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Particle swaps can drastically accelerate dynamics in glass. The mechanism is expected to be vital for a
fundamental understanding of glassy dynamics. To extract defining features, we propose a partial swap
model with a fraction ϕs of swap-initiating particles, which can only swap locally with each other or with
regular particles. We focus on the swap-dominating regime. At all temperatures studied, particle diffusion
coefficients scale with ϕs in unexpected power laws with temperature-dependent exponents, consistent
with the kinetic picture of glassy dynamics. At small ϕs, swap initiators, becoming defect particles, induce
remarkably typical glassy dynamics of regular particles. This supports defect models of glass.
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Under rapid cooling, most liquids experience a consid-
erable dynamic slowdown accompanied by an increase in
viscosity [1,2]. Despite decades of research and significant
progress, an encompassing theoretical description of this
dynamic arrest has proven elusive. Even the most funda-
mental questions, such as whether the arrest is of thermo-
dynamic or kinetic origin, are still under heated debate [3].
Complementary to experimental approaches, molecular
dynamics (MD) simulations play a pivotal role because
they enable one to examine the microscopic dynamics
directly. For a long time, preparation of equilibrium MD
systems in the deeply supercooled regime was challenging
due to the slow dynamics. Recently, lots of attention has
been focused on a swap Monte Carlo algorithm [4–7],
which speeds up the equilibration of polydisperse fluids by
over 10 orders of magnitude [8]. A further ingenious
observation byWyart and Cates [9] is that the extraordinary
speedup is not only useful technically, but has strong
theoretical implications on the underlying mechanism of
glassy dynamics. They argue that the success of swap
evidences the kinetic school against the thermodynamic
picture. This has initiated an interesting debate [10]. The
advancements on swap acceleration have spurred a flurry of
theoretical works on possible explanations based on a
variety of approaches [11–14]. Existing simulation results,
aiming predominantly at computational efficiency, lack
hallmark features that can conclusively discriminate the
theories and settle the debate.
In this Letter, we study generalizations of the swap

algorithm that are not necessarily the most efficient, aiming
rather at a better understanding of both swap and glassy
dynamics. We consider polydisperse soft repulsive particles
in two dimensions. Hybrid dynamics of MD evolution with

periodic Monte Carlo swap attempts is applied. We adopt
particle swap following Refs. [4,5], rather than radius
swap [8] so that all particle attributes including positions
are swapped. Swaps thus contribute to particle movements
directly. In addition, we consider local, i.e., nearest neigh-
boring, swaps by restricting the swaps to particle pairs
within a short distance of the order of particle diameters.
Local and nonlocal swaps have been found to generate
similar results [8]. This local particle swapping scheme,
without long jumps, leads to realisticlike particle dynamics
in which standard measures such as the diffusion coef-
ficient are well defined.
Partial swap.—A key feature of our model is that only

certain particle pairs enjoy swap attempts. Before a
simulation starts, we randomly select a fraction ϕs of
particles in the system, referred to as swap initiators. Only
these particles can perform swaps with themselves or with
other regular particles. Regular particles cannot swap
directly among themselves. Previous studies are thus akin
to ϕs ¼ 1 [4–8]. By varying ϕs, an expanded parameter
space is explored. At small ϕs, one gets a system of regular
particles with a small density of swap initiators as defects.
In our study, we focus on a swap-dominating regime by
applying a sufficiently high swap attempt frequency, so that
the diffusion coefficient of the regular particles must be
enhanced by swaps by at least 10 times. MD steps then only
lead to negligible direct motions but are essential to
position the particles for effective swaps.
We use dimensionless units in which the average particle

diameter, the particle mass, and the Boltzmann constant are
all set to 1. Particle diameters follow a uniform distribution
with a standard deviation of 0.18 to ensure disordered
arrangements. Two particles separated by a distance r
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interact with a repulsive pair potential ∼r−12. Unit particle
density is considered. Our local swaps can only exchange
the positions of particles within a cutoff distance of 1.5, the
first minimum in the particle pair distribution function.
Swaps are conducted using standard Monte Carlo algo-
rithms following detailed balance so that the system
thermodynamics is exactly preserved, while dynamics is
dramatically accelerated. Further details can be found in the
Supplemental Material [15], which includes Refs. [16–25].
Results.—Figure 1 shows an example of the overall

system, consisting of a small density of swap initiators (red)
in a background of regular particles (blue to green). It is
seen that regular particles with larger displacements (light
blue to green) are those close to the swap initiators, as
the latter induce these motions. We measure the diffusion
coefficient of the regular particles defined as Dr ¼
hjriðtÞ − rið0Þj2i=4t measured at long time t, where riðtÞ
is the position of regular particle i. Figure 2(a) showsDr as
a function of ϕs. The remarkably straight lines in the log-
log plot show the power law

Dr ∼ ϕα
s ð1Þ

for small ϕs. Similarly, Fig. 2(b) plots the diffusion
coefficient Ds of the swap initiators analogously defined.
We observe a related power law,

Ds ∼ ϕα−1
s : ð2Þ

It appears that these power laws cannot be inferred from
existing theories of swap dynamics [11–13].

We first explain the relationship between the two power
laws. For small ϕs, swap initiators are sparse so that they
typically swap with regular particles. An equal number of
swaps is thus shared between the entire population of the
two species. The ratio of the swapping rates for regular
particles against swap initiators is hence inversely propor-
tional to their population ratio ð1 − ϕsÞ=ϕs ≃ ϕ−1

s . This
impliesDr=Ds ∝ ϕs. The exponents in Eqs. (1) and (2) thus
differ by 1 and can be denoted by α and α − 1, respectively.
Figure 3 plots α against T from fittingDr andDs to Eqs. (1)
and (2), respectively. The reasonable consistency between
values of α obtained from the two power laws supports our
arguments.
The exponent α approaches 1 at high T, as observable

from Fig. 3. In that case, Ds is independent of ϕs and the
swap initiators are simply independent random walkers,
indicating that thermal motions readily overcome random
particle interactions in the disordered system. More inter-
estingly, α rises as T decreases and exceeds two at
T ≲ 0.09. Consider for example α ¼ 2 at T ≃ 0.09.
Based on elementary chemical kinetics, we suggest that

FIG. 1. A system with a fraction ϕs ¼ 0.026 of swap-initiating
particles (red circles), only which can exchange positions with
regular particles or with each other. The regular particles are color
coded according to their displacements over a duration 0.015 at
T ¼ 0.16. Stringlike motions can be observed.

FIG. 2. Diffusion coefficients (a) Dr of regular particles and
(b)Ds of swap initiators against the fraction ϕs of swap initiators.

PHYSICAL REVIEW LETTERS 129, 168002 (2022)

168002-2



pairs of nearby swap initiators dominate the dynamics.
These pairs have a density ∼ϕ2

s so that the total swapping
rate in the system is proportional to ϕ2

s . Distributing these
swaps to individual initiators of population ∼ϕs, we get
Ds ∼ ϕs. We expect that nonintegral values of α are
associated with crossover situations due to fluctuations
in the dominant mobile group size. As α can exceed two,
our arguments may be applied to α equal to 3 or beyond
corresponding to larger group of initiators that dominate
the dynamics.
The above picture of dynamics-dominating groups of

defects, akin to the facilitation picture of glassy dynamics,
was pioneered by the Fredrickson-Andersen model [26]
and further developed in numerous works [27–30]. The
facilitation in our model is probabilistic, unlike the rigid
rules in typical kinetically constrained models [26,27]. Its
relevance can be illustrated from real-space displacement
profiles. Figure 4 shows the displacement of a system at
T ¼ 0.08 corresponding to α ≃ 2.1. We have also taken a
small ϕs so that individual groups of swap initiators can
be examined. As a typical trend at such a low T, we can
observe that regular particles close to a pair of swap
initiators are, in general, much more mobile than those
next to isolated initiators. We corroborate this quantitatively
in the Supplemental Material [15] by comparing systems in
which swap initiators are isolated, in pairs, or in triplets.
Figure 5 compares the position-time graphs of swap

initiators at high and low T. It is clear that, at high T, all
swap initiators are mobile with motions consistent with
random walks. In contrast, there are much stronger fluc-
tuations at low T. Some swap initiators are trapped for long
duration within small regions. Importantly, they do not only
vibrate as one may naively expect for caged particles.
Instead, they swap frequently, albeit only back and forth,
leading to little net movements. They are thus essentially

caged, but in a more general sense with back-and-forth
swaps and vibrations. We also observe two other swap
initiators that are much more mobile. We have checked in
this and other examples that the mobile initiators are mainly
those in groups of two or more. Some of these coupled
groups are completely mobile and move over long dis-
tances. When they reach trapped swap initiators, partners
may be exchanged, and thus no initiator is permanently
trapped in a sufficiently large system.
Another intriguing feature of our model is that the

regular particles exhibit remarkably glasslike dynamics
at small ϕs. In this regime, dynamics is predominantly
induced by only a small population of frequently swapping
initiators. Yet, the regular particles demonstrate typical
glassy behaviors. These include a mean-squared displace-
ment exhibiting a plateau, a two-step decay of the self-
intermediate scattering function with a stretching exponent
decreasing with T, a Stokes-Einstein violation, and a peak
in a time-dependent four-point susceptibility with a height
increasing as T decreases (see Supplemental Material [15]).
More directly, real-space features typical of glass form-

ers can also be observed and intuitively understood.
Specifically, Fig. 4 shows dynamic heterogeneity revealed
as a cluster of regular particles with a much higher mobility
than the others. This high mobility results simply from
the proximity to a facilitated pair of swap initiators.
Another important real-space feature is stringlike motions,
involving strings of particles displacing their preceding
neighbors [31]. These are revealed as strings of mobile
regular particles in Figs. 1 and 4. Some mobile regular
particles in Fig. 4 seem to form compact geometries,
which indeed can be broken down into strings at shorter
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FIG. 3. Scaling exponent α measured from regular particles
(blue) and swap initiators (red) against temperature T. Inset:
exponent α against T from distinguishable particle lattice model
simulations.

FIG. 4. A 1600 particle system with ϕs ¼ 0.003 at T ¼ 0.08
showing facilitation. Regular particles (colored according to their
displacements during a time interval of 0.32) are more mobile
when they are close to a pair of swap initiators (red).
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time intervals. A more informative illustration is provided
by particle trajectories, where individual trajectories of
groups of particles nicely connect to form strings (see
Supplemental Material [15]). We observe a striking resem-
blance of these strings to those in, for example, exper-
imental glassy colloidal systems [32]. Unlike in realistic
glass, stringlike motions in our model can be trivially
understood. Each is simply caused by a few consecutive
local swaps of a swap initiator, leaving behind a linear
trail of displaced particles. Their trajectories thus align to
form a string.
Many important properties of glass are captured by lattice

models [27]. We have recently proposed a distinguishable
particle lattice model (DPLM) [30], which exhibits a wide
range of glassy phenomena (see, e.g., [33,34]). Generalizing
the DPLM to incorporate swap, we have reproduced both

power laws with exponents showing similar T dependence
(see inset in Fig. 3 and Supplemental Material [15]).
Discussion.—We have shown that introducing a density

ϕs of swap initiators and implementing local particle swaps,
simple power-law relations between diffusion coefficients,
the most fundamental dynamic measures, and ϕs are
established. The scaling exponents depend nontrivially on
temperature. These are highly specific hallmark features
fundamental to swap dynamics in glass formers. Power laws
play key roles in theoretical descriptions of many physical
systems and techniques to tackle them are abundant [35].
Incorporating them into existing [11–13] and future theories
of swap dynamics should be important in scrutinizing and
perfecting them. In addition, we have shown that the power
laws can be reproduced using the DPLM. A theoretical
description of swap with the power laws appears readily
achievable, as lattice models are, in general, much more
tractable analytically than MD systems [27,36].
We have found that glassy dynamics is exhibited by

regular particles at small ϕs. This is a highly nontrivial
finding because, in contrast to realistic glass formers in
which all particles, in principle, can move spontaneously,
particle motions here are mainly induced by a sparse
population of swap initiators. In our opinion, the regular
particles constitute the simplest molecular model of glass, as
motions are clearly known to be caused by and localized
around swap initiators. It is so simple that dynamic hetero-
geneity and stringlike motions are trivially understandable as
explained above. A theory for swap dynamics at small ϕs
should be highly inspiring, if not directly applicable, for a
quantitative description of glassy dynamics.
We have argued that the power laws in the nontrivial

regime with α > 1 result from elementary chemical kinetics
and relate to facilitation [27]. It can further be explained
intuitively as follows. Consider, e.g., α ≃ 2. Although a
swap initiator can, in principle, swap with all its nearest
neighbors associated with various energy costs, only some
of them can be energetically favorable at such a low T. If
these neighbors do not percolate throughout the whole
system, the initiator will be trapped to move back and forth
only within a few sites defined by the rugged energy
landscape. Isolated initiators thus tend to have a low
mobility at a sufficiently low T. Importantly, in addition
to being affected by the energy landscape, motions of
swap initiators indeed also perturb the landscape as particle
arrangements along their pathways are altered. Therefore, if
a swap initiator happens to move close to another one, the
landscape experienced by the latter will be perturbed and
this may unlock previously unfavorable swaps. More
generally, both initiators perturb the energy landscape of
each other and provide additional swapping possibilities.
This mutual facilitation can enable both to move far away
in a dynamically coupled way. Analogous facilitation based
on void-induced dynamics has been explained in detail
previously [36–38].

FIG. 5. Plots of x coordinates of all five swap initiators
(randomly colored) in a system with 1600 particles for ϕs ¼
0.003 against time t at (a) T ¼ 0.5 and (b) T ¼ 0.08. The
coordinates are unwrapped with respect to the periodic boundary
conditions for clarity. In (a), motions are consistent with simple
random walks. In (b), some swap initiators are strongly trapped,
but two initiators close to each other are more mobile.
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The swap initiators at small ϕs are mobile point defects in
the system of regular particles. Our results thus show that
many features of glassy dynamics can well be realized by
defect-induced motions. An important question is whether
there are analogous dynamics-dominating defects in realistic
glasses. In close association with the free-volume theory, a
major candidate is a void or, more generally, a fragmented
version called a quasivoid, which has been recently iden-
tified in colloid experiments via a reversible transformation
into a vacancy at a glass-crystal interface [32]. In this picture
of void-induced dynamics, a particle hopping into a nearest-
neighboring void, leaving another void behind, can be
equivalently described as a local swap between a particle
and a void. This is fully analogous to a local swap between a
regular particle and a swap initiator. The two formalisms are
thus intimately related. We have recently proposed a
description of such void-induced glassy dynamics [36,38],
which will be applied in the future in an attempt to account
for the present results quantitatively.
Conclusion.—We have introduced a partially swapping

system and found simple power laws relating diffusion
coefficients to the density ϕs of swap-initiating particles.
The exponents of the power laws depend nontrivially on
temperature. These observations have not been predicted
by existing theories of swap, but can be explained by
facilitation and are reproduced with a lattice model. In
addition, the system exhibits remarkably typical glassy
dynamics at small ϕs, implying that main characteristics of
glass formers can be defect induced.
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I. DETAILS ON MOLECULAR DYNAMICS
SIMULATIONS WITH PARTIAL SWAP

Model: In our main simulations, we study a two-
dimensional system with 1024 particles in a square re-
gion of size 32 × 32, leading to a unit particle number
density. We consider continuously polydisperse repulsive
particles. The diameter σi of particle i is sampled from
a uniform distribution in the range [0.682, 1.318], which
gives a mean diameter σ̄ = 1. The standard deviation of
the diameter is 0.18, characterizing the degree of poly-
dispersity of the system. Noting that successful swap
attempts usually occur between particles of similar radii,
the uniform diameter distribution allows comparable suc-
cessful swapping rates of both small and large particles
and similar distributions have been studied previously
[1].

Two particles with diameters σi and σj separated by
a distance r interact through a soft repulsive potential
given by:

Vij = vo

(σij

r

)12

(S1)

where v0 = 1 and

σij =
(σi + σj)

2
(1− ϵ|σi − σj |). (S2)

An interaction cutoff distance of 1.25σij is applied be-
yond which the interaction is truncated. We use a non-
additivity parameter ϵ = 0.2 that promotes particles with
a larger size difference to stick close to one another, sup-
pressing fractionation within the system. This combina-
tion of size polydispersity and non-additivity has been
shown to produce highly stable glass formers [2, 3]. The
mean diameter σ̄ defines the unit of length in our simula-
tions, and v0 defines the unit of energy. The unit of time
then becomes σ̄

√
m/v0, where m = 1 is the mass of each

particle. We take the Boltzmann constant kB = 1 so that
the unit of temperature is also v0. All these quantities
are set to 1, leading to dimensionless units adopted in
this work.

Our molecular dynamics (MD) simulation is a hybrid
one with periodic swap Monte Carlo steps, analogous to
related hybrid approaches. The time-step for the Verlet
integration of the MD process is ∆t = 0.001. In our low
temperature simulations for example, after each MD time
window of width 0.2, we perform 200,000 swap attempts,
leading to a swap attempt rate of µ = 106 (other µ has

Figure S1. Particle pair distribution functions g(r) at various
temperatures.

been used, as mentioned below). We adopt local swaps
which exchange the positions of two particles within a
swap cutoff distance Rswap = 1.5, which is close to the
first minimum in the particle pair distribution function.
We calculate the particle pair distribution functions g(r)
as shown in Fig. S1 defined as follows:

g(r) =
⟨ρ(r0)ρ(r0 + r)⟩

⟨ρ(r0)⟩2
(S3)

where ρ is the particle density, |r| = r and the average is
over positions r0.
A key feature in our approach is a partial swap algo-

rithm. Before a simulation starts, we randomly select
a fraction ϕs of particles in the system, referred to as
swap-initiators. Their number density is thus also ϕs.
Only these particles can perform swaps with themselves
or with other regular particles. Regular particles cannot
swap directly among themselves.
Simulation methods: Each swap attempt at tem-

perature T employs the below algorithm, which follows
detailed balance:

1. Randomly select two particles with uniform prob-
ability.

2. If neither of the selected particles is a swap-initiator
OR the particle separation is greater than Rswap,
reject the attempt.
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3. Otherwise, accept the swap with probability

min{1, e−
∆E
kBT }, where ∆E is the energy difference

between the system after and before the swap.

According to this algorithm, a good majority of swaps
are rejected at step 2 and do not involve an intensive
energy calculation. In particular, if one takes ϕs = 1 and
Rswap = ∞, this algorithm reduces to the more common
non-local algorithm with full swapping [3].

All simulations are performed using LAMMPS [4]. As
LAMMPS does not handle continuous polydispersity na-
tively, it is approximated by a discrete set of 128 diameter
values and python scripts have been written to define all
these particle types and generate a large table of all pos-
sible interactions to be input to LAMMPS. Swaps are
performed using the Monte Carlo package of LAMMPS
[5]. However, it only provides non-local swap with full
swapping. We have performed source code modifications
to allow for local and partial swap as well as to enable a
single simplified command for swapping among all parti-
cle types of various radii. In our main simulations used
for quantitative measurements of, for example, diffusion
coefficients, results at each T and ϕs are typically aver-
aged over 30 independent simulations which run for time
t ≃ 105. Pictures of the system in the main text are
produced using OVITO [6].

MSD and swap-dominating regime: Many of our
measurements are based on particle mean-squared dis-
placement defined by MSD = ⟨|ri(t) − ri(0)|2⟩, where
ri(t) is the position of particle i at time t. The MSD for
regular particles is shown in Fig. S2 for selected swapping
rates µ. We have included the case of µ = 0 correspond-
ing to the absence of swap, which indicates the signifi-
cance of the MD dynamics at the given T . The diffusion
coefficient Dr of the regular particles is then calculated
from Dr = MSD/4t measured at long time t.

All the main simulations reported in this work adopt
sufficiently large values of µ so that the dynamics is swap-
dominated. For T = 0.09 to 0.2 we adopt µ = 106. For
T > 0.2 we use µ = 2.5× 107, such that the diffusion co-
efficient Dr of the regular particles with the partial-swap
dynamics is at least 10 times higher than that without
swap. This also means that the MSD at long time must
be enhanced by swaps by at least 10 times. For example,
from Fig. S2, the rate µ = 106 brings the system well
within the swap-dominating regime for that given T and
ϕs, while µ = 62, 500 does not.

Furthermore, we show here that once µ is large enough,
the variation of the power-law exponent α for various
µ is small. Figure S3 plots this relationship. At small
µ, the exponent α measured is relatively small. This
is because MD dynamics contributes significantly to the
MSD so that varying ϕs has a reduced impact. For larger
µ ≳ 2 × 106 satisfying our swap-dominating criterion, it
then shows negligible dependence on µ. In fact, α varies
very little; by less than 5 percent as µ changes by one
order of magnitude. This indicates that, in the swap-
dominating regime, µ is not a primary determinant of α,

Figure S2. Mean-squared displacement of regular particles for
various swapping rates µ. We take T = 0.18 and ϕs = 0.01.

Figure S3. Power-law exponent α for regular particles against
the swapping rate µ. It is small at small µ (open circles) and
becomes relatively independent of µ at large µ in the swap-
dominating regime (solid circles). We take T = 0.18.

in contrast to T for instance.
Measurements over all particles: We have re-

ported in the main text the diffusion coefficients for reg-
ular particles and swap-initiators individually. For com-
pleteness, Fig. S4 plots the diffusion coefficientD against
ϕs measured for all particles in the system. It shows a
power law resembling that for regular particles:

D ∼ ϕα
s . (S4)

This similarity is because of the abundance of the regular
particles at small ϕs compared to the swap-initiators so
that they dominate the overall dynamics. Figure S5 plots
values of α measured from all particles, regular particles,
and swap-initiators, which are all consistent with each
other.
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Figure S4. Diffusion coefficient D against swap-initiator frac-
tion ϕs.

Figure S5. Power-law exponent α against temperature T for
all particles, regular particles and swap-initiators.

II. FACILITATION AMONG
SWAP-INITIATORS

To further quantify the facilitation present in the sys-
tem, we simulate smaller 10x10 systems as these allow
swap-initiators placed together to remain close to one an-
other during the simulation. (Larger systems give quali-
tatively similar but quantitatively weaker effects as swap-
initiators are often observed to separate from each other
and cease facilitating each other’s motions). Thus, we
measure the MSD of regular particles (MSDr) and swap-
initiators (MSDs) for the cases where there are N=1,
N=2, and N=3 swap-initiators placed randomly in the
system at the beginning of a simulation. We average the
results over 50 independent simulations each lasting for
time t = 103 and 7 × 105 for T = 0.5 and T = 0.09 re-
spectively. The results are shown for a high temperature
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Figure S6. (a)Normalized mean-squared displacements
MSDr/N of regular particles and (b) mean-squared displace-
ments MSDs of swap-inititiators in a small 10x10 system with
N swap initiators at T = 0.5. At this temperature α ≃ 1.1.

(where we would expect no facilitation) and a low tem-
perature (where we would expect strong facilitation) in
Figs S6 and S7.
The MSD curves of the regular particles have been

normalized by N to account for the trivially more swap-
ping events induced directly by more swap-initiators even
in the absence of facilitation. One can see that both
MSDr/N and MSDs are nearly identical for a high tem-
perature for which α ≃ 1.1 according to Fig. 3 in the
main text. In contrast, those at a low temperature where
α ≃ 2.1 are distinct. The larger values for the N = 2 and
3 cases indicate the presence of facilitation.

III. GLASSY DYNAMICS INDUCED BY A LOW
DENSITY OF SWAP-INITIATORS

Remarkably, the subsystem formed by the regular par-
ticles displays typical glassy behaviors at a small fraction
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Figure S7. Similar to Fig. S6 but for T = 0.08 where α ≃ 2.1.

ϕs of swap-initiators. With few swap-initiators, the regu-
lar particles nearly fill the space and model a typical ma-
terial system by themselves. As local swaps avoid long
jumps, their dynamics resembles that in realistic parti-
cle systems. We focus on ϕs in the order of 0.01 but
other small values are expected to generate qualitatively
similar results.

Figure S8(a) shows the MSD at time t for regular par-
ticles. Analogous to realistic glass formers, it exhibits an
initial rise due to individual particle swaps. It is followed
by a plateau at intermediate time. The width of the
plateau increases at lower temperatures. The plateau val-
ues of the MSD accounts for not only particles vibrating
about their meta-stable positions but also a population of
particles performing back-and-forth swaps among a small
number of positions. It reaches the diffusive regime at
long time, when most regular particles have been visited
by some swap-initiators and have taken multiple swaps to
escape any initial local traps. All these microscopic dy-
namics are observable from real-space visualizations of
the regular particles. The comparison of the MSD with
and without swap is also shown in Fig. S8(a), from which

Figure S8. (a) Mean-squared displacement and (b) self-
intermediate scattering function against time at various tem-
peratures T for ϕs=0.01. Results in (a) are compared to those
without swap.

we can observe that swaps dominate over MD dynamics.

Figure S8(b) shows the self-intermediate scattering
function defined as Fs = ⟨ cos (k · [ri(t)− ri(0)]) ⟩ av-
eraged over regular particles i. Here, the magnitude of
the wave vector k is k = 2π/λ where λ = 1 is the length
scale over which we measure each particle’s overlap with
its initial position. Similar to realistic glass formers, at
low temperatures, it shows an initial decay, a plateau,
and a final decay to zero at long time, which is related
to the two-step rise in the MSD. The final decay of Fs

takes a stretched exponential form.

The partial swap system also shows a Stokes-Einstein
violation, depicted in S9(a), showing the decoupling of
local motions and long time structural relaxation. We
have observed that it is a strong glass. This is illustrated
in the straight lines in Figure S10(a), which shows a
semi-log plot of the structural relaxation time τα against
inverse temperature. We obtain τα by fitting the self-
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Figure S9. Stokes-Einstein violation in (a) the partial swap
system with ϕs = 0.017 and (b) the MD system without swap,
i.e. ϕs = 0.

intermediate scattering function to the stretched expo-

nential form e−(t/τα)β . We use λ = 2 for the wave vector
k = 2π/λ. In comparison, we plot τα against 1/T for the
case without swap. One can see that the presence of only
MD motion produces a more fragile glass, as indicated by
the curvature in S10(b). To further exemplify the glassi-
ness of the system, we also plot the stretching exponent β
in Figure S11. As is typical of glasses, it becomes smaller
at low T.

Another archetypal feature of glass is dynamic hetero-
geneity. This is measured by the four-point susceptibility,
which can be thought of as the magnitude of fluctuations
in a particular overlap function. We define an overlap
function O(t) of particle positions as follows:

O(t) =
1

N
Θ(|ri(t)− ri(0)| − rmin) (S5)

where N is the total number of particles considered, Θ(r)
is the Heaviside step function, and rmin = 1 is a cutoff
distance. By this definition, the overlap of an individual
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Figure S10. The structural relaxation time τα as a function
of temperature (a) with swap and (b) without swap.

particle is 1 if the magnitude of its displacement is less
than rmin, and it is 0 once the particle exceeds this dis-
placement. This form of the overlap function is akin to
that used in Refs. [7, 8]. The four-point susceptibility χ4

is then:

χ4 = N⟨(O(t)−O(t))2⟩. (S6)

Figure S12 shows the plot of χ4 for regular particles at
various temperatures. We observe that the maximum
height of χ4 increases as the temperature decreases. This
is analogous to results from typical glass formers and
indicates greater dynamic heterogeneity. These quan-
tities obtained for the partial swap system fall within
typical range of values for glass-forming models. We
would like to mention that the glassy system formed by
regular particles with partial swap may have properties,
e.g. fragility, considerably different from the original non-
swapping system, although they fall in the range of typ-
ical glasses.
Our system of regular particles also exhibits string-

like motions as already illustrated in the main text. Fig-
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Figure S12. Four point susceptibility function χ4 at various
temperature T for ϕs=0.059. The taller peaks at lower tem-
peratures indicate increased dynamic heterogeneity.

ure S13 further depicts them using a time-colored coarse-
grained trajectory plot. To create the plot, we follow
Refs. [9, 10], with the trajectory of each particle drawn
as straight line segments joining consecutive positions,
each of which is colored according to time. In addi-
tion, red dots show the initial positions of all regular
particles. Therefore, particles with small displacements
simply show up as a red dot. Each particle taking part
in a swap is represented by a red dot connected to a
line segment of length comparable to the inter-particle
separations, which are the typical swapping distances.
The color of the dominant line segment indicates when
the swap occurs. We observe in Fig. S13 trajectories
in striking similarity with those in, e.g., glassy colloidal
experiments [10]. In one case, individual trajectories of
12 particles join with nearly perfect alignment to form a
long string.

In our partial-swap system, the cause of these string-
like motions is easy to understand. For example, the

Figure S13. Time-colored trajectory plots for regular par-
ticles at T = 0.1 and ϕs = 0.026 over a time window of
∆t = 0.015 showing string-like motions. Red dots show the
initial positions of regular particles. The trajectory of each
particle is illustrated with straight line segments joining a
time sequence of particle positions, with each segment col-
ored according to time. Most particles displace negligibly,
but some show displacements comparable to particle separa-
tions. Displaced particles are often adjacent to each other,
with trajectories well aligned forming strings. A long string
created by 12 regular particles can be observed.

longest string in Fig. S13 is created by a single initia-
tor swapping one by one with 12 regular particles, the
trajectory of each of which contributes to a segment in
the string. A close examination also reveals some back-
and-forth swapping during the course of movements of
the swap-initiator, leading to some thickened trajectory
lines. In some other cases, the strings have branched ge-
ometries. This arises when a swap-initiator displaces a
line of particles, returns to one of its earlier positions,
and then displaces another line of particles in a different
direction. In contrast to displacement plots, trajectory
plots show both the forward and backward trips and thus
register back-and-forth motions as well.

IV. COMPARISON WITH
DISTINGUISHABLE-PARTICLE LATTICE

MODEL

We have recently proposed a distinguishable particle
lattice model (DPLM) [11], which exhibits a wide range
of glassy phenomena, including Kovacs paradox [12], Ko-
vacs effect [13], a wide range of fragility [14], heat capac-
ity overshoot [15], and low-temperature two-level systems
[16]. Here, we generalize the DPLM to include local par-
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ticle partial swap for a comparison with our MD results.
The purpose of this comparison is two fold. First, lat-
tice models are more easily understandable in general
and reproducing the MD results with the DPLM can be
an important step for a thorough understanding of the
MD results. Conversely, a successful lattice model should
compare well with the widest possible range of phenom-
ena, requiring few or no modification in the model defi-
nition. A successful comparison here can add to our pre-
vious efforts [11–16] and further supports the relevance
of the DPLM to glass.

For a comparison with MD simulations, we adopt the
DPLM defined in Ref. [14] for strong glass, except that
void-induced dynamics is now replaced by particle swaps.
This alters the dynamics but not the thermodynamics.
The modeled system is defined on a 2D square lattice
with length L = 40 and is fully occupied by N = L2

particles without voids. The total energy of the system
is given by:

E =
∑

<i,j>′

Vsisj (S7)

where the sum is over occupied adjacent sites i and j.
The variable si = 1, 2, . . . , N denotes which of the N
particles in the system is at site i. The interaction en-
ergy Vkl ∈ [0, 1] between each particle pair k and l is
sampled at the beginning of a simulation from a uniform
distribution g(V ), leading to a strong glass [14].

To implement partial swap, a fraction ϕs of the N par-
ticles are randomly pre-selected as swap-initiators. In
the simulation, each Monte Carlo step corresponds to a
time step ∆t = 1/L2w0, where w0 = 106. At each time
step, a pair of neighboring particles is chosen randomly.
Similar to the algorithm in our MD simulations, if at
least one particle in a pair is a swap-initiator, the parti-
cles are swapped with a probability min

{
1, e−∆E/kBT

}
,

where ∆E is the change of the system energy E due to
the swap.

We have measured the diffusion coefficients Dr and
Ds of regular particles and swap-initiators and results
are shown in Figure S14. Similar to the MD results, we
observe the power laws:

Dr ∼ ϕα
s , Ds ∼ ϕα−1

s . (S8)

The values of the exponent α obtained are shown in
Fig. S15, which again shows strong resemblance to our
MD results.

The DPLM with swap has thus successfully reproduced
our main MD simulation results qualitatively as demon-
strated above. There is however one notable difference:
the facilitation in the DPLM is stronger than in MD sim-
ulations. At a sufficiently low T corresponding to a scal-
ing exponent α ≃ 2, two nearby swap initiators in the
DPLM almost always display much faster dynamics than
isolated ones. This is closely analogous to the facilitation
between two nearby voids, which has been illustrated in

detail in Ref. [11]. The strong facilitation stems from

Figure S14. DPLM results on diffusion coefficients Dr and
Ds of regular particles (a) and swap-initiators (b), showing
power-law relations with respect to the fraction ϕs of swap-
initiators.

the very different energetic properties of the two parti-
cles. When a particle close to a swap-initiator is replaced
by another due to the motion of a second initiator, the
potential energy landscape experienced by the first ini-
tiator is usually changed significantly in the DPLM. This
opens up additional pathways of motions, leading to fa-
cilitation. In contrast, there is much fluctuation in the
facilitation in our MD simulations with swaps, as some
pairs of nearby swap-initiators do not appear to facilitate
the motions of each other. This is because only particles
with similar radii are energetically capable to swap [3].
The motions of a swap-initiator thus only alter the con-
figuration of the system slightly, as particles are replaced
only by those with slightly different radii. The energy
landscape thus changes little, resulting at a weaker facil-
itation. This may also explain a rather weak peak in χ4

in our MD simulations as observed above.
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