layers and a FCN for classification.
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Figure 2.3: Flowcharts of DNNs showing 2D and 3D feature extraction

and classification techniques using: (a) unsupervised method, and (b)

supervised method.

2.5.3 Region-based Convolutional Neural Network(R-CNN)

R-CNN is another technique that can be used for parts of images as an input

compared to a whole image. 40
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Figure 2.4: Typical CNN architecture

Further improvements have been made to R-CNN, namely fast R-CNN and faster

R-CNN. All of these techniques can be used for object detection, and therefore

for roof extraction from images. With the rapid improvement in methods for

object detection, R-CNN are supervised learning algorithm models that are used

for computer vision; more precisely, object detection. The primary purpose of

creating R-CNN is to produce bounding boxes that are based on the charac-

teristics class (e.g., car or buildings) that can identify an object segmentation,

classification, and localisation. Over the last few years, various R-CNN architec-

tural versions have been published. The following sections discusses some of the

leading architectural contributions that have been published.

• In November 2013, R-CNN starts by extracting RoI from an input im-

age using Selective Search. Each RoI is a rectangle that can represent the

boundary of an object in the image. However, there could be up to thou-

sands of RoIs depending on the model’s size. Each RoI is then loaded into a

neural network and generates an output features map. A variety of support

vector machine classifiers can be used to specify the type of object found

within each RoI’s detected output features[296].

• In April 2015, Fast R-CNN was developed by Ross Girshick et al. [297].

While the original R-CNN independently computed the neural network fea-
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tures on each of RoI, which is enormous in many cases, Fast R-CNN runs the

neural network input once on the whole image by using selective search to

generate the RoI. At the end of the network is a new method called RoIPool,

which slices out the generated RoI from the network’s output tensor, and

then reshapes and classifies it. This manner of R-CNN and FAST R-CNN

can be found across the whole input space, using selective search to deter-

mine RoI. However, the drawback of selective search is that it is a slow and

time-consuming operation, which affects the network’s performance.

• In June 2016,[3] developed an object detection algorithm that lets the net-

work learn how to detect and generate the RoI by itself. Instead of using a

selective search algorithm, they named this method Faster R-CNN.

• The final and main variation of the R-CNN family resulting from a recent

summit is called Mask R-CNN [290]. Object detection is a computer vision

task that involves localising one or more objects within an image and then

classification of each of these objects in the image. However, this challenging

computer vision task requires both auspicious object localisation to locate

and draw a bounding box around each object in an image and object clas-

sification to predict the correct class of the localised object. An extension

of object detection marks the specific pixels in the image that belong to

each detected object instead of using rough bounding boxes during object

localisation. This more complex version of the problem is usually referred

to as object segmentation or semantic segmentation.

Mask R-CNN builds on top of this by adding a third head, where it performs

classification and localisation. It also creates the instance segmentation mask

for a given RoI, which helps to vector and separate the pixels surrounding the

boundary of objects, and allows the keypoint to be extracted. The following

section analyses this in more detail.
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2.5.4 Mask R-CNN Architecture

Mask R-CNN builds upon the idea of Faster R-CNN. In the case of Mask R-CNN

[290], the first stage is identical to that of the Fast R-CNN. Here, the network

uses Region Proposal Network (RPN) to propose possible regions where objects

are likely to be present. In the second stage, along with bounding box and

object classification, the network uses FCNs to generate the segmentation mask

for each instance of the objects. For these segmentations, the network employs

a special operation called RoIAlign, which is responsible for generating pixel-to-

pixel instance segmentation. Each of these masks are of size m×m, thus allowing

the network to preserve spatial information about the objects. The loss on this

network is now on each of the sampled RoI, and is given as:

Loss(L) = Lcls + Lbox + Lmask + Lkps, (2.6)

where, Loss(L) total loss, (Lcls) classification loss, (Lbox) bounding-box loss,

(Lmask) segmentation mask loss and (Lkps) keypoint loss.

2.5.5 Generative Adversarial Network (GAN)

As discussed previously, there is a need to automate detection and reconstruction.

Deep learning can play a vital role in addressing this need. In 2014, a deep

learning technique known as GAN was introduced by Ian Goodfellow [298] and

his colleagues [292]. In this system, two neural networks competed with each other

in a game. This technique learns to generate new data with the same statistics as

the training set. For example, a GAN trained on photographs can generate new

photographs that look at least superficially authentic to the human observer.

Although initially proposed as a form of a generative model for unsupervised

learning, it has also proven useful for semi-supervised learning, fully supervised

learning and reinforcement learning. There are two parts to the GAN system, the

generator and discriminator, and both indulge in a game such that the generator
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rates the fake image and the discriminator checks whether or not it is fake. The

generator optimises itself to generate images as close to the label as possible

using a supervised approach, and the discriminator optimises itself to distinguish

between fake and real images. This optimisation goes on until the generator

starts generating images close to reality, which are not easily distinguishable by

the discriminator as fake. A deep learning approach to attain reconstruction in

an urban environment using GAN is very effective, as shown in Figure 2.5.

a b c

Figure 2.5: Sample from Vaihingen area 32 showing: (a) top mosaic

(b) ground truth and (c) the output using pix2pix GAN.

In simple terms, the discriminator is responsible for classifying the contents from

the generator as fake and the actual data/examples to be real. The job of the

generator is to generate samples that can fool the discriminator.

To mathematically present this idea, the generator takes a sample distribution z

and creates a sample x = G(z; θ(g)) that is parameterised on feature θ. The role

of the discriminator is to predict the probability D(x; θ(d)), which quantifies the

chance that x is real data.

As shown in Figure 2.6, new GAN papers are being published nearly every month

and researchers are becoming increasingly inventive in their approach to naming

them. This is the product of an intriguing experiment in which GANs were

compiled.
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This thesis will use different variants of GANs, which are dependent on the loss

function and the way that they are formed. The methodology chapter will de-

scribe the pix2pix GAN [299] and SAGAN-based [300], which will allow the

segmentation to be performed.
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Figure 2.6: Cumulative numbers of published papers contained gener-

ative adversarial network (GAN) [323].

2.5.6 A Critical Review of the State-of-the-Art in AI Ar-

chitecture for Object Detection

Object segmentation based methods lack the ability to provide semantic infor-

mation. Recently, many AI methods have been applied to provide better feature

extraction techniques, which can help to extract semantic building information

from satellite building images [324]. To extract good semantic and instance in-

formation, it is important to extract accurate geometrical information along with

accurate directional information. The following paragraphs highlight the most

famous examples of object based segmentation in timeline order:

Zhao et al. [6] has mainly focused on classifying the different types of classes (e.g.,
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car, buildings, tree, etc.) that are available in the image simultaneously. This

research has compared the results with FCN -based methods and concludes that

FCN alone is not suitable for building detection. Therefore, it proposes detecting

pixel wise features using CNN, and then detecting edges using spectral domain

segmentation and contour detection. It combines the pixel-wise features for de-

tecting CNN and contours these to generate edge preserving semantic segments.

A contextual graph model was built to capture the interrelationships between

different classes of objects. This work involved a contour-preserving strategy to

combine semantic labels and objects’ shapes, thus generating semantic segments.

This paper reports accuracy and kappa coefficients for Vaihingen and Beijing

datasets. In addition, it focused on multiple class classification by relying heav-

ily on simple statistics at the pixel-level, which is probably not suitable for the

recognition of complex objects such as buildings.

An end-to-end study was conducted on trainable deep convolutional neural net-

work (DCNN) for semantic segmentation with built-in awareness of semantically

meaningful boundaries [7]. The proposed method overcomes the issue of the loss

of high-frequency details by combining semantic segmentation with semantically

informed edge detection, thus making class boundaries explicit in the model.

This research proposes to use different combinations of networks and has pro-

vided results for three different DCNN architectures, as follows: (1) boundary

detection added to the SEGNET encoder-decoder architecture, 2) boundary de-

tection added to FCN-type model, and 3) setting up a high-end classifier ensemble.

Their best model achieved more than 90% overall accuracy on the International

society for photogrammetry and remote sensing (ISPRS) Vaihingen benchmark.

Although this research has provided a guideline for using building boundary in-

formation in finding meaningful boundaries, it utilised DEM information along

with image information. In addition, the proposed architectures are bulky and

need to be improved.
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A recent study [325] has applied Mask R-CNN for building segmentation which

improved the statistical analysis of binary classification, such as F1-Score, Inter-

section over Union also known as Jacard coefficient (IoU) and Precision, when

compared with other segmentation architectures, such FCN or You Only Look

Once (U-Net). Meanwhile, another study by Pham et al. [301]has focused on

extracting semantic features using keypoint. This study considers segmenting an

individual building by detecting several keypoints. The keypoints that are de-

tected are subsequently reformulated as a closed polygon, which is the semantic

boundary of the building.

A building is considered to have a set of keypoints [325, 326]. In the first step,

the feature maps are extracted using CNN, followed by the RPN, which slides

over the feature maps to generate candidate bounding boxes where buildings may

exist. For each bounding box, local features are acquired using RoIAlign. FCN is

then applied to the features, and it predicts the heat map of the keypoints. Once

the keypoints are extracted from the heat map, they are grouped into boundaries

in a geometric way. Finally, the buildings of interest are delineated with these

boundaries as a polygon map.

In addition another research study has proposed a three step process, which

is termed the multi-level context-guided classification (MLCG) method using

Object-based CNN (OCNN) for land cover classification [291]. During the first

step, objects with a fine boundary and high internal compactness are first seg-

mented as functional units using a multi-resolution segmentation (MRS) algo-

rithm. During the second step, the per-object classification is run by means of

MLCG based on OCNN. The contour-preserving objects are clipped from images

using a minimum bounding rectangle (MBR) mask policy. Object oriented con-

text patches are then produced by means of masking the windows with flexible

sizes on each object. At the same time, the object deformation coefficient is

derived during the object resize operation. It is then used as a supplement for

47



2.5 ANNs in Remote Sensing: An Overview

geometric characteristics for object discrimination. Finally, the deep independent

object features and contextual information (i.e., the features extracted from con-

text patches) are fused in the proposed OCNN. Instead of extracting features from

patches to represent objects, MLCG-OCNN utilises objects and context patches

as inputs.

During the third step, a CRF graph model is employed to explore the contextual

information of neighbouring pixels to further improve the classification results.

This work utilised OCNN CRF to provide object-level contextual guidance and

CRF to achieve pixel-level contextual guidance.

The proposed method of OCNN and CRF [292] claims to provide a superior

performance by extracting in reference to a contextual patch, which differs from

normal patches generated by CNN-based approaches.

In this research, achieving a proper patch size is a crucial task. Therefore, this

research utilised segmentation scale parameters (SSPs) in the MRS. This study

tested various SSPs parameters on Vaihingen and Potsdam datasets, and came

to an experimental value of 20 to 50 for Vaihingen images and 40 to 100 for the

Potsdam images, respectively.

Available edge information has been utilised for building detection, but classifi-

cation may also be needed [292]. This paper proposes a standalone end-to-end

edge-aware neural network (EaNet) for urban scene semantic segmentation. For

semantic consistency preservation inside objects, the EaNet model incorporates

a large kernel pyramid pooling (LKPP) module to capture the rich multi-scale

context with strong continuous feature relations. To effectively separate confus-

ing objects with sharp contours, a Dice-based edge-aware loss (EA loss) function

was devised to guide the EaNet to refine both the pixel- and image-level edge in-

formation directly from semantic segmentation prediction. This architecture uses

a combination of Conv pool network along with an encoder-decoder framework

based on LKPP network. The results have been reported using three datasets,
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which are: Cityscapes, ISPRS Vaihingen, and the WHU Aerial Building datasets.

This research proposed combining multi-scale object segmentation and boundary

refinement and achieved 80.9% IOU and 96.4% F1-score for building class with

the Vaihingen dataset.

The current research work has focused on exploiting boundary refinement in a

multi-scale object segmentation framework. However, it has been identified that

although the Mask R-CNN and CRF-based frameworks are computationally de-

manding, they can provide better results if precise bounding co-ordinates are

extracted along with the boundaries [292].

The use of CNN (a popular image dataset for image classification) to win the

ImageNet competition reduced the classification error from 26 to 15 [327]. In

addition, a range of ways have been developed to utilise CNN. For example, one

application [328] investigated the application of CNN for individual building ex-

traction from side-facing images extracted from Google StreetView, hence, open

sources from Google AIP style transfer pixel to pixel translate, without any ref-

erence style, were used. The results from Google Maps at a resolution of 512 x

512, with the model trained using images at 256 × 256 resolution, were run with

larger images convolutionally, and the contrast was adjusted for clarity.

Authors have proposed a unified and effective deep CNN-based approach for the

simultaneous segmentation of multi-class objects in images with large-scale vari-

ability in remote sensing [296], . They used a redesigned CNN feature extractor

to perform the detection. Pixel-based classification, or mapping using neural net-

works (which is the architecture U-Net), is clearly based on this kind of approach.

The architecture of the U-Net, as the name suggests, is a U-shape, where convo-

lution is done on the input image, which is then deconvolved to map an output

image. All of the architectures and techniques that have been discussed so far can

be used to detect or find rooftop information from images. Using an image-based

approach such as segmented-CNN has become possible, which uses whole or par-
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tial images as the input data. However, in this case, a huge number of images

are required for network training. Therefore, a compromise can be made by using

certain rules and a specific principle for the preliminary spatial clustering of pix-

els. This technique may be described as being based on ‘superpixels’. With the

transition to 3D, the situation becomes even more radical, given the increasing

number of pixels (which are called voxels in 3D).

Finally, given that the segmentation map alone is not sufficient to preserve the

sharp edges present in human-made structures, this thesis intends to add the

power of CRFs [302] to the principal architecture of Mask R-CNN to preserve the

building’s shape and geometry while generating the mask.

Consequently, predicting corner keypoints and refining the prediction using CRF

will allow the development of new algorithms that are able to predict the build-

ing’s geometry with high accuracy. FCN is used to generate a heatmap for each of

the keypoints and it extracts the points from the heatmap. The following section

presents the concept of CRF in more detail.

2.5.7 Conditional Random Fields - CRFs

A CRF is an undirected graphical model of a random variable X that describes a

sequential observation. In this graphical model, any random variable X belongs

to a set of labels L = {L1, L2, . . . Lk}. Any pixel u at position i will have to

pay an unary cost ϕu(Xu = xu|I) to assign a label of xi for pixel u in the image

I. The image I has a unique color assigned to each label. Panboonyuen et al.

[302] report that CRF considers the low-level information captured by the local

interactions of pixels and edges. In addition, their results show that this method

outperforms all of the baselines in terms of precision and recall.

This research examines how to implement a pairwise cost, which is the relationship

between the pixels and the object edge, and can be represented as ϕu,v(Xu =
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xu, Xv = xv|I). This cost function applies the Potts’ Model, which assigns zero

value when the labels are different and a certain value λ when the two labels are

the same. The energy and pairwise costs can now be combined to calculate the

total energy cost of the model, as follows:

E(x, I) =
∑
u∈V

ϕu(Xu = xu|I) +
∑
u,v∈E

ϕu,v(Xu = xu, Xv = xv|I) (2.7)

where E is the energy cost for the given configuration of x

CRF will then have to minimise this energy cost for the given configuration of

x. After the use of CRFs on the segmentation result, the final output was sat-

isfactory. However, the result was missing the structural rigidity that is present

within the buildings. Consequently, this thesis exploits the geometry present in

the segmentation to provide a better structure for the detected buildings.

2.6 Summary

The feature design of traditional remote sensing classification methods is typically

hand engineered. There are also have classifiers with a shallow structure and

architecture, usually with two separate yet complementary steps for carrying

out feature extraction and classification [329]. Feature extraction is conducted

using particular operators on local portions of the image, such as objects, regions,

image patches or super-pixels. The original spectral feature space is transformed

into compact and abstract representations, which can easily be separated using

a classifier [330]. These transformed spatial features can then be utilised, along

with the original spectra, to train certain types of supervised classifiers for tasks

such as supporting vector machine to understand the semantic content of the

imagery that is input [331]. A classifier’s performance is greatly influenced by the

transformations that are used and the resultant spatial features. Some typical
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examples of these kinds of operators are mathematical morphology [332], texture

descriptors [333], and oriented gradients [334]. Hand engineering features usually

involves a monotonous process of trial and error to extract and select features

[329]. Furthermore, hand-coded features are typically task specific and are only

useful to address a certain region or specific problem. In addition, using low-

level features followed by shallow classifier architectures is not effective enough

to mine the underlying semantics or functions because of the lack of high level

feature representations [335]. Therefore, to date, classification performance has

been limited with regard to the use of spectrally and structurally complex VHR

images.

Remote sensing classification methods, such as pixel-based machine learning meth-

ods (e.g., multi-layer perceptron (MLP) ,support vector machines (SVM), and

pixel-based random forest decision tree classifier (RF) followed by object-based

SVM acting as the object-based image analysis (OBIA) paradigm) are on the

same level as the existing deep learning methods (e.g., patch-based CNN; CNN

with segmented object averaging, CNN withCRF, and FCN with CRF). The use

of these classification methods requires satellite and aerial imagery as the input

data source, which are classified into several land use categories (e.g., buildings,

roads and trees). The accuracy range of pixel-based using MLPis 75% to 81%

[336, 337], which is comparable to pixel-based SVM at 75% to 83%, and pixel-

based RF at 74% to 83%. In comparison to pixel-based approaches, object-based

SVM has slightly higher accuracy, at 80% to 85%, because it takes the spatial

context into account. However, hand-coded features or rules are used for these

traditional methods, which is problematic because they are hard to design and

are based on the knowledge and expertise of the individual user.

Meanwhile, deep learning methods can automatically learn feature representa-

tions and they have shown promising performance outcomes in recent years. For

example, CNN offers a wider range of accuracy than traditional approaches, rang-

ing from by overall accuracy, at 85% to 88% [338]. However, there is a risk of
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losing spatial resolution and the edges of ground features may be blurred. Nev-

ertheless, the latest developments in deep learning methods have shown progress

with regard to these problems, including through post-processing (e.g., an ac-

curacy range of 82% to 86% of the CNN has been achieved by integrating the

segmented object’s averaging during the post-classification process). Patch-based

CNNs, along with CRF, are likely to further improve accuracy by using class spe-

cific probability distribution along the boundaries, with results achieving 85%

to 87% accuracy [302]. Attention is also being paid tospecial deep architecture

(SegNet) in the remote sensing community to conduct pixel-wise semantic la-

belling, which has shown at least 30% performance improvement accuracy range

[339]. These types of networks can be generalised as being fully convolutional

networks FCN that have different extensions, such as dilated convolution or CRF

post-processing, to conduct semantic segmentation. For FCN with CRF, the ac-

curacy range is 87% to 93%, and achieves > 90% overall accuracy on the ISPRS

Vaihingen (on average) for buildings [7].

In summary, the average accuracy of traditional pixel-based machine learning

methods and object-based methods is around 80%. Meanwhile, the majority of

the deep learning methods that have been reviewed here have reached an accuracy

of > 85% classification, on average. All of the currently available methods have

their own types of problems and challenges. Therefore, the goal of this research

study has been to develop novel deep-learning methods that increase the accuracy

of boundary classification to reveal the most accurate building detection, and

extraction and classification approaches.
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Chapter 3

Methodology

3.1 Introduction

The methods that used in this research are based on the review of the literature

and an exploration of previous research studies. The literature review highlighted

the need to utilise the vectorised information available from the building images to

achieve better performance measures for automatic building detection. This thesis

proposes to use of AI-based techniques to improve on the automatic detection of

building boundaries.

This research has reused and developed two models to perform image detection:

the first is GANpix2pix [299] which is one of the latest deep learning methodolo-

gies, and its variant attention-GANs; the second is detectron2 [340], which is used

as the Mask R-CNN to detect key-points, as well as for instance segmentation. For

the Mask R-CNN, two different backbone architectures (ResNet-50 and ResNet-

101) were used for the experiment. Both of the networks were pre-trained on the

ImageNet dataset. This thesis will also exploit the latest refinement output tech-

niques for deep learning. Furthermore, two novel post-processing techniques have

been developed, which extract and use vital information available from VHR im-

agery in the form of vectors that help to identify the inherent features of buildings.

The mask R-CNN that has been used is the latest and fastest deep learning

approaches. It combines the power of CNN, Region Proposal Network RPN and

a FCN to provide an accurate mask of buildings from satellite imagery. This thesis
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will also discuss some important key-points, which this research work proposes

to use to derive vectorised information for use in post-processing to modify and

improve on the detected contours. CRFs have also been used to smooth out any

random irregularities that may have been introduced by Mask R-CNN in the

detected contours.

Both the CNN- and GAN-based methods use the same concept involving the

use of ground truth information during the training of the deep artificial neural

network. While GANs provide faster results, the repetitiveness of the results are

not guaranteed when the images are resized and re-sampled. Accordingly, in this

scenario, Mask R-CNN provides better results. This thesis further evaluates the

proposed methods by examining two network backbones, namely: ResNet-50 and

ResNet-101.

3.2 Building Boundary Detection Methods

To recap, the following hypotheses have been defined in Section 1.2:

1 The first hypothesis of this research work states: "Satellite imagery data is

sufficient to provide accurate LoD information for roof top detection."

2 The second hypothesis of this research work states: "An architecture method

that is based on deep learning techniques can be used to classify and extract

localised contours around building boundaries using VHR remotely-sensed

images."

3 The third hypothesis of this research work states: "Post-processing tech-

niques can significantly improve the output for detection accuracy."

4 The fourth hypothesis of this research work states: "Detection of the vectors

performed by deep learning architecture-based can provide vital informa-
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tion to help post-processing determine useful geometrical information for

building detection."

Based on the literature review, and up to date state-of-the-art approaches in-

volving DNN, the experiments were conducted by taking two different machine

learning approaches: 1) GAN and 2) Mask R-CNN based network. The sections

that follow summarise the machine-learning techniques used in conjunction with

various contour refinement post-processing techniques to test the hypotheses.

3.3 Generative Adversarial Network GAN

GAN was initially applied to explore approaches to post-processing, as described

in the literature review. A large number of applications have since applied a

GAN architecture. This thesis will use several variant GANs, depending on the

loss function and the way that they are formed. The following sections describe

pix2pix GANs and SAGAN, which have been used to perform the segmentation.

This led to a clearer understanding of the detention processes, which forms the

basis for the next steps.

3.3.1 pix2pix GAN Model

This section demonstrates how to build and train a pix2pix (in some of the Liter-

ature it is called conditional generative adversarial network (GAN)), which learns

mapping from input images to output images, as described in the literature re-

view. The model is pix2pix by Isola et al. [341]. The architecture of the network

contains a generator with a U-Net-based architecture and a discriminator repre-

sented by a convolutional Patch GAN classifier (proposed in the pix2pix paper).

The network assigns a label (or class) to each input image in an image classifi-

cation task. However, in some cases, it is necessary to know the shape of that
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object, which pixel belongs to which object, and so on. In this case, assigning a

weight to each image pixel will be needed. The generator process connects the

layers by value weight between zero and one for each pixel through the generator

process. The weight contains the pixel value and something called bias value,

then the sigmoid function was applied to the final weight to increase the values,

which were close to one, and lowered the values, which were close to zero, as can

been seen in Figure 3.2.

This can formalised as Equations (3.1 and 3.2)
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(3.2)

where: x0 is the magnitude and direction of gradient; xm is Gaussian filter and

W (0) ∈ Rm×n.
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The optimism generated output when the result of the Equations ( 3.1 and 3.2 )

is equal or close to one, which happens when the networks have a well-connected

weight and reflect the predictions closed to authentic images. To evaluate the

generator results, it is necessary to calculate the error (in AI called log Loss). To

understand this idea behind, suppose there is actual label1 with a value of one

and assume the generator prediction G(x) 0.1; that means it is a lousy prediction

generated by the networks because the error was huge. on the other hand, if the

prediction G(x) = 0.9, that means the network is doing well. To formulate this

case with the notice of negative natural logarithm of 0.1 equal to 2.3 and 0.9

equals 0.1, representing the correct reflection of the predictions. Therefore GAN

used log-loss function to evaluate the prediction results as follows:

G(x)e = − ln(x) (3.3)

D(x)e = − ln(1− (x)) (3.4)

where: G(x)e loss function (error) from noise (prediction), and D(x)e loss func-

tion (error) from images. Figure 3.3 demonstrated this clearly, as seen in the

graph, negative natural logarithm of G(x) is significant increase the error when

the prediction value of x is close to zero and small when the prediction value of x

is close to one. The opposite with function D(x) in case of the error of the image.
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Figure 3.2: Sigmoid function

• Backpropagation
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G(x) = − ln(x)

D(x) = ln(1−D(x))
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Figure 3.3: Loss function diagram and sigmoid function

After training both discriminator and generator and evaluating this, the next step

is called backpropagation, which is mainly used to reevaluate and recalculate the

networks weighted to decrease the generator error by and increase the weighted

(x) as shown in Figure 3.4, as well as to decrease the discriminator error by

decreasing the weighted (x). To do this, GAN uses a gradient descent process,

which takes the first derivative of the log-loss function to calculate the gradient

direction of the most significant growth. Then, it takes a tiny step into the

negative of the gradient to find new parameters that decrease this error as much

as possible. after that, it goes forward pass calculating the prediction and then

calculating the error based on the previously defined log-loss. As a sequence, the

first derivative of the log-loss function for the whole network with new weight

has been calculated using the Chain rule. as a result, the perdition error will

improve, and the following step shows the first derivative of the log-loss function:
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Figure 3.4: Gradient descent process.

• Derivatives of Loss function (error) from images

Back propagation was used to track the weights, using the method gradient

descent, therefore it was necessary to apply the derivatives using the follow-

ing equations: Equations 3.1, 3.2, 3.3 and Equation 3.4 the following steps

to find the first derivatives of these equations using Chain rule :

∵ Equation 3.2, therefore :

D(x) = σ (x1w1 + b1 + x2w2 + b2 + .......+ xnwn + bn)

∂E

∂wi

=
∂E

∂D
· ∂D
∂wi

=
−1
D(x)

· σ

(
m∑
j=1

xjwj + b

)[
1− σ

(
m∑
j=1

xjwj + b

)]
xi

=
−1
D(x)

·D(x)[1−D(x)]xi

= −[1−D(x)]xi

∂E

∂b
=

∂E

∂D
· ∂D
∂b

= −[1−D(x)]

(3.5)

∴ the first derivative of Discriminator becomes:

E = − ln(1−D(x)) (3.6)
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3.3 Generative Adversarial Network GAN

∵ Equation 3.3, therefore:

∂E

∂wi

=
∂E

∂D
· ∂D
∂wi

=
1

1−D(x)
· σ

(
m∑
j=1

xjwj + b

)[
1− σ

(
m∑
j=1

xjwj + b

)]
xi

=
1

1−D(x)
·D(x)[1−D(x)]xi

= D(x)xi

∂E

∂b
=

∂E

∂D
· ∂D
∂b

= D(x)

(3.7)

∴ the first derivative of Generator error becomes:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (3.8)

min
G

max
D

(
Ex∼pdata [logD(x)] + Ez∼p(z)[log(1−D(G(z)))]

)
=min

G

∫
X

(
pdata(x) log

pdata(x)

pdata(x) + pG(x)
+ pG(x) log

pG(x)

pdata(x) + pG(x)

)
dx

=min
G

(
Ex∼pdata

[
log

2

2

pdata(x)

pdata(x) + pG(x)

]
+ Ex∼pG

[
log

2

2

pG(x)

pdata(x) + pG(x)

])
=min

G

(
Ex∼pdata

[
log

2 ∗ pdata(x)
pdata(x) + pG(x)

]
+ Ex∼pG

[
log

2 ∗ pG(x)
pdata(x) + pG(x)

]
− log 4

)
(3.9)

Optimal Discriminator in first term Equation 3.9:

D∗
G(x) =

pdata (x)

pdata (x) + pG(x)
(3.10)

∵ Kullback-LeiblerDKL
1 defined the difference between two references as a di-

vergence ratio of the probability distribution by:
1DKL is a mathematical statistics theorem, which is also called relative entropy.
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3.3 Generative Adversarial Network GAN

Theorem 1

KL(p, q) = Ex∼p

[
log

p(x)

q(x)

]
(3.11)

∴ Then Equation 3.9 becomes:

= min
G

(
KL

(
pdata,

pdata + pG
2

)
+KL

(
pG,

pdata + pG
2

)
− log 4

)
(3.12)

∵ in Jensen-Shannon’s theory 2 JSD(p, q) is:

Theorem 2

JSD(p, q) =
1

2
KL

(
p,

p+ q

2

)
+

1

2
KL

(
q,

p+ q

2

)
(3.13)

∴ Equation 3.12 Optimal Discriminator becomes:

= min
G

(2 ∗ JSD (pdata , pG)− log 4) (3.14)

Summary: the global minimum of the minimax game happens when:

when D∗
G =

pdata(x)

pdata(x)+pG(x)

(Optimal discriminator for any G)

when pG(x) = pdata(x) (Optimal generator for optimal D) (3.15)

Unlike normal GANs where a generator maps a random noise vector z into an

image y, G : z → y, conditional GANs map an observed image x and a random

noise vectorz into an image. The objective function for the conditional GANs

can be given as:

LcGAN(D,G) = Ex,y[logD(x, y)] + Ex,z[log(1−D(x,G(x, z)))] (3.16)

The pix2pix GAN introduces L1 distance into the loss function because it can

produce outputs that are close to the images sampled. Consequently, pix2pix

GAN is responsible for optimising the following objective function

G∗ = argmin
G

max
D

LcGAN(D,G) + λEx,y,z[||y −G(x, z)||1] (3.17)

2This is another method to measure the similarity between two probability distributions.
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3.3 Generative Adversarial Network GAN

3.3.2 Attention block with GAN (SAGAN )

Attention-based GANs are relatively new concepts and were first introduced by

SAGAN, which implemented non-local convolution networks. These networks are

based on the idea of self-attention and they allow the network to pass non-local

parameters that are present in the data.

Figure 3.5: The self-attention mechanism that is used in SAGAN.

The attention block is shown in the diagram above. This idea has been borrowed

from several papers. The primary focus is on the idea of transformers that was

originally proposed by Vaswani et al. [300]. SAGAN allows the network to

estimate the weights on one part by estimating from the position across the whole

area. In simple terms, attention allows the network to estimate the parts that

it should focus on. As a result, the network can learn non-local relationships.

Given that there are some relationships with the structure of the input samples

in the case city, the assumption is that the network will be able to figure out how

buildings are structured and where they are located.

In the original paper, for the self-attention mechanism (see Figure 3.6), the trans-

former represents the input in the form of a key K and value V pair. It then

uses a third representation of query to calculate the attention. The mapping from
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3.3 Generative Adversarial Network GAN

Figure 3.6: Overall block diagram representing SAGAN

query (Q) to the key-value (K − V ) pair produces the attention score:

Attention(Q, K, V) = softmax(
QKT

√
n

)V (3.18)

This attention function provides the foundation for GAN. In SAGAN, the query

and key are represented by f(x) and g(x), which compute the affinity between

pixels at locations i and j, while the value is represented by h(x), which computes

the representation of pixels at position i. This attention is also similar to the

previous equation 3.18. The inputs to f and g represent the features x ∈ RC×N .

We can visualise this similarity from the Equations that follow:

βj,i =
exp(sij)∑N
i=1 exp(sij)

, where sij = f(xi)
Tg(xj), (3.19)

where βj,i indicates the extent to which the model attends to the ith location

when synthesising the jth region. Here, C is the number of channels and N is the

number of feature locations of features from the previous hidden layer.

oj = v

(
N∑
i=1

βj,ih(xi)

)
, h(xi) = Whxi, v(xi) = Wvxi. (3.20)

In this formulation, Wg ∈ RC̄×C , Wf ∈ RC̄×C , Wh ∈ RC̄×C , and Wv ∈ RC×C̄

are the learned weight matrices, which are implemented as 1×1 convolutions.

Building on this idea, this thesis introduces a new architecture that adds an

attention unit to each of the upstream layers in the U-Net Figure 5.1. This new
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3.3 Generative Adversarial Network GAN
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Figure 3.7: SAGAN uses the mechanism of attention-block during up

and down-samples of generator the training setup.

architecture allows the network to attend to the required part. The detail is

shown in the following .

Finally, the loss function LS-GAN is used to train the model, which is given as:

min
D

VLSGAN(D) =
1

2
Ex∼pdata(x)

[
(D(x)− b)2

]
+

1

2
Ez∼pz(z)

[
(D(G(z))− a)2

]
min
G

VLSGAN(G) =
1

2
Ez∼pz(z)

[
(D(G(z))− c)2

]
,

(3.21)

where a denotes the labels for fake data, b denotes labels for the real data, c

denotes the value that G wants D to believe for fake data.

The results obtained from the GANs are stochastic in nature. This means that
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3.4 Mask R-CNN

they are not suitable for the task of remote sensing, where the building location

barely changes. Consequently, this thesis goes on to utilise the state-of-the-art

methods on image segmentation, using Mask R-CNN. The issues mentioned above

will be demonstrated in more detail in the experimental setup section.

3.4 Mask R-CNN

Mask R-CNN is a region-based CNN that builds on the faster R-CNN, which is

is an object detection architecture that detects object present within the image

in two stages. In the first stage, the model uses the RPN to detect the possible

locations of the objects and to predict a bounding box for the objects. The

second stage extracts features from the box using a method called as RoIPool,

which performs the required classification and regression of the bounding box.

Mask R-CNN builds on this by adding a third head, which not only performs

classification and regression but also creates the segmentation mask for a given

RoI (as can be seen in the architecture section).

3.4.1 Architectural Details

As mentioned earlier, Mask R-CNN builds on the idea of Faster R-CNN. In the

case of mask R-CNN, the first stage is identical to that of Fast R-CNN. Here,

the network uses RPN to propose possible regions where objects are likely to be

present. In the second stage, along with bounding box and object classification,

the network uses FCNs to generate the segmentation mask for each instance of

the objects. For these segmentations, the network employs a special operation

called RoI-align that is responsible for generating pixel to pixel segmentation.

Each of these masks are of size m×m, which allows the network to preserve the

spatial information.
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3.4 Mask R-CNN

Figure 3.8: Architectural details of Mask R-CNN, showing how the

network uses FCN to generate a heatmap at the top of the Architecture

head.
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3.5 Post-processing Techniques

In this research, one extra step is added along with the segmentation map to

detect corners as keypoints. The idea here is to preserve the shape of the building

along with its geometry. However, the segmentation map alone is not sufficient

to preserve the sharp edges that are present in man-made structures, such as

buildings. Consequently, predicting corner keypoints will help developed a new

algorithm that can estimate the geometry of the building. To do so, the network

uses FCN to generate a heatmap for each of the keypoints. It then extracts the

points from the heatmap, as can be seen in Figure 3.8 and it will be described in

more detail in the experimental setup of the model.

3.5 Post-processing Techniques

DontPrintSemicolon

A man-made building generally follows a rigid geometrical structure. Conse-

quently, segmentation masks for buildings are mostly rectangular or a regular

shape, and are suitable even if the angles differ. Even in other normal cases, the

buildings will have a definite and standard building structure that is generally a

well-known practice. This narrows the entire shape of a building into a smaller

space, where the task will be to estimate a path that allows us to maintain this

shape. To navigate the shape of the building, it is desirable to know the contours

of buildings and their major corner points. Current state-of-the-art segmentation

networks are able to identify the locations of buildings and their segmentation

mask in a given image. With this information, it is easier to get the contour of a

building. However, it may not maintain the rigid geometrical structure in terms

of the shape and area of the final output.

Allowing the neural network to predict major keypoints is a considerable design

factor because it can provide directional constraints for algorithms to search for a

suitable building shape. This rationale is the motivation to propose a snapping al-
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3.5 Post-processing Techniques

gorithm, which is capable of snapping a contour into the appropriate shape of the

building. The algorithm uses its contour points and predicted keypoints to navi-

gate through the 2D space, while creating an approximate shape of the building.

This section describes the working of CRF and the snapping algorithm. It also

describes the necessity to modify the snapping algorithm to include keypoints,

such as the corner points of a building.

3.5.1 Using Conditional Random Fields

In this graphical model, a vertex V can be viewed as an image pixel and an edge

E can be viewed as a node pair for which the pairwise cost is defined. This means

that we can now combine the unary and pairwise cost to calculate the total energy

cost of the model, as follows:

E(x, I) =
∑
u∈V

ϕu(Xu = xu|I) +
∑
u,v∈E

ϕu,v(Xu = xu, Xv = xv|I) (3.22)

where X = random variable that describes sequential observations

θC = angular threshold for corner point

Then, CRF will have to minimise this energy cost for the given configuration of

x. After the use of CRF on the segmentation result, the final output was satis-

factory. However, the result was missing the structural properties present within

the buildings, such as shape and area. Therefore, CRF alone is not sufficient to

meet this study’s objectives. Therefore, another method to exploit the geometry

present in the segmentation is proposed to better structure the detected buildings.
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3.5 Post-processing Techniques

3.5.2 Proposed Snapping Algorithms

When dealing with structures, their geometry is a vital piece of information be-

cause it allows engineers to properly estimate the size and shape of the building.

Therefore, it is necessary to improve the results after using CRF and propose

a new post-processing algorithm that is able to properly estimate the shape of

the buildings. This thesis explains how snapping occurs on a given set of con-

tours, how keypoints in a building can be exploited to infer a proper shape of

the building, and how the orientation of the building can be estimated from the

azimuth. The snapping algorithm works on a single instance of the building’s

contour. Therefore, the snapping is specific to the correctly classified building.

Snapping Algorithm, Method 1

The snapping contour algorithm that is used in this thesis exploits the line seg-

ments in the building’s region to improve the shape of the predicted contour.

First, the method selects a reference line that is based on all of the lines that

are within the proximity of the contour. After detecting these lines, this method

then employs a voting algorithm that selects a reference with maximum amount

of support in a particular direction or angle (αR). These reference lines provide

the basis to snap the contour into the proper shape of the building. The motiva-

tion to use the reference line is to orient the the shape of contour to the axis of

the building. This reference line acts as the bounding condition to the building,

which limits the search space for tuning the shape of the building.

This work defines a procedure called FixContour() that fixes the shape of the

building based on the reference line and a contour. This procedure first sorts the

points of the contour such that the initial point will have the lowest value in terms

of y_coordinate. In the case of a tie, the algorithm breaks the ties by taking the

point with lowest x_coordinate.
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The algorithm then loops through all of the contour points, taking three consecu-

tive points in circular fashion. Considering a, b, and c as these three consecutive

points, the algorithm finds the direction from a to b, and from b to c. It the

proceeds in an anticlockwise direction and checks whether a given point b is a

corner point or the a point. As it moves along the anticlockwise direction, if the

direction of a, b, or c forms a clockwise angle, then it marks point b as a corner

point, and otherwise b is an edge point. It then calls a procedure that snaps

the point b and c to a new point based on this information. Once these points

are updated using the snap() procedure, at the end of every loop it appends the

point b into the list new_ contour. The algorithm finally returns the list as shown

in Figure 3.9.

(a) (b)

Figure 3.9: The algorithm’s mechanism plot:(a) Row points surround-

ing target mask (green square); colours show different point direc-

tions.(b) Algorithm procedure using cross-product method to elimi-

nate and accept point with high voting.
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Method 1 Algorithm 1. 1: FixContour()

Procedure FixContour(contour, line):

Data: contour, a list of points representing contour line

Result: new_contour, a list of updated contour points

begin

1 Sort the contour so that the first point is the point with lowest value

of ycoordinate

2 Create a list new_contour to hold new points

3 for i = 0; i ≤ (no. of points); i++ do

4 take a, b, c as i, (i+ 1) and (i+ 2) point in the contour

5 calculate direction = (c− b)× (b− a)

6 if direction > 0 then

7 b ← snap(b, a, line)

8 update (i+ 1) point ← b

else

9 c ← snap(c, b, line)

10 update (i+ 2) point ← c

end

11 append b to the new_contour

end

end

The important aspect is how the algorithm in each loop checks for the direction

of consecutive lines to snap the line inward or outward based on the direction of

consecutive lines. The idea here is to allow the algorithm to form sharp edges and

corners because they are responsible for reflecting the structure of the building.

The algorithm FixContour() fixes the output as first stage to fixed,and refine

edges and corner,then in second stage a special algorithm called snap() using the

as reference line . This method is responsible for altering the points of consecutive
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lines to align them in such a way that it either forms a corner or an edge.

The procedure snap() snaps point q into the line through point p. To do so,

the snap() first finds the lines passing through the point p, which is parallel(l1)

and perpendicular(l2) to the given line(l). It then proceeds to find the line(l0)

passing through pq. Once these lines are found, it computes the slope of each

line and aligns the line (l0) through pq into the line that matches its slope. If

(l0) aligns with (l1), then the algorithm selects (l1) as a reference, and it selects

(l2) otherwise. It finds the perpendicular line to a reference line passing through

point q, and finds the intersection point (ip) of the perpendicular and reference

line. It then checks the distance of ip and q, and moves q to the point that splits

the line through ip-q in certain ratio as shown in Figure 3.10.

Figure 3.10: The initial stages of the target coordinate points selection

using Method 1.
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Method 1. Algorithm 1. 2: snap()

Procedure snap(q, p, line, Dthresh, Rn, Rf):

begin

1 Find the line l1 passing through the point p on the contour which is

perpendicular to the given line(l)

2 Find the other line l2 passing through the point p on the contour

which is parallel to the given line(l)

3 Find a line l0 passing through point p and point q

4 Calculate the slope of lines l0, l1, and l2 as θ0, θ1 and θ2

5 if ∥θ0 − θ1∥ < ∥θ0 − θ2∥ then

6 Find the line temp passing through q and perpendicular to l1

7 Use this line temp and l1 to find the intersection point ip

else

8 Find the line temp passing through q and perpendicular to l2

9 Use this line temp and l2 to find the intersection point ip

end

10 Calculate the distance d from point q to point ip

11 if d < Dthresh then

12 ip ← point between ip and q that splits the line ip-q in ratio Rn

else

13 ip ← point between ip and q that splits the line ip-q in ratio Rf

end

14 return ip

end

Even following through this algorithm, the algorithm may not respect the ori-

entation of the given set of three-consecutive points, because three points will

support controlling the direction, as two of the points can control the voting di-

rection based on the previous points in a repetitive process. Therefore, this work
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proposes another algorithm that provides an improvement over the snapping al-

gorithm, which can be seen in the following section.

Updating Snapping Algorithms, Method 2

As a new updating of Method 1, using the key-points predicted by the Mask

R-CNN improves the result from the predicted fixed contour. The new procedure

FixContourV2() respects the properties of the building. This updated procedure

seeks to find the position of the point c, based on the point b. Consequently, it

allows the procedure to expand the line in an outward direction with respect to

the contour rather than an inward direction. This procedure is able to obtain

sharp angles on the corners and straight lines on the edges. For a point to be a

corner, the given set of points {a, b, c} should form a perpendicular at b; while

for b to be an edge, the given set should form co-linear points. The proposed

Algorithm snapV2() is similar to snap(), the only difference is the comparison

to the reference line as can be seen in Figuer 3.9. In the updated version, the

comparison is omitted because it checks the alignment with a reference using a

different procedure.
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Method 2. Algorithm 2. 3: FixContourV2()

Procedure FixContourV2(contour):

Data: contour, a list of points representing contour

Result: new_contour, a list of updated contour points

begin

1 Sort the contour so that the first point is the point with lowest value

of ycoordinate

2 Create a list new_contour to hold new points

3 for i = 0; i ≤ (no. of points); i++ do

4 take a, b, c as i, (i+ 1) and (i+ 2) point in the contour

5 calculate ∠ABC

6 find reference line ref

7 find l through b and c, and check it’s alignment with reference line

ref

8 if l aligns with ref then

9 find line lb parallel to ref passing through b

else

10 find line lb perpendicular to ref passing through b

end

11 find ip of perpendicular to lb passing through c.

12 calculate direction = (c− b)× (ip− b)

13 if direction > 0 and ∠ABC is corner or edge then

14 b = snapV2(b, c, line)

15 update (i+ 1) point ← b

else

16 c = snapV2(c, b, line)

17 update (i+ 2) point ← c

end

18 append b to the new_contour

end

end
76



3.5 Post-processing Techniques

.

b =


corner, if ∥θb − π/2∥ ≤ θC

edge, if 0 ≤ θb < θE or

π − θE < θb ≤ π

where

θb = ∠ABC

θC = Angular threshold for corner point

θE = Angular threshold for edge point

Ideally, it is desirable for θC and θE to be equal to zero

(3.23)

Method 2. Algorithm 2. 4: snapV2()

Procedure q,p,line, Dthresh, Rn, Rf :

begin

1 Find the line lprl passing through the point p on the contour which is

parallel to the given line(l)

2 Find the other line lprp passing through the point q on the contour

which is perpendicular to the given line(l)

3 Use lprl and lprp to find the intersection point ip

4 Calculate the distance d from point q to point ip

5 if d < Dthresh then

6 ip← point between ip and q that splits the line ip-q in ratio Rn

else

7 ip← point between ip and q that splits the line ip-q in ratio Rn

end

8 return ip

end
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3.5.3 Determining Building Orientation

The snapping algorithm requires a suitable reference to snap the point in the

contour to a new location. Therefore, it is necessary for the reference to be as

robust as possible. A good reference will be able to tell the orientation of the

building and also acts as a single point of reference. By considering the azimuth or

vertical to be a reference, the directional property of the building can be inferred.

This directional property allows the direction of the building’s outlines to be

identified. It is only possible to navigate the contour to fix its shape with the

proper directional orientation of the building lines. Thus, finding a good reference

is a key-part of the solution to estimating the shape of the building.

The FindReference() procedure groups the predicted key-points along with the

contour points. It then scans through the points and groups them at a certain

distance, dmin. This ensures that the key-points are not cluttered and are well

separated. It then sorts the key-points according to the clockwise direction, and

proceeds to find the reference of the building using the lines through the adjacent

keypoints.

To find the orientation of the building, the algorithm calculates the inclination

(azimuth) of each line joining the adjacent keypoints with respect to North (i.e.,

vertical axis). Therefore, a single point of reference is obtained that can be used

to compare the inclinations of all of the lines. Using these angles, it selects the

reference that supports the maximum number of angles. It starts at angle A, and

calculates support for this angle under the threshold θAz. If the angle A supports

maximum azimuth angles, it then selects the algorithm and otherwise it proceeds

with a new candidate as shown in Figure 3.11.
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Method 2: Algorithm 2. 5: FindReference()

Procedure FindReference(list of azimuth angles, θAz):

Data: list consisting the azimuth angles of lines in the contour; θAz angle

under which the reference is consider to be valid

Result: A line representing the orientation of the building.

begin

1 create a list of angles from (0 to 90)

2 create a table that holds angle, corresponding support as well as error

3 initialise all supports as well as error in the table to 0

4 for θa in list of angles do

5 for θaz in list of azimuths do

6 diff = ∥θaz − θa∥

7 if diff ≤ θAz then

8 Errorθa ← Errorθa + diff

9 Supportθa ← Supportθa + 1

end

end

10 From the table select reference with lowest error. (In case of ties,

increase the angle precision of the two lowest estimates and

perform operation from 3-9)

end

11 Using the angle estimate the equation of line through origin as

reference line
end
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(a) (b)

Figure 3.11: Demonstration of the building angles with different

colours: (a) similar angles with respect to the north azimuth have

the same colour; the high-voting angles represent the orentation of the

building. In (b), the similarity represents the parallel outlines of the

perimeter.

3.6 Experimental Setup

This section outlines the experimental setup followed in the study. It provides

information on the inclusion criteria for issues in the study, what the parameters

were, and how they have been tested. This section then describes each model’s

input variables and parameters, and it explains why they were chosen for the

purposes of this study. The tool used for data augmentation is also represented

by the following mathematical procedures to carry out post-processing. This

section also presents the methods used to analyse the data. Finally, the technical

issues observed in the process are also discussed.
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3.6.1 Study Area and Data Source

This research uses a dataset of VHR satellite imagery that shows exactly how the

images were measured. These images represent an area from the Vaihingen city

in Germany and are taken by the German Association of Photogrammetry and

Remote Sensing (DGPF). Unlike normal images, these images are Near-Infrared

Region (NIR) images. They differ from normal RGB images because instead of

the normal blue channel, the images contain a a near-infrared channel; as shown

in Figure 3.12. In the dataset, there are 33 patches (of different sizes), which

are called tiles. Table 3.1 contains more detail about all of the patches, each

consisting of a true orthophoto (TOP) extracted from a larger TOP mosaic. Each

tile represents a major area of the city, as shown in Figure 3.12. For this study,

the Vaihingen dataset was chosen as a case study area. The urban and suburban

regions of Vaihingen consist of three test areas for which reference data for various

object classes are available, representing a valid test for classification algorithms.

The tiles are roughly 2500 × 2000 pixels and are taken with ground sampling

distance of 9cm. For each tile in the dataset, the challenge community provides

digital surface models (DSM) images and also semantic labels for the object in the

scene. The dataset has six classes that have been defined as, impervious surfaces

(RGB: 255, 255, 255), building (RGB: 0, 0, 255), low vegetation (RGB: 0, 255,

255), tree (RGB: 0, 255, 0), car (RGB: 255, 255, 0), and clutter/background

(RGB: 255, 0, 0). This work is completely based on a 2D approach as shown

in Figure 3.13. There are three RGB bands in the TOP 8 bit TIFF files, which

correspond to the near infrared, red and green bands of the camera. The DSM are

TIFF files that have one band, with the grey levels that correspond to the DSM

heights encoded as 32 bit float values. As the TOP and the DSM are defined on

the same grid, it is not required to consider the geocoding information throughout

the processing.

Most of the other prevalent works extract the features from the 3D spatial in-
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formation as obtained in the form of DSM images. However, this work relies

completely on the tiles and segmentation map to perform the classification and

feature extraction for the building class.

Figure 3.12: Study area of each patch in the Vaihingen dataset3

Training a neural network architecture requires a significant amount of data

pre-processing and feature engineering. This section will summarise the pre-

processing steps that are required to train the network.

(a) Orthophoto (b) DSM (c) Ground truth

Figure 3.13: Sample of semantic object classification contest patches
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Table 3.1: Details of patches of the Vaihingen
TOP DSM Nrow Nrow GT

top_mosaic_09cm_area1 dsm_ 09cm_matching_ area1 1919 2569 top_mosaic_ 09cm_ area1

top_mosaic_09cm_area2 dsm_ 09cm_matching_ area2 2428 2767

top_mosaic_09cm_area3 dsm_ 09cm_matching_ area3 2006 3007 top_mosaic_ 09cm_ area3

top_mosaic_09cm_area4 dsm_ 09cm_matching_ area4 1887 2557 ====

top_mosaic_09cm_area5 dsm_ 09cm_matching_ area5 1887 2557 top_mosaic_ 09cm_ area5

top_mosaic_09cm_area6 dsm_ 09cm_matching_ area6 1887 2557 ====

top_mosaic_09cm_area7 dsm_ 09cm_matching_ area7 1887 2557 top_mosaic_ 09cm_ area7

top_mosaic_09cm_area8 dsm_ 09cm_matching_ area8 1887 2557 ====

top_mosaic_09cm_area10 dsm_ 09cm_matching_ area10 1887 2557 ====

top_mosaic_09cm_area11 dsm_ 09cm_matching_ area11 1893 2566 top_mosaic_ 09cm_ area11

top_mosaic_09cm_area12 dsm_ 09cm_matching_ area12 1922 2575 ====

top_mosaic_09cm_area13 dsm_ 09cm_matching_ area13 2818 2558 top_mosaic_ 09cm_ area13

top_mosaic_09cm_area14 dsm_ 09cm_matching_ area14 1919 2565 ====

top_mosaic_09cm_area15 dsm_ 09cm_matching_ area15 1919 2565 top_mosaic_ 09cm_ area15

top_mosaic_09cm_area16 dsm_ 09cm_matching_ area16 1919 2565 ====

top_mosaic_09cm_area17 dsm_ 09cm_matching_ area17 2336 1281 top_mosaic_ 09cm_ area17

top_mosaic_09cm_area20 dsm_ 09cm_matching_ area20 1866 2315 ====

top_mosaic_09cm_area21 dsm_ 09cm_matching_ area21 1903 2546 top_mosaic_ 09cm_ area21

top_mosaic_09cm_area22 dsm_ 09cm_matching_ area22 1903 2546 ====

top_mosaic_09cm_area23 dsm_ 09cm_matching_ area23 1903 2546 top_mosaic_ 09cm_ area23

top_mosaic_09cm_area24 dsm_ 09cm_matching_ area24 1903 2546 ====

top_mosaic_09cm_area26 dsm_ 09cm_matching_ area26 2995 1783 top_mosaic_ 09cm_ area26

top_mosaic_09cm_area27 dsm_ 09cm_matching_ area27 1917 3313 ====

top_mosaic_09cm_area28 dsm_ 09cm_matching_ area28 1917 2567 top_mosaic_ 09cm_ area28

top_mosaic_09cm_area29 dsm_ 09cm_matching_ area29 1917 2563 ====

top_mosaic_09cm_area30 dsm_ 09cm_matching_ area30 1934 2563 top_mosaic_ 09cm_ area30

top_mosaic_09cm_area31 dsm_ 09cm_matching_ area31 1980 2555 ====

top_mosaic_09cm_area32 dsm_ 09cm_matching_ area32 1980 2555 top_mosaic_ 09cm_ area32

top_mosaic_09cm_area33 dsm_ 09cm_matching_ area33 1581 2555 ====

top_mosaic_09cm_area34 dsm_ 09cm_matching_ area34 1388 2555 top_mosaic_ 09cm_ area34

top_mosaic_09cm_area35 dsm_ 09cm_matching_ area35 2805 1884 ====

top_mosaic_09cm_area37 dsm_ 09cm_matching_ area37 1996 1995 top_mosaic_ 09cm_ area37

These very high resolution satellite images cannot be directly applied to the neural

networks without pre-processing the images. Therefore, the pre-processing step

will resize the images in a reasonable size of 512x512 pixels. OpenCV provides

a resizing function, called cv2.resize(), that is able to resize the image matrix to

the desirable size. As the resizing operation is performed, it is important to use

methods that are able to factor the extra noise that may come from resizing of

the data. To progress with the computational part of the problem, this thesis will
3source:https://www2.isprs.org/commissions/comm2/wg4/results/a1detect/
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use different open source frameworks because they provide the necessary functions

and modules that will be used in this project. This software, along with a brief

description, is listed in the Appendix (under software setup).

3.6.2 Training Setup and Pre-processing

An Nvidia T4 GPU with 16 GB of memory is used to train the model. However,

because of the memory restriction imposed by the deeper models, the batch size

has been limited to two. This study could not fit a batch size of eight into the

GPU memory to compare both larger and smaller models. Consequently, a batch

size of two was used to achieve comparable results for both models. The dataset

that is used contains different classes of objects. However, the main objects of

interest are the "buildings" class. Therefore, the primary task here is to extract

a binary segmentation map that contains only buildings. The image contains

different colours to represent the mask for different objects. In the case of the

buildings, the default ground truth colour for the building mask is blue, as shown

in the Figure 3.14. To extract the buildings from the images, it is desirable

to threshold the image within the value of the blue colour. The cv2.inRange()

function that is provided by the OpenCV can be used to perform the thresholding

operation, which is responsible for filtering the pixels in images within the given

boundary. Once the buildings are extracted from the ground truth, the entire

image is converted into a binary mask, where a pixel value of 255 represents

a building and a pixel value of 0 represents a non-building area, as shown in

Figure 3.14-(b).

After the segmentation mask has been obtained, it can be used to extract the con-

tours from the segmentation. These extracted contours allow the pre-processing

algorithm to extract the keypoints present in the building. The OpenCV library

provides a function called approxPoly(). Given a well-defined polygon, this func-

tion can estimate the smallest polygon that is able to define the shape of the
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building. Consequently, the corners from the polygon provide the information for

the required keypoints. This keypoint information, along with the segmentation

mask, are stored in a JSON file that is later used to process the data and images

during the training step.

Because the number of pixels directly correlates to the size of the network, this

study had to limit the size of the image training image to 512×512 pixels. It was

then able to train the network on a batch size of two images per batch. In addition,

several data augmentation techniques were used because of the limited amount

of images (e.g., rotation, cropping and flipping). These augmentation techniques

are applied within the data processing unit of the training code. However, in case

of GANs, the training size is 256× 256 pixels because of the memory restriction

imparted by the network. This happens because the attention function that is

used in the attention-GAN has a quadratic complexity in terms of space.

(a) (b)

Figure 3.14: Illustrating the beginning of the training setup and pre-

processing, where: (a) is the actual ground truth mask, and (b), on

the right, is the same building target converted to binary mask, and

concatenated with the top mosaic image on the left.

85



3.6 Experimental Setup

3.6.3 Deep Learning Hyper-parameter Setup

To proceed with training the network, this study selected 29 areas, as can be

seen in Table 3.1, and some areas were left for testing (i.e., areas 8, 13, 31, and

34). The learning rate of the network was initialised at 0.00025 and the decay

rate was set to 0.85 at every 15, 000 iterations, up to 100, 000 iterations. This

study first trained the model on 75000 iterations. Because a satisfactory result

was not obtained, this study increased the number of iterations to 100, 000. The

following section will describe this point in more detail. Table 3.2 below contains

more experimental parameters on this study with a brief description about each

parameter (see section 3.6.5 for more details).

3.6.4 Model Setup

As mentioned at the beginning of this chapter, the methods used in this research

to perform image detection are based on the literature review. Therefore this

thesis has reused and developed two models to meet the aims and the objectives

for executing image detection. The first model was GANpix2pix [299] (which

is one of the latest deep learning methodologies), and it is a variant attention-

GANs. The second one wasdetectron2 [340], which was used for the part of

the Mask R-CNN. Each of those models has different structure requirements

for implementation, as demonstrated in the previous section. This section will

demonstrate each one individually in more detail.

Setup Training and Test Data of the GAN model

Phillip Isola et al. in their 2016 paper titled “Image-to-Image Translation with

Conditional Adversarial Networks” and presented at CVPR in 2017 presented the

Pix2Pix model, which is a type of conditional GAN where the generation of the

output image is conditional on input—in this case, a source image. The generator
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model for the Pix2Pix GAN is implemented as a U-Net. The discriminator is

provided with both a source image and the target image, and must determine

whether the target is a believable transformation of the source image. Decent

results can be obtained reasonably quickly and on small datasets on some tasks.

For example, to learn to generate facades (see, for example, [299]), the model

was trained on just 400 images for about 2 hours (on a single Pascal Titan X

GPU). However, for more complex puzzles, it may be essential to train on far

larger datasets and this can take many hours or even days. This research has

implemented the PyTorch version model, which is under active development and

can produce results comparable to the Torch version.

• Preprocessing step: to convert ground truth into ground truth as masked

with the building in grayscale.

• Augmentation step: Because the case study has a limited number of

ground truth images, several augmentation techniques (e.g., rotation, crop-

ping, and flipping) were used.

• A Python script is provided to generate training data in the form of

couples of images A, B, where A and B are two different depictions files of

the same underlying view. For example, these might be pairs ground truth,

ortho images or DSM, ortho images. They can then learn to translate A

to B or B to A.

• Create folder path: Data with subfolders A and B should each have sub-

folders for training, validation, test, and output. In path to data (A)train,

put training images in style ground truth masked images. In path to data(B)

train, put the corresponding images in style (orthophoto). Repeat same for

other data splits (validation, test, output).

• Concatenated step: Corresponding images in a pair (A, B) must be the

same size and have the same filename. Once the data is formatted in this
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way, the next step was ready (which is called the concatenated step).

• Extract edges: Python scripts are used to extract rough edges from image

by run scripts HED to compute edges.

• Post-process been used to refine the output edges by using Python scripts,

called PostprocessHED.m to simplify edges.

• Calculate loss L1 error: errL1, errG and errD referring to Equation (3.16,

3.17).

In this research stage, the results obtained from the GANs are stochastic

in nature. This means that they are not suitable for the task of remote

sensing, where the building location barely changes. SAGAN was proposed

to add some localisation to the output to solve these issues.

• SAGAN The hypothesis was to add attention block to GAN. The assump-

tion is that the network will be able to figure out how buildings are struc-

tured and where they are located. Unfortunately, no significant improve-

ment happened (which will be described in the next chapter).

Setup Training and Testing Data of the Mask R-CNN model

The method reused was Detectron2, which was introduced by Facebook AI Re-

search (FAIR). This method came with an advanced open source library, giving

many object detection and segmentation problems. Detectron2 is based upon the

Mask-RCNN benchmark for the part of the Mask R-CNN to detect key-points, as

well as for instance segmentation. The implementation was in PyTorch, procedure

follows:

• The first step is to install the Detectron2 and required dependencies libraries

(see the appendix).
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• Detectron2 requires the data in a specific format (i.e., JSON files). Detec-

tron2 over helper functions will input the image directory folder path to

convert the dataset to JSON files format. The JSON files are then opened

and loaded. Each image is read from the path, and its height, weight, file

name, and image ID are stored in a dictionary called record. Next, the

bounding box details are stored in another dictionary, called obj. At the

end of each loop, record is appended to a list called dataset_dicts. Simi-

larly, the bounding box dictionaries are also appended to a list objs. This

list will be assigned as the value against the annotations key in the record

dictionary. Each of these dictionaries is then appended to a final list, which

will be returned. The next step is to register these training and valida-

tion datasets using the DatasetCatalog.register and the MetadataCatalog

method. It starts by importing the DefaultTrainer from the engine module

of Detectron2. The dataset and other parameters are defined, such as batch

size and classes (building in this study), and then the model is initialized

with with pre-trained weights and trained further. The max iterations pa-

rameter will vary depending upon the size of the dataset and the complexity

of the task.

The pre-trained models are read for prediction and testing up to these steps. In

this thesis, one extra step is added along with the segmentation map to detect

corners as keypoints. As a result, predicting corner keypoints will allow new

algorithms to be developed that can estimate the geometry of the building with

the help of FCN to generate a heatmap for each of the keypoint and extract the

points from the heatmap. Therefore, the loss on this network is now on each of

the sampled ROI, and is given as:

Loss(L) = Lcls + Lbox + Lmask + Lkps, (3.24)
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where, Lcls is classification loss, Lbox is bounding-box loss, Lmask is segmentation

mask loss and Lkps is the keypoint loss.

3.6.5 Post-processing Setup

When dealing with building structures, geometry is a vital piece of information

because it allows engineers to properly estimate the size and shape of the building.

Therefore, it is is necessary to improve the contours detected by Mask R-CNN

by applying two step post-processing techniques. During the first step, CRF is

applied to provide a smoothing effect to the detected contours. In the second step,

a novel contour refinement techniques are proposed. These steps provide a better

estimate approach of the shape of the buildings. For post-processing, there are a

few parameters for which appropriate values have to be selected. In most of the

experiments, the shape of the final contour from the algorithm is dependent on

the quality of the reference line and the quality of the mask. When the backbone

of the model was upgraded from ResNet50 to ResNet101, there was a 1.2%, 2.6%,

3.0% improvement in overall accuracy, F1-score and IoU, respectively.

To refine the shape of the contour, FixContour() requires a proper reference line.

Because the reference selection uses voting algorithm to find the reference line,

a threshold angle αR has to be defined under which lines are to be considered

as parallel. Ideally, this should be 0◦ but in this thesis it is 5◦. As the experi-

ment is run for different angle ranges, from [0◦...10◦], it was not possible to get

suitable lines for angles ≥ 5◦. Therefore, the minimum angle that can reliably

filter the parallel lines was used (i.e., 5◦). As mentioned in the previous section,

grouping the key-points provides the better estimation of the shape. Therefore,

the minimum distance dmin between any two key-points has to be defined. In this

thesis, values from 10 − 100 at interval of 10 were used. The distance that can

satisfy the minimum number of points that represents a building while maintain-

ing reasonable inter-cluster distance was then selected. In this thesis, dmin = 30
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provides a sufficient amount of key-points to reliably detect the reference lines

and corresponding angle.

The algorithm requires the center point in the given triplet points to be classified

as a corner point or an edge point. Ideally, the angles at corners should be equal

to 90◦ while at an edge it should be 180◦or 0◦. However, in most cases there will

be error on the classification of the lines. Therefore, this value would have to be

limited according to Equation 3.23. The suitable parameter was found by setting

θC and θE in the interval of 5◦ within the range of [0◦...45◦]. The angle was bound

to 45◦ because it will mostly be an edge when ABC < 45◦ and it will be a corner

if ABC > 45◦. Therefore, several values of θC and θE were tried and the count of

the lines that support the building property was estimated. The threshold should

be defined such that it can cover the maximum number of key-points as edge

and corner, while still preserving the shape of the building. In some cases, some

key-points may not contribute to being an edge or a corner. These angles should

be avoided. The angles for which there is maximum support of the corners and

edges were selected. After trying different angles in the range [0◦, ..., 45◦], the final

result used θC = 25◦ and θE = 35◦ because these angles satisfied the property of

the corner and edge as defined by Equation 3.23.

To select the appropriate reference line, the defined reference angle should have

maximum alignment with the all of the lines formed by connecting the keypoints.

Therefore, the alignment under a threshold of θAz has to be calculated. In case

the lines are perfectly aligned with the assumed reference line, θAz will be zero.

But that is not the case, and upon experimenting with different value of θAz in

the range of [0, ..., 10], when the difference of the angle between line and reference

is less than value of 2◦, the reference lines were more accurate to the actual

reference. This value was used for θAz because a large number of lines were not

required to support the reference line. If a large number of lines support the

reference, then a tilted reference will ultimately effect the accuracy. A summary
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of the experimental setup can be seen in Table 3.2.

Table 3.2: Experimental parameters
Parameter Brief Description Value

Learning rate Defines the speed at which the network learns 0.00025

Decay iteration Defines the number of steps after which the learning rate starts to decrease 15000

Decay rate Defines the factor by which the learning rate decreases 0.85

Region selection offset Extra region outside of the predicted box that needs to be selected 50 pixels

Closing kernel size Kernel size of morphological closing operation 11 pixels

Opening kernel size Kernel size of morphological opening operation 11 pixels

Snapping distance Distance to be considered for the keypoint to be snapped 50 pixels

threshold (Dthresh)

Snapping near ratio Ratio representing the nearest distance from the intersection point to 0.15

Rn the keypoint

Voting algorithm angle Angle used in the Method 1 to calculate reference 5◦

(αR)

Grouping distance Grouping the close keypoints 30 pixel

Threshold (dmin)

Azimuth angle threshold Maximum deviation for the angles to be consider as azimuth 2◦

(θAz) (vertical with reference to screen)

Corner angle Maximum angle from the vertical to be considered as corner 25◦

Threshold (θC) refer to Equation 3.23

Edge angle threshold Maximum angle from the horizontal be considered as edge 35◦

(θE) (refer Equation 3.23 )

3.7 Performance Metrics

To evaluate the performance, well-known performance metrics (i.e., Precision,

Recall, F1-score, Intersection over Union, overall pixel accuracy, and structural

similarity index measure) were used to evaluate the pixel- and object-based per-

formance of the developed approaches. They were chosen because they have been

applied in most studies in the field of machine learning, such as Aksoy et al.

[342], Ozgun et al. [256], and Wang et al. [343]. Each metric measures different

parts of the segmentation result. The following subsections illustrated their prin-
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cipal parameters, components, and the equations that were used to evaluate the

performance of this thesis and compare the state-of-the-art.

3.7.1 Precision

Precision is responsible for measuring the true building segmentation present in

the output; meanwhile, recall measures the completeness of the segmented result.

Consequently, the area of a building can be evaluated in a way that is accurately

covered, as well as the area of the building that is fully covered.Note the following

abbreviations in the equation: TP (true positive); FP (false positive); FN (false

negative) (also see section 3.7.6). Therefore, mathematically:

Precision =
TP

TP + FP
(3.25)

3.7.2 Recall

Recall =
TP

TP + FN
(3.26)

3.7.3 F1-Score

The F1-score, also known as Dice coefficient, measures the similarity of the pre-

dicted segmentation with the actual building segmentation.

F1-Score =
2× Precision×Recall

Precision+Recall
(3.27)

3.7.4 Intersection of Union

The IoU, which is also known as Jacard coefficient, is similar to F1-score. It

quantitatively measures the location and size of the predicted building compared
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to ground truth:

Intersection of Union =
A ∩B

A ∪B
=

TP

TP + FP + FN
(3.28)

3.7.5 Structural Similarity Index Measure

Structural similarity index measure (SSIM) is a method that correctly predicts

the perceived quality of digital television and cinematic images, and other types

of digital images and videos. SSIM assesses the similarity of two images. The

SSIM index is a complete reference metric, which measures or predicts image

quality using an initial lossless or deformation image as a reference. SSIM is a

perception-based model that treats image degradation as a perceived change in

structural information while incorporating critical perceptual phenomena, such as

luminance and contrast masking terms. Structural information refers to the idea

that pixels have strong interdependencies, incredibly when spatially close. These

dependencies contain vital structural information of the object’s scene. Colour

information masking occurs in image distortions (in this particular instance seg-

mentations) causes them to be less visible in highlights and shadows. Meanwhile,

contrast masking is a phenomenon in which deformations become less visible and

where there is a significant activity in the texture image. Equation 3.33 can be

calculated as the distance between two windows (x , y) of standard size NN . As

mentioned earlier, the SSIM formula is based on three comparison components:

luminance (l), contrast (c), and structure (s). Each of these components can be

calculated individually, as follows [343]:

l(x, y) =
2µxµy + c1
µ2
x + µ2

y + c1
(3.29)

where

c1 = (k1L)
2

c(x, y) =
2σxσy + c2
σ2
x + σ2

y + c2
(3.30)
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where

c2 = (k2L)
2

s(x, y) =
σxy + c3
σxσy + c3

(3.31)

where

c3 = (c2/ 2)

where:

µx is the average of x;

µy is the average of y;

σ2
x is the variance of x;

σ2
y is the variance of y;

σxy is the covariance of x and y;

c1 , c2 two small constants to stabilise the division;

L the dynamic range of the pixel-values (L = 255 for 8 bits/pixel gray scale im-

ages);

k1 = 0.01 and k2 = 0.03 by default.

SSIM is then a weighted combination of equations (3.29, 3.30 and 3.31):

SSIM(x, y) =
[
l(x, y)α · c(x, y)β · s(x, y)γ

]
(3.32)

where, α, β, γ are parameters specifying the significance of the three components.

When setting the weights α = β = γ = 1, the resulting SSIM index is given by:

SSIM(x, y) =
(2µxµy + c1) (2σxy + c2)(

µ2
x + µ2

y + c1
) (

σ2
x + σ2

y + c2
) (3.33)
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3.7.6 Overall Accuracy

The overall accuracy gives a measure of the correctly labelled pixels.

Overall Accuracy =
TP + TN

TP + FP + FN + TN
(3.34)

Here, TP true positive is where the pixels are present in the ground truth and the

predicted building, producing a true positive; FP false positive is where the pixels

are absent in the ground truth building but present in the predicted building; FN

false negative refers to the amount of pixels present in the ground truth but absent

in the predicted building; and TN true negative refers to the amount of pixels

present in the ground truth but absent in the predicted building.

3.8 Summary

This chapter has reviewed two types of deep learning -GAN and Region-based

convolutional neural networks using Mask R-CNN. Each contains several levels of

post-processing techniques steps. This section will critique them, and explain the

advantages and disadvantages of each type, followed by the operations performed

during and after the training stage. The aim is to discover which nomination

should be focused on in the subsequent chapters and why this nomination was

made.

• The first group of the methodology used GANs.

• The first level was only GANs concatenated with ground truth. When using

GANs, there may be a slight fluctuation in the generated images conditioned

on the input image’s pre-processing.

• The model’s structures based on GANs Networks does not contain any

localisation information.
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• A shortage in ground truth images. These issues were solved in the experi-

mental stage by using the following steps:

• More augmentation of ground truth images was created to address the lack

of ground truth samples.

• To obtain localisation information, an Attention block on top of the GAN

network was used as SAGAN.

• The second level is based on SAGAN. As mentioned in the first level, GAN

networks do not contain any localisation information. Therefore, an at-

tention block was used to provide location information to perform the at-

tention. The results afforded better accuracy than GAN-based techniques

and proved the hypothesis that self-attention will provide better accuracy.

The attention module in the upsampling block is designed to direct the

model’s attention to the location that it should focus on when shaping the

segmentation.

• The third level is based on SAGAN with post-processing using CRF. This

level improves the accuracy of the building reconstruction by focusing on

improving extracted rooftop masks by assigning a higher cost to the cluster

of interrelated parts using CRF, which aims to minimise the unary cost with

the pairwise cost. The CRF improved segmented areas of the rooftop are

further processed to extract rectangular contours, and then line detection

follows.

• The fourth level is based on SAGAN with post-processing using CRF and

fitting algorithm Method 1. This level focuses on using another inherent

feature, the direction of the lines, to select the best lines representing the

rooftop boundaries. Method 1 provides better results compared to the pre-

vious levels. Up to this point, the proposed method and post-processing

techniques rely heavily on improvement based on the detection of optimal
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lines and contours to improve the accuracy of predicted models. Conse-

quently, there was a need to explore another method by which the proposed

research might produce competitive results compared with state-of-the-art

methods in remote sensing (as described in the following section).

• A description of the methodology used in second group follows:

• The first level used Mask R-CNN architectures. The new model relies on

the meta-architecture as given by Mask-RCNN. In this new concept, the

methodology used a neural network to detect the keypoints. There is very

little work in this field to perform segmentation by detecting the keypoints.

At this level, the search will rely on the Mask R-CNN architecture. The ar-

chitecture will use the ResNet50 backbone, with Feature Pyramid Network

(FPN) as head of the network to detect the keypoints. This custom head

will use the "attention block" from the previous work. Because keypoints

are non-local parameters, the attention blocks will be allowed to learn these

parameters. However, they were not defined because the loss function did

not work. This idea inspired the search and was used to perform building

segmentation and keypoint extractions using two head Mask-RCNN and

modified snap-contour algorithms. The SAGAN based segmentation neu-

ral network was replaced with a mask R-CNN network to preserve and

extract finer details at the segmentation stage and provide it to the second

mark-RCNN network. A modified snap-contour algorithm was proposed to

help improve the accuracy by looking at the keypoints, control points, and

the prediction model provided by a two head Mask R-CNN.

• The second level was Mask R-CNN using two backbones (i.e., ResNet-50

and ResNet-101). In general, the result of this result was similar to that

of the previous method. The contour is extracted, and the close polygon is

estimated.

• The third level was based on Mask R-CNN two backbones (ResNet-50,ResNet-
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101) and post-processing using CRF. Mask R-CNN uses two backbones

(ResNet-50 and ResNet-101) and two post-processing methods (CRF and

method 1). using the snap-contour algorithm. After applying the mask

R-CNN, the resultant contours are further processed using a snap-contour

algorithm (details of the algorithm provided Section 3.6.1).

• The fourth level was based on Mask R-CNN using two backbones (ResNet-

50 and ResNet-101) and two post-processing methods (CRF and method

2). This level proposes to modify the snap-contour algorithm method 1 to

include the directional information. The algorithm is divided into two parts

(details of the algorithm are provided Section 3.6.2). The procedure snap

(q, p, line, buffer) is responsible for snapping the point ’q’ to the line passing

through ’p’. The buffer controls where the new point should lie. The centre

of the contour is then used to sort the points based on their polar angles.

Once they are sorted, the horizontal reference angle and vertical reference

angle are found. The FixContour() algorithm performs remarkably well

when the reference lines detect support in the orientation of the building.

Finally, after considering many factors to setup the experimental parameters, as

can be seen in Table 3.2, the second group of algorithms in method 2 addressed

the research aim. The improvements can be seen when referring to the matrix

results in terms of IoU, where it improved by more than 2%; also, precision

improved by more than four percent. Note that the focus is on IoU and precision

because they reflect how accurate the prediction of the feature is compared with

the ground truth; in particular IoU with regard to direction. The findings are

comparable with state-of-the-art remote sensing, which will be explained next in

Chapter Four.
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Chapter 4

Results

4.1 Introduction

This chapter describes the results from the deep learning architectures, referring

to the methodology used, and is divided into two main groups. Each group has

different levels of outputs related to the methods that have been used for each

level. For simplicity, these findings are as follows:

• The first group obtains the results of the outcome of the GAN pix2pix model

and ASGAN, followed by two stages of post-processing:

1 Output based on GAN pix2pix model.

2 Output based on SAGAN .

3 Output based on SAGAN with Post-processing using CRF.

4 Output based on SAGAN with post-processing using CRF and fitting

algorithm Method 1 .

• The second group obtain the results of the outcome based on Mask R-CNN

architectures:

1 Output based on Mask R-CNN architecture.

2 Output based on Mask R-CNN using two backbones (ResNet-50 and

ResNet-101).

3 Output based on Mask R-CNN two backbone (ResNet-50 and ResNet-

101) and post-processing using CRF .
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4.2 Results of the GAN-based Approaches

4 Output based on Mask R-CNN using two backbone (ResNet-50 and

ResNet-101) and two post-processing ( CRF, method 1).

5 Output based on Mask R-CNN using two backbone (ResNet-50 and

ResNet-101) and two post-processing ( CRF, method 2).

To illustrate the results across various cases, area 31 was selected as an example

for visualisation purposes. However, the model provides similar results in every

area that is present in the test set (which is attached in the Appendix). As can

be seen in Figure 4.1, ground truth as per the source, provides the measurement

taken from the ground, and in some cases, it does not match exactly with the

rooftop of the building (as seen in a & b above); in addition, the guttering, as

an extension, can affect the picture. However, the matrix used for evaluation is

not affected by these issues with regard to the extra information, including the

dataset, such as directions.

4.2 Results of the GAN-based Approaches

As mentioned in the introduction of this chapter, the first group obtained the

results of the outcome of the GAN-based approaches, which will be demonstrated

and followed by a brief description. To compare the results across various cases,

area 31 was selected. However, the model provides similar results in every area

which is present in the test set attached in the appendix.

1 GANs pix2pix -based model output

The results of the output based on GAN networks without any post-processing

are shown in Figure 4.1.
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4.2 Results of the GAN-based Approaches

(a) (b) (c)

Figure 4.1: Outputs obtained from the GAN pix2pix model, where (a)

is the original image from area 34, (b) is the ground truth, and (c) is

the output of pix2pix GANs.

2 Output-based on SAGAN

Figure 4.2 shows the output based on GANs and SAGAN.
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4.2 Results of the GAN-based Approaches

(a) (b)

(c) (d)

Figure 4.2: Outputs obtained from SAGAN, where (a) is the original

image from area 34, (b) is the ground truth, (c) is the output of the

GANs, and (d) is the output based on SAGAN.
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4.2 Results of the GAN-based Approaches

3 Output based on SAGAN with post-processing using CRF

Figures 4.3 show the output based on SAGAN with post-processing using

CRF.

(a) Area 34 (b) Ground truth

(c) SAGAN output (d) CRF

Figure 4.3: The output of the GANs, where (a) is the original image

from area 34, (b) is the ground truth, (c) is based on SAGAN, and (d)

after applying CRF.

The previous example showed the output obtained from GANs and SAGAN,

followed by an application of CRF. There is a stark difference between the

two outputs in terms of the building shape position. Just by application of

CRFs alone, it was possible to remove some of the false positives; as can

be seen in Figures 4.4. However, this does not provide a clue or direction
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4.2 Results of the GAN-based Approaches

of how to proceed in finding the proper shape of the building in the search

space. The complexity of the problem also increases. Therefore, to ease

this task, this research proposes to predict the keypoints along with the

contours from the output of the detection boundaries.

(a) (b)

Figure 4.4: Output obtained from GANs, where (a) is the output from

SAGAN, and (b) is the output after application of CRF where green

color represents a true positive (TP), blue color represents false pos-

itive (FP), and red color represents a false negative (FN) compared

with the ground truth.

4 Output based on SAGAN with post-processing

The following results shown the output based on SAGAN after applying

CRF and post-processing fitting algorithm (Method 1), as shown in Fig-

ure 4.5
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(a) Area 34 (b) Ground truth

(c) Using CRF (d) Using Method 1

Figure 4.5: Outputs obtained from SAGAN with CRF post-processing

and a line fitting algorithm Method 1.

As described in the methodology, different techniques were used on the

results obtained by using GANs. Given that the output from the GANs

does not have keypoints, it is not possible to apply the snapping algorithm

with Method 2.
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Figure 4.6: Previous result: the white line is post-processed contour

(Method 1), yellow is predicted contour (SAGAN), and blue is ground

truth.

4.3 Output Based on the Mask R-CNN Architec-

ture

This research has been used pre-trained detectron2 model and added two dif-

ferent structure sizes (i.e., ResNet-50 and ResNet-101) as a backbone of Mask

R-CNN. As the size of the model increased, so did the performance of the model.

This can be seen in Figure 4.8, which shows the effect of this increase on the fi-

nal output based on Mask R-CNN without any post-processing.the Figure4.8-(a)

demonstrates the closer view of the building, showing the true positive (b)shows

the same areas and the increase in true positive, which reflects how a bigger model

can produce more accurate detection in terms of TP.
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4.3 Output Based on the Mask R-CNN Architecture

Figure 4.7: Output image based on Mask R-CNN area 8.

(a) Backbone using ResNet-50 (b) Backbone using ResNet-101

Figure 4.8: Outputs obtained from Mask R-CNN with different back-

bone sizes in area 31. Green color represents true positive, blue rep-

resents false positives and red represents false negatives.
108



4.3 Output Based on the Mask R-CNN Architecture

The larger model is able to detect the important regions of the map and the

building structure, which are on par with the original image. The accuracy of the

model also improves comparing with GANs models, as can be seen in Table 4.1.

The reason for the improvement of the segmentation comes from the design of

Mask R-CNN, which is able to focus on the regions and extract the required mask

from that particular region. Although most of the refinement comes from the

further post-processing, Mask R-CNN cannot address the issue of the geometrical

structures present within the building architectures.

Table 4.1: Comparison of Mask R-CNN and GAN

Method Precision Recall F1-Score IoU SSIM Overall

Accuracy

GAN 0.669 0.833 0.742 0.590 0.832 0.87

SAGAN+CRF 0.646 0.912 0.757 0.608 0.912 0.88

SAGAN+Method 1 0.628 0.908 0.743 0.590 0.911 0.88

Mask R-CNN+Method 1 ResNet-50 0.807 0.936 0.867 0.765 0.953 0.936

Mask R-CNN+Method 1 ResNet-101 0.823 0.958 0.885 0.794 0.913 0.945

The structures are very important because they provide information on the build-

ings. The following stages of post-processing improve the issues:

1 Output based on Mask R-CNN with CRF

For further refinement of the results, CRF is used as the first post-processing

step. The following results show the output based on Mask R-CNN using

two backbones (ResNet-50 and ResNet-101) and post-processing using CRF.
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4.3 Output Based on the Mask R-CNN Architecture

(a) Backbone using ResNet-50 (b) Backbone using ResNet-101

Figure 4.9: Outputs obtained from Mask R-CNN after application

of CRF. Green color represents true positive, blue represents false

positives and red represents false negatives.

After the application of CRF, there is some rigidity in the shape of the build-

ing. In addition, in some cases there is fragmentation of minute segments

and the removal of these segments; as can be seen in Figure 4.9.

2 Proposed Method 1 and Method 2

Because the CRF could not deliver the structural rigidity required in the

building, this research has developed two novel post-processing methods in

two different stages. In the first stage, the algorithm (Method 1) snaps the

segmentation contour into a proper geometrical shape. The output of this

algorithm is shown in Figure 4.9-(a), and Figure 4.10.

110



4.3 Output Based on the Mask R-CNN Architecture

(a) Mask R-CNN output (b) Adding keypoints

(c) The modification compared with R-CNN

output (a)

Figure 4.10: Outputs obtained from Mask R-CNN after application

Method 1;where red points represent the points predicted by Mask

R-CNN contour, green points represent points on fixed contours and

light-blue represents the keypoints predicted by the neural network.

As can be seen in Figures 4.12, the coloured points represent different

groups, where the red groups represent the intersection between ground

truth and the predicted mask. In this way, the key-points correct those

groups by selecting the voting of points, which either have the same ori-

entation with respect to the azimuth direction, or are within the buffer of

each threshold. All of these processes were completed in Methods 1 and 2,
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4.3 Output Based on the Mask R-CNN Architecture

and you can see in Figure 4.11 (b) how the purple contour represents the

modified mask.

(a) Ground Truth points (b) purple contour represents reference lines

Figure 4.11: the second stage of post-processing;where the green con-

tour represent by Mask R-CNN the withe contour ground truth, and

purple contour represents the output obtained Method 2.
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4.3 Output Based on the Mask R-CNN Architecture

(a) Mask R-CNN + Method 1 (b) Mask R-CNN + Method 2

Figure 4.12: ResNet-50 backbone Mask R-CNN based, with applica-

tion of CRF and proposed Methods 1 and 2.
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4.3 Output Based on the Mask R-CNN Architecture

(a) Mask R-CNN + Method 1 (b) Mask R-CNN + Method 2

Figure 4.13: ResNet-101 backbone Mask R-CNN based, with applica-

tion of CRF and proposed Methods 1 and 2.

The second stage, which uses Method 2, proposed the final refinement by using

snapping with keypoints to improve geometrical structure when compared to the

normal snapping in Method 1, as can be seen in Figures (4.11-(b), 4.12-(b), and

4.13-(b)). The outputs from both methods are provided to show a side-by-side

comparison to recognise the differences more easily. Additionally, the snapping

algorithm Method 2 finds buildings’ references, using the lines connecting the

adjacent keypoints. As a result, the building orientations are determined; as

illustrated in Figure 4.14.
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4.3 Output Based on the Mask R-CNN Architecture

Figure 4.14: Resultant output image based on Method 2 finding build-

ing references, where a yellow line represents one of the buildings’

orientations.

As can be seen in the figure, the blue lines represent the orientation directions

for each mask predicted individually. Here, the yellow lines are parallel to the

objects, in this case buildings, which are facing the same direction and are in the

same relative class; whereas other classes such as roads and green areas are either

parallel or perpendicular.
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4.4 Comparison of the Outputs

This section will compare examples from different areas and provide the resul-

tant output images with Mask R-CNN and post-processing techniques. It also

compares the resultant images of the proposed refinement technique with the

GAN-based results achieved in the previous sections. In addition the results

of two different AI backbones of model size and post-processing techniques are

analysed to exhibit the most compelling aspects of the final output.

Attention

GAN

only

1(a)

Attention

GAN

with CRF

1(b)

Attention

GAN

Method 1

1(c)

Mask

R-CNN

(ResNet50)

Method 1

1(d)

Mask

R-CNN

(ResNet101)

Method 1

1(e)

2(a) 2(b) 2(c) 2(d) 2(e)

3(a) 3(b) 3(c) 3(d) 3(e)

Figure 4.15: Comparison of an output from Attention GAN with Mask

R-CNN.
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Original

Images

1(a)

Mask

R-CNN

only

1(b)

Mask

R-CNN

CRF

1(c)

Mask

R-CNN

Method 1

1(d)

Mask

R-CNN

Method 2

1(e)

2(a) 2(b) 2(c) 2(d) 2(e)

3(a) 3(b) 3(c) 3(d) 3(e)

4(a) 4(b) 4(c) 4(d) 4(e)

Figure 4.16: Results when using ResNet-50 as backbone. Green color

represents a true positive, blue color represents false positive, and red

color represents a false negative compared with the ground truth. Each

building is selected from different areas.
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Original

Images

1(a)

Mask

R-CNN

only

1(b)

Mask

R-CNN

CRF

1(c)

Mask

R-CNN

Method 1

1(d)

Mask

R-CNN

Method 2

1(e)

2(a) 2(b) 2(c) 2(d) 2(e)

3(a) 3(b) 3(c) 3(d) 3(e)

4(a) 4(b) 4(c) 4(d) 4(e)

Figure 4.17: Results when using ResNet-101 as a backbone. Green

colour represents a true positive, blue colour represents a false positive,

and red color represents a false negative compared with the ground

truth. Each building is selected from different areas.

As can be seen in the Figures 4.17-4(e) and Tables above, there is an improvement

118



4.5 Performance Metrics

from using deeper Resnet 101, compared to deep Resnet 50, in terms of the

performance matrix used, especially IoU, precision and overall accuracy by 2.9%,

1.6%, 0.9% respectively.

4.5 Performance Metrics

This section presents the results from different areas but for a single building.

The results are provided for a single building because this allows us to reflect on

the gradual improvement of the segmentation mask and geometry of the building.

The results are summarised in quantitative form in Table 4.2.

Table 4.2: Performance of the proposed method

Backbone Method Precision Recall F1 IoU Overall

Architecture Score Accuracy

ResNet-50 Mask R-CNN 0.787 0.934 0.854 0.746 0.931

Mask R-CNN+CRF 0.821 0.933 0.873 0.775 0.939

Mask R-CNN+Method 1 0.807 0.936 0.867 0.765 0.936

Mask R-CNN+Method 2 0.843 0.915 0.878 0.782 0.940

ResNet-101 Mask R-CNN 0.806 0.961 0.877 0.781 0.942

Mask R-CNN+CRF 0.843 0.958 0.897 0.813 0.951

Mask R-CNN+Method 1 0.823 0.958 0.885 0.794 0.945

Mask R-CNN+Method 2 0.864 0.941 0.901 0.819 0.952

4.5.1 Training Details

Because this work involves training different neural networks, this section will pro-

vide the training loss of the neural networks for different results. Figures (4.18, 4.19

4.22 and 4.26) show the loss value as the training progresses.

Figures 4.18-(b) and 4.18-(a) show the discriminator loss, while Figures 4.19-(a)

and 4.19-(b) show the loss for the generator over the course of 300 epochs. Each
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(a) Discriminator loss for (fake) image

(b) Discriminator loss for (real) image

Figure 4.18: Discriminator loss function of GANs

epoch has 20 iterations to go through the entire dataset. The batch size for this

training was set to 2. It is noticeable that the entire GAN has collapsed after 200

epochs. The only factor that is decreasing is the L1-Loss function, which happens

because it is responsible for training the generator to refine the segmentation map.
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(a) Generator overall loss

(b) Generator L1-loss

Figure 4.19: Generator loss function of GANs

As can be seen in Figures (4.22, 4.21 and 4.20), the loss value is for training

losses and is used for classification, boundary prediction, region prediction, region

location, key point prediction, and segmentation mask predictions. This figure

summarises the training results for the Mask R-CNN with ResNet50 backbone.

Here, it is possible to observe that the loss value is asymptotic to the x-axis as
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(a) Training loss for box regression

(b) Training loss for building class

Figure 4.20: Training Loss function for Mask R-CNN with ResNet-50

backbone.
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(a) Training loss for RPN class

(b) Training loss for RPN location

Figure 4.21: RPN Loss function for Mask R-CNN with ResNet-50

backbone.
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(a) Training loss for keypoints

(b) Training loss for segmenation mask

Figure 4.22: keypoints Loss function for Mask R-CNN with ResNet-50

backbone.

124



4.5 Performance Metrics

the training approaches 100, 000 iterations. Consequently, it was necessary to

stop the training. In addition, according to Figure 4.22-(a), it can be seen that

there are ups and downs in the graph. This happens because the network is not

properly regularised, and the loss is swinging up and down. Different factors affect

and produce such unstable training, and the learning rate is one such factor.

Classification, boundary prediction, region prediction, region location, key point

prediction, and segmentation mask predictions all use the loss value to evaluate

the accuracy of the model’s prediction; as can be seen in Figures 4.22, 4.20

and 4.21. This figure summarises the training results for the Mask R-CNN with

ResNet50 backbone. Here, it is possible to observe that as the training approaches

100, 000 iterations, the loss value is asymptotic to the x-axis. Consequently, it was

necessary to stop the training. In addition, there are ups and downs in the graph

in Figure 4.22-(a). This happens because the network is not properly regularised,

and the loss is swinging up and down. The learning rate is one of the factors can

affect and produce unstable training.

Figures 4.23, 4.24 and 4.25 shows a loss value similar to Figure 4.22 but for

the Mask R-CNN with ResNet-101 backbone. Unlike the case of the ResNet-50

backbone, the deeper ResNet1010 is able to provide a stable training under the

same parameters. This stability can be seen more clearly in Figure 4.26, which

reflects the total loss for each network. The loss function for the deeper net

is smoother, which means that the training is smoother. Consequently, it was

possible to see stark differences during the testing stage.
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(a) Training loss for box regression

(b) Training loss for building class

Figure 4.23: Loss function for Mask R-CNN with ResNet-101 back-

bone.
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(a) Training loss for RPN class

(b) Training loss for RPN location

Figure 4.24: RPN training Loss function for Mask R-CNN with

ResNet-101 backbone.
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(a) Training loss for keypoints

(b) Training loss for segmenation mask

Figure 4.25: keypoints & segmenation mask loss function for Mask R-

CNN with ResNet-101 backbone.
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(a) ResNet-50 backbone

(b) ResNet-101 backbone

Figure 4.26: Total training loss for Mask-RCNN
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4.5.2 Computational Time

The most difficult aspect when using machine learning techniques is training

times, because at this stage, the model attempts to regulate the neural weights

if the P-trained model is used, the model regulates the weight; for example,using

Image.net Models. However, the trained weight is dependent on different classes

using CNN techniques. A new innovation in 2015 led to major organisations,

such as Google and Facebook, producing Backbones, for example VGG16 and

VGG19; Resnet34; Resnet50, and Resnet101, as shown in Figure 4.26 The main

purpose for using backbones is to increase the output accuracy and decrease

the computational time needed for training such big architectures. Practically,

in this research, Resnet101, Resnet50 and Resnet34 were chosen because of the

simplicity of their architecture, training time, and loss of function compared with

other backbones. The performance of the network should be tested. As mentioned

in the experimental setup, the testing set of this research work consists of four

images, which are Areas (8, 13, 31, and 34). When running the entire post-

processing algorithm on these images, the results were achieved within around

29±1.34seconds, on average. The time taken is the average time on all four areas.

This time is also the average from both of the networks. The post-processing time

is not dependent on the network but is dependent on the buildings predicted by

the network. Therefore, the larger model and smaller model have similar average

times. When pre-processing the data to extract the keypoints for training, the

total time taken for each image was 109 milliseconds on average. When training,

the total training time for the model with ResNet-50 backbone was 29 hours and

10 minutes, while the total training time for the model with ResNet-101 backbone

was 32 hours and 19 minutes.
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4.6 Observations

This section presents the results of the observations as follows:

• Compared to the improvement of the results with the normal prediction

from the Mask R-CNN-only network, the proposed method is able to in-

crease the F1-score by 2.3%, precision by 2.1% IOU by 3.7% and overall

accuracy by 1.2%. In every case, the proposed algorithm has a significant

improvement on the precision, while trading off some values on recall. Con-

sequently, this affected the value of F1-score.

• The effect of model size on the final output shows that the model’s per-

formance increased as the size of the model increased. This can be seen in

Figure 4.17. The larger model is able to detect the important regions of

the map and the building structures that are detected are on par with the

original image. The accuracy of the model also improves, as can be seen

in Table 4.2. The improved segmentation comes from the design of Mask

R-CNN, which is able to propose the regions and extract the required mask

from that particular region. Mask R-CNN is an architecture that fits into

the idea of this problem. Therefore, most of the refinement comes from

the further post-processing with the help of Mask R-CNN to address the

issue of geometrical structures that are present within the building archi-

tectures. Geometrical structures are very important because they provide

information about the building.

• CRF was used as one of the first post-processing steps for further refinement

of the results. After the application of CRF, some rigidity in the shape of

the building can be seen. In addition, the fragmentation of minute segments

and in some cases the removal of these segments can be observed, as can be

seen in Figure 4.9.
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• The effects of post-processing on the final output show that the developed

novel snapping algorithm is able to snap the segmentation contour into a

proper geometrical shape. The outputs from both of the proposed methods

are shown in Figures (4.12, and 4.13) to compare them side by side. Method

2, snapping with keypoints, can get a better geometrical structure compared

to the snapping in Method 1. These results provide better structural details

than a CRF because it was unable to deliver the required structural rigidity

in the building. This is clearly visible in Figure 4.12.

• The algorithm performs remarkably well when the reference lines detected

support the in the orientation of the building which is clearly visible shown

in Figure 4.11-(b).

Table 4.1 summarises the results when comparing Mask R-CNN with SAGAN. A

drastic improvement can be seen with Mask R-CNN because of stable training,

robust architecture and generally well-defined loss functions. This table also

provides a reason to develop the Method 2 because it clearly demonstrates that

the proposed method is clearly not sufficient because of the CRF. This limitation

was imposed because the proposed Method 1 was unable to exploit the geometry

present within the building. Note that the table does not show the results from

method 2 because GAN and SAGAN do not provide any resultant keypoints.
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Chapter 5

Discussion

This chapter discusses the results of the research and the impact of the techniques

applied to the machine learning approaches used. As a reminder, the approaches

are briefly presented, along with a discussion of the results for each technique

and the deep learning approaches utilised. An attempt has been made in this

thesis to explain how different building images have been tested, and the success

of the post-processing techniques that have been used. The case study research

has been matched with a grounded theory research approach through the litera-

ture review on archived and open source materials accessed online. In addition,

descriptive methodologies have been used to document the potential of, and dif-

ficulties in, using AI, cloud computing, ML, and DL with remote sensing, by

developing nations. The section on the techniques used has presented the main

types of methods used, followed by comparing and distinguishing between con-

temporary state-of-the-art methods. Furthermore, quantitative and qualitative

research methodologies have been explored to examine their applicability to the

current research and, therefore, other similar research. It has been shown that

there are benefits from using post-processing algorithms during and after training

ML models. Furthermore, the limitations of the research, including the ML data

collection and an analysis of the framework’s limitations, are set out. Finally,

a brief recap demonstrating the rationale for the particular research approach

chosen is provided.
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5.1 Interpretation of the Results

In this study, the algorithms proposed have been successfully tested on hundreds

of building images, yet to show accurate results, four images are reported in Fig-

ures 4.17 and 4.16. The AI architecture and post-processing techniques proposed

can accurately detect the building boundaries, as can be seen in Figures 4.16 and

4.17.

These figures show the results for four different buildings that have bushes cover-

ing the roof boundaries; different roof geometries; multiple edges, length wise and

width wise; regular changes, and so on. As can be seen in Figure 4.17-1(e) and

Figure 4.17-2(e), the buildings’ boundaries have been clearly identified and the

geometric shapes have been refined. The algorithm worked perfectly, even when

the images had different contrast distributions such that one side of the building

was light while the other side was in shade as shown in the Figure 4.16.

The most useful aspect of the algorithms proposed is that they can provide ac-

curate and useful information about the orientation and direction of building

elements as part of the process. This helps to find the orientation of the building,

based on which, more semantic information can be extracted according to the

North azimuth direction obtained by FixContour() algorithm Method 2. For

example, referring to Figure 4.17-4(e), the algorithm provides the major or prin-

cipal direction from left to right, using one of these can divide the building into

upper and lower parts, and can trace the upper and lower boundaries, find the two

major building sectional changes, correlate them and can then provide very use-

ful semantic information that the building has three sections. Further semantic

information can also be derived. For example, the building’s left-hand sectional

part is smaller compared to the right-hand sectional part. Figure 4.16 reports the

results for all four buildings using the same architecture, with ResNet-50 being

used along with the proposed post-processing techniques.
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5.1.1 Major Findings of this Research

The findings from the current study confirm that 2D city models at LOD1 can be

generated by utilising VHR satellite images. Furthermore, employing RGB data

from VHR satellite images to assist in the automated detection of urban areas im-

proves the segmentation of buildings within their surroundings in a single image

space, which shows that this data could be beneficial for the automated detec-

tion of buildings with various geometries. Reliable output results were achieved

when applying the algorithm to extract footprints. This demonstrates that the

algorithm developed can create accurate 2D models from single-satellite imagery

and can achieve up to 95% accuracy.

The algorithms act on challenges such as the complexity of large cities, where

the decision can be obtained more quickly. Furthermore, 2D building models

can be predicted and reconstructed from VHR satellite imagery by considering

the complex urban topography; the characteristics of the target objects, and the

similarities between the objects regions and their backgrounds in the same im-

age, as well as the illumination conditions and imaging time. Additionally, the

developed algorithms can sharpen the geometry boundaries with the help of deep

learning techniques, which is a significant contribution, by producing reference

points and specifying the buildings’ orientation.The orientation of the building’s

surrounding directions in large regions can be defined by azimuth through simply

following the lines of the algorithm’s code. In terms of sustainability, the ori-

entation associated with massing, could be critical in providing a building with

passive visual comfort. Orientation and overall design must be addressed together

at an early design stage, since neither can be fully maximised without the other.

A suitable orientation drives the building to reduce power loads and maximise

free solar energy and wind for new infrastructure development. Furthermore,

determining the best orientation could even support other environmental condi-

tions, such as existing districts or remote countryside areas, as it can be used to
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assess the suitability and potential of sites for solar panels; for example, on the

rooftops of specific buildings based on their orientation and the area calculated as

being most exposed to sunlight. Doing so should reduce the cost of services and

energy expenses for nearby populations, which is especially beneficial for econom-

ically challenged towns and cities. The main approaches can be used to refine

depth map predictions CRFs. However, several previous works have used CRFs’

post-processing potential to refine depth image predictions. These works define

pixel-wise and pair-wise loss in terms of pixels and their neighbours using an inter-

mediate predicted guidance signal, such as geometric features, ground truth, and

keypoints. An initially predicted depth map is then refined by inference with the

CRF. While post-processing algorithms help enhance the initial depth predictions

and produce qualitatively better results. Moreover, another potential advantage

of using the proposed post-processing algorithms for depth refinement is to use

them as image enhancement methods. There are a lot of different purposes that

post-processing algorithms could be used for in various fields, such as for medical

purposes, converting raster to vector data, or different types of clustering in multi-

ple formats; also, as denoising methods that maintain the correct image contours,

and for different mapping multiplication processes. In addition, post-processing

algorithms can take advantage of the keypoints obtained by the ML models, and

the simplicity of vector data multiplication, allowing fully differential and much

faster computation processes.

5.2 Discussion and Explanation of the Results

Comparison with Contemporary State-of-the-Art Methods

The proposed algorithm has been compared with state-of-the-art methods, and

the results are provided in Table 5.2. This comparison is based on the Vaihigen

dataset for building class. As can be seen, the overall accuracy of the proposed
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method is approximately 1% higher compared to another previously proposed

method [6], which is based on a contextual graph model that preserves contours.

However, the algorithm that is proposed in this paper provides accurate contour

points, along with directional information, as compared to a previously recorded

method [6]. The technique that is proposed in this paper achieves a similar recall

percentage to another paper [7]; however, the architectures and computational

time of SEG.H-sc1, HED.H + SEG.H-sc1 are more complex. In fact, there is no

direct comparison with the proposed method and the method of[7] because the

method in[7] uses DEM along with VHR images for training and testing. One

research study [292] used a combination of FCN and Mask-R-CNN; however,

their methods provide approximately 3% and 1% better results in the precision

and F1-score, respectively. Recent work [291] provides better precision and an

F1-score almost equal to the proposed method. Even so, it provides lower re-

call results when compared to the method that is proposed here. The method

proposed in[291] uses different sizes of patches during the first stage of semantic-

free segmentation MRS. Achieving a proper patch size is a crucial task for this

method. Consequently, the authors used Segmentation Scale Parameter (SSP)

in the MRS. The research work tested various SSP parameters on Vaihingen and

Potsdam datasets, and found experimental values of 20 to 50 for Vaihingen im-

ages, and 40 to 100 for the Potsdam images. Furthermore, the algorithm that is

proposed in this thesis has been compared with the method proposed previously

[292] based on EaNet. The F1-score achieved by EaNet is approximately 6%

higher than the proposed method; however, the proposed technique achieves a

similar IoU percentage. The ResNet101 backbone was used for both EaNet and

the proposed methods. While the EaNet utilised 40K iterations on the Vaihingen

dataset, the proposed technique used 100k. The proposed method took 32 hours

and 19 minutes of training time, and provided results or inference in just 29 sec-

onds. It should be mentioned that the previous matrix, with regard to evaluating

the accuracy of the techniques, has facilitated a comparison of ground truth with
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the predicted mask to see how accurate (or not) a model is regarding matching

shape and orientation.

Table 5.1: Comparison of different an output progress

Method
Precision

progress

Recall

progress

F1-

progress

IoU-

progress

Overall-

progress

Mask R-CNN

(Deeper backbone progress)
1.90% 2.70% 2.30% 3.50% 1.10%

Mask R-CNN+CRF 2.20% 2.50% 2.40% 3.80% 1.20%

Mask R-CNN+Method 1 1.60% 2.20% 1.80% 2.90% 0.90%

Mask R-CNN+Method 2 2.10% 2.60% 2.50% 3.7% 1.20%

Table 5.2: Quantitative comparison results on Vaihingen validation

datasets (units: %).

Authors Year Methods Precision Recall F1 IOU Overall

Score Accuracy

Zhao et. al [6] 2017 Non-CRF Model - - - - 92.96

CRF Model - - - - 94.54

Marmanis et. al [7] 2018 SEG·H-sc1 - 93.8 - - -

HED·H+SEG·H-sc1 - 95.6 - - -

Zhou et. al [325] 2019 FCN 84.3 94.7 89.2 - -

Mask R-CNN-L 83.3 97.9 90.1 - -

Zhen et. al [292] 2020 EaNet (ResNet101) - - 96.4 81.7 -

Zhang et. al [291] 2020 MLCG-OCNN 94.7 86.3 90.3 - -

Proposed Method 1 2020 Mask-RCNN

(ResNet101) CRF+Method 1 82.3 95.8 88.5 79.4 94.5

Proposed Method 2 2020 Mask-RCNN

(ResNet101) CRF+Method 2 86.5 94.0 90.1 81.19 95.2
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5.3 Implications and Some Practical Applications

This study’s findings have revealed several advances in the field of urban mod-

elling, and the discoveries herein should assist in advancing the application of

remote sensing data obtained from photogrammetric satellite images, aerial pho-

tography, and topographical frameworks. The results from the automated ex-

traction of 2D building models shows that the newly developed method may be

used to clarify the geometry of urban objects, especially the characteristics of

buildings. Some examples of these applications are as follows:

• Structural analysis of the building:

A statement of the importance of the output results, the analysis of the

findings validates the research purposes, hypotheses in the literature con-

cerning the reconstruction of 2D building models. The results of the newly

developed approach have revealed some critical points that can assist in

developing an appropriate methodology with regard to the strengths, out-

comes, and deficiencies of this research in comparison to previous studies.

According to the literature, the findings confirm that satellite imagery and

remote sensing technology can be used in urban planning. The advantages

of these kinds of data include higher accuracy and precision in object mea-

surements. In addition, various details can be discerned that are either un-

obtainable or may even be of limited effectiveness with other data sources.

This happens because rectification of VHR satellite images is consistent in

different spectrum bands, which allows for the extraction of the actual dis-

tances of the features to be measured for the conception of their respective

2D and or 3D building models. Furthermore, the high spatial resolution

makes it easier to understand and identify the shape of the building’s foot-

print, which is essential in detecting 2D to reconstruct 3D models of urban

spaces on a large scale using an unsupervised method with AI assistance.
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• Orientation detection:

Using an unsupervised method to detect objects can be helpful in automated

analysis because this method can cover large areas and include many types

of data sources, such as forecasting and cloud data, to provide a significant

portion of an image. Furthermore, the results from determining the build-

ing’s orientation can be used to assess the potential for solar energy and how

it can benefit buildings by determining the most suitable areas available on

individual rooftops, as well as the suitable positions that can significantly

influence the amount of solar energy available for energy performance and

consumption. According to Peng and Lu [191], the first step in assessing a

rooftop’s PV potential is to determine the available rooftop area to install

a PV system. The extracted 2D geometry of a building is used to calculate

the percentage of the gross outside wall with gross floor area, which can help

to determine the building’s energy performance by forecasting the optimal

aspect ratio between them. This will consequently reduce the requirement

for heating systems by calculating the buildings that receive more heat ra-

diation in the winter and shadows in the summer. The results can then be

used to predict the impact caused by building structure, shape, and ori-

entation, which is helpful for urban planning in new construction projects.

Given that this is an unsupervised method, the most remarkable advan-

tage of the findings is that this method can track a building’s geometry to

create accurate 2D building geometry to produce 3D models without any

additional data, and at low cost and time, when compared to traditional

methods.
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5.4 Limitations of This Research

• Data for training:

Many of the deep learning techniques (e.g., GAN and Mask R-CNN) that

have been used in this research need a large number of images to achieve a

trained model often many times the number of images required to achieve

better accuracies, in terms of thousands of images. Uploading terra bytes

of images for processing on a cloud-based GPU platform requires a consid-

erable amount of computer resources, which are expensive. Therefore, this

research has been limited by the amount of computational power available.

• Computational power:

Machine learning requires a powerful GPU (e.g., this thesis utilised 12

GPUs). For large cities, and for high resolution images, a very large number

of GPUs would be required. Although GPUs are available on cloud com-

puting services (e.g., Amazon, Google, Microsoft), the cost of using these

GPUs is very high. Therefore, this research has been limited by the amount

of computational power that was required.

• Training time:

Some of the neural network models, particularly those using combined neu-

ral networks, also need a significant amount of training time because terra

bytes of high resolution satellite images need to be processed.Therefore, this

research has been limited by the amount of training time that was required.

• Backbone architectures of the models required:

A large size of backbones are available (e.g., ResNet-152, ResNet-164 or

ResNet-1202). However, the limitation of using a large number of backbones

is that they need a great amount of computational power and training

time. In addition, increasing the number of backbones only leads to a small

increase in accuracy, especially with small datasets. Therefore, this research
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has been limited by the amount of computational power and training time

required by the backbones.

• Experimental parameters setup:

The majority of ML algorithms include user-defined parameters that might

influence classification accuracy[344]. As an example, the activation func-

tion, the number of hidden layers, the number of nodes in each layer, the

learning rate, momentum factor, weight initialisation, the number of iter-

ations, and so on. Although the default settings for these parameters are

often provided, verification to find their optimal values is required to guar-

antee that the best possible classifier is achieved. The relative difficulty

of performing parameter optimisation for different classifiers is often a key

factor in algorithm selection. Moreover, customising the platforms is one of

the most complex parts during experimental setup, especially when using

pre-trained models from different datasets. In particular, customising data

to be a competitor with the pre-trained model datasets can be difficult.

For example, each dataset has a different data format, or the data must

be categorised in a specific format. Furthermore, some parameters may be

unsuitable for the searcher’s objectives. Adjusting hyper-parameters to be

capable of performing correctly can be another obstacle. In some cases,

poor adjustment can lead to failure.

5.5 A summary of the Results

The deep learning architectures proposed, and the post-processing techniques,

can accurately detect building boundaries, as shown in Figure 4.15, and Fig-

ure 4.16. The figures present four buildings that have different roof geometries,

with bushes covering the roof boundaries; in addition, the roofs have multiple

hips, and vary in length and width, and so on. Figures 4.16-1(e), and 4.17-1(e)
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show that even small changes in the building’s boundaries can be identified, these

appear as small v-shaped notches. One of the most important aspects of the tech-

nique is the provision of useful directional information to assist in exposing major

sections of the building. Moreover, based on that, it is possible to extract more

semantic information. Take, for example, Figure 4.17-4(e), the algorithm provides

the principal direction from left to right, which can be used to divide the building

into an upper and lower part; trace the upper and lower boundaries; discover

the two major building sectional changes and correlate them, as well as revealing

important semantic informaion which shows the building has three sections. It

is also possible to glean additional semantic information, that is, the building’s

left-hand section is smaller than the right-hand sectional part. Figure 4.16 shows

the results for all four buildings using the same architecture, with ResNet-50 used

alongside the proposed post-processing techniques.

A key primary contribution is that the snapping algorithm in Method 2 can find

building references, using the lines connecting adjacent keypoints. Therefore, the

building’s orientation can be determined, as shown in Figures (4.11-(b) and 4.14).

This helps to find the meaningful orientation direction of the building, based on

which more semantic information can be extracted based on North azimuth di-

rection obtained by FixContour() algorithm Method 2 . Further semantic infor-

mation can also be derived; for example, that the building’s left-most sectional

part is smallest compared to the right-most sectional part. Employing RGB data

from VHR satellite images to assist in the automated detection of urban areas

improves the segmentation of buildings within their surroundings in a single im-

age space. Therefore, this data could be beneficial for the automated detection

of buildings with various geometries. The algorithm is simultaneous, acting on

challenges such as the complexity of large cities. This enables the decision to

be obtained more quickly. Furthermore, this study has been able to predict and

reconstruct 2D building models from VHR imagery by considering the complex

urban topography, characteristics of the target objects, the similarity between the
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objects regions and their backgrounds in the same image, and the illumination

conditions at imaging time, which are attached as an index. Additionally, the

developed algorithm can sharpen the geometry boundaries with the help of deep

learning techniques, producing references points and specifying the buildings ori-

entations, which is a significant contribution. Several of the buildings’ images

have been used to properly evaluate the algorithms. To show accurate results,

four images are given in Figures 4.16 and 4.17. The proposed algorithm was also

compared with state-of-the-art methods, and the results are given in Table 5.2.

The results of the developed approach propose some critical points that can assist

in developing an appropriate methodology. The strengths and consequences of

this research, and its deficiencies in comparison to previous studies, including the

general limitations of AI, follow:

• Data for training: Many of the deep learning techniques that are used in this

research, such as GAN and Mask R-CNN, need a large number of images

to achieve a trained model (e.g., thousands of images are required to train

and achieve better accuracies).

• Computational power: Machine learning needs a large number of GPUs.

Computational power is another limitation (e.g., uploading terra bytes of

images for processing onto a cloud-based GPU platform requires a lot of

time and cost).

• Experimental parameters setup issues: The model parameters define or

express a model in ML or DL. Nevertheless, training a model entails se-

lecting the optimal hyperparameters that the training set will use to learn

the optimal parameters that correctly patch the input features (indepen-

dent variables) to the labels or objectives (dependent variables), resulting

in a source of learning, and the choice of an optimisation algorithm (e.g.,

gradient descent, stochastic gradient descent).
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Chapter 6

Conclusions and Recommendations

for Future Work

This chapter concentrates on the significance of this research and it makes some

recommendations for future work to add to the findings. This study has developed

a post-processing method using deep learning techniques to extract 2D building

footprints, which can be used worldwide. This study is based on VHR satellite

imagery data. The tool used in the case study (the Vaihingen/Germany dataset)

has produced relevant qualitative and quantitative evaluations and is comparable

to state-of-the-art remote sensing. The proposed deep learning method scored

95% in overall accuracy, while the algorithms have been shown to successfully

reduce data loss.

Furthermore, the proposed method can improve the detection of the final output

and extract complex 2D objects from VHR satellites (e.g. buildings, roads, vege-

tation etc.).The following section presents the significance of the research findings,

followed by the conclusions of the research, and finally, the future research rec-

ommendations are set out.

6.1 Significance of the Research Findings

This section presents the study’s results and findings concerning the research

questions and hypotheses, which can be found in Section 1.2.

• The first hypothesis of this research work states: "Satellite imagery
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data is sufficient to provide accurate LoD information for roof top detec-

tion." This study has found that the fusion of CNN-based methods is an

effective solution to provide accurate LoD0 information for rooftop detec-

tion using VHR remotely sensed imagery. The complementarity attained

by the CNN for deep spatial feature representation can improve the blurred

boundaries, and the loss of fine spatial details can be reduced through the

convolutional process. This research has revealed an effective solution to

balance the trade-off between feature recognition and localisation, and it

opens the way for detecting complex rooftop tasks through the use of VHR

imagery.

Furthermore, modern commercial satellites can collect data based on to

very specific customer requests. This means that, unlike government satel-

lite missions whose satellites follow consistent paths, commercial satellites

can be tasked to capture a particular location at a specific time. It guar-

antees the availability of satellite data, which otherwise could be missing

or delayed due to changes in the satellite’s route. This ability has radically

changed disaster response and mitigation: whenever a natural or man-made

disaster occurs, high-resolution satellites are the first to provide a detailed

remote view of damaged territories inaccessible from the ground. This fea-

ture is coming soon to LandViewer, therefore it will send commercial satel-

lites to the target area of interest to facilitate taking highly detailed images.

However, some disadvantages include the high-cost of commercial satellites

carrying the most advanced technology sensors, which will require signif-

icant investment. That is why satellite image data of high resolution is

not cheap. To make it more affordable, reselling platforms like LandViewer

would allow customers to pay only for the part of an image that covers the

selected area. This is an excellent value for money option considering the

price of an entire image. Another drawback of the HVR is that it always
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involves small area coverage; the better the resolution, the less total ground

area can be seen in an image. That is why high-resolution satellite data is

more suitable for small-scale monitoring or analysis. It would take a few

images from Pleiades-1, Kompsat-3 or SuperView-1 satellites to cover an

area the size of Cardiff. A single Landsat 8 image, in turn, can capture

a territory equal to many Cardiff cities. To sum up, the first matter is to

figure out what exactly satellite data is needed for. For example, if the aim

is to fulfil curiosity about how the Eiffel Tower or cities look from space, it

is suitable to choose Google Maps to explore the still world in fine detail.

On the other hand, if the goal is to study, map and monitor objects and

changes in time, it is necessary to go to LandViewer and obtain a satellite

image. A low- or medium-resolution image will be enough for free-of-charge

observations of territories on a large scale (country or city scale). If there

is a need to zoom in close to objects the size of a house or a car, the user

should consider spending some money on a high-resolution image. In ad-

dition, because high resolution images are costly, it is important to use

appropriate resolutions for machine learning models. Moreover, the long

procedures needed for pre-processing if the resolution is not appropriate,

in order to make the images suitable, defeats the object of unsupervised

learning methods.

• The second hypothesis of this research work states: "An archi-

tecture method that is based on deep learning techniques can be used to

classify and extract localised contours around building boundaries using

VHR remotely-sensed images." A CNN was proposed for rooftop detec-

tion in an urban area using VHR images. CNN networks were applied to

characterise objects and their spatial context by using within-object and

between-object information. Specifically, Mask R-CNN networks with two

different model structures were developed to predict linearly shaped ob-

jects (e.g. boundaries of the building rooftops). Multiple small window size
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CNNs were sampled along each object based on geometric characteristics,

and integrated through statistical majority voting; whereas the large win-

dow size CNN was used only once per object for prediction using a broad

spatial context. A rule-based decision fusion was designed to integrate the

class-specific distribution results conditional upon these two CNN models,

in which the prediction of a linearly shaped object from the small win-

dow size CNNs was given priority; whereas the large window size CNN was

trusted in alternative cases.

The effectiveness of the proposed CNN method was tested on large urban ar-

eas with complex roofs, such as the buildings in Vaihingen, Germany. CNN

combined with large and small window sizes achieved excellent detection ac-

curacy and computational efficiency. This study concludes that the object

detection-based CNN method can effectively solve complex building foot-

print extraction 2D using VHR imagery. The proposed CNN method with

two CNN networks model sizes is designed to sample specific locations de-

fined by the size and geometry of image objects. It then integrates them in a

class-specific manner to obtain an effective and efficient urban output. This

method with large and small window size CNNs produced the most detailed

class results compared to the sub-modules, and other contextual-based and

object-based benchmark methods. Moreover, high computational efficiency

was achieved with much more acceptable time requirements. Therefore, the

proposed CNN method is effective and efficient for large urban areas using

VHR imagery, and has great potential in many applications.

This study proposes a novel boundary regulated network for accurate roof

segmentation and outline extraction from VHR aerial images. The Mask

RCNN model can perform automatic segmentation and outline extraction

from RGB images. Its performance has been verified through several exper-

iments on a VHR dataset covering the data set containing 33 patches (of

different sizes). With its unique boundary restriction and regulation design,
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the proposed method has achieved significant results as well as producing

keypoints obtained by the models used to classify and extract localised con-

tours around building boundaries using VHR remotely-sensed images. In

comparison, backbones RestNet 50 and 101 achieved gains of ( 0.941, 0.901,

0.819, 0.952 ) in F1 score, Recall, and IoU and overall accuracy, respectively.

• The third hypothesis of this research work states: "Post-processing

techniques can significantly improve the output for detection accuracy." A

novel post-processing algorithm has been proposed to enhance the output

of deep CNNs. The proposed method illustrates how to create contours

by iteratively applying the algorithms. The proposed post-processing al-

gorithms and the CNN approach were evaluated by testing them on large

urban datasets from Vaihingen, Germany. The findings show a progressively

increasing trend in the error of identified buildings, with an average overall

accuracy ranging from 94%. Complex land surface classes cast by shad-

ows, which are exceedingly difficult to manage, were recognised correctly,

as were complex land patterns (e.g. parking, large trucks, and overlapping

objects). This study concludes that post-processing steps are necessary for

unsupervised and automatic VHR remotely sensed imagery to efficiently

solve complicated challenges, such as older, poorly landscaped areas. Addi-

tionally, the post-processing approaches and patch-based CNN models were

commonly supportive for pixel-level and neighbourhood features, improving

each other during classifier iteration, and accurately extracting additional

information from detected buildings. Sharpness calculations have demon-

strated that adding post-processing algorithms improves model performance

by 2.5%, 4.86%, 1.2% in F1 score, IoU and overall accuracy respectively, as

can be seen in Table 4.2 and Table 5.1.

• The fourth hypothesis of this research work states: "Detection

of the vectors performed by deep learning architecture-based methods can
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provide vital information to help post-processing and determine useful ge-

ometrical information for building detection." While vectors are utilised in

a wide range of industries, their usage in machine learning is particularly

notable. From a ML perspective, the advantage of vectors is that they can

be converted from raster data to vectors at various stages of an ML project;

this can be accomplished through the mathematical definition of vectors,

which transfers all the information required to work with and understand

the final ML outputs. For instance, Mask R-CNN keypoints could be em-

ployed as unlabelled vectors to compute and extract rooftop orientations

of buildings. The case studies have revealed the utility of the algorithms

described in the third hypothesis of this research. The results show that the

proposed algorithms generate suitable vectors when conducted using Mask

R-CNN. Therefore, they can be used as an alternative method to extract

additional information from detected buildings, such as the orientation. It

should be noted that there is remarkable rigidity in the shape of the build-

ing, and the fragmentation of minute segments is removed. As a result, the

extension makes it much easier to display a specific object’s keypoints as

a single hot mask or ground-truth mask, and then use the Mask R-CNN

framework to execute this objective. In other words, this approach is a

single framework that can support bounding box detection, mask segmen-

tation, and keypoint detection. Furthermore, a vector is a mathematical

object that is represented in space by an array of numbers with an origin,

direction, and magnitude length. In addition, to represent a location, or

even a change in a mathematical framework or space conceptually, vector

space elements are a collection of objects that are closed by adding rules, and

they support a method for scalar multiplication that can be used in many

fields, such as medical imagery and advanced scientific multiplication.
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6.2 Conclusions

In line with the research aim and objectives, this thesis has presented the meth-

ods used for the re-purposing of pre-trained ML models, and the development

of novel post-processing algorithms for extracting 2D building footprints using

deep learning techniques. The newly developed novel approach demonstrates the

automatic generation of 2D building models from a single VHR satellite imagery.

The computation discussed may be applied to a wide range of research and ex-

perimentation. Moreover, despite the limitations of machine learning approaches,

particularly with regard to small projects such as this and the restrictions faced,

positive outcomes have been achieved. However, if the results are applied to

larger, government-scale projects, these limitations will not be faced.The conclu-

sions drawn from this current research are as follows:

• Deep learning algorithms are beneficial for remote sensing as semi-supervised

or unsupervised applications to solve problems whose representations are

complex (e.g., nonlinear or even undefined classes), and therefore cannot be

generalised.

• Deep learning approaches should be followed by custom post-processing al-

gorithms (depending on the application’s aims and types) to solve technical

challenges, including parameter differences.

• Joining more DL architectures in one application was not an easy task. Al-

though the results may be distinctive, these methods require experts who

have experience in DL architecture networks, also require high computa-

tional power, more time and data for training.

• The effect of using different backbones:

In terms of post-processing, there are a few parameters for which we must

select appropriate values. In the majority of the experiments, the shape of
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the final contour from the proposed algorithm depends on the quality of the

reference line and the quality of the mask. When the model’s backbone was

upgraded from ResNet50 to ResNet101, precision, IoU, and overall accuracy

improved by 14 %, 12 %, and 14 %, respectively.

6.3 Recommendations for Future Research

The research presented has developed deep learning algorithms for object detec-

tion using VHR remotely sensed imagery. However, additional investigation is

required because several aspects of the proposed methodologies have not been

thoroughly addressed or examined. The critical limitation of this research is the

lack of testing for the employability of created methodologies. This research ex-

amined transferability using the Vaihingen semantic segmentation datasets, where

training was done on some annotated tiles, and testing was done on the image

tiles that were not used for training. However, most studies in this area used

the same training and testing data, and the methods were verified only in spe-

cific regions without transferring to new unexplored regions. Thus, future work

should evaluate the applicability of these approaches to a larger geographical area

to verify that these methods are robust, adaptable, and scalable. Apart from the

previously described adaptable methods, the proposed deep learning methods

could be developed from various angles, including data sources, approaches, and

implementations. The following detailed suggestions are proposed:

• Using multi-source geospatial data

This research has focused on building detection using VHR remotely sensed

imagery. However, many other data sources exist in the field of remote sens-

ing, such as hyperspectral, SAR, and LiDAR, which have not been used in

this study. The fusion of these multiple data sources by designing novel deep

architectures would be another direction for further research. In addition,
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the object detection in this thesis was undertaken at a generalised spatial

and semantic level (e.g., building class), without identifying other classes

(e.g., trees, roads, cars etc.). This subject could be addressed further by

incorporating multi-source geospatial data (e.g. classified geospatial data

in large areas might be further distinguished). Therefore, future research

should use semantic information from other data sources, such as SAR and

LiDAR, to generalise the spatial and semantic classification of the feature

map classes. In particular, the fusion of deep learning models is a potential

approach in the field of remote sensing. Thus, images produced by remote

sensing directly result from physical operations, such as light reflection and

microwave scattering. Hence, a combination of physics-based models that

describe the process underlying the images and newly created artificial in-

telligence technology in their field could be used.

• Approaches

This thesis proposes two different approaches to detect urban 2D objects

utilising fixed input patch sizes. However, the features retrieved in urban

areas are essentially scale-dependent and appear at various scales. There-

fore, it is recommended that further research should adapt a multitude

of CNNs with different input patch sizes to the variable sizes and shapes

of urban objects via weighted decision fusion. Additionally, a 2D object

detection can be expanded to a 3D object detection, reconstruction, and

classification framework. These multi-layer representations necessitate fur-

ther development of the deep learning framework to incorporate additional

deep learning models into the iterative process, which may support one an-

other through collaborative remote sensing assemblies and an optimisation

framework.

• Implementations

Numerous potential applications could be used to show the impact of the
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methodologies that have been developed in this research. One option is

to investigate change detection in rapidly increasing metropolitan areas,

where organisational structures and processes, including local governments,

and small and medium-sized businesses, require assistance in making deci-

sions. Further deep learning approaches, such as recurrent neural networks

(RNN) and Long short-term memory (LSTM), can be built to simulate land

cover and land use patterns through time-series analysis. Additionally, this

research has focused on the detection of buildings in urban environments.

Apart from addressing technology issues, deep learning in remote sensing

enables new applications, such as monitoring global changes and analysing

protected areas. In this environment, deep learning provides a practical

framework that enables remote sensing researchers to expand the scope of

the field.

Finally, a database should be built to contain all of the remote sensing features to

help develop deep learning approaches in the remote sensing field. This database

should be open source and include a variety of data sources, scales, pre-trained

models, meta-architectures, and meta-algorithms, similar to machine learning

dataset platforms (e.g., COCO, ImageNet, Zoo etc.). This platform database

would help to develop competitive pre-trained models for further research, which

would help the remote sensing field develop many frameworks and standards for

a range of applications and aspects. Furthermore, some other aspects that are

significant for further research in remote sensing are as follows:

• Building a foundation of frameworks and standards for open-source data

set formatting, especially for remote sensing, as this will help to encourage

further research.

• Pre-trained models, meta-architectures, and meta-algorithms would dimin-

ish many ML drawbacks such as computational power, amount of data
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needed for training, massive backbone architectures, and experimental pa-

rameter setup.

Finally, it is hoped that this research will inspire advanced applications that will

extend the study of remote sensing, such as research supported by government

departments, or large-scale national and international institutions. Furthermore,

the post-processing could be used in alternative fields, with its benefits extending

to other disciplines.
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Appendix Appendix

Appendix

A. Software Setup

To progress with the computational part of the problem, different open source
frameworks are used because they provide the necessary functions and modules
that are to be used in this project. These software, along with a brief description,
are listed below:

• Python

• OpenCV

• NumPy

• SciPy

• Matplotlib

• PyTorch

• Detectron2

Python

Python is an interpreted, high level programming language that allows convenient
access to general programming practices and approaches. The language features
rich set of libraries and frameworks, that allows easier implementation of the ideas
and solution in terms of image processing and computer vision.
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OpenCV

OpenCV is a popular library for computer vision and image processing, which
features a wide set of algorithms that are primarily used in the state-of-the-art
technologies. The algorithms included within OpenCV allows quick and real time
processing of the images.

NumPy

NumPy is a numerical Python library that allows matrices and a high-dimensional
array top be created, along with set of operations that can be performed on these
data structures.

SciPy

SciPy is a scientific Python library that features different computational functions
across several scientific domains. These functions are based on the solutions in
ODEs, Linear Algebra, optimisation, integration, signal analysis, image process-
ing and so on. SciPy inter-operates with Numpy.

Matplotlib

Matplotlib is a plotting library in Python that allows graphs and figures to be
created for different data sources. It allows easy operation with NumPy and SciPy.
Pytorch is an optimized tensor processing library for deep learning using CPUs
and GPUs. The library allows inter-operation with Python syntax. It also allows
automatic differentiation, meaning that it allows the gradients to be calculated
on the fly without having to worry about backward calculation. Pytorch also
seamlessly operates with NumPy.

B. pix2pix GAN Model [341] & Detectron2 [340]

code
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section{pix2pix-code} 

from __future__ import absolute_import 

from __future__ import division 

from __future__ import print_function 

import tensorflow as tf 

print(tf.__version__) 

import numpy as np 

import argparse 

import os 

import json 

import glob 

import random 

import collections 

import math 

import time 

parser = argparse.ArgumentParser() 

parser.add_argument("--input_dir", default= "maps/train" , help="path to folder containing 

images") 

parser.add_argument("--mode",  default= "train" ,choices=["train", "test", "export"]) 

parser.add_argument("--output_dir", default= "facades_train" ,help="where to put output 

files") 

parser.add_argument("--seed", type=int) 

parser.add_argument("--checkpoint", default=None, help="directory with checkpoint to 

resume training from or use for testing") 
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parser.add_argument("--max_steps", type=int, help="number of training steps (0 to disable)") 

parser.add_argument("--max_epochs", type=int, help="number of training epochs") 

parser.add_argument("--summary_freq", type=int, default=100, help="update summaries 

every summary_freq steps") 

parser.add_argument("--progress_freq", type=int, default=50, help="display progress every 

progress_freq steps") 

parser.add_argument("--trace_freq", type=int, default=0, help="trace execution every 

trace_freq steps") 

parser.add_argument("--display_freq", type=int, default=0, help="write current training 

images every display_freq steps") 

parser.add_argument("--save_freq", type=int, default=5000, help="save model every 

save_freq steps, 0 to disable") 

parser.add_argument("--separable_conv", action="store_true", help="use separable 

convolutions in the generator") 

parser.add_argument("--aspect_ratio", type=float, default=1.0, help="aspect ratio of output 

images (width/height)") 

parser.add_argument("--lab_colorization", action="store_true", help="split input image into 

brightness (A) and color (B)") 

parser.add_argument("--batch_size", type=int, default=1, help="number of images in batch") 

parser.add_argument("--which_direction", type=str, default="AtoB", choices=["AtoB", 

"BtoA"]) 

parser.add_argument("--ngf", type=int, default=64, help="number of generator filters in first 

conv layer") 

parser.add_argument("--ndf", type=int, default=64, help="number of discriminator filters in 

first conv layer") 

parser.add_argument("--scale_size", type=int, default=286, help="scale images to this size 

before cropping to 256x256") 
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parser.add_argument("--flip", dest="flip", action="store_true", help="flip images 

horizontally") 

parser.add_argument("--no_flip", dest="flip", action="store_false", help="don't flip images 

horizontally") 

parser.set_defaults(flip=True) 

parser.add_argument("--lr", type=float, default=0.0002, help="initial learning rate for adam") 

parser.add_argument("--beta1", type=float, default=0.5, help="momentum term of adam") 

parser.add_argument("--l1_weight", type=float, default=100.0, help="weight on L1 term for 

generator gradient") 

parser.add_argument("--gan_weight", type=float, default=1.0, help="weight on GAN term 

for generator gradient") 

 

 

# export options 

parser.add_argument("--output_filetype", default="png", choices=["png", "jpeg"]) 

a = parser.parse_args() 

 

EPS = 1e-12 

CROP_SIZE = 256 

 

Examples = collections.namedtuple("Examples", "paths, inputs, targets, count, 

steps_per_epoch") 

Model = collections.namedtuple("Model", "outputs, predict_real, predict_fake, discrim_loss, 

discrim_grads_and_vars, gen_loss_GAN, gen_loss_L1, gen_grads_and_vars, train") 

def preprocess(image): 

    with tf.name_scope("preprocess"): 
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        # [0, 1] => [-1, 1] 

        return image * 2 - 1 

def deprocess(image): 

    with tf.name_scope("deprocess"): 

        # [-1, 1] => [0, 1] 

        return (image + 1) / 2 

def preprocess_lab(lab): 

    with tf.name_scope("preprocess_lab"): 

        L_chan, a_chan, b_chan = tf.unstack(lab, axis=2) 

        # L_chan: black and white with input range [0, 100] 

        # a_chan/b_chan: color channels with input range ~[-110, 110], not exact 

        # [0, 100] => [-1, 1],  ~[-110, 110] => [-1, 1] 

        return [L_chan / 50 - 1, a_chan / 110, b_chan / 110] 

def deprocess_lab(L_chan, a_chan, b_chan): 

    with tf.name_scope("deprocess_lab"): 

        # this is axis=3 instead of axis=2 because we process individual images but deprocess 

batches 

        return tf.stack([(L_chan + 1) / 2 * 100, a_chan * 110, b_chan * 110], axis=3) 

 

 

 

 

def augment(image, brightness): 

    # (a, b) color channels, combine with L channel and convert to rgb 

    a_chan, b_chan = tf.unstack(image, axis=3) 
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    L_chan = tf.squeeze(brightness, axis=3) 

    lab = deprocess_lab(L_chan, a_chan, b_chan) 

    rgb = lab_to_rgb(lab) 

    return rgb 

 

def discrim_conv(batch_input, out_channels, stride): 

    padded_input = tf.pad(batch_input, [[0, 0], [1, 1], [1, 1], [0, 0]], mode="CONSTANT") 

    return tf.layers.conv2d(padded_input, out_channels, kernel_size=4, strides=(stride, stride), 

padding="valid", kernel_initializer=tf.random_normal_initializer(0, 0.02)) 

 

def gen_conv(batch_input, out_channels): 

    # [batch, in_height, in_width, in_channels] => [batch, out_height, out_width, 

out_channels] 

    initializer = tf.random_normal_initializer(0, 0.02) 

    if a.separable_conv: 

        return tf.layers.separable_conv2d(batch_input, out_channels, kernel_size=4, strides=(2, 

2), padding="same", depthwise_initializer=initializer, pointwise_initializer=initializer) 

    else: 

        return tf.layers.conv2d(batch_input, out_channels, kernel_size=4, strides=(2, 2), 

padding="same", kernel_initializer=initializer) 

 

def gen_deconv(batch_input, out_channels): 

    # [batch, in_height, in_width, in_channels] => [batch, out_height, out_width, 

out_channels] 

    initializer = tf.random_normal_initializer(0, 0.02) 

    if a.separable_conv: 
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        _b, h, w, _c = batch_input.shape 

        resized_input = tf.image.resize_images(batch_input, [h * 2, w * 2], 

method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) 

        return tf.layers.separable_conv2d(resized_input, out_channels, kernel_size=4, 

strides=(1, 1), padding="same", depthwise_initializer=initializer, 

pointwise_initializer=initializer) 

    else: 

        return tf.layers.conv2d_transpose(batch_input, out_channels, kernel_size=4, strides=(2, 

2), padding="same", kernel_initializer=initializer) 

 

def lrelu(x, a): 

    with tf.name_scope("lrelu"): 

        # adding these together creates the leak part and linear part 

        # then cancels them out by subtracting/adding an absolute value term 

        # leak: a*x/2 - a*abs(x)/2 

        # linear: x/2 + abs(x)/2 

        # this block looks like it has 2 inputs on the graph unless we do this 

        x = tf.identity(x) 

        return (0.5 * (1 + a)) * x + (0.5 * (1 - a)) * tf.abs(x) 

 

def batchnorm(inputs): 

    return tf.layers.batch_normalization(inputs, axis=3, epsilon=1e-5, momentum=0.1, 

training=True, gamma_initializer=tf.random_normal_initializer(1.0, 0.02)) 

 

def check_image(image): 
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    assertion = tf.assert_equal(tf.shape(image)[-1], 3, message="image must have 3 color 

channels") 

    with tf.control_dependencies([assertion]): 

        image = tf.identity(image) 

 

    if image.get_shape().ndims not in (3, 4): 

        raise ValueError("image must be either 3 or 4 dimensions") 

 

 

    # make the last dimension 3 so that you can unstack the colors 

    shape = list(image.get_shape()) 

    shape[-1] = 3 

    image.set_shape(shape) 

    return image 

 

# based on 

https://github.com/torch/image/blob/9f65c30167b2048ecbe8b7befdc6b2d6d12baee9/generic/

image.c 

def rgb_to_lab(srgb): 

    with tf.name_scope("rgb_to_lab"): 

        srgb = check_image(srgb) 

        srgb_pixels = tf.reshape(srgb, [-1, 3]) 

 

        with tf.name_scope("srgb_to_xyz"): 

            linear_mask = tf.cast(srgb_pixels <= 0.04045, dtype=tf.float32) 
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            exponential_mask = tf.cast(srgb_pixels > 0.04045, dtype=tf.float32) 

            rgb_pixels = (srgb_pixels / 12.92 * linear_mask) + (((srgb_pixels + 0.055) / 1.055) ** 

2.4) * exponential_mask 

            rgb_to_xyz = tf.constant([ 

                #    X        Y          Z 

                [0.412453, 0.212671, 0.019334], # R 

                [0.357580, 0.715160, 0.119193], # G 

                [0.180423, 0.072169, 0.950227], # B 

            ]) 

            xyz_pixels = tf.matmul(rgb_pixels, rgb_to_xyz) 

        # https://en.wikipedia.org/wiki/Lab_color_space#CIELAB-CIEXYZ_conversions 

        with tf.name_scope("xyz_to_cielab"): 

            # convert to fx = f(X/Xn), fy = f(Y/Yn), fz = f(Z/Zn) 

 

 

 

            # normalize for D65 white point 

            xyz_normalized_pixels = tf.multiply(xyz_pixels, [1/0.950456, 1.0, 1/1.088754]) 

            epsilon = 6/29 

            linear_mask = tf.cast(xyz_normalized_pixels <= (epsilon**3), dtype=tf.float32) 

            exponential_mask = tf.cast(xyz_normalized_pixels > (epsilon**3), dtype=tf.float32) 

            fxfyfz_pixels = (xyz_normalized_pixels / (3 * epsilon**2) + 4/29) * linear_mask + 

(xyz_normalized_pixels ** (1/3)) * exponential_mask 

 

            # convert to lab 
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            fxfyfz_to_lab = tf.constant([ 

                #  l       a       b 

                [  0.0,  500.0,    0.0], # fx 

                [116.0, -500.0,  200.0], # fy 

                [  0.0,    0.0, -200.0], # fz 

            ]) 

            lab_pixels = tf.matmul(fxfyfz_pixels, fxfyfz_to_lab) + tf.constant([-16.0, 0.0, 0.0]) 

 

        return tf.reshape(lab_pixels, tf.shape(srgb)) 

 

 

def lab_to_rgb(lab): 

    with tf.name_scope("lab_to_rgb"): 

        lab = check_image(lab) 

        lab_pixels = tf.reshape(lab, [-1, 3]) 

 

        # https://en.wikipedia.org/wiki/Lab_color_space#CIELAB-CIEXYZ_conversions 

        with tf.name_scope("cielab_to_xyz"): 

            # convert to fxfyfz 

            lab_to_fxfyfz = tf.constant([ 

                #   fx      fy        fz 

                [1/116.0, 1/116.0,  1/116.0], # l 

                [1/500.0,     0.0,      0.0], # a 

                [    0.0,     0.0, -1/200.0], # b 
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            ]) 

            fxfyfz_pixels = tf.matmul(lab_pixels + tf.constant([16.0, 0.0, 0.0]), lab_to_fxfyfz) 

            # convert to xyz 

            epsilon = 6/29 

            linear_mask = tf.cast(fxfyfz_pixels <= epsilon, dtype=tf.float32) 

            exponential_mask = tf.cast(fxfyfz_pixels > epsilon, dtype=tf.float32) 

            xyz_pixels = (3 * epsilon**2 * (fxfyfz_pixels - 4/29)) * linear_mask + (fxfyfz_pixels 

** 3) * exponential_mask 

 

 

            # denormalize for D65 white point 

            xyz_pixels = tf.multiply(xyz_pixels, [0.950456, 1.0, 1.088754]) 

 

 

        with tf.name_scope("xyz_to_srgb"): 

            xyz_to_rgb = tf.constant([ 

                #     r           g          b 

                [ 3.2404542, -0.9692660,  0.0556434], # x 

                [-1.5371385,  1.8760108, -0.2040259], # y 

                [-0.4985314,  0.0415560,  1.0572252], # z 

            ]) 

            rgb_pixels = tf.matmul(xyz_pixels, xyz_to_rgb) 

            # avoid a slightly negative number messing up the conversion 

            rgb_pixels = tf.clip_by_value(rgb_pixels, 0.0, 1.0) 

            linear_mask = tf.cast(rgb_pixels <= 0.0031308, dtype=tf.float32) 
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            exponential_mask = tf.cast(rgb_pixels > 0.0031308, dtype=tf.float32) 

            srgb_pixels = (rgb_pixels * 12.92 * linear_mask) + ((rgb_pixels ** (1/2.4) * 1.055) - 

0.055) * exponential_mask 

 

 

        return tf.reshape(srgb_pixels, tf.shape(lab)) 

 

def load_examples(): 

    if a.input_dir is None or not os.path.exists(a.input_dir): 

        raise Exception("input_dir does not exist") 

 

    input_paths = glob.glob(os.path.join(a.input_dir, "*.jpg")) 

    decode = tf.image.decode_jpeg 

    if len(input_paths) == 0: 

        input_paths = glob.glob(os.path.join(a.input_dir, "*.png")) 

        decode = tf.image.decode_png 

 

    if len(input_paths) == 0: 

        raise Exception("input_dir contains no image files") 

 

    def get_name(path): 

        name, _ = os.path.splitext(os.path.basename(path)) 

        return name 

 

    # if the image names are numbers, sort by the value rather than asciibetically 
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    # having sorted inputs means that the outputs are sorted in test mode 

    if all(get_name(path).isdigit() for path in input_paths): 

        input_paths = sorted(input_paths, key=lambda path: int(get_name(path))) 

    else: 

        input_paths = sorted(input_paths) 

 

    with tf.name_scope("load_images"): 

        path_queue = tf.train.string_input_producer(input_paths, shuffle=a.mode == "train") 

        reader = tf.WholeFileReader() 

        paths, contents = reader.read(path_queue) 

        raw_input = decode(contents) 

        raw_input = tf.image.convert_image_dtype(raw_input, dtype=tf.float32) 

 

 

        assertion = tf.assert_equal(tf.shape(raw_input)[2], 3, message="image does not have 3 

channels") 

        with tf.control_dependencies([assertion]): 

            raw_input = tf.identity(raw_input) 

 

 

        raw_input.set_shape([None, None, 3]) 

 

 

        if a.lab_colorization: 

            # load color and brightness from image, no B image exists here 
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            lab = rgb_to_lab(raw_input) 

            L_chan, a_chan, b_chan = preprocess_lab(lab) 

            a_images = tf.expand_dims(L_chan, axis=2) 

            b_images = tf.stack([a_chan, b_chan], axis=2) 

        else: 

            # break apart image pair and move to range [-1, 1] 

            width = tf.shape(raw_input)[1] # [height, width, channels] 

            a_images = preprocess(raw_input[:,:width//2,:]) 

            b_images = preprocess(raw_input[:,width//2:,:]) 

 

 

    if a.which_direction == "AtoB": 

        inputs, targets = [a_images, b_images] 

    elif a.which_direction == "BtoA": 

        inputs, targets = [b_images, a_images] 

    else: 

        raise Exception("invalid direction") 

 

 

    # synchronize seed for image operations so that we do the same operations to both 

    # input and output images 

    seed = random.randint(0, 2**31 - 1) 

    def transform(image): 

        r = image 
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        if a.flip: 

            r = tf.image.random_flip_left_right(r, seed=seed) 

 

 

        # area produces a nice downscaling, but does nearest neighbor for upscaling 

        # assume we're going to be doing downscaling here 

        r = tf.image.resize_images(r, [a.scale_size, a.scale_size], 

method=tf.image.ResizeMethod.AREA) 

 

 

        offset = tf.cast(tf.floor(tf.random_uniform([2], 0, a.scale_size - CROP_SIZE + 1, 

seed=seed)), dtype=tf.int32) 

        if a.scale_size > CROP_SIZE: 

            r = tf.image.crop_to_bounding_box(r, offset[0], offset[1], CROP_SIZE, 

CROP_SIZE) 

        elif a.scale_size < CROP_SIZE: 

            raise Exception("scale size cannot be less than crop size") 

        return r 

    with tf.name_scope("input_images"): 

        input_images = transform(inputs) 

 

 

    with tf.name_scope("target_images"): 

        target_images = transform(targets) 
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    paths_batch, inputs_batch, targets_batch = tf.train.batch([paths, input_images, 

target_images], batch_size=a.batch_size) 

    steps_per_epoch = int(math.ceil(len(input_paths) / a.batch_size)) 

 

    return Examples( 

        paths=paths_batch, 

        inputs=inputs_batch, 

        targets=targets_batch, 

        count=len(input_paths), 

        steps_per_epoch=steps_per_epoch, 

    ) 

 

 

def create_generator(generator_inputs, generator_outputs_channels): 

    layers = [ ] 

 

    # encoder_1: [batch, 256, 256, in_channels] => [batch, 128, 128, ngf] 

    with tf.variable_scope("encoder_1"): 

        output = gen_conv(generator_inputs, a.ngf) 

        layers.append(output) 

 

    layer_specs = [ 

        a.ngf * 2, # encoder_2: [batch, 128, 128, ngf] => [batch, 64, 64, ngf * 2] 

        a.ngf * 4, # encoder_3: [batch, 64, 64, ngf * 2] => [batch, 32, 32, ngf * 4] 

        a.ngf * 8, # encoder_4: [batch, 32, 32, ngf * 4] => [batch, 16, 16, ngf * 8] 
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        a.ngf * 8, # encoder_5: [batch, 16, 16, ngf * 8] => [batch, 8, 8, ngf * 8] 

        a.ngf * 8, # encoder_6: [batch, 8, 8, ngf * 8] => [batch, 4, 4, ngf * 8] 

        a.ngf * 8, # encoder_7: [batch, 4, 4, ngf * 8] => [batch, 2, 2, ngf * 8] 

        a.ngf * 8, # encoder_8: [batch, 2, 2, ngf * 8] => [batch, 1, 1, ngf * 8] 

    ] 

 

    for out_channels in layer_specs: 

        with tf.variable_scope("encoder_%d" % (len(layers) + 1)): 

            rectified = lrelu(layers[-1], 0.2) 

            # [batch, in_height, in_width, in_channels] => [batch, in_height/2, in_width/2, 

out_channels] 

            convolved = gen_conv(rectified, out_channels) 

            output = batchnorm(convolved) 

            layers.append(output) 

 

    layer_specs = [ 

        (a.ngf * 8, 0.5),   # decoder_8: [batch, 1, 1, ngf * 8] => [batch, 2, 2, ngf * 8 * 2] 

        (a.ngf * 8, 0.5),   # decoder_7: [batch, 2, 2, ngf * 8 * 2] => [batch, 4, 4, ngf * 8 * 2] 

        (a.ngf * 8, 0.5),   # decoder_6: [batch, 4, 4, ngf * 8 * 2] => [batch, 8, 8, ngf * 8 * 2] 

        (a.ngf * 8, 0.0),   # decoder_5: [batch, 8, 8, ngf * 8 * 2] => [batch, 16, 16, ngf * 8 * 2] 

        (a.ngf * 4, 0.0),   # decoder_4: [batch, 16, 16, ngf * 8 * 2] => [batch, 32, 32, ngf * 4 * 2] 

        (a.ngf * 2, 0.0),   # decoder_3: [batch, 32, 32, ngf * 4 * 2] => [batch, 64, 64, ngf * 2 * 2] 

Appendix

211



        (a.ngf, 0.0),       # decoder_2: [batch, 64, 64, ngf * 2 * 2] => [batch, 128, 128, ngf * 2] 

    ] 

 

 

 

 

    num_encoder_layers = len(layers) 

    for decoder_layer, (out_channels, dropout) in enumerate(layer_specs): 

        skip_layer = num_encoder_layers - decoder_layer - 1 

        with tf.variable_scope("decoder_%d" % (skip_layer + 1)): 

            if decoder_layer == 0: 

                # first decoder layer doesn't have skip connections 

                # since it is directly connected to the skip_layer 

                input = layers[-1] 

            else: 

                input = tf.concat([layers[-1], layers[skip_layer]], axis=3) 

 

 

            rectified = tf.nn.relu(input) 

            # [batch, in_height, in_width, in_channels] => [batch, in_height*2, in_width*2, 

out_channels] 

            output = gen_deconv(rectified, out_channels) 

            output = batchnorm(output) 

 

 

Appendix

212



            if dropout > 0.0: 

                output = tf.nn.dropout(output, keep_prob=1 - dropout) 

 

 

            layers.append(output) 

 

 

 

 

 

 

 

    # decoder_1: [batch, 128, 128, ngf * 2] => [batch, 256, 256, generator_outputs_channels] 

    with tf.variable_scope("decoder_1"): 

        input = tf.concat([layers[-1], layers[0]], axis=3) 

        rectified = tf.nn.relu(input) 

        output = gen_deconv(rectified, generator_outputs_channels) 

        output = tf.tanh(output) 

        layers.append(output) 

 

 

    return layers[-1] 

 

def create_model(inputs, targets): 
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    def create_discriminator(discrim_inputs, discrim_targets): 

        n_layers = 3 

        layers = [] 

 

 

        # 2x [batch, height, width, in_channels] => [batch, height, width, in_channels * 2] 

        input = tf.concat([discrim_inputs, discrim_targets], axis=3) 

 

 

        # layer_1: [batch, 256, 256, in_channels * 2] => [batch, 128, 128, ndf] 

        with tf.variable_scope("layer_1"): 

            convolved = discrim_conv(input, a.ndf, stride=2) 

            rectified = lrelu(convolved, 0.2) 

            layers.append(rectified) 

 

 

        # layer_2: [batch, 128, 128, ndf] => [batch, 64, 64, ndf * 2] 

        # layer_3: [batch, 64, 64, ndf * 2] => [batch, 32, 32, ndf * 4] 

        # layer_4: [batch, 32, 32, ndf * 4] => [batch, 31, 31, ndf * 8] 

        for i in range(n_layers): 

            with tf.variable_scope("layer_%d" % (len(layers) + 1)): 

                out_channels = a.ndf * min(2**(i+1), 8) 

                stride = 1 if i == n_layers - 1 else 2  # last layer here has stride 1 

                convolved = discrim_conv(layers[-1], out_channels, stride=stride) 
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                normalized = batchnorm(convolved) 

                rectified = lrelu(normalized, 0.2) 

                layers.append(rectified) 

 

 

        # layer_5: [batch, 31, 31, ndf * 8] => [batch, 30, 30, 1] 

        with tf.variable_scope("layer_%d" % (len(layers) + 1)): 

            convolved = discrim_conv(rectified, out_channels=1, stride=1) 

            output = tf.sigmoid(convolved) 

            layers.append(output) 

 

 

        return layers[-1] 

 

 

    with tf.variable_scope("generator"): 

        out_channels = int(targets.get_shape()[-1]) 

        outputs = create_generator(inputs, out_channels) 

 

    # create two copies of discriminator, one for real pairs and one for fake pairs 

    # they share the same underlying variables 

    with tf.name_scope("real_discriminator"): 

        with tf.variable_scope("discriminator"): 

            # 2x [batch, height, width, channels] => [batch, 30, 30, 1] 
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            predict_real = create_discriminator(inputs, targets) 

 

 

    with tf.name_scope("fake_discriminator"): 

        with tf.variable_scope("discriminator", reuse=True): 

            # 2x [batch, height, width, channels] => [batch, 30, 30, 1] 

            predict_fake = create_discriminator(inputs, outputs) 

 

 

    with tf.name_scope("discriminator_loss"): 

        # minimizing -tf.log will try to get inputs to 1 

        # predict_real => 1 

        # predict_fake => 0 

        discrim_loss = tf.reduce_mean(-(tf.log(predict_real + EPS) + tf.log(1 - predict_fake + 

EPS))) 

 

 

    with tf.name_scope("generator_loss"): 

        # predict_fake => 1 

        # abs(targets - outputs) => 0 

        gen_loss_GAN = tf.reduce_mean(-tf.log(predict_fake + EPS)) 

        gen_loss_L1 = tf.reduce_mean(tf.abs(targets - outputs)) 

        gen_loss = gen_loss_GAN * a.gan_weight + gen_loss_L1 * a.l1_weight 
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    with tf.name_scope("discriminator_train"): 

        discrim_tvars = [var for var in tf.trainable_variables() if 

var.name.startswith("discriminator")] 

        discrim_optim = tf.train.AdamOptimizer(a.lr, a.beta1) 

        discrim_grads_and_vars = discrim_optim.compute_gradients(discrim_loss, 

var_list=discrim_tvars) 

        discrim_train = discrim_optim.apply_gradients(discrim_grads_and_vars) 

 

 

    with tf.name_scope("generator_train"): 

        with tf.control_dependencies([discrim_train]): 

            gen_tvars = [var for var in tf.trainable_variables() if var.name.startswith("generator")] 

            gen_optim = tf.train.AdamOptimizer(a.lr, a.beta1) 

            gen_grads_and_vars = gen_optim.compute_gradients(gen_loss, var_list=gen_tvars) 

            gen_train = gen_optim.apply_gradients(gen_grads_and_vars) 

 

 

    ema = tf.train.ExponentialMovingAverage(decay=0.99) 

    update_losses = ema.apply([discrim_loss, gen_loss_GAN, gen_loss_L1]) 

 

 

    global_step = tf.train.get_or_create_global_step() 

    incr_global_step = tf.assign(global_step, global_step+1) 
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    return Model( 

        predict_real=predict_real, 

        predict_fake=predict_fake, 

        discrim_loss=ema.average(discrim_loss), 

        discrim_grads_and_vars=discrim_grads_and_vars, 

        gen_loss_GAN=ema.average(gen_loss_GAN), 

        gen_loss_L1=ema.average(gen_loss_L1), 

        gen_grads_and_vars=gen_grads_and_vars, 

        outputs=outputs, 

        train=tf.group(update_losses, incr_global_step, gen_train), 

    ) 

 

 

 

 

def save_images(fetches, step=None): 

    image_dir = os.path.join(a.output_dir, "images") 

    if not os.path.exists(image_dir): 

        os.makedirs(image_dir) 

 

 

    filesets = [] 

    for i, in_path in enumerate(fetches["paths"]): 

        name, _ = os.path.splitext(os.path.basename(in_path.decode("utf8"))) 
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        fileset = {"name": name, "step": step} 

        for kind in ["inputs", "outputs", "targets"]: 

            filename = name + "-" + kind + ".png" 

            if step is not None: 

                filename = "%08d-%s" % (step, filename) 

            fileset[kind] = filename 

            out_path = os.path.join(image_dir, filename) 

            contents = fetches[kind][i] 

            with open(out_path, "wb") as f: 

                f.write(contents) 

        filesets.append(fileset) 

    return filesets 

 

 

 

 

def append_index(filesets, step=False): 

    index_path = os.path.join(a.output_dir, "index.html") 

 

 

    if os.path.exists(index_path): 

        index = open(index_path, "a") 

    else: 

        index = open(index_path, "w") 
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        index.write(" ") 

        if step: 

            index.write("  ") 

        index.write(" ") 

 

 

    for fileset in filesets: 

        index.write("   ") 

 

 

        if step: 

            index.write("<td>%d</td>" % fileset["step"]) 

        index.write("<td>%s</td>" % fileset["name"]) 

 

 

        for kind in ["inputs", "outputs", "targets"]: 

            index.write("<td><img src='images/%s'></td>" % fileset[kind]) 

 

 

        index.write("</tr>") 

    return index_path 

def main(): 

    if a.seed is None: 

        a.seed = random.randint(0, 2**31 - 1) 
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    tf.set_random_seed(a.seed) 

    np.random.seed(a.seed) 

    random.seed(a.seed) 

 

    if not os.path.exists(a.output_dir): 

        os.makedirs(a.output_dir) 

 

    if a.mode == "test" or a.mode == "export": 

        if a.checkpoint is None: 

            raise Exception("checkpoint required for test mode") 

        # load some options from the checkpoint 

        options = {"which_direction", "ngf", "ndf", "lab_colorization"} 

        with open(os.path.join(a.checkpoint, "options.json")) as f: 

            for key, val in json.loads(f.read()).items(): 

                if key in options: 

                    print("loaded", key, "=", val) 

                    setattr(a, key, val) 

        # disable these features in test mode 

        a.scale_size = CROP_SIZE 

        a.flip = False 
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    for k, v in a._get_kwargs(): 

        print(k, "=", v) 

 

 

    with open(os.path.join(a.output_dir, "options.json"), "w") as f: 

        f.write(json.dumps(vars(a), sort_keys=True, indent=4)) 

 

    if a.mode == "export": 

        # export the generator to a meta graph that can be imported later for standalone 

generation 

        if a.lab_colorization: 

            raise Exception("export not supported for lab_colorization") 

 

 

        input = tf.placeholder(tf.string, shape=[1]) 

        input_data = tf.decode_base64(input[0]) 

        input_image = tf.image.decode_png(input_data) 

 

 

        # remove alpha channel if present 

        input_image = tf.cond(tf.equal(tf.shape(input_image)[2], 4), lambda: input_image[:,:,:3], 

lambda: input_image) 

        # convert grayscale to RGB 
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        input_image = tf.cond(tf.equal(tf.shape(input_image)[2], 1), lambda: 

tf.image.grayscale_to_rgb(input_image), lambda: input_image) 

 

 

        input_image = tf.image.convert_image_dtype(input_image, dtype=tf.float32) 

        input_image.set_shape([CROP_SIZE, CROP_SIZE, 3]) 

        batch_input = tf.expand_dims(input_image, axis=0) 

 

 

        with tf.variable_scope("generator"): 

            batch_output = deprocess(create_generator(preprocess(batch_input), 3)) 

 

 

        output_image = tf.image.convert_image_dtype(batch_output, dtype=tf.uint8)[0] 

        if a.output_filetype == "png": 

            output_data = tf.image.encode_png(output_image) 

        elif a.output_filetype == "jpeg": 

            output_data = tf.image.encode_jpeg(output_image, quality=80) 

        else: 

            raise Exception("invalid filetype") 

        output = tf.convert_to_tensor([tf.encode_base64(output_data)]) 

 

        key = tf.placeholder(tf.string, shape=[1]) 

        inputs = { 

            "key": key.name, 
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            "input": input.name 

        } 

        tf.add_to_collection("inputs", json.dumps(inputs)) 

        outputs = { 

            "key":  tf.identity(key).name, 

            "output": output.name, 

        } 

        tf.add_to_collection("outputs", json.dumps(outputs)) 

 

 

        init_op = tf.global_variables_initializer() 

        restore_saver = tf.train.Saver() 

        export_saver = tf.train.Saver() 

 

 

        with tf.Session() as sess: 

            sess.run(init_op) 

            print("loading model from checkpoint") 

            checkpoint = tf.train.latest_checkpoint(a.checkpoint) 

            restore_saver.restore(sess, checkpoint) 

            print("exporting model") 

            export_saver.export_meta_graph(filename=os.path.join(a.output_dir, "export.meta")) 

            export_saver.save(sess, os.path.join(a.output_dir, "export"), write_meta_graph=False) 
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        return 

 

 

    examples = load_examples() 

    print("examples count = %d" % examples.count) 

 

 

    # inputs and targets are [batch_size, height, width, channels] 

    model = create_model(examples.inputs, examples.targets) 

 

 

    # undo colorization splitting on images that we use for display/output 

    if a.lab_colorization: 

        if a.which_direction == "AtoB": 

            # inputs is brightness, this will be handled fine as a grayscale image 

            # need to augment targets and outputs with brightness 

            targets = augment(examples.targets, examples.inputs) 

            outputs = augment(model.outputs, examples.inputs) 

            # inputs can be deprocessed normally and handled as if they are single channel 

            # grayscale images 

            inputs = deprocess(examples.inputs) 

        elif a.which_direction == "BtoA": 

            # inputs will be color channels only, get brightness from targets 
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            inputs = augment(examples.inputs, examples.targets) 

            targets = deprocess(examples.targets) 

            outputs = deprocess(model.outputs) 

        else: 

            raise Exception("invalid direction") 

    else: 

        inputs = deprocess(examples.inputs) 

        targets = deprocess(examples.targets) 

        outputs = deprocess(model.outputs) 

 

    def convert(image): 

        if a.aspect_ratio != 1.0: 

            # upscale to correct aspect ratio 

            size = [CROP_SIZE, int(round(CROP_SIZE * a.aspect_ratio))] 

            image = tf.image.resize_images(image, size=size, 

method=tf.image.ResizeMethod.BICUBIC) 

 

        return tf.image.convert_image_dtype(image, dtype=tf.uint8, saturate=True) 

 

    # reverse any processing on images so they can be written to disk or displayed to user 

    with tf.name_scope("convert_inputs"): 

        converted_inputs = convert(inputs) 

 

    with tf.name_scope("convert_targets"): 

        converted_targets = convert(targets) 
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    with tf.name_scope("convert_outputs"): 

        converted_outputs = convert(outputs) 

 

    with tf.name_scope("encode_images"): 

        display_fetches = { 

            "paths": examples.paths, 

            "inputs": tf.map_fn(tf.image.encode_png, converted_inputs, dtype=tf.string, 

name="input_pngs"), 

            "targets": tf.map_fn(tf.image.encode_png, converted_targets, dtype=tf.string, 

name="target_pngs"), 

            "outputs": tf.map_fn(tf.image.encode_png, converted_outputs, dtype=tf.string, 

name="output_pngs"), 

        } 

 

 

    # summaries 

    with tf.name_scope("inputs_summary"): 

        tf.summary.image("inputs", converted_inputs) 

 

 

    with tf.name_scope("targets_summary"): 

        tf.summary.image("targets", converted_targets) 
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    with tf.name_scope("outputs_summary"): 

        tf.summary.image("outputs", converted_outputs) 

 

 

    with tf.name_scope("predict_real_summary"): 

        tf.summary.image("predict_real", tf.image.convert_image_dtype(model.predict_real, 

dtype=tf.uint8)) 

 

 

    with tf.name_scope("predict_fake_summary"): 

        tf.summary.image("predict_fake", tf.image.convert_image_dtype(model.predict_fake, 

dtype=tf.uint8)) 

 

 

    tf.summary.scalar("discriminator_loss", model.discrim_loss) 

    tf.summary.scalar("generator_loss_GAN", model.gen_loss_GAN) 

    tf.summary.scalar("generator_loss_L1", model.gen_loss_L1) 

 

    for var in tf.trainable_variables(): 

        tf.summary.histogram(var.op.name + "/values", var) 

 

 

    for grad, var in model.discrim_grads_and_vars + model.gen_grads_and_vars: 

        tf.summary.histogram(var.op.name + "/gradients", grad) 
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    with tf.name_scope("parameter_count"): 

        parameter_count = tf.reduce_sum([tf.reduce_prod(tf.shape(v)) for v in 

tf.trainable_variables()]) 

 

    saver = tf.train.Saver(max_to_keep=1) 

 

    logdir = a.output_dir if (a.trace_freq > 0 or a.summary_freq > 0) else None 

    sv = tf.train.Supervisor(logdir=logdir, save_summaries_secs=0, saver=None) 

    with sv.managed_session() as sess: 

        print("parameter_count =", sess.run(parameter_count)) 

 

        if a.checkpoint is not None: 

            print("loading model from checkpoint") 

            checkpoint = tf.train.latest_checkpoint(a.checkpoint) 

            saver.restore(sess, checkpoint) 

 

        max_steps = 2**32 

        if a.max_epochs is not None: 

            max_steps = examples.steps_per_epoch * a.max_epochs 

        if a.max_steps is not None: 

            max_steps = a.max_steps 

 

        if a.mode == "test": 

            # testing 
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   # at most, process the test data once 

            start = time.time() 

            max_steps = min(examples.steps_per_epoch, max_steps) 

            for step in range(max_steps): 

                results = sess.run(display_fetches) 

                filesets = save_images(results) 

                for i, f in enumerate(filesets): 

                    print("evaluated image", f["name"]) 

                index_path = append_index(filesets) 

            print("wrote index at", index_path) 

            print("rate", (time.time() - start) / max_steps) 

        else: 

            # training 

            start = time.time() 

 

 

            for step in range(max_steps): 

                def should(freq): 

                    return freq > 0 and ((step + 1) % freq == 0 or step == max_steps - 1) 

 

                options = None 
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                run_metadata = None 

                if should(a.trace_freq): 

                    options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) 

                    run_metadata = tf.RunMetadata() 

 

                fetches = { 

                    "train": model.train, 

                    "global_step": sv.global_step, 

                } 

 

                if should(a.progress_freq): 

                    fetches["discrim_loss"] = model.discrim_loss 

                    fetches["gen_loss_GAN"] = model.gen_loss_GAN 

                    fetches["gen_loss_L1"] = model.gen_loss_L1 

 

                if should(a.summary_freq): 

                    fetches["summary"] = sv.summary_op 

 

                if should(a.display_freq): 

                    fetches["display"] = display_fetches 

 

                results = sess.run(fetches, options=options, run_metadata=run_metadata) 

 

                if should(a.summary_freq): 
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                    print("recording summary") 

                    sv.summary_writer.add_summary(results["summary"], results["global_step"]) 

                if should(a.display_freq): 

                    print("saving display images") 

                    filesets = save_images(results["display"], step=results["global_step"]) 

                    append_index(filesets, step=True) 

 

                if should(a.trace_freq): 

                    print("recording trace") 

                    sv.summary_writer.add_run_metadata(run_metadata, "step_%d" % 

results["global_step"]) 

 

                if should(a.progress_freq): 

                    # global_step will have the correct step count if we resume from a checkpoint 

                    train_epoch = math.ceil(results["global_step"] / examples.steps_per_epoch) 

                    train_step = (results["global_step"] - 1) % examples.steps_per_epoch + 1 

                    rate = (step + 1) * a.batch_size / (time.time() - start) 

                    remaining = (max_steps - step) * a.batch_size / rate 

                    print("progress  epoch %d  step %d  image/sec %0.1f  remaining %dm" % 

(train_epoch, train_step, rate, remaining / 60)) 

                    print("discrim_loss", results["discrim_loss"]) 

                    print("gen_loss_GAN", results["gen_loss_GAN"]) 

                    print("gen_loss_L1", results["gen_loss_L1"]) 

 

                if should(a.save_freq): 
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                    print("saving model") 

                    saver.save(sess, os.path.join(a.output_dir, "model"), global_step=sv.global_step) 

 

                if sv.should_stop(): 

                    break 

 

 

 

 

main() 
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