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We develop a theory of the soliton self-frequency shift compensation by the resonant radiation recently
observed in photonic crystal fibers. Our approach is based on the calculation of the soliton plus radiation
solution of the generalized nonlinear Schrödinger(GNLS) equation and on subsequent use of the adiabatic
theory leading to a system of equations governing evolution of the soliton parameters in the presence of the
Raman effect and radiation. Our theoretical results are found to be in good agreement with direct numerical
modeling of the GNLS equation.
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I. INTRODUCTION

The recent advent of photonic crystal fibers(PCFs) opens
many interesting opportunities for fundamental and applied
research in different branches of nonlinear optics. The prime
reason for this is that PCFs offer numerous ways to control
their nonlinear and dispersive characteristics, for reviews see
Refs. [1–5]. For example, in silica core PCFs nonlinearity
can be enhanced by the small modal area and group velocity
dispersion(GVD) can be controlled by the engineering of the
photonic crystal cladding[6,7]. The hollow-core band-gap
guiding PCFs can be filled with different gases and used for
a variety of nonlinear optical experiments in the low loss and
diffraction free geometries with very long interaction dis-
tances[8–10].

One of the widely used applications of solid-core PCFs is
in generation of optical supercontinuum[11–14]. Full theo-
retical understanding of this process is still lacking and its
possible connections with turbulence theories in Hamiltonian
models[15] are waiting to be established. Another interest-
ing and nontrivial nonlinear effect which has been recently
observed in PCFs with ultrasmall silica cores is the cancel-
lation of the Raman self-frequency shift of the solitons ac-
companied by the exponential amplification of the resonant
radiation[7]. The resonant radiation emitted by the fiber soli-
tons in the presence of the higher order dispersions has been
known for more than a decade, see, e.g.,[16–22] and it has
been recently shown to play a role in the formation of the
blue wing of the supercontinuum spectra generated in PCFs
[12].

Telecom fibers have reasonably flat GVD profiles in the
practically relevant frequency range, and smallpositiveGVD
slopes in these fibers do not lead to substantial radiation.
Therefore, the resonant radiation effect on solitons in tele-
com fibers has been considered so far as merely one of many
loss mechanisms. The distinct feature of the PCF used in
Ref. [7] is that it has two zero GVD points and the frequency

interval of the anomalous GVD has a very steepnegative
GVD slope. This interval is located on the red side of the
spectral window with anomalous GVD. Therefore, the Ra-
man effect[23,24] unavoidably pulls the femtosecond soli-
tons into the region of the negative GVD slope, where strik-
ing and unattainable in standard telecom fibers dynamics
takes place[7]. Under these conditions the solitons generate
the exponentially growing redshifted radiation band. The
redshifted radiation exerts pressure on the soliton itself and
the soliton self-frequency shift gets compensated almost ex-
actly [7]. The primary objective of this work is to develop a
comprehensive theory of the effects reported in Ref.[7]. Ra-
diation pressure on the soliton leading to the drift of the
mean soliton frequency and group velocity, also known as
the spectral recoil effect, has been previously reported in
[19–22]. However, analysis of the combined action of the
recoil and Raman effects appears to be missing in the known
to us literature. Pulling of the soliton frequency by the Ra-
man effect towards the zero GVD point has been previously
suggested as the mechanism for the adiabatic soliton com-
pression[25]. However, Ref.[25] and subsequent theoretical
work [18] do not account for the spectral recoil and do not
report the soliton self-frequency shift compensation effect
observed in[7] and theoretically analyzed below.

We organize this paper in the following way. First, we
introduce the model equation and derive resonance condi-
tions for fibers with frequency dependent GVD. After this we
calculate analytically the amplitude of the emitted radiation
using an approach generalizing and improving the previously
known. Then, knowing dependence of the radiation ampli-
tude and frequency on the soliton parameters, we develop an
adiabatic theory of the soliton evolution, explaining the self-
frequency shift compensation observed in Ref.[7]. Finally,
we conclude by putting our results into the context of the
various soliton theories and of recent and past experimental
efforts.

II. MODEL EQUATION

We assume that dynamics of the dimensionless amplitude
Ast ,zd of the fundamental fiber mode is governed by the
generalized NLS equation
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]zA = iDsi]tdA + iAE
−`

+`

Rst8duAst − t8,zdu2dt8. s1d

To avoid any ambiguity in the analytical expressions we
adopt the convention of using round bracketss· ·d to indicate
arguments of functions or operators andf· ·g, h· ·j for all other
purposes. The dispersion operator in Eq.(1) is given by

Dsi]td ; o
m=2

M
t2−m]v

m−2b2sv0d
m ! ub2sv0du

fi]tgm, s2d

wheret is the characteristic time close to the pulse duration.
Rstd is the response function of the material, which is silica
glass in our case:

Rstd = f1 − ugDstd + u
t1

2 + t2
2

t1t2
2 Qstde−t/t2sin

t

t1
. s3d

Here, Dstd and Qstd are, respectively, delta and Heaviside
functions. Equation(3) includes the instantaneous electronic
and delayed Raman contributions withu=0.18, t1
=12.2fs/t, andt2=32fs/t [24]. t is the time in the reference
frame moving with group velocityv0=vsv0d and measured
in the units of t: t=fT−z/v0g /t, where T is the physical
time. z=Z/Lgvd, whereZ is the distance along the fiber and
Lgvd=t2/ ub2sv0du is the GVD length. Field amplitudeA is
measured in the units ofNÎP0=N/ÎgLgvd, whereg is the
nonlinear parameter of the fiber[24]. N2 is the ratio of the
peak power of the pump pulse to theP0, which is the peak
power of a fundamental soliton with durationt.

Let us stress here, the dispersion operatorD introduced
above is not necessarily a Taylor expansion near the refer-
ence frequency, but it can be considered as a numerical fit
into the experimentally measured fiber GVD characteristic.
Therefore, it correctly describes dispersion of a wave which
is either detuned initially or drifts gradually to the spectral
regions lying arbitrarily far fromv0. If the GVD profile is
given byb2svd, then it can be fitted with a polynomial func-
tion: b2svd=om=0

M b2+mfv−v0gm, wherev0 is an arbitrary ref-
erence frequency. Equations similar to Eq.(1) have been
previously used in several studies of pulse propagation in
fibers, see, e.g., Refs.[6,7,13,26] and references therein, and
have demonstrated reliable replication of the experimental
measurements in PCFs[6,7,13]. Compared with Refs.[6,7]
we have neglected here the self-steepening term[24]. This is
because, as our numerical modeling has demonstrated, it has
no qualitative and only small quantitative effect on the re-
sults described below, see also Sec. V.

III. SOLITON DRESSED BY THE RADIATION

A. Resonance frequencies

In order to describe influence of the Raman effect on the
radiating soliton we first find the radiation field and then
consider soliton dressed by the radiation as the zero order
approximation to the solution of Eq.(1) treating the Raman
term as a perturbation, see Sec. IV.

Generalization of the single soliton solution of the ideal
NLS equation gives the following expression:

A = Fsjde−idst+ifDs+qgz, j = t − Ds8z,

Fsjd = Î2q sechS j

w
D, w =Î− Ds9

2q
, s4d

for the approximate soliton solution of Eq.(1), where GVD
varies with frequency. Physical pulse duration is given by
tw. ds=fvs−v0gt is the detuning of the soliton frequencyvs

from the reference frequencyv0. Condition udsu &1 deter-
mines practically convenient choice ofv0. Ds=Dsdsd is the
normalized wave number shift,Ds8=]dDsdsd characterizes the
group velocity shift, andDs9=]d

2Dsdsd,0 is the GVD at the
soliton frequency. Physical group velocityV at the frequency
v=v0+d /t is given by

Vsdd =
v0

1 + hv0t/Lgvdj]dDsdd
. s5d

The solution[Eq. (4)] is fully characterized by the param-
etersq.0 andds, and is an exact solution of Eq.(1) provid-
ing that:(i) u=0 and(ii ) all derivatives of the functionFsjd
higher than second are disregarded.

To proceed further we fixu=0 and present solution of Eq.
(1) in the form

A = fFsjd + gsz,jdgeizfDs+qg−idst, j ; t − zDs8. s6d

Assuming thatg is small we disregard all the terms nonlinear
in g and derive

iPW = ]zgW + iL̂gW, gW = fg,g*gT. s7d

Here

L̂ =F Ŵ − F2

F*2 − Ŵ*
G , s8d

where

Ŵ= q +
1

2
Ds9]j

2 − 2uFu2 − fDsi]j + dsd − D2si]jdg, s9d

and

PW = fp,− p*gT, p = fDsi]j + dsd − D2si]jdgF, s10d

D2si]jd = Ds + iDs8]j −
1

2
Ds9]j

2. s11d

PW is localized inj and in order for Eq.(7) to have a localized
solution it is enough that the null subspace of the operator

adjoint toL̂ is orthogonal toPW . The dispersion operator is a
polynomial and therefore it is possible to show thatDsi]j

+dsd=D2si]jd+om=3
M im/m! Ds

fmg]j
m. CoefficientsDs

fmg /m! for
mù3, whereDs

fmg=]d
mDsdsd, should be considered as small

parameters by virtue of the assumption that Eq.(4) is the
solution in the main order of the perturbation theory. How-
ever, frequency of the perturbationg can be large. Therefore,
third and higher order derivatives can counterbalance small-
ness of the dispersion coefficients. That is why the higher
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order corrections to the dispersion are kept not only inPW , but

also insideL̂. For all terms inL̂ to be balanced we require

ufDsi]j + dsd − D2si]jdggu &
1

2
uDs9]j

2gu. s12d

Practically Eq.(12) imposes upper boundary on the values of
the frequency detuning between the soliton and the perturba-
tion g correctly described by Eq.(7). For example, forM
=3, see Eq.(2), and fixing the time dependence ofg as
eijfds−dg, we find that for Eq.(12) to work we have to require
uefd−dsgu& uDs9 /2u,Os1d, where

e =
]vb2sv0d
6tub2sv0du

. s13d

Keeping only]j
3 in L̂ already makes existence of the lo-

calizedgW impossible[16,19,20,22]. This is because]j
3-term

adds an extra zero eigenvalue to the continuous spectrum of

L̂† with the corresponding eigenfunction not being orthogo-

nal toPW . The correspondingresonantfrequency can be found
if one seeks the eigenfunction of the continuum in the form
eilz+ifds−dgj, then the eigenvaluesl are given by

− l = q + Ds − fds − dgDs8 − Dsdd. s14d

Physically the resonance is achieved when the soliton and a
dispersive wave have the same wave number, i.e.,l=0, and
therefore

q + Ds − fds − drgDs8 = Dsdrd. s15d

Equation(15) is an equation fordr. Realdr’s correspond to
the resonant nonlocalized waves anddr /t is the frequency
detuning fromv0. Geometrical meaning of Eq.(15) is clear.
Its left-hand side is a tangent to theDsdd curve taken atd
=ds and shifted up byq. Remembering thatDs9 must be nega-
tive for the soliton to exist, one can show that the pairs of
real ds and dr satisfying Eq.(15) can always be found pro-
viding that]d

2Dsdd changes its sign. All complex roots of the
polynomial Eq.(15) correspond to the waves exponentially
decaying forj tending to either −̀ or +` and describe lo-
calized corrections to the soliton(4) [21].

GVD changes its sign at least once in most optical fibers
including PCFs. The PCF used in Ref.[7] changes GVD sign
twice, similar to the fiber described in Ref.[25], and there-
fore has the finite spectral range with anomalous GVD, see
Fig. 1(a). The corresponding dependencies of the real reso-
nant frequenciesdr from the soliton frequencyds are shown
in Fig. 1(b). An important feature of Fig. 1(b) is that udr
−dsu reaches its minimum values, when the soliton frequency
approaches the zero GVD points.

For qualitative understanding of the resonances shown in
Fig. 1(b) it is sufficient to consider cubic approximation for
Dsdd

Dsdd = −
d2

2
+ ed3, s16d

where sgnb2sv0d=−1. Using the Cardano’s formula, we get
the expression fordr:

dr =
1

12e
f2 + 4s1 − 6edsd2Y−1/3 + Y1/3g, s17d

where Y=8X+6eÎ6qfX−54qe2g, X=1−18dse+108qe2

+108ds
2e2−216ds

3e3. The only real value ofdr is selected by
choosing the appropriate branch ofY1/3.

Assuminge!1, udr −dsue,Os1d one can calculate an ap-
proximate analytical expression for the resonant frequency
[16,22]:

FIG. 1. (a) Electron micrographs of the PCF from Ref.[7] and
correspondingb2svd and b2svd for the telecom fibersSMF28d is
also shown. The core diameter of the PCF shown is.1.2 mm, (b)
dependencies of the resonance frequenciesdr from the soliton fre-
quencyds. Vertical dashed lines mark the zero GVD points in the
PCF. The diagonal line marks the boundary where the radiation and
soliton frequencies coincide. The radiation branches above/below
the diagonal line are, respectively, blue/redshifted relative to the
soliton carrier frequency. Radiation frequency in the telecom fiber is
also shown.
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dr − ds =
1

2e
+ Os1d. s18d

For example, atl=1.15mm, i.e., v=2p3239 THz, the fi-
ber in Fig. 1(a) hasb2=−47 ps2/km andb3=−0.5 ps3/km,
which givese.−0.015 for t=120 fs. It is clear from Eq.
(18) that the positive/negative slopes ofb2svd are respon-
sible for the radiation bands, which are blue/redshifted from
the soliton. Figure 2 shows graphs ofdr vs ds as given by Eq.
(17). The above consideration of the cubic dispersion also
explains why the two radiation bands exist in the fibers with
b2svd having two zeros, see Fig. 1. Note, that the condition
(12) is satisfied for(18).

B. Amplitude of the radiation field

Finding the amplitude of the emitted wave is a technically
involved problem. Previous semiexplicit results by Waiet al.
[16] and by Karpman[19,20] include undetermined con-
stants, which can be computed only numerically. Our mod-
eling indicates that the fully explicit analytical answers de-
rived by Akhmediev and Karlson[22] and Karpman[21] do
not match with the direct numerical solution of Eq.(1) for
parameters relevant for the experiment[7]. The primary rea-
son for this is that the theories in Refs.[21,22] do not ac-

count for the importantF2 terms insideL̂. Therefore, we
develop our own approach, which further advances the meth-
odology used in[19–22] and leads to the results, which agree
well with direct modeling of Eq.(1).

It is clear that the radiation takes energy from the soliton
and efficiency of this transfer increases as detuning of the
radiation from the soliton carrier frequency decreases. If the
radiation is far detuned from the spectral center of the soli-
ton, then it should be weak and negligible. Therefore, con-
sidering the PCF example shown in Fig. 1 we can assume
that the blueshifted radiation emitted by the soliton with the
carrier frequency close to the left zero GVD point can be
safely disregarded compared to the redshifted radiation, see
Fig. 1(b). Thus, in this case and obviously in the case of the

cubic dispersion(16) one can represent the radiation field in
the form

gsz,jd = Gsz,jde−ijfdr−dsg. s19d

The assumption enabling us to advance the previously devel-
oped methods is that the amplitudeG is a slow function ofj
compared to the oscillating exponential factor. After substi-
tution of Eq.(19) into Eq.(7) we neglect allj-derivatives of
G higher than first and find thatG obeys

− i]zG + ihDs8 − Dr8j]jG − F2h2G + G*e2ijfdr−dsgj=Ksjd,

s20d

where

Ksjd ; eijfdr−dsgfDsi]j + dsd − D2si]jdgF. s21d

Contribution of the term containingG* into the effective po-
tential created by the soliton also can be disregarded provid-
ing that q! udr −dsu uDs8−Dr8 u ,e−2. By neglecting this term
we are actually neglecting one of the two fundamental solu-
tions to the left-hand side of Eq.(20). The inequality stated
above ensures that the frequency of the driving term(21) is
detuned far from the frequency of the neglected fundamental
solution. Thus our final equation is

− i]zG + ihDs8 − Dr8j]jG − 2F2G = Ksjd. s22d

One can easily see that the resonance frequency for this
equation is zero, which reflects that we have accounted only
for one real root of Eq.(15). Inclusion of all the higher order
derivatives ofG will recover the exact fiber dispersion to-
gether with all the disregarded complex and real resonances.

The exact solution of Eq.(22) obeying zero initial condi-
tions atz=0 can be found in the integral form:

Gsj,zd =
e−iSsjd

ifDs8 − Dr8g
E

j+fDs8−Dr8gz

j

dj8eiSsj8dKsj8d, s23d

where

Ssjd =
2Î− 2qDs9

fDs8 − Dr8g
thS j

w
D . s24d

The integral(23) cannot be taken in the explicit form.
However the limit values ofG can be found. FixinguhDs8
−Dr8jz/ju.1, one can show that forDs8−Dr8.0:

lim
z→`,j→−`

G =
− e−iSs−`dI
ifDs8 − Dr8g

, lim
z→`,j→`

G = 0, s25d

and forDs8−Dr8,0

lim
z→`,j→−`

G = 0, lim
z→`,j→`

G =
e−iSs`dI

ifDs8 − Dr8g
, s26d

where

Ss±`d = ±
2Î− 2qDs9

Ds8 − Dr8
, s27d

FIG. 2. Resonant frequencydr as function of the soliton fre-
quencyds for the dispersion profile(16): q=10 ande= ±0.015. The
diagonal line marks the boundary where the radiation and soliton
frequencies coincide.
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I =E
−`

`

djeiSsjdKsjd. s28d

The influence of the potential term on the amplitude is two-
fold. First, it affects the asymptotic value of the phase of the
emitted wave. Second, and more important, it rotates the
phase of the expression under the integral, which changes the
amplitude of the emitted wave. Inside the area of localization
of the integrandKsjd the th function enteringSsjd can be
replaced by its linear inj approximation, thenI is simply the
Fourier amplitude of the source termK calculated at the
frequencyV:

IsVd . − pÎ− Ds9fDsV + dsd − D2sVdgsechSpw

2
VD ,

s29d

where

V = dr − ds +
4q

Ds8 − Dr8
. s30d

Taking the cubic dispersion Eq.(16) one can show that
DsV+dsd−D2sVd=eV3 and Ds8−Dr8=−1/f2eg+Os1d. From
the latter it follows that, when the detuning of the radiation
from the soliton frequency is large enough the last term in
Eq. (30) is much smaller thanudr −dsu. Thus, the importance
of the potential term increases when the radiation and soliton
frequencies become closer, see Figs. 1(b) and 2. It is crucial,
however, thatI has an exponential sensitivity inV. There-
fore the higher order corrections toV which are small rela-
tive to udr −dsu can and indeed result far from negligible
changes ofI. Therefore only absolutely small, i.e.,!1, cor-
rections toV can be disregarded. Parameters close to the
experimental conditions of Ref.[7] and to the numerical
modeling carried out below giveudr −dsu ,10 and 4q/ fDs8
−Dr8g,1. The next order correction toV is expected to be
!1 and therefore it should indeed have small effect on the
radiation amplitude. Obviously the rigorous proof of this can

be obtained only calculating the next order correction to the
radiation field, but this goes beyond our present scope and
we simply rely on a good agreement of our analytical and
numerical results, see Fig. 3 and Sec. IV. In Fig. 3 we show
the dependence of the amplitude of the emitted wave versus
ds calculated using Eqs.(25) and(28), using the approxima-
tion (29) and (30) and using(29), but with V=dr −ds, i.e.,
disregarding contribution from the potential. One can see
that asdr approachesds the discrepancy between the formu-
las taking or disregarding theF2-potential increases. For ex-
ample, fords=−6, which is the value taken from the numeri-
cal results shown in Figs. 4(a) and 6(a), use of Eq.(30) gives
uGu .0.25 and use ofV=dr −ds gives uGu .0.12. This im-
plies that our results and results of[21,22] differ by the fac-
tor .2 for this particular choice of parameters.

Note here that if one solves Eq.(1) initialized with a
soliton having some chosen values ofq and ds, then it be-
comes clear that parameters of the soliton and parameters of
the radiation are changing with propagation. Therefore in
order for the analytics to be properly compared with numer-
ics we should generalize the former by allowing adiabaticz
dependence of the soliton parameters.

IV. COMPENSATION OF THE SOLITON
SELF-FREQUENCY SHIFT

It has been demonstrated previously[19,22] that solitons
emitting resonant radiation lose energy slowly(i.e., nonex-

FIG. 3. Amplitude of the emitted waveuGu calculated using Eqs.
(25) and(28)—dashed line; using Eqs.(25) and(29) with V given
by Eq. (30)—full line; using Eqs.(25) and (29), but with V=dr

−ds—full line, e=−0.015 andq=3.5.

FIG. 4. (a) Soliton frequencyds as function ofz, (b) soliton
parameterq as function ofz. Numerical modeling of Eq.(1) is
shown by the full lines and of Eqs.(34) and (35) by the dashed
lines: e=−0.015.
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ponentially) transferring it to the resonant dispersive wave.
To conserve the momentum integral the carrier frequency of
the radiating soliton gets shifted in the spectral direction op-
posite to that of the radiation. This is the so-called spectral
recoil effect [22]. This process, however, is expected to be
frustrated by the soliton self-frequency shift towards the red
part of the spectrum due to the Raman effect. The Raman
shift is known to be a strong effect for pico- and femtosec-
ond pulses[24].

The amplitude of the resonant wave has exponential de-
pendence onudr −dsu, see sech function in Eq.(29). The red
Raman shift of the soliton carrier frequency, is directly pro-
portional to the propagation distancez [23,24], therefore for
fibers with the negative slope ofb2svd, the Raman effect
automatically reducesudr −dsu, see Figs. 1(b) and 2, and leads
to the exponential inz increase of the radiation amplitude
with the rate .pu]zfwVgu /2. The growing red radiation,
however, presses the soliton towards the blue side of the
spectrum. Thus, there exists the possibility of a balance be-
tween the red frequency shift due to the Raman effect and
the blueshift coming from the radiation pressure. This effect
has been suggested and considered as the prime reason for
the existence of the solitary pulses with the compensated
Raman self-frequency shift and the growing tail of the reso-
nant radiation observed in Ref.[7]. The theory of this effect
based on the results of Secs. II and III is developed below.

A. Adiabatic theory

The essence of our approach is the standard assumption
that the soliton parametersds and q vary slowly in z. Then
using evolution equations for the momentum and power in-
tegrals we derive a system of ordinary differential equations
governing dynamics ofds andq.

The momentum integral

M =E dtuAu2]t arg A =
1

2i
E dtfA*]tA − A]tA

*g s31d

has physical meaning of the average frequency and is a con-
served quantity of Eq.(1), i.e.,]zM =0, only if Raman effect
is disregarded. Using Eq.(1) one can show that

]zM = −E dtH]tuAu2E dt8fRst − t8d − Dst − t8dguAst8du2dt8J .

s32d

The power integral

Q =E dtuAu2 s33d

is a conserved quantity even in the presence of the Raman
effect. We now assume that the radiation tail is long enough
so that contributions toM andQ originating from the overlap
between the radiation and soliton are negligible compared to
the momenta and power of the radiation and soliton taken
separately. ThenM andQ can be approximated byM .Ms
+Mr andQ.Qr +Qs, whereMs,r andQs,r are momenta and
powers of the soliton and radiation parts of the field, respec-
tively.

Using Eqs.(6), (25), and (28) and the conservation law
]zQ=0 we find in the leading approximation the equation
governing evolution of the soliton parameterq:

]zq = −
uIu2

]qQsuDs8 − Dr8u
. s34d

Similarly, substituting Eqs.(6), (25), and (28) into Eq. (32)
we find the equation for the soliton frequency:

Qs]zds = fds − drg]zQr − a. s35d

Herea;4trs2qd5/2/ f15uDs9u
1/2g, tr .3fs/t characterizes the

slope of the Raman gain spectrum[24], Qs=edj uFu2

=2Î2quDs9u, Qr =zuIu2/ uDs8−Dr8u, and]zQr .uIu2/ uDs8−Dr8u.
By neglecting the first term on the right-hand side of Eq.

(35) one reproduces the standard formula for the Raman in-
duced soliton self-frequency shift[23,24], while the ]zQr
term describes evolution of the soliton frequency due to ra-
diation pressure. Taking separately, the influence of the ra-
diation and the Raman effect on the soliton frequency have
been reported in Refs.[22,23], respectively. The possibility
for them to balance each other has been recently demon-
strated experimentally and numerically in[7]. Equation(35)
provides analytical interpretation of the results of Ref.[7].
Indeed, fords−dr .0, i.e., for the redshifted radiation, the
terms on the right-hand side can counterbalance one another.
The balance clearly critically depends on the soliton fre-
quency. However, one cannot expect exact frequency lock-
ing, i.e., ]zds=0, for ds satisfyinga=fds−drg uIu2/ uDs8−Dr8 u .
This is becauseq is not constant, see Eq.(34), but decays
with z due to leakage of the radiation out of the soliton.

B. Numerical results

Throughout this subsection we present results of the direct
numerical modeling of Eq.(1) and Eqs.(34) and (35) with
dispersion(16) and e=−0.015. Approximation of the cubic
dispersion is sufficient for the qualitative explanation of the
experimental observations of Ref.[7] and in addition it sig-
nificantly simplifies handling of the right-hand sides of Eqs.
(34) and (35). The latter is because for the cubic dispersion
we know the exact analytical dependence ofdr on q andds,
see Eq.(17).

Figure 4 shows evolution of the soliton parametersds and
q calculated directly from Eq.(1) and from the coupled sys-
tem of the adiabatic Eqs.(34) and (35). We show three dif-
ferent cases. The first case is with the Raman effect switched
off and e=−0.015. Then the radiation action on the soliton
naturally leads to the decay of the soliton amplitude and to
the blueshift of its frequency. The second case with the Ra-
man effect on ande=0, i.e., there is no resonant radiation. In
this caseq is practically constant and the standard redshift of
the soliton frequency is observed. The third and last case is
when both Raman and radiation effects are switched on. One
can see that in this case the soliton amplitude drops faster
than with the Raman effect off, and that the rate of change of
the soliton frequency is much less than the Raman only rate.
The faster decrease ofq happens because for smallz more
and more photons are transferred to the radiation because
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udr −dsu is continuously reduced by the Raman effect. As am-
plitude of the radiation increases so is the recoil on the soli-
ton, therefore the rates of change ofq andds decrease sub-
stantially for larger values ofz. With GVD having the
opposite slope, i.e., fore.0, the recoil effect pushes the
soliton towards the red side of the spectrum and therefore
acts in the same spectral direction as the Raman effect. The
overall effect is thatudr −dsu is continuously increased and
therefore the radiation amplitude decreases withz.

Figures 5(a) and 5(b) show the soliton evolution in the
st ,zd-plane and image of the absolute value of the field am-
plitude for a givenz. Figures 6(a) and 6(b) show the soliton
evolution in thesd ,zd plane and image of the absolute value
of the spectral amplitude of the field. Fore=0 and the Ra-
man effect switched off the soliton trajectory in the
st ,zd-plane is a straight line, i.e.,t /z=const, with slope de-
termined by the initial value ofds. The slope is preserved
with z due to Galilean invariance of the ideal NLS equation
[20]. With the Raman effect on the soliton trajectory be-

comes parabolic, i.e.,t /z2=const, which corresponds to the
soliton group velocity being inversely proportional toz
[23,24]. When the tail of the exponentially amplified radia-
tion appears in the case withe,0 and the Raman effect on,
the soliton trajectory becomes straight again, which indicates
that the radiation and the Raman effect balance each other.
Emergence of the strong radiation band, see Fig. 6(a), is
accompanied by the transition from the regime of the uncom-
pensated Raman induced self-frequency shift to the regime
where the latter is substantially depleted. As one can see, the
results of the adiabatic theory predict evolution of the blue
edge of the radiation band, see Fig. 6(a). This indicates that
parameters of the soliton taken for a givenz determine pa-
rameters of the radiation emitted at the samez. Frequencies
on the red edge and in the center of the radiation band have
been created by the soliton at the previous values ofz, when
the soliton frequency was larger.

Radiation tail appearing on the left from the soliton in the
st ,zd-plane implies that the red radiation propagates faster
than the soliton, i.e., that it is emitted forward. This happens
becauseDr8,Ds8 andVsdrd.Vsdsd, see Eq.(5). The Raman
effect creates the negative acceleration and therefore causes
delay of the solitons. The redshifted radiation, however, cre-
ates positive acceleration and therefore tends to bend the
soliton trajectory in the opposite direction, which results in

FIG. 5. (a) Spatiotemporal evolution ofuAu as obtained from
numerical modeling of Eqs.(1) and(16) with initial condition given
by Eq. (4) and dssz=0d=5, qsz=0d=10, e=−0.015. Gray shaded
region emerging from the soliton is the radiation field. The gray
scale map used exaggerates the strength of the radiation in order to
show it clearly. Dashed lines mark the soliton trajectories with ra-
diation and/or Raman effects switched off,(b) uAu as a function oft
extracted from(a) at z=15. Dotted horizontal line indicates the
analytical result for the radiation amplitude calculated from Eqs.
(26) and (28). The inset in(b) shows the fine details of ReA vs t.

FIG. 6. (Color online) (a) z evolution of the amplitude of the
Fourier transform ofA as obtained from numerical modeling of
Eqs. (1) and (16). Dashed lines are the results of the adiabatic
theory. Dashed-dotted line marks the zero GVD point,(b) image of
the amplitude of the Fourier transform ofA for z=15; all parameters
as for Fig. 5.
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the overall straightening of the trajectory. Oppositely, for the
positive GVD slope the radiation is blueshifted. It is emitted
backwards,Vsdrd,Vsdsd, and causes negative acceleration
to the soliton.

Excellent qualitative and good quantitative agreement of
the results of the adiabatic theory and of the direct numerical
modeling of Eq.(1) confirms validity of our analytical re-
sults for the radiation amplitude derived in Sec. III. Compari-
son of the results presented here for the model dispersion
(16) and results of Ref.[7] for the real PCF dispersion show
that using of Eq.(16) captures the essential features needed
to explain the effect of the self-frequency shift compensation
reported in Ref.[7]. Overall, analytical and numerical results
reported above confirm that the effect reported in Ref.[7]
takes place indeed due to balance between the Raman in-
duced soliton self-frequency shift and radiation pressure on
the soliton.

V. DISCUSSION

In Ref. [7] where the effect of the self-frequency shift
compensation by the radiation pressure has been originally
reported uses the term “cancellation” instead of “compensa-
tion.” However, as shown above analytically the exact can-
cellation is prevented because the soliton parameterq de-
creases with the propagation distance. In practical terms,
however, the compensation is very strong indeed. For ex-
ample, results shown in Figs. 4 and 6 being recalculated into
the physical units show that over the propagation distance
.2 m the uncompensated Raman shift of a.120 fs soliton
is .100 THz. However, in the regime when the frequency of
the soliton is quasilocked by the radiation, the frequency
shift over the same distance is only.5 THz. This agrees
well with experimental observations of Ref.[7].

For the long propagation distances the soliton keeps los-
ing its energy to radiation and gets broader, therefore both
recoil and Raman effects are weakening, but balance be-
tween the two preserves. For example for parameters of Fig.
5 the soliton decay rates found from the direct numerical
modeling of Eq.(1) and measured in the inverse propagation
units are 0.5, 0.15, 0.04, and 0.02 for the propagation dis-
tances 6, 12, 25, and 50, respectively. The corresponding
values of the decrease rate of the soliton frequency are 0.15,
0.06, 0.025, and 0.01. In our modeling we observed propa-
gation of the soliton over more than 100 dispersion lengths,
but its final fate cannot be unambiguously determined from
our results, because radiation finally passes through or gets
reflected from the boundaries and feeds back into the soliton
itself.

Previously reported methods to compensate the Raman
induced soliton self-frequency shift in telecom fibers have
involved different techniques for achieving the frequency de-
pendent amplification or loss in the fibers[27–30] or in-
volved cross-phase modulation effect[31,32]. None of these
techniques have relied on the effect of the resonant radiation.
For studies of the uncompensated soliton self-frequency shift
and Raman amplification in PCFs with the positive GVD
slope, see, e.g., Refs.[33,34].

The most important feature of the resonant radiation emit-
ted by the soliton under the conditions considered above is
that it is exponentially amplified due to the combined action
of the Raman effect and the negative GVD slope. The idea is
to use this effect for the parametric amplification with the
signal frequency controlled by the GVD slope. Note, that
generation of the resonant wave by the soliton is very differ-
ent from the standard four-wave mixing and does not exhibit
the usual symmetry between the Stokes and anti-Stokes
waves. This is because in the process of the emission of the
resonant wave by the soliton the energy and momentum are
shared between the emerging wave on one side and the soli-
tonic pulse as a whole on the other, but not between several
continuous waves as in the usual four-wave mixing.

Localized solutions closely related to the solitons emitting
resonant radiation are the solitons nesting on the top of the
resonant wave extending from −` to +`. These solitons are
often called quasisolitons, see, e.g., Refs.[35–37]. If, for
some selected parameters, the background amplitude be-
comes zero, then the quasisolitons are called embedded
solitons [37–41]. Mathematical artificiality of the quasi-
solitons exhibits itself through the fact that they carry infinite
energy, but their relevance to the physical reality can be
inferred from the results presented above. Indeed disre-
garding thez derivative in Eq.(22) one can find its general
solution in the formG=Gisjd+BGhsjd, whereB is an arbi-
trary constant,Gi =expf−iSsjdge−`

j dj8expf−iSsj8dgKsj8d and
Gh=expf−iSsjdg. Using boundary conditions Gs+`d
=Gs−`dei2f, wheref is a constant phase shift, valid for the
solitons on the infinite background, one can findB and the
amplitude of the background at infinity:uGs±`du=bI / uDs8
−Dr8u, whereb=h2usinfSs+`d+fguj−1. Thus, the amplitude of
the infinite background of the quasisolitons differs from the
amplitude of the semi-infinite background, emerging from
the natural condition that initially there is no radiation, by the
factor b, cf. Eq. (25). Other differences between the two
types of quasisolitons have also been recently discussed in
Ref. [42].

VI. SUMMARY

We have developed a comprehensive theory of the effect
of the soliton self-frequency shift compensation by the radia-
tion pressure in fibers with the negative slope ofb2svd. Our
results provide analytical underpinning for the recent experi-
mental observations[7]. Our approach to calculation of the
amplitude of the resonant radiation generalizes the previ-
ously known techniques by accounting for the potential cre-
ated by the soliton, see Eqs.(23) and (25)–(29), which is
essential for achieving good matching between the analytical
and numerical results.
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