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  In this paper, the theory of a Timoshenko-Ehrenfest beam is revisited and given a new perspective with particular 

emphasis on the relative significances of the parameters underlying the theory. The investigation is intended to 

broaden the scope and applicability of the theory. It has been shown that the two parameters that characterise 

the Timoshenko-Ehrenfest beam theory, namely the rotary inertia and the shear deformation, can be related and 

hence they can be combined into one parameter when predicting the beam’s free vibration behaviour. It is 

explained why the effect of the shear deformation on the free vibration behaviour of a Timoshenko-Ehrenfest beam 

for any boundary condition will be always more pronounced than that of the rotary inertia. The range of 

applicability of the Timoshenko-Ehrenfest beam theory for realistic problems is demonstrated by a set of new 

curves, which provide considerable insights into the theory.  
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1. INTRODUCTION 

 

The beam theory given by Euler and Bernoulli in the eighteenth century [1, 2] has magnificently survived 

and endured the passage of time and has continued to be successfully used by scientists and engineers even to this 

day. The theory gives sufficiently accurate results, particularly for slender beams with cross-sectional dimensions 

much smaller than the length of the beam. From a historical perspective, attempts to improve the Bernoulli-Euler 

beam theory for free vibration analysis was made around a century later since its inception due to the ingenuity 

of Bresse [3] and Lord Rayleigh [4] and who included the effect of rotary inertia arising from the rotation of the 

beam cross-section. However, it is often overlooked that following the work of Bresse [3] and Rayleigh [4], Searle 

[5] investigated the effect of rotary inertia on the free vibration behaviour of beams for various boundary 

conditions which was without doubt a note-worthy contribution at the time. The beam theory developed by Bresse 

[3] and Rayleigh [4] which included the effect of rotary inertia was next significantly advanced by Timoshenko 

[6, 7] in the earlier part of the twentieth century when the additional effect of shear deformation was incorporated. 

This established a landmark in the development of beam theories and in many ways, it overshadowed the earlier 

beam theories. The expression “Timoshenko beam” has been used in literally thousands of papers in scientific and 

engineering journals. Interested readers are referred to a selected sample of the literature [8-23], which covers the 

main aspects of a Timoshenko-Ehrenfest beam.  

 

At this juncture, it should be acknowledged that the so-called Timoshenko beam theory was in fact jointly 

developed by Timoshenko and Ehrenfest, but because of the untimely and tragic death of Ehrenfest, the story was 

somehow lost and unfortunately Ehrenfest was not duly accredited. Recently Elishakoff [24, 25] carried out a 
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detailed and open-minded research to trace back the history of the theory, demonstrating with irrefutable evidence 

that the incorporation of the effects of shear deformation and rotary inertia into the Bernoulli-Euler beam theory 

was indeed a joint initiative by both Timoshenko and Ehrenfest. In this context, it is worth noting that Timoshenko 

in his classic paper (see his footnote in [7]) mentioned that the frequency equation of a simply supported beam 

with the inclusion of the effects of shear deformation and rotary inertia was derived jointly by himself and 

Ehrenfest. He had made the same acknowledgement much earlier in his book on the theory of elasticity [26]. It 

should be noted that Timoshenko’s acknowledgement of Ehrenfest’s contribution is clearly evident in the footnote 

in the original version of his paper published in the Philosophical Magazine [7], but later versions of the paper 

appearing in books and periodicals have omitted the footnote. This omission has been discussed by Elishakoff, 

see pages 43-46 of [25]. Following Elishakoff’s research [24, 25], the misunderstanding about the origin of the 

theory has now been cleared up and the so-called Timoshenko beam is called a Timoshenko-Ehrenfest beam by 

recent researchers [27-30]. The Timoshenko-Ehrenfest beam theory gives remarkably accurate results, particularly 

for beams with solid cross-section such as circles and rectangles. This has been confirmed in the literature through 

the application of higher order beam theories including the mathematical theory of elasticity [31-36] as well as by 

using finite element analysis [37-40]. Despite the limitation of the Timoshenko-Ehrenfest beam theory in 

assuming uniform shear stress distribution through the thickness of the beam, which clearly violates the zero-

shear stress condition at the outer surface of the beam, the achievable accuracy from the theory is surprisingly 

high, and intriguingly it appears too good to be true. However, it must be recognised that to compensate for the 

inconsistency of not satisfying the zero-shear stress condition on the outer surface of the beam, Timoshenko and 

Ehrenfest introduced a shear correction factor (also called the shape factor) in their theory which improved the 

accuracy of results. The Timoshenko-Ehrenfest beam theory is well covered in the literature [8-23] and no detailed 

elaboration is needed here. 

 

The purpose of this paper is to re-examine the Timoshenko-Ehrenfest beam theory and provide further 

insights into the theory and its applicability. The authors’ approach in this paper sheds new light and gives a 

different perspective to the problem of free vibration behaviour of Timoshenko-Ehrenfest beams. However, in 

order to prepare the necessary background, to underpin the underlying motivation behind this work and to lead 

the readers smoothly into the subsequent text, the following comments are made. 

 

The literature [8-23] shows that investigators have characterised a Timoshenko-Ehrenfest beam primarily by 

two non-dimensional parameters, namely r2 and s2 (or r and s) related (in the usual notation) to the length (L), 

radius of gyration of the cross-section (√𝐼/𝐴), bending rigidity (EI) and shear rigidity (kAG) of the beam. These 

parameters will be explained in detail later. It has been emphasised that the effects of rotary inertia and shear 

deformation on the free vibration behaviour can be described uniquely by the parameters r2 and s2 respectively, 

so that the effect of each of the two parameters on natural frequencies and mode shapes can be studied either 

independently or together. Of course, in the case of a simply supported beam for which the mode shapes are sine 

waves, an explicit expression for the natural frequencies is available [41]. From the expression for natural 

frequencies, it is evident that for simply supported beams the effect of shear deformation (s2) is much more 

pronounced than that of the rotary inertia (r2) as was shown by Timoshenko and Ehrenfest [6, 7]. However, for 

other boundary conditions explicit expressions for natural frequencies are not possible even though the frequency 

equations are available [42]. It is thus not so obvious that in terms of results, the shear deformation term will 



 

3 

 

always dominate the rotary inertia term for all boundary conditions of the beam. Numerical analysis of the 

frequency equation or the use of finite element analysis in solving the eigenvalue problem suggests that the shear 

deformation term is always dominant. From a theoretical standpoint, the authors have been intrigued over the 

years by the question: “Why is the effect of shear deformation always more pronounced than that of the rotary 

inertia for any boundary condition of a beam?” The question does not appear to have been answered or addressed 

clearly in the literature. One of the main objectives of this investigation is to provide a clear-cut answer to this 

question. A secondary objective of this paper is to provide a range of applicability of the Timoshenko theory for 

realistic problems. 

 

2. THEORY 

The two governing partial differential equations of motion of a Timoshenko-Ehrenfest beam undergoing free 

natural vibration are of second order and they are coupled in bending (flexural) displacement and bending rotation 

[11, 16, 19, 20, 41]. These equations can be derived using standard procedures, for example Newton’s second law, 

Lagrange’s equation, or Hamilton’s principle. The two equations are generally combined into one fourth-order 

partial differential equation which is identically satisfied by both the bending displacement (y) and the bending 

rotation (). Using the co-ordinate system shown in Fig. 1, this differential equation, in the usual notation, is given 

by [10, 18, 41, 42] 

𝐸𝐼 𝜕4𝑤𝜕𝑥4 + 𝜌𝐴 𝜕2𝑤𝜕𝑡2 − 𝜌𝐼 (1 + 𝐸𝑘𝐺) 𝜕4𝑤𝜕𝑥2𝜕𝑡2 + 𝜌2𝐼𝑘𝐺 𝜕4𝑤𝜕𝑡4 = 0 

(1) 

where  

w = y or  
(2) 

and E, G and  are respectively the Young’s modulus, modulus of rigidity and density of the beam material, A and 

I are respectively the area and second moment of area of the beam cross-section, k is the shear correction factor 

[43], x is the distance from the origin (which in Fig. 1 is at the left hand end of the beam) and t is time. 

 

Harmonic oscillation is assumed, so that 
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FIGURE 1: Co-ordinate system and notation for a Timoshenko-Ehrenfest beam. 
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𝑤(𝑥, 𝑡) = 𝑊(𝑥)𝑒𝑖𝜔𝑡  
(3) 

 

where W(x) represents the amplitude of the bending displacement Y(x) or the bending rotation (x) and  is the 

angular frequency in rad/s. 

 

Substituting Eq. (3) into Eq. (1) yields the following ordinary differential equation 

𝐸𝐼 𝑑4𝑊𝑑𝑥4 − 𝜌𝐴𝜔2𝑊 + 𝜌𝐼𝜔2 (1 + 𝐸𝑘𝐺) 𝑑2𝑊𝑑𝑥2 + 𝜌2𝐼𝜔4𝑘𝐺 𝑊 = 0 

(4) 

Introducing the non-dimensional length  𝜉 = 𝑥/𝐿 
(5) 

where L is the length of the beam, Eq. (4) can be expressed as 

[𝐷4 + 𝜌𝐼𝜔2𝐿2𝐸𝐼 (1 + 𝐸𝑘𝐺) 𝐷2 − 𝜌𝐴𝜔2𝐿4𝐸𝐼 (1 − 𝜌𝐼𝜔2𝑘𝐴𝐺 )] 𝑊 = 0 

(6) 

where the differential operator D is given by 

𝐷 = 𝑑𝑑𝜉 

(7) 

Now introducing the following non-dimensional parameters in customary notation 

𝑏2 = 𝜌𝐴𝜔2𝐿4𝐸𝐼 ,    𝑟2 = 𝐼𝐴𝐿2 ,     𝑠2 = 𝐸𝐼𝑘𝐴𝐺𝐿2 

(8) 

 

Equation (6) can now be written in the familiar form [19, 20] [𝐷4 + 𝑏2(𝑟2 + 𝑠2)𝐷2 − 𝑏2(1 − 𝑏2𝑟2𝑠2)]𝑊 = 0 
(9) 

Investigators have solved the above differential equation in terms of four arbitrary constants and for a given 

set of boundary conditions of the beam they eliminated these constants to derive the frequency equation, which is 

generally an implicit function of the parameters r2 (rotary inertia) and s2 (shear deformation). However, an explicit 

frequency expression is available for the simply supported or sliding boundary condition [41]. Several authors 

[12, 14, 16] have studied the individual and combined effects of r2 (rotary inertia) and s2 (shear deformation) on 

the free vibration behaviour of Timoshenko-Ehrenfest beams. They have generally concluded that the effects of 

these parameters on the free vibration behaviour are more pronounced for short and stocky beams for which the 

cross-sectional dimensions are relatively large and comparable with their lengths. It is also clear that even for 

slender beams the two effects can be significant for higher frequencies. As expected, both r2 and s2 have softening 

effects on the beam in the sense that they reduce the natural frequencies when compared with the ones obtained 

by using the Bernoulli-Euler theory. However, no comment with enough clarity seems to have been made in the 

literature as to why the effect of shear deformation (s2) is always much more pronounced than that of the rotary 

inertia (r2) for all boundary conditions of the beam. Nevertheless, it should be emphasized that Timoshenko in his 
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classic papers [6-7] showed the effect of shear deformation to be four times that of rotary inertia in diminishing 

the natural frequency of a beam. 

The existing literature is largely focused on studying the individual and combined effects of r2 and s2 on the 

free vibration behaviour of a Timoshenko-Ehrenfest beam. By contrast, the present investigation departs from this 

traditional approach in that it shows that the rotary inertia and shear deformation in the Timoshenko-Ehrenfest 

beam theory are in fact related, and that they can be essentially combined into one parameter (either r2 or s2). The 

procedure, which is described below, enables one to indicate that the effect of shear deformation (s2) will always 

dominate that of the rotary inertia (r2). It is very simple to understand this, and it may seem rather trivial as will 

be shown later, but apparently, this simple fact has been overlooked by earlier investigators for a century. 

 

In 1985, Elishakoff and Lubliner [44] used a simplified form of the Timoshenko-Ehrenfest beam theory by 

neglecting the last term of Eq. (1). Using this simplified form of the Timoshenko-Ehrenfest beam equation, it was 

possible to obtain closed-form solutions for the random vibrational response of simply supported beams [45]. 

Later, it was shown [46] that this assumption of ignoring the last term of Eq. (1) is somehow justified because the 

last term basically amounts to a second order effect, namely, the interaction between the rotary inertia and shear 

deformation which contributes very little and thus has a relatively minimal influence on the natural frequencies. 

Interestingly, Goldenveiser et al [47], Kaplunov et al. [48], and Elishakoff et al. [49] demonstrated that, within a 

formulation based on the first order asymptotic analysis of elasticity theory, the last term of the Timoshenko- 

Ehrenfest beam equation vanishes. Thus, it appears asymptotically inconsistent to retain this last term in Eq. (1), 

and its absence has been referred to as the truncated Timoshenko-Ehrenfest beam theory [25]. In this theory Eq. 

(9) becomes [𝐷4 + 𝑏2(𝑟2 + 𝑠2)𝐷2 − 𝑏2]𝑊 = 0 
(10) 

When 𝑊(𝑥) =  𝑌(𝑥) and the effects of both rotary inertia and shear deformation are ignored (i.e. 𝑟2 = 𝑠2 =0), Eq. (10) reduces to the Euler-Bernoulli model  [𝐷4 − 𝑏2]𝑊 = 0 
(11) 

It is therefore apparent from Eq. (10) that the rotary inertia and shear deformation terms act analogously and hence 

their effects are asymptotically additive. This is an idea which was already envisaged by Timoshenko and 

Ehrenfest [6, 7, 26]. Because Eqs. (1) and (9) relate only to the internal points of the beam, the above arguments 

hold for any boundary conditions at the ends.  

From the non-dimensional parameters given by Eqs. (8), one can write 𝑟2𝑠2 = 𝑘 𝐺𝐸 

(12) 

For isotropic and homogeneous materials, as in the present case, E and G are related via Poisson’s ratio  as 

follows [50] 

𝐺 = 𝐸2(1 + 𝜈) 

(13) 

Substituting Eq. (13) into Eq. (12) gives 
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𝑟2𝑠2 = 𝑘2(1 + 𝜈) = 𝜂2 

(14) 

or alternatively, 𝑠2𝑟2 = 2(1 + 𝜈)𝑘 = 1𝜂2 

(15) 

For conventional materials 0 ≤ 𝜈 ≤ 0.5, while for a beam with a given cross-section 0.5 ≤ 𝑘 ≤ 1. Hence, 

from Eq. (14), for any given material properties and cross-section, 𝜂2 is a constant in the range 1 6⁄ ≤ 𝜂2 ≤ 1 2⁄ . 

It is thus clear that the value of r2 will be always less than half the value of s2. For isotropic and homogeneous 

materials such as aluminium and steel, Poisson’s ratio 𝜈 is close to 0.3 whereas the shear correction factor k is 

generally within the range 0.4 < k < 0.9. From these values the range for 𝜂2 can be established as 0.15 < 𝜂2 < 

0.35. For a solid rectangular cross-section, k is approximately 2/3. If the Poisson’s ratio 𝜈 is assumed to have a 

value of 1/3, then from Eq. (14) 𝜂2 becomes 1/4 so that s2 = 4r2 or s = 2r. This clearly demonstrates the relative 

importance of the shear deformation term over the rotary inertia one. 

 

Now turning attention to the differential Eq. (9) and substituting 𝑟2 = 𝜂2𝑠2 from Eq. (14), one obtains [𝐷4 + 𝑏2𝑠2(1 + 𝜂2)𝐷2 − 𝑏2(1 − 𝑏2𝑠4𝜂2)]𝑊 =  0 
(16) 

The differential Eq. (16) has three possible solutions depending upon the conditions 

𝑏2𝑠4𝜂2    <>=     1 

(17) 

or equivalently 

𝜔𝜔0     <>=     𝜂𝜋2 (𝐴𝐿2𝐼 ) 

(18) 

where 

𝜔0 =  √𝜋4𝐸𝐼𝜌𝐴𝐿4 

(19) 

is the lowest natural frequency for a simply supported Euler-Bernoulli beam. 

 

 

Case (i) : b2s42 < 1 covers most of the slenderness ratios and frequency ranges usually encountered. The solution 

is given by 𝑊(𝜉) = 𝐴1 cosh 𝛼 𝜉 + 𝐴2 sinh 𝛼 𝜉 + 𝐴3 cos 𝛽 𝜉 + 𝐴4 sin 𝛽 𝜉 
(20) 

where A1-A4 are constants and  and  are given by 
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𝛼𝛽 = 𝑏𝑠√2 [∓(1 + 𝜂2) + {(1 + 𝜂2)2 + 4𝑏2𝑠4 (1 − 𝑏2𝑠4𝜂2)}12]12
 (21) 

 

 

Case (ii) : b2s42 > 1 can occur for squat beams or at high frequencies. This case yields an imaginary value for  

and the solution is given by 𝑊(𝜉) = 𝐵1 cos 𝛼∗ 𝜉 + 𝐵2 sin 𝛼∗ 𝜉 + 𝐵3 cos 𝛽𝜉 + 𝐵4 sin 𝛽𝜉 
(22) 

where B1-B4 are constants and 𝛼∗ and  are given by 

𝛼∗𝛽 = 𝑏𝑠√2 [(1 + 𝜂2) ∓ {(1 + 𝜂2)2 + 4𝑏2𝑠4 (1 − 𝑏2𝑠4𝜂2)}12]12
 (23) 

and clearly, 

 = i   
(24) 

 

Case (iii): b2s42 = 1 is a special case which has been termed a cross-over frequency [36]. The differential Eq. 

(16) becomes 𝐷2{𝐷2 + 𝑏2𝑠2(1 + 𝜂2)}𝑊 = 0 
(25) 

The solution is given by 𝑊(𝜉) = 𝐶1 + 𝐶2𝜉 + 𝐶3 𝑐𝑜𝑠 𝛾 𝜉 + 𝐶4 𝑠𝑖𝑛 𝛾 𝜉 
(26) 

where C1−C4 are constants and  is given by 

𝛾 = 𝑏𝑠√(1 + 𝜂2) 
(27) 

 

Cases (i) and (ii) above have been investigated by many researchers [9, 10, 12, 19, 20, 21] whereas there 

seem to be only two reported attempts [21, 51] for the solution to Case (iii). Interestingly in Ref. [21], the constant 𝐶2 in Eq. (26) vanishes in the solution for the bending displacement but remains in the solution for the bending 

rotation. 

 

For Case (iii) using Eq. (8), b2s42 = 1 (or b2r2s2 = 1), can be written in its extended form as 

(𝜌𝐴𝜔2𝐿4𝐸𝐼 ) ( 𝐼𝐴𝐿2) ( 𝐸𝐼𝑘𝐴𝐺𝐿2) = 1 

(28) 

or 
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𝜔√ 𝐼𝐴 = √𝑘𝐺𝜌 = √ 𝑘𝐸2(1 + 𝜈)𝜌 

(29) 

The above equation will be used later to establish the boundaries of the frequencies between the cases when 

b2s42 < 1 and b2s42 > 1, respectively.  

 

 

3. DISCUSSION OF RESULTS 

 

 The existing literature is inundated with results for the natural frequencies and mode shapes of Timoshenko-

Ehrenfest beams [8-23]. Clearly, a massive amount of information is already available. Therefore, the natural 

frequencies and mode shapes are not presented in this paper, but attention is focused on the intrinsic merit, scope, 

and applicability of the Timoshenko-Ehrenfest beam theory, instead. The first set of results was obtained from 

Eq. (15) to show the inter-dependency of the terms s2 and r2 for realistic problems. Clearly the ratio s2/r2 will be 

maximum when k is minimum and  is maximum, and conversely the ratio will be minimum when k is maximum 

and  is minimum. Noting that 0 < k < 1 and 0 <   < 0.5, some practical values for k and  can be used to establish 

the limits of the ratio s2/r2. Figure 2 shows the variation of s2 against r2 for two extreme cases for which the 

maximum and minimum values of k are 0.8 and 0.4 and those of  are 0.3 and 0.25. Clearly the values of r2 and 

s2 cannot be chosen totally arbitrarily and most realistic cases are expected to fall within the boundaries between 

the solid and broken lines shown in Fig. 2, which give ratios s2/r2 of 6.5 and 3.125, respectively. 

 

The second set of results was obtained to show the variation of the ratio s2/r2 (or 1/2) against Poisson's ratio 

 for two widely separated values of the shape factor k.  This is illustrated in Fig. 3, which clearly indicates that 

the range of applicability of the ratio is confined within the space between the two lines. To show a related but 

different perspective Fig. 4 illustrates the variation of the ratio s2/r2 against the shape factor k for two extreme 

values of Poisson’s ratio . Again, for realistic problems the ratio is confined within the narrow band between the 

two curves as shown. 

 
FIGURE 2: Variation of s2 against r2 for a Timoshenko-Ehrenfest beam. 

(a)                      k = 0.8,  = 0.25;     (b)                      k  = 0.4,  = 0.3 
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FIGURE 3: Variation of s2/r2 against Poisson’s ratio  for k = 0.4 and k = 0.8. 

 

FIGURE 4: Variation of s2/r2 against shape factor k for  =0.2 and  = 0.4. 
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The final set of results was obtained to show the boundaries of the three cases, which limit the solutions of 

the Timoshenko-Ehrenfest beam equation, see Eq. (16). These are b2s42 < 1, b2s42 =1 and b2s42 > 1 and the 

corresponding solutions are given by Eqs. (20), (22) and (26). The expression given by Eq. (29), which defines 

the boundary between b2s42 < 1 and b2s42 > 1, is used to plot the variation of the frequency  against the radius 

of gyration √𝐼/𝐴. It is interesting to note that for both steel and aluminium, which are widely used as construction 

materials, the ratios E/ (or G/) are very close to each other. This is because the Young's modulus (E) and density 

() of steel are both nearly three times more than that of aluminium. Poisson's ratio  is around 0.3 for both 

materials and the shape factor k, which is independent of material properties, generally falls within 0.4 < k < 0.8 

[43]. 

 

Figure 5 illustrates how  changes with √𝐼/𝐴 for steel (or aluminium) for a range of radii of gyration between 

0.005 and 0.2. It is within this range that the effects of shear deformation and rotary inertia are expected to be 

most important. The data used are E = 210 GPa (or 70 GPa),  =8100 kg/m3 (or 2700 kg/m3),  = 0.3 and k = 0.6. 

The curve is a rectangular hyperbola, as expected (see Eq. (29)), and to the left and right of the curve the conditions 

b2s42 < 1 and b2s42 > 1 apply, respectively, whereas on the curve b2s42 = 1. The figure provides an additional 

insight into the frequency range of operation when dealing with Timoshenko-Ehrenfest beam vibration problems. 

The conditions b2s42  1 require low slenderness ratios and/or high frequencies, and thus for the majority of 

problems the natural frequencies of interest are expected to lie in a region which is to the left of the curve, i.e., 

below the curve. The high frequency range is chosen in plotting the graph of Fig. 5 for a justifiable reason because 

the curve flattens in the low frequency range. 

 

 

FIGURE 5: Variation of the frequency () against the radius of gyration (√𝐼/𝐴). 

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 0.05 0.1 0.15 0.2


(r

a
d

/s
)

𝐼/𝐴 (m)

𝑏2𝑠4𝜂2 = 1



 

11 

 

4. CONCLUSIONS 

 

The Timoshenko-Ehrenfest theory for free vibration of beams has been re-examined to provide further 

insights. The Timoshenko-Ehrenfest beam is customarily characterised by two independent and apparently 

unrelated parameters, namely the rotary inertia and the shear deformation, but the authors have shown that the 

analysis can effectively be carried out by using only one parameter because the rotary inertia and the shear 

deformation parameters are related. However, the independent effects of shear deformation and rotary inertia can 

be separately investigated and examined. It has been shown that the effect of the shear deformation will always 

be more important than that of the rotary inertia for all boundary conditions of a Timoshenko-Ehrenfest beam. 

The curves presented follow from elementary theories of solid mechanics and provide considerable insights and 

a new depth of understanding of the Timoshenko-Ehrenfest beam theory. To the best of the authors’ knowledge 

these results have not been presented before. Considering the elementary nature of the background theory used in 

this paper, this is somewhat surprising. 
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NOMENCLATURE 

A area of cross-section, m2 

A1-A4 constants of integration, see Eq. (20) 

B1-B4 constants of integration, see Eq. (22) 

b2 non-dimensional parameter, see Eq. (8) 

C1-C4 constants of integration, see Eq. (26) 

D 𝑑 𝑑𝜉⁄  , see Eq. (7) 

E Young’s modulus, N/m2 

G shear modulus, N/m2 

I second moment of area, m4 

k shear correction or shape factor 

L length, m 

r2 non-dimensional parameter, see Eq. (8) 

s2 non-dimensional parameter, see Eq. (8) 

t time, s 

W amplitude of bending displacement, m 

w bending displacement, m 

X, Y coordinate system  

Y amplitude of bending displacement, m 

y flexural displacement, m 

, * see Eqs. (21) and (23) 

  see Eqs. (21) and (23) 

  see Eq. (27) 

  amplitude of bending rotation, rad 

  bending rotation, rad 

  Poisson’s ratio 

  non-dimensional length parameter (x/L) 

  density of material, kg/m3 
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