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Abstract: An approach to controlling the three-link Robogymnast robotic gymnast and assessing
stability is proposed and examined. In the study, a conventionally configured linear quadratic
regulator is applied and compared with a fuzzy logic linear quadratic regulator hybrid approach for
stabilising the Robogymnast. The Robogymnast is designed to replicate the movement of a human as
they hang with both hands holding the high bar and then work to wing up into a handstand, still
gripping the bar. The system, therefore has a securely attached link between the hand element and
the ‘high bar’, which is mounted on ball bearings and can rotate freely. Moreover, in the study, a
mathematical model for the system is linearised, investigating the means of determining the state
space in the system by applying Lagrange’s equation. The fuzzy logic linear quadratic regulator
controller is used to identify how far the system responses stabilise when it is implemented. This paper
investigates factors affecting the control of swing-up in the underactuated three-link Robogymnast.
Moreover, a system simulation using MATLAB Simulink is conducted to show the impact of factors
including overshoot, rising, and settling time. The principal objective of the study lies in investigating
how a linear quadratic regulator or fuzzy logic controller with a linear quadratic regulator (FLQR)
can be applied to the Robogymnast, and to assess system behaviour under five scenarios, namely the
original value, this value plus or minus ±25%, and plus or minus ±50%. In order to further assess
the performance of the controllers used, a comparison is made between the outcomes found here and
findings in the recent literature with fuzzy linear quadratic regulator controllers.

Keywords: Robogymnast; LQR; fuzzy logic; (FLQR); swing-up; multi-link robotics; MATLAB

1. Introduction

Non-linear control theory research frequently uses Inverted Pendulum Systems (IPSs) [1]
as an example of unstable, underactuated systems [2]. Continuing work to develop novel
control technology reflects advances made across a range of areas within the realm of science
and technology. Effective measurement of a control system can be achieved through the
design and application of a controller with a specific system, to monitor its activities. This
paper presents an investigation of swing-up movement in the Robogymnast as a three-link,
non-linear robotic system [3]. The Robogymnast exemplifies complex mechanical systems
with more than one link and with underactuation and is therefore a suitable case study for
evaluating and comparing different types of control system [4]. The underactuated system
presents control challenges because of the lack of ability to linearise full-state feedback about
a specific point of equilibrium in many of these systems, as well as potentially not being
small-time local controllable (STLC) [5]. Various research has been conducted to address this
issue in the control engineering and robotics literature [6]. An inverted pendulum-derived
system is a frequent choice with which to demonstrate an underactuated mechanism.
This type of system has a component attached to a set point from which it swings freely,
and gravity acts upon this component. Motion control investigations frequently employ
pendulum systems, which enable hybrid and chaotic systems to be demonstrated [7–9].
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The triple-inverted pendulum mechanism is of interest to the robotics field because it
is analogous to the way in which human bodies are structured and achieve balance. The
Acrobat robotic system, named for its similarities to acrobatic movements, is an unstable
and underactuated system based on an inverted pendulum, and is therefore an appropriate
model for studies of non-linear controls in theory and in implementation [6,10]. The Acrobat
was used with a designed intelligent control system to allow the robot to balance, with the
design combining a conventional controller with fuzzy and adaptive-fuzzy controllers, to
achieve swing and catch actions and to balance in inversion [9]. State variable feedback
was utilised here, as well as LQR and proportional-integral-derivative.

In brief, the novelty of this work is to apply and compare a different controller on
a multi-link robotic system, to analyse and review the stability and robustness of both
proposed controllers’ performance, and then investigate the performance of the normal
conventional LQR compared with the hybrid fuzzy LQR successfully implemented in
various cases by adding and subtracting ±25% and ±50% to the system.

In this work, the paper is organised as follows. Section 2 describes the relative
study and examination of previous research; Section 3 contains two parts, which are,
firstly, an overview of the system, as well as the mathematical model of the Robogymnast
analysed; fourthly, the control design of LQR and FLQR are presented. Moreover, Section 5
presents the robustness investigation for the proposed controller, followed by the results
and comparison of all suggested cases. Lastly, we summarize the investigation and future
outcomes of the system are mentioned.

2. Literature Review

Various studies [11–16] examine autonomous upswing for a three-link robot with a
single non-actuated and two actuated joints. The current study’s contribution to this area
involves assessing the use of an LQR controller and a fuzzy LQR controller when applied
with the Robogymnast: a robot with multiple links and a pendulum action. The robotic
system used is described in Section 2, and a discussion of the system’s mathematical model
is also given. Section 3 considers the upswing control problem, while Section 4 describes
the application of each controller to the Robogymnast and details the responses recorded.
Then, Section 5 discusses the simulation and its findings, while Section 6 provides the
study’s conclusions.

Earlier studies [17–19] demonstrate LQR as an active method for designing controllers
for the performance of complex systems. In addition, state feedback control (SFC) operates
based on where the system’s poles are located, which depends upon state variables and
K as the gain matrix. Using SFC, the location of closed-loop system poles can be freely
set, while, when using output feedback controls, poles are located at predefined points.
The controller used combines LQR as an optimal control method with fuzzy approaches
to control [20]. A fuzzy logic control system is rule-based, and depends centrally on a
Fuzzy Control Rule (FCR) set connected through fuzzy implication as well as the compo-
sitional rule of inference [21]. FPD controllers use a combination of a PD and fuzzy logic
controller [22], and the choice of this controller type to bring stability to the Robogymnast
was made here because the system is non-linearly unstable, and FDP can address this issue
and stabilise the robot [23]. The PD controller is a feedback controller whose output is a
control variable, generally derived from error (e) when a comparison is made of a process
variable’s (PV’s) reference value as set by the user against the measured value. The error is
then used by the different elements within the controller to choose a particular action [18].
Employed-feedback proportional integral derivative (PID) controllers are widely used for
co-ordinating industrial controls, as well as in any context where controls must be modu-
lated on an ongoing basis. A PID controller works by analysing and measuring errors using
the difference between the target set-point (SP) and the measured value of the PV, making
real-time modifications based on integral (I), derivative (D) and proportional (P) terms.
In practice, this results in automated, accurate responses in altering a control function.
Through increasing system capabilities, the PID algorithm used by the controller brings
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the output measured into line with desired inputs while minimising deferral error [24].
Modelling and simulation of both PID and LQR controllers for use to control the Robogym-
nast took place in MATLAB/Simulink. Within this, a PID controller was developed and
implemented with the robotic pendulum system and its performance compared to that of
the conventional LQR controller [25]. The initial stage involved creating a mathematical
model of the robotic system and then modelling a robotics manipulation drive with PI [19].

3. Materials and Methods
3.1. System Description

The basis of the design for the three-link robotic system used in this study comes
from an established movement in gymnastics in which an individual hanging from a
high bar uses free rotation to swing up and over the top. Figure 1a provides a block
diagram representing the system (Figure 1b) in its principal components. The first link is
analogous to the arms of the gymnast, with no wrist or elbow jointing; Link 2 combines
the gymnast’s trunk, neck, and head into one unified part, and Link 3 connects the legs
and feet, with no jointing for the knees and ankles. The non-actuated, passive joint (Joint 1)
in the system is analogous to the athlete’s hands, and the active second and third joints
relate to the shoulder and then the hip joints in a human [26,27]. As shown in Figure 1a,b’s
representation, the system is operated using two stepper motors connected to a stepper
driver, which allows the system to move smoothly. In addition, the STM32F Microcontroller
(ST, Italy) is used for programming of the control system, using the language C++ for
converting commands passed from the PC-based control system and the robotic system. A
sensor is also assigned to each of the links, with Link 1 being connected to a rotary encoder,
while potentiometers 2 and 3 were connected to Links 2 and 3, respectively, and the sensors
monitored the absolute angles at each position [17].
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Figure 1. Robogymnast.

3.2. Mathematical Model

This subsection provides the mathematical modelling of the designed controller, in
relation to the Robogymnast as shown in Figure 1a,b. Lagrange equations were utilised to
generate system motion equations [3].

Modelling of the robot while vertical used linear, continuous-time, state-space ap-
proaches, applied using multiple tools in MATLAB and additional researcher-generated
M-files. In Table 1, names and values are provided for each parameter. Matrices to model
state space are termed A, B, C and D. The anti-swing controller’s purpose is to stabilise
pendulum links in vertical downward alignment with minimal vibration. Link state as
representing the point of stable is as follows: θ1 = θ2 = θ3 = 0. The equations’ state space for
the robotic system is given by
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(3)

The Robogymnast’s discrete-time modelling was performed through discretisation 
of Equations (1) and (2), which were then applied in the MATLAB command window for 
the implementation of mathematical model matrices in the simulation to determine 
outcomes. This was carried out through the MATLAB commands described in which  

= Ax + Bu (1)
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y = Cx (2)

x is the state vector of the system, y is the output vector. The numerical model of the
Robogymnast was calculated by MATLAB/Toolbox to obtain A, B and C, whereas

A =

[
03 I3

A22 A22

]
where

03 =

0 0 0
0 0 0
0 0 0

 I3 =

1 0 0
0 1 0
0 0 1



A21 =

0 2.8625 −0.0657
0 29.2751 −15.8236
0 −57.5286 247.5924



A22 =

−0.0286 −0.0083 0.0284
−0.0391 −0.1957 1.2358
0.0589 1.0485 −18.0527


State-space matrices for Robogymnast (A, B, C and D) are shown below:

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 2.6825 −0.0657 −0.0286 −0.0083 0.0284
0 29.2751 −15.8236 −0.0391 −0.1957 1.2358
0 −57.5286 247.5924 0.0589 1.4085 −18.0527



B =



0
0
0

1.0314
1.6582
−2.4837

 C =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (3)

The Robogymnast’s discrete-time modelling was performed through discretisation of
Equations (1) and (2), which were then applied in the MATLAB command window for the
implementation of mathematical model matrices in the simulation to determine outcomes.
This was carried out through the MATLAB commands described in which

sys = ss [A, B, C, D]
ss2tf: h = tf [sys]

Table 1. Robogymnast parameters [18].

Parameters Symbol Mean Values

Length of the first link L1 0.16 m
Length of the second link L2 0.18 m
Length of the third link L3 0.24 m
Weight of the first link m1 1.2 kg

Weight of the second link m2 1.2 kg
Weight of the third link m3 0.5 kg

Angles between poles 1, 2, and 3 θ θ1, θ2, θ3 (rad)
Initial values of the angles q1, q2, q3 0 (rad)

Gravity g 9.81 m/s2
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4. Control Design

This section discusses the control methods applied within the study in detail. This
begins with a discussion of the function of the LQR control system and how this was
implemented for the parameters of the robotic system, with a similar discussion following
for the FLQR control system.

4.1. LQR

LQR provides an active method for a controller when considering performance in
a complex system [28]. In addition, SFC uses the system’s pole sites, as set using state
variables and gain matrix K, permitting the free location of poles in closed-loop systems as
required, while fixed locations are used in output feedback control methods [29]. In this
approach, SFC is used for implementation of the state variables, which generate feedback.
Each feedback component is then multiplied using the state feedback gain matrix and
compared to reference input values [24]. Gain matrix calculations are the main application
of state feedback control [30]. To achieve this, an LQR controller is commonly used, and
for the greatest effectiveness with this type of controller, among the parameters of the K
matrix parameters should be the cost function (J) for stat optimisation, x(t), and u(t) as the
systems control signal [31]. Here, where Q is the constant symmetry positive, and matrix R
is constant, optimal control is written as follows.

The algebraic Riccati equation is used to calculate K and P values.

u (t) = −K × (t) (4)

J =
1
2

∫ ∞

0
(xt Qx + ut Ru) dt (5)

U = R−1 BT PX = −KX (6)

The algebraic Riccati equation is used to calculate K and P values.

AT + PA − PBR−1BT P + Q = 0 (7)

K = R−1BT P =[K1 K2 K3 . . . . K6]. (8)

K = [0.2581 22.789 −507.886 0.940 −12.250 −19.480]

In this work, LQR is implemented by MATLAB/Simulink as shown in Figure 2.
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4.2. FLQR

The resulting controller offers a combination of LQR optimised control and fuzzy
logic-based control (FLC) [20]. FLC operates on a rule-based premise by applying an
FCR set linked through fuzzy implication and the compositional rule of inference [21,32].
The design procedure followed to produce the FLC is given in this subsection. Structur-
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ing of the FLC is as illustrated in Figure 3, with the FLC functioning as complementary
to the main controller in changing conditions [33]. There are varied tool and system
applications for fuzzy logic in the manufacturing sector, with FLCs enabling more intel-
ligent technologies [34]. The Mamdani approach was used to develop the fuzzy model,
and this enabled modifications of closed-loop controller feedback gains. Transformation
of the input control signal parameters error (E) and change of error (EC), and of the
output U, generated variables based on language: NB = negative big; NM = negative
medium; NM = negative small; Z = zero; PS = positive small; PM = positive medium; and
PB = positive big. Graphic inference of input and output variables was performed via
triangular membership functions. Figures 4 and 5 show the inputs E and EC, and the
output variable range is given in Figure 6 [18]. The fuzzy rules that apply to the controller
are given in Table 2, Table 3 presents rules of the FL controller, and a sample Simulink
implementation of the Robogymnast and FLQR controller is provided in Figure 6.

Table 2. Fuzzy rules linguistic variables.

Symbol Linguistic Variable

NB Negative Big
Nm Negative Medium
NS Negative Small
Z Zero
PS Positive Small
PM Positive Medium
PB Positive Big
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MATLAB Simulink was used as a simulation environment for determining system
responses, with the findings being used in designing the control systems put forward here.
A performance evaluation of closed-loop systems operation was performed, related to the
step response with the controller. Both the linear LQR and non-linear FLQR controller
were modelled and their use in stabilising the robotic system simulated in MATLAB
Simulink [17]. Outcomes for output responses demonstrated enhanced overshoot and rise
times as well as other benefits when the FLQR controller was applied, considering the
system’s step response (see Figure 6).
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4.3. Robustness Investigation for the Proposed Controller

In order to determine whether the proposed controller is robust, this section analyses
parametric uncertainty within the three-link system and the impacts of this on stabilising
the system, in a multi-scenario approach. Various possible parametric system conditions
are explored, and these results are listed in Section 5. Primarily, the testbed parameters
were each altered in isolation, before altering multiple parameters at one time, increasing,
and then decreasing them by 25% and 50% from the baseline.

To evaluate both the LQR and the fuzzy LQR controller in terms of robust perfor-
mance, variations were made to the testbed system as shown in Section 5, where the
original values of both controllers were tested and compared as shown in Figure 7a–c,
and Table 4. Figure 8 shows the controller in the original value where the Robogymnast
parameters are constant. Then plus 25% of the original parameters were implemented in
Section 5.2 for both LQR and FLQR which are signified in Figure 9a–c and the compared
outcomes are displayed in Figure 10 and Table 5 to show the difference between cases
1 and 2. A third scenario is by adding 50% more of the original parameters to verify
the stability as seen in Figures 11a–c and 12 and Table 6. On the other hand, −25% and
−50% were implemented respectfully to the robotic system to verify the response of the
system as seen in Section 5.4 in which case 4 is compared in Table 7. Moreover, Figures
13a–c and 14 insulate the outcomes of −25% of the system. In the last scenario, −50%
less of the original value was applied to the initial values as it can be seen in Table 8, and
the difference is presented in Figures 15a–c and 16. Finally, Section 5.6 demonstrates the
integral time of absolute error (ITAE) for each case 1−5, then Table 9. Figure 17 demon-
strates the comparison between LQR and FLQR controllers in all scenarios respectively.
As a result, parametric uncertainty conditions were formed that might frequently be
encountered operationally within the testbed. Optimal gains were achieved in all cases;
there are multiple variables within the testbed system that can change as operations are
running and increases or decreases in any of this impact how stable the system is, where
the parameters change mathematically.

5. Results
5.1. Case 1: Original Value [17]
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Figure 7. (a) The system response for the upper link of Robogymnast in Case 1 (T1); (b) The system
response for the middle link of Robogymnast in Case 1 (T2); (c) The system response for lower link of
Robogymnast in Case 1 (T3).

Table 4. LQR vs. FLQR performance [13].

Symbol Controller Osh (pu) Ush (pu) Tr (s) Ts (s)

θ1
LQR 8.02 −5.69 0.3557 15.5196

Fuzzy LQR 2.88 −5.71 0.4074 11.1823

θ2
LQR 1.03 −1.32 0.0758 4.9142

Fuzzy LQR 0.42 −1.44 0.30 4.1694

θ3
LQR 0.25 −0.41 0.0509 3.3310

Fuzzy LQR 0.25 −0.40 0.0523 2.4428

As shown, Figure 8 displayed the controller in the original value where the Robogym-
nast parameters are constant.
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Figure 8. Case 1 comparison.

5.2. Case 2: +(%25)
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Figure 9. (a) The system response for link-1 of Robogymnast in Case 2 (T1); (b) The system response
for each middle link of Robogymnast in Case 2 (T2); (c) The system response for link-3 of Robogymnast
in Case 2 (T3).

In Table 5, a full outcome of case2 comparison between LQR and FLQR controllers
is presented.

Table 5. Comparison performance of LQR and FLQR controllers in Case 2.

Symbol Controller Osh (pu) Ush (pu) Tr (s) Ts (s)

θ1
LQR 8.026 −5.621 0.2844 12.4151

Fuzzy LQR 3.122 −5.716 0.3249 8.9536

θ2
LQR 1 −1.326 0.0605 3.9305

Fuzzy LQR 1 −1.445 0.84 3.3397

θ3
LQR 0.2537 −0.4 0.0406 2.6648

Fuzzy LQR 0.2562 −0.4 0.0418 1.9637
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5.3. Case 3: +(%50)

Knowledge 2022, 2, FOR PEER REVIEW 13 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 11. (a) The system response for upper link of Robogymnast in Case 3 (T1); (b) The system
response for second link of Robogymnast in Case 3 (T2); (c) The system response for 3rd link of
Robogymnast in Case 3 (T3).
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As shown, Table 6 presents the controller in the case 3 value where the Robogymnast
parameters are add +(50) to LQR and FLQR to investigate the difference.

Table 6. Comparison performance of LQR and FLQR controllers in Case 3.

Symbol Controller Osh (pu) Ush (pu) Tr (s) Ts (s)

θ1
LQR 8.025 −5.679 0.2369 10.3460

Fuzzy LQR 3.013 −5.711 0.2709 7.4641

θ2
LQR 1 −1.326 0.0504 3.2747

Fuzzy LQR 1 −1.433 0.0486 2.7863

θ3
LQR 0.2542 −0.4 0.0337 2.2205

Fuzzy LQR 0.2582 −0.4 0.48 1.6402
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Figure 12. Case 3 comparison.

5.4. Case 4: −(%25)
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Figure 13. (a) The system response for 1st link of Robogymnast in Case 4 (T1); (b) The system 
response for central link of Robogymnast in Case 4 (T2); (c) The system response for link-3 of 
Robogymnast in Case 4 (T3). 
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Figure 13. (a) The system response for 1st link of Robogymnast in Case 4 (T1); (b) The system 
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Figure 13. (a) The system response for 1st link of Robogymnast in Case 4 (T1); (b) The system response
for central link of Robogymnast in Case 4 (T2); (c) The system response for link-3 of Robogymnast in
Case 4 (T3).

In Table 7, a full outcome of case 5 comparison between LQR and FLQR controllers is
described to verify the system stability.

Table 7. Comparison performance of LQR and FLQR controllers in Case 4.

Symbol Controller Osh (pu) Ush (pu) Tr (s) Ts (s)

θ1
LQR 8.025 −5.679 0.4744 20.6922

Fuzzy LQR 2.742 −5.712 0.5445 14.8923

θ2
LQR 1 −1.326 0.1012 6.5537

Fuzzy LQR 1 −1.437 0.0975 5.5485

θ3
LQR 0.2546 −0.4 0.0681 4.4410

Fuzzy LQR 0.2584 −0.4 0.0699 3.2399



Knowledge 2022, 2 479

Knowledge 2022, 2, FOR PEER REVIEW 16 
 

 

Table 7. Comparison performance of LQR and FLQR controllers in Case 4. 

Symbol Controller 𝑶𝒔𝒉 (pu) 𝑼𝒔𝒉 (pu) 𝑻𝒓 (s) 𝑻𝒔 (s) 𝜽𝟏 LQR 8.025 −5.679 0.4744 20.6922 
Fuzzy LQR 2.742 −5.712 0.5445 14.8923 𝜽𝟐 LQR 1 −1.326 0.1012 6.5537 
Fuzzy LQR 1 −1.437 0.0975 5.5485 𝜽𝟑 LQR 0.2546 −0.4 0.0681 4.4410 
Fuzzy LQR 0.2584 −0.4 0.0699 3.2399 

 
Figure 14. Case 4 comparison. 

5.5. Case 5: -(%50) 
Finally, in Table 8 a full result of case5, the LQR and FLQR controllers’ comparison 

is illustrated to validate the system stability. 

 
(a) 

-10

-5

0

5

10

15

20

25

LQR1 FLQR1 LQR2 FLQR2 LQR3 FLQR3

Va
lu

e

Control Parameters

Case 4. -(%25)

Osh Ush Tr Ts

Figure 14. Case 4 comparison.

5.5. Case 5: −(%50)
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Figure 15. (a) The system response for the first link of Robogymnast in Case 5 (T1); (b) The system
response for the 2nd link of Robogymnast in Case 5 (T2); (c) The system response for the lower link
of Robogymnast in Case 5 (T3).

Finally, in Table 8 a full result of case5, the LQR and FLQR controllers’ comparison is
illustrated to validate the system stability.

Table 8. Comparison performance of LQR and FLQR controllers in Case 5.

Symbol Controller Osh (pu) Ush (pu) Tr (s) Ts (s)

θ1
LQR 8.025 −5.679 0.711 31.0403

Fuzzy LQR 3.146 −5.706 0.7952 21.3793

θ2
LQR 1 −1.3626 0.1520 9.8323

Fuzzy LQR 1 −1.421 0.1483 7.8387

θ3
LQR 0.2548 −0.4 0.1024 6.6633

Fuzzy LQR 0.2604 −0.4 0.1060 4.8405
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5.6. Compression of ITAE

This section shows the integral time of absolute error for every case investigated,
which are original, (±25%), and (±50) values, respectively, in both the LQR and FLQR
controllers in all cases examined as mentioned above (Table 9).

Table 9. ITAE values.

Case 1 Case 2 Case 3 Case 4 Case 5

LQR1 159.7 283.9 102.20 31.0403 70.98
FLQR1 21.29 38.16 26.72 87.19 8.971
LQR2 0.322 0.5741 0.2136 1.29 0.148

FLQR2 0.313 0.5309 0.2066 1.257 0.143
LQR3 0.022 0.0395 0.0138 0.088 0.009

FLQR3 0.021 0.0385 0.0142 0.086 0.009
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5.7. Comparison of LQR and FLQR in All Cases

Table 10 shows a full comparision between LQR and FLQR in all cases implemented
where (±25%) and (±50%) added to the system to test their stabilty and robostance. As well
as Figure 18 illustrates the comparions between the system outcomes for 5 different cases
in terms of Over and undershoot, rising and settling time in both controllers examined.

Table 10. Comparison of LQR and FLQR in all cases.

Case Symbol Controller Osh (pu) Ush (pu) Tr (s) Ts (s)

Original
value

θ1
LQR 8.02 −5.69 0.3557 15.5196

Fuzzy LQR 2.88 −5.71 0.4074 11.1823

θ2
LQR 1.03 −1.32 0.0758 4.9142

Fuzzy LQR 0.42 −1.44 0.0730 4.1694

θ3
LQR 0.25 −0.41 0.0509 3.3310

Fuzzy LQR 0.25 −0.40 0.0523 2.4428
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Table 10. Cont.

Case Symbol Controller Osh (pu) Ush (pu) Tr (s) Ts (s)

Case 2

θ1
LQR 8.026 −5.677 0.2844 12.4151

Fuzzy LQR 3.122 −5.716 0.3249 8.9536

θ2
LQR 1 −1.326 0.0605 3.9305

Fuzzy LQR 1 −1.445 0.0584 3.3397

θ3
LQR 0.2537 −0.4 0.0406 2.6648

Fuzzy-
LQR 0.2562 −0.4 0.0418 1.9637

Case 3

θ1
LQR 8.025 −5.679 0.2369 10.3460

Fuzzy LQR 3.013 −5.711 0.2709 7.4641

θ2
LQR 1 −1.326 0.0504 3.2747

Fuzzy LQR 1 −1.433 0.0486 2.7863

θ3
LQR 0.2542 −0.4 0.0337 2.2205

Fuzzy LQR 0.2582 −0.4 0.0348 1.6402

Case 4

θ1
LQR 8.025 −5.679 0.4744 20.6922

Fuzzy LQR 2.742 −5.712 0.5445 14.8923

θ2
LQR 1 −1.326 0.1012 6.5537

Fuzzy LQR 1 −1.437 0.0975 5.5485

θ3
LQR 0.2546 −0.4 0.0681 4.4410

Fuzzy LQR 0.2584 −0.4 0.0699 3.2399

Case 5

θ1
LQR 8.025 −5.679 0.711 31.0403

Fuzzy LQR 3.146 −5.706 0.7952 21.3793

θ2
LQR 1 −1.3626 0.1520 9.8323

Fuzzy LQR 1 −1.421 0.1483 7.8387

θ3
LQR 0.2548 −0.4 0.1024 6.6633

Fuzzy LQR 0.2604 −0.4 0.1060 4.8405
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Figure 18. LQR and FLQR comparison.

6. Discussion

The proposed FLQR controller, as a combined LQR and fuzzy logic control method,
performed well for the three-link Robogymnast robotics system, with the examination of
the system’s robustness showing that it outperformed the conventional controller across all
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variables, including time to settle and under- and over-shoot. A more detailed summary of
the findings for robustness is provided here.

For the first scenario, the measured system response is shown in Figure 7a–c and
Table 8, giving baseline systems values with no alterations. Comparing the LQR with the
FLQR controller, the latter shows decreased overshoot (Osh) and undershoot (Ush), with
respective overshoot values of 8.02 and 2.88. In addition, while the LQR controller’s rise
time was faster (c. 0.35 s), the FLQR showed a faster settling time (11.18 s).

For the second case, in which the mathematical model values are increased by 25%,
Table 5 shows the performance comparison between the two controllers examined for
robustness. For the LQR controller, undershoot and overshoot did not differ significantly,
but there was a difference of 0.07 s in rise time, and the settling time dropped to 12.41 s
from 15.51 s. In contrast, the findings for FLQR demonstrate an increase in overshoot
of approximately 0.242 pu, with no alteration in undershoot, and reductions in settling
and rising times for the controllers. In addition, for LQR, there was a slight decrease
in second angle θ2 overshoot, while undershoot did not change significantly and the
times were reduced for each parameter. For FLQR, decreases were found across each
parameter. Finally, for θ3, no change was seen in under- or overshoot for the LQR controller,
although reductions occurred in the rising and settling times. For FLQR, time decreases
were also found, while the values of the remaining parameters were unchanged from the
initial scenario.

In the third scenario, values were increased by 50% over the system’s baseline.
While overshoot remained unchanged for the LQR, undershoot altered only slightly,
from −5.69 at baseline to −5.67, but both the rising and settling times were quicker,
altering from 0.35 to 0.24 s for rising and a slightly change of 5 s for the settling time.
For link θ2 with the LQR controller, there was no change in under- or overshoot, but a
reduction in the two time variables. Meanwhile, for the FLQR controller, times were
also reduced, while no change was seen for under- and overshoot. For the third link θ3,
again, under- and overshoot remained the same, while smaller values were found for
the time variables.

For the fourth scenario, system variables were reduced by 25%, as shown in Table 7.
In the first link, for the LQR, a one-second increase in rising time was recorded for the
LQR, and settling time was observed to change by roughly 5 s against the original case,
from 15.51 to 20.69 s. By contrast, the FLQR controller produced lower values for each time
parameter, and only very small differences for the remaining variables. Moreover, for θ2,
there was little change in under- or overshoot, with reductions in rising and settling times.
Finally, for θ3, a small increase in rising time was seen compared with the original scenario,
from 0.052 to 0.0699 s. Settling time was altered by approximately 1 s, with no changes in
under- or overshoot.

The final scenario reduced the system parameters by 50% and, again, stability and
response were tested to indicate robustness. It is notable here that for the LQR controller,
each of the links displayed small increases in rising and settling time differences, with
major alterations in overshoot and undershoot. In contrast, FLQR performed markedly
better here than the conventional controller. Settling times across each link were 21.37 s,
7.83 s and 4.83 s, with higher rising times for each of the links. Under- and overshoot were
also greater across each link. Table 10 offers a comparison of all the findings in all cases
and scenarios between each link.

7. Conclusions and Future Work

This paper has presented modelling and simulation for the application of an
LQR/fuzzy logic controller to stabilise a robotic gymnast system in MATLAB/Simulink.
In this study, an FLQR was developed and then compared against an established LQR
control approach for the Robogymnast. Mathematical modelling was performed for
the starting values of variables within the pendulum-based system, and then a com-
prehensive model for the simulation of a robotic manipulation drive with the FLQR
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controller was developed. The primary variables were established, with calculations for
overshoot as well as settle and rise times. An assessment was performed for the dynamic
performance of the system. Calculations for stability and robustness were performed for
each of the FLQR and LQR controllers, with comparisons across each scenario, in which
variables were increased or decreased by several values. The results of the comparison
show that the proposed FLQR controller performs better with the Robogymnast than
does the established LQR controller.

To conclude, it is possible to declare that this work involved the investigation of the
modulation of a triple-link robotics mechanism for the swing-up position, and the selected
controller can be further extended to implement optimized algorithms for additional studies.
In conclusion, this study examining the control of swing-up in three-link robotic systems
suggests that the controller proposed here could be studied further and implemented in
different optimised algorithms.
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Abbreviations

Robogymnast Robot Gymnast
FLQR Fuzzy logic quadrate rectangular
LQR Linear quadrate rectangular
PID Proportional integral derivative
ITAE Integral time of absolute error
Osh Overshoot
Ush Undershoot
Tr Rising time
Ts Settling time
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