Localisation-Safe Reinforcement Learning for Mapless Navigation

Feigiang Lin!, Ze Ji', Changyun Wei? and Raphael Grech?

Abstract— Most reinforcement learning (RL)-based works for
mapless point goal navigation tasks assume the availability
of the robot ground-truth poses, which is unrealistic for real
world applications. In this work, we remove such an assumption
and deploy observation-based localisation algorithms, such as
Lidar-based or visual odometry, for robot self-pose estimation.
These algorithms, despite having widely achieved promising
performance and being robust to various harsh environments,
may fail to track robot locations under many scenarios, where
observations perceived along robot trajectories are insufficient
or ambiguous. Hence, using such localisation algorithms will
introduce new unstudied problems for mapless navigation tasks.
This work will propose a new RL-based algorithm, with which
robots learn to navigate in a way that prevents localisation
failures or getting trapped in local minimum regions. This
ability can be learned by deploying two techniques suggested in
this work: a reward metric to decide punishment on behaviours
resulting in localisation failures; and a reconfigured state
representation that consists of current observation and history
trajectory information to transfer the problem from a partially
observable Markov decision process (POMDP) to a Markov
Decision Process (MDP) model to avoid local minimum.

I. INTRODUCTION

Mapless point goal navigation has been a popular research
topic, where researchers wish to teach robots navigating to a
target goal position in environments without maps available
beforehand, such as under search and rescue scenarios. There
are many conventional path planning algorithms designed
for a broad range of scenarios or environments. These algo-
rithms, however, have certain well known limitations [1]. For
instance, they may require hand-crafted or constraint func-
tions customised to specific application conditions, which
make those algorithms lack of the generalisation capability
for other different environments [2].

In order to improve its generalisation ability, learning-
based navigation, such as reinforcement learning (RL), has
gained more and more attention. Different from other learn-
ing based algorithms like supervised learning, RL requires
little human resources or intervention during the training
stage. Robots are trained through receiving continuous re-
wards or punishments through direct interaction with the en-
vironments. In the context of mapless navigation, RL-based
algorithms have proven to be effective for mobile robots to

The authors thank the China Scholarship Council (CSC) for financially
supporting Feiqiang Lin in his PhD programme (201906020170). Corre-
sponding author: Ze Ji

1School of Engineering, Cardiff
{linf6,jizl}@cardiff.ac.uk

2College of Mechanical and Electrical Engineering, Hohai University,
China weichangyun@hotmail.com

3 Spirent Communications,
raphael.grech@spirent.com

University, Cardiff, UK

Paignton, UK

Target posjtion

Initial pose

Fig. 1. Navigation examples (red regions: regions where localisation fails;
black trajectory: unsuccessful trajectory into the symmetric corridor; yellow
trajectory: successful trajectory avoiding the symmetric corridor.)

gain promising performance of collision-free navigation in
unknown environment [1].

There are two different goal position representation for-
mats in mapless navigation tasks: images or coordinates of
goal positions. For image goals, agents may not need to
know its current poses, but just remember configurations of
the environments in order to find goal positions. Hence this
kind of agents will limit its generalisation ability to unseen
environments. In this work, we focus on goals represented by
coordinates, where agents need to estimate its own position
at each time step.

Among those RL algorithms for mapless navigation tasks
discussed above, almost all of them make an unrealis-
tic assumption that robots can obtain ground truth poses
throughout the missions. This is unrealistic for real world
applications. Usually, for robot navigation tasks, observation-
based localisation algorithms, like Lidar-based or visual
odometry, are needed to assist robot self-localisation in the
real world. Thus, this work will take a more realistic position
to address the mapless navigation task by the introduction of
observation-based localisation algorithms for robot self-pose
estimation.

However, observation-based localisation algorithms could
fail where no sufficient or ambiguous observations are per-
ceived along the trajectory. Taking Lidar-based odometry
as an example, this kind of odometry will be problematic
and not well constrained in long symmetric corridor envi-

| . - =
|

Fig. 2. The robot gets stuck in local minimum (the goal region is at the
other end of the corridor)

ronments due to ambiguous laser scans received and will
output inaccurate pose estimation [3]. For example, the red
regions in Fig. 1 illustrate those corridor areas that present
just two parallel and symmetric walls that are less distinct
geometric features for Lidar to estimate motion changes. For
a mapless navigation task, robots trained with ground truth
poses will tend to take the shortest path strategy. As shown
in Fig. 1, the robot would choose the black trajectory which
however will lose its track due to the symmetric corridor.
Such navigation tasks will fail without accurate localisation
of robots or accurate relative pose to the corresponding goal
positions.

In our work, we hypothesise that robots that are trained
with observation-based self-localisation for mapless naviga-
tion will be able to be aware of regions with deteriorated
localisation and may travel in other trajectories to avoid
symmetric corridor regions or similar. For example, the
yellow trajectory in Fig. 1 illustrates a less optimal trajectory
in terms of length, but more reliable in achieving its goal due
to the improved localisation performance.

However, one problem will arise when taking localisation
performance into consideration. When robots are discouraged
to enter localisation-unsafe regions, the robots are more
likely to get stuck in local minimum, if this navigation
problem is treated as an Markov Decision Process (MDP), as
with many previous research works [4]. As shown in Fig. 2,
the robot starts from point A and arrives at point B where it
finds the corridor ahead is not traversable. It will return to the
initial position A, where the same decision i.e. navigating to
point B will be taken because history information is not used
for decision making in the MDP setting. The robot will be
trapped in local minimum (the black trajectories in Fig. 2).
Hence, an MDP setting may sometimes fail the task.

To alleviate the problem above, we consider that the use of
history information will help robots get out of local minimum
regions, as illustrated by the yellow trajectory in Fig. 2.

The contributions of our work are summarised as follows:

« We propose an RL-based mapless navigation algorithm

for localisation-safe navigation that localisation failures
during navigation are avoided.

o Localisation-safe behaviours are learned by introducing

a localisation performance-related reward, so that robots
get punished, when localisation quality starts to deteri-
orate.

o We introduce a method based on the determinant of pose
estimation covariance as the localisation performance
metric.

o The Long Short-Term Memory (LSTM) network is
introduced to feed robots with encoded history informa-
tion, as part of state information of the RL algorithm,
such that the original POMDP problem is converted
to an MDP problem to address the local minimum
problem.

The remainder of this paper is organised as follows.
Section II introduces related works. Our method of this
work is described in section III, followed by experiments
and results in section IV. The conclusions are presented in
section V.

II. RELATED WORK

With the great advancement of Neural Networks (NNs),
data-driven approaches have attracted consistently rising
attention for the problem of mobile robot navigation. Su-
pervised learning has been used to train neural networks,
like Convolutional Neural Networks (CNNs) in an end to
end style, as controllers for mobile robots to output motion
commands based on observations like RGB images, depth
images or Lidar scans [5], [6]. Because those methods
usually require great amounts of labelled data, which would
be costly to collect, they are often trained and tested in
simulated worlds. For that reason, more recently efforts have
been paid to techniques on how to transfer NNs trained in
virtual environments to the real world [7], [8], [9].

Reinforcement learning (RL), in contrast to supervised
learning, can be trained without human intervention by
allowing agents autonomously exploring in environments
to gain experiences. This self-learning nature has attracted
significant attention from researchers in recent years for
the mapless navigation problem. One prominent work was
introduced by Tai et al in [10], where robots are trained
with RL by a two-step method with depth images as in-
puts. Another noticeable work was introduced in 2017 [1]
that demonstrated the effectiveness of training a mapless
navigation agent in a 2D environment using a 2D planar
Lidar. Many works have inherited the above approach and
derived various variations for further improvement [11].
Deep Q-networks have been enhanced with state-of-the-art
technologies like the duel architectures and double networks
to improve navigation performance with discretized action
space [12]. For navigation in continuous action space, policy-
based RL, like the asynchronous deep deterministic policy
gradient (DDPG) algorithm, was proposed in [1]. RL for
continuous action space needs more experience data than
discretized ones. Thus work has been focused on how to
improve data efficiency in [13] by first using imitation
learning to pre-train the agent network and then fine-tune the
pre-trained agent network with the constraint policy optimi-
sation (CPO) reinforcement learning. An action scheduling
mechanism during training is introduced to perform more
efficient exploration and exploitation [14]. There are also
other improvements regarding to sampling efficiency [15] or

optimising hyper parameters [16]. As training could be dif-
ficult when visual images are taken as inputs, reinforcement
learning with auxiliary tasks has been proposed to achieve
better state representations for navigation tasks from image
inputs [17], [18], [19].

Although works introduced above have obtained relatively
promising results, to the authors’ best knowledge, none of
these learning-based algorithms have considered the effect
of localisation performance on the final navigation results,
as illustrated in Section I, except the preliminary work [20]
by the authors. They all assume the availability of ground
truth robot poses during navigation and result in policies
alike shortest path strategies without considering localisation
quality along navigation trajectories. In other words, robot
perception and navigation strategy are decoupled. A similar
learning-related work taking localisation performance into
consideration is [21]. However, the learning part is only
used for perception to score different environment regions
depending on whether the region is favourable for locali-
sation or not with image inputs. The planning part is still
using conventional planing algorithm. Thus, it is different
from what our work tries to achieve: utilising RL to train
an agent to learn to 1) navigate in a mapless environment,
2) avoid collisions, and 3) traverse localisation failure-free
trajectories.

III. METHOD

This section first introduces the basic knowledge of RL,
followed by two ideas proposed in our proposed RL al-
gorithm of localisation failure-free mapless navigation. The
algorithm implementation details will be also introduced.

Markov Decision Process (MDP) is a mathematical frame-
work to model problems that can be solved using RL. To
describe a MDP, we need a state space .S, an action space A,
a state transition model p(s;41|s¢, at), and a reward function
r(st,ar): Sx A — R, which describes the feedback from the
environment after agents taking actions a, at state s;. The
objective is to obtain maximum overall discounted rewards
Ry = Z?:o vkrt+k from environments. RL algorithms
usually involve estimating an state-action pair value function
Qnr(st,ar) = E[Ry|st, ar] or state value function Vi (s;) =
E[R;|s:], where m: a ~ m(-|s,0) described by parameters ¢
is the policy that agents try to learn.

There are two remarks from above description. First,
RL requires problems satisfying the Markov property
p(St4+1]8¢, ar): the next state s;11 depends purely upon the
present state s;. The past does not have effects on the
future. This property does not be satisfied for a POMDP
problem, where agents are unable to receive states s; in-
formation but only observations o, from a state condi-
tioned distribution p(o|st). The Markov property is broken
as p(og+1|ot, ag,00—1,a4-1,...,00) # p(0t+1]0t,at). In the
mapless navigation settings, the robot can only have observa-
tions of its surrounding environments, which could be formed
as a POMDP problem. Also in this work, the robot does
not have ground truth poses, but, instead, has to make pose
estimation from observations with localisation algorithms

using Lidar or visual odometry. This would formulate our
task as a POMDP problem. Second, the learned policy
will depend on the rewards feedback from environment. As
this work aims to train agents learning to navigate with
localisation-safe policies, a metric to decide a reward related
to localisation performance will need to be proposed.

A. POMDP to MDP

As discussed above, mapless navigation that uses esti-
mated localisation could be viewed as a POMDP problem
from the following two perspectives.

Firstly, from the localisation perspective, the robot pose
estimation at current time step will require historical poses
estimated as shown in Eq. (1).

P(Z 10, M| 214, Ur:e—1) = (M| 1.4, 21:4)D(T1:6] 21005 V1:p—1)
ey
where 1., 214, u14—1 are robot poses to be estimated,
observations, and control inputs at different time steps; m
represents stored features set. From above equation, we
can learn that the poses estimation built on past wrongly
estimated poses caused by insufficient or ambiguous obser-
vations will be also wrong. As estimated robot poses and
observations are part of agent state input data, continuing
training on those problematic data will misguide the robot
learning. Hence, we suggest to end training the episodes,
where localisation starts to diverge from ground truth. One
may suggest using pose estimation errors as a localisation
performance criterion. However, it takes time to accumulate
position errors to a noticeable scale. The experiences between
this time can still do harm to the training procedure. We use
the determinant of the estimation covariance calculated from
hessian matrix as the metric which will be discussed later.
From the perspective of mapless settings, a robot does
not have access to global maps. Robots may get stuck in
local minimum regions, where robots hesitate to enter certain
localisation-unsafe regions, as shown in Fig. 2 in Section I.
In order to solve this and turn this POMDP problem into an
MDP problem for RL algorithms, we propose to combine
history information h;—1 = (0¢—1,0t—2...,00) with the cur-
rent observation o; as an approximation of the current state
s¢. The entire complete history trajectories could be resource
consuming to store and is not efficient to be used as the
neural network inputs. In this work, we propose to employ
the LSTM architecture, which is designed for processing
sequences of data, to encode history information represented
by hidden values h; at each time step ¢ that are reserved
as the input for calculation in the subsequent time steps as
shown in Fig. 3.

B. Reward Metric

As introduced above, a reward related to localisation
performance is of significant importance for the robot to
learn a localisation-safe strategy. Different criteria exist
for measuring localisation performance. In this work, we
propose to use the determinant of the covariance matrix,
det C, as the measure of localisation quality. To compute
the covariance, we use the inverse Hessian matrix to compute

Ot—k Ot—k+1 Ot

— : —
B —
— — —

L] L] []
m(se)

Ot—k Ot—k+1 Ot
] — —

2 ovicol L ST co KRR ST Coil R
N I—
— — —

| | |
Q(st, ar)

Fig. 3. LSTM for encoding history information

the covariance matrix of the poses estimated by localisation
algorithms [22]. This principle is not limited to any particular
sensor modality that could include Lidar-based algorithms,
such as Hector [23] or visual odometry algorithms, such as
Semi-direct Visual Odometry (SVO) [24]. We hypothesise
that the estimated covariance could provide a measure of
localisation performance and be used to produce localisation
related reward.

The following explains how to derive the covariance
matrix using the inverse Hessian matrix. To formulate the
localisation problem, an observation model is needed to
establish the error function which needs to be optimised for
estimating robot poses. For simplicity of illustrating , we first
assume the problem can be modelled as a linear model, so
that linear regression can be performed, and the covariance
matrix can be derived analytically. In the case of a linear
model, the model can be described as below:

y=Mx+w)

where y is the measurement, M is the observation matrix, x
represents model parameters, which is the to-be-estimated
pose [z,y,0]7 and w represents Gaussian noises W ~
N(0,02I). The to-be-optimised error function becomes:

E(x) = (y — Mx)" (y - Mx) 3)

where X is the estimated state, as formulated in the estimated
model y = Mx. In this linear case, this error function can
be solved analytically, as below:

x=(M'M)"'MTy 4)
The covariance matrix can be then represented as:

C(x) = MTM) 152 5)
The Hessian matrix for Eq. (3) can be represented as:

E2(% 1
H:diA(X):2MTM:>MTM:fH (6)
dx2 2

Hence, from Egs. (5) and (6), the covariance matrix can
be derived:

C(%) = (;H) "o ™)

In most cases, the measurement model function usually
is not linear. However, iterative optimisation algorithms like
Gaussian-Newton is usually used where the error function is
linearized in a local region and minimized step by step. Once
the minimum is found, the Hessian matrix can be directly
calculated at that minimum point and thus the covariance
matrix can be estimated according to Eq. (7).

Finally, as discussed above, the determinant of covariance
det C will be used as the measure of localisation uncertainty
or failure and is monitored against a threshold. When the de-
terminant det C is above the threshold, the training episodes
will be terminated. A negative reward will be applied to
penalise the behaviours that result such failures.

C. Implementation of Localisation-safe Navigation RL

In this section, we explain the details of RL implemen-
tation that incorporates the two techniques above: LSTM
mechanism and the localisation covariance-based reward
metric. We aim to demonstrate the effectiveness of con-
sidering localisation quality as the reward metric during
navigation to avoid localisation-unsafe regions and solving
the local minimum problem introduced. In principle, the
proposed work would not be limited to any specific RL al-
gorithm. Therefore, this paper will use the Deep Q-Network
(DQN), because of its wide adoption, simplicity, and easy
implementation. The detailed configurations of the proposed
RL algorithm for localisation-safe navigation are discussed
in the following paragraphs.

In DQN, the state-action value Qr(s,a) = E[R|s; =
s, at] can be represented by a Deep Neural Network (DNN),
which is trained through interaction with the environment. As
discussed above, the DNN should need an LSTM network
component stacking with other types of networks, such as
fully connected networks, to enable the agent to estimate its
states with encoded history information as shown in Fig. 3.
The DQN agent input includes the sensor measurement o;
and the relative goal position g;, which consists of relative
distance to the goal d, and relative goal heading 3 with re-
spective to the robot. As we use DQN, the agent action space
is discretized. At each time step, the agent decides its linear
velocity vjineqr from a set of given values [vy,, vy, ...v;,] and
an angular velocity within a set of values [wy, wa...w;].

To design the reward function, as this DQN agent relies
on observation-based localisation algorithms for pose esti-
mation, the agent should not only be optimised towards its
obstacle avoidance capability and optimal path length, but
also needs to avoid selecting actions that lead to localisation
failures. Thus, the reward function is designed as follows:

Tlost if det C >=th
Teollision if collision happens
r= . ®)
T'goal if dg < dgmin
f x (di—1 —d;) otherwise

where 7,4 is a negative value, when the localisation failure
metric is satisfied, i.e. the determinant of the estimated
covariance det C exceeding a threshold th; Tconision 1S
negative to punish the agent when colliding with an obstacle;
the agent is rewarded with a positive value 7404, When it
reaches the point goal position within an acceptable range
dgmin; the last term f x (d¢—; — d;) is designed in such a
way, so that the agent will be encouraged to select actions
that tend to reduce the distance between itself and the goal;
d, is the distance from the robot to the goal at time step ¢;
and f is the distance rate factor.

In brief, most previous research works do not consider
the penalty r,s¢ in the reward space. However, this is an
essential component to prevent agent from selecting actions
that move the robot into localisation-unsafe regions, where
localisation algorithm tends to fail. This work proposed a
localisation failure criteria det C' to decide when to apply
this penalty, as described in section III-B.

IV. EVALUATION

A. Experiments Setup

We test our algorithm by deploying a Turtlebot-3 mobile
robot equipped with a 2D-Lidar sensor in Gazebo simulation
environments. Our method however is not limited to Lidar
sensor module as discussed in reward metric part (section III-
B).

The observation state o; for the agent consists of laser scan
data (I - - - I72) and the relative pose to the goal, represented
in the polar coordinate (relative distance and angle to the
goal (dg, 3)). This would then form a 74-dimension state
vector as the input for the agent network.

Considering that DQN is used in our work, the
action space contains a set of angular velocities:
(=1.5,-0.75,0.0,0.75, 1.5) rad/s. To simplify the problem,
the robot linear velocity is set to be a constant value
v; = 0.1 m/s. The network configuration is shown in Fig. 4,
which consists of one LSTM cell, and 3 Dense layers.

ht— 1
Lidar scan LSTM Dense Dense Dense
72 cell layer layer layer
- Relu Relu Relu Linear
Relative goal
position
2 256 512 256 5
Input Output:

Fig. 4. Agent network architecture

In terms of pose estimation, we use the popular Lidar-
based localisation algorithm, the Hector SLAM [23]. How-
ever, the maps built by Hector are not used by the agent,
hence mapless navigation.

Fig. 5. Robot travelling from room into corridor
0.35 4 - -
—— Determinant of covariance ko35

Y 030{ —— Pose estimation error £
[=

© =
o 0.25 o
3 @
o c
5 0.20 o
= K]
S o1s E
[= =
— wn
E 0.10 w
9] @
e wn
@ o
0 0.05 o

0.00

ll) 160 260 360 460 560 660
Time step

Fig. 6. Determinant values of covariance and pose estimation errors

B. Inverse of Hessian Matrix as Reward Metric

In this subsection, we first demonstrate the effectiveness
of the value of determinant det C, on how it may affect
the robot’s behaviours, e.g., if the robot could avoid areas
with deteriorated localisation. For illustration purpose, Fig. 5
shows one scenario that the robot located in a room, which
has distinct geometric features, moves into a corridor, which
is challenging for Lidar-based localisation due to ambiguous
symmetric features in the corridor.

As discussed before, one obvious metric could be the
error of the estimated pose. We therefore here compare
the pose errors between the estimated robot poses and the
ground truth poses and the determinants det C along the
trajectory. As shown in Fig. 6, we can see that, after the
robot enters the corridor at the time step of about 380,
the pose estimation error starts to rise gradually, while, in
contrast, the determinant sharply moves upwards and remains
high afterwards with a certain level of fluctuations.The pose
estimation errors grow steadily and it takes quite a number
of time steps to reach a noticeable level. This is not desirable
to be used as a reward metric in our context, as it is unable to
provide immediate response to localisation failures. On the
contrary, as shown in the figure, the proposed determinant of
the covariance can more promptly indicate when the robot
starts to lose its track, and, hence, penalise the behaviours

of the RL agent immediately. In this work, we have tested
extensively on similar scenarios, and have observed similar
phenomena of the determinant value changes.

C. DON Training Results

The following introduces how we train the DQN agent. In
each episode, the robot is re-spawned at a random position.
The goal position is also randomly decided. The episode
ends when any of the following cases happens: 1) the robot
collides with any obstacle or wall; 2) the determinant value
of the covariance is higher than a pre-defined threshold
(indicating deteriorated localisation, e.g. robot entering a
symmetric corridor area in this environment); 3) the robot
reaches the goal region; 4) or the maximum time step is
met. The training of the policy network follows the standard
DQN algorithm.

Fig. 7 shows the result of agent’s navigation policy. It
can be seen that the success rate reaches about 85% after
training of about 3300 episodes. This is considered promising
for this DQN-based learning implementation. Fig. 8 shows
some trajectories of the agent trained with our method, where
the red circles represent the goal regions. It is clear that the
performance is similar to or comparable with the original
mapless navigation which assumes the availability of ground-
truth poses.

Since it is unfair to directly compare the original mapless
navigation, as it assumes the availability of ground-truth
poses. For comparison purpose, in our work, we periodically
calculate the failure rates for only those cases that failed
because of the problem of unsuccessful localisation, i.e.,
when det C is above the threshold. As shown in Fig. 7,
the localisation-related failure rate drops from 14% to 6%
(green line), that clearly contributed to the overall success
rate of navigation. This proves our hypothesis that penalising
behaviours of entering regions with deteriorated localisation
is effective in improving its navigation performance.

0.14 1

0.12 4

—— Localisation failure rate | o5
—— Success rate

0.10

Success rate

T
=4
w

0.08 q

Localisation failure rate

T
o
5]

0.06 L o1

T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000
Episode

Fig. 7. Success rate and localisation failure rate

To further demonstrate the effectiveness of the proposed
RL policy, we created a few specific scenarios, for illustration
purpose, that the robot will be initially spawned at the

4 T
—— navigation task 1
—— navigation task 2 €
navigation task 3 B
—— navigation task 4
navigation task 5

4,
/task 3
,o‘/.

£
>
-1 4
—2 1
-3
task 5
44 ‘ 4
-5 T ' ‘ ' ‘ ‘ ' ‘
-4 -3 -2 -1 0 1 2 3 4 5
xfm
Fig. 8. Example trajectories of the agent trained with our method with

randomly located start and end positions. (red circles: goal region)

entrances of some symmetric corridors and the corresponding
goals are located at the other end of the corridor. With most
path planning algorithms, the robot will choose to traverse
the corridor directly. As shown in Fig. 9, the agent trained
without localisation-related reward 7;,s; will behave in a
similar way to the shortest path strategy. However, traveling
in corridors will lead the localisation to failures and pose
estimation will be wrong as discussed previously (Fig. 6).
Consequently, it will miss the targets although it may actually
already pass through the goal regions. The agent that does
not know its true state will end up with a wrong position
due to the inaccurate poses estimation.

With our proposed method, as expected, the capability of
robot avoiding entering localisation failure regions has been
greatly enhanced. Fig. 10 shows the trajectories generated
using the new algorithm. We can see that the robot will avoid
corridor areas that are unsuitable for Lidar-based localisation.

For each task, the agent will first hesitate slightly around
the corridor entrance and gain some path information ahead
of it. As we feed the agent with encoded historical informa-
tion, the agent will be well informed that there is a symmetric
corridor (dangerous regions for Lidar-based localisation)
ahead of it and will decide to navigate along a more distant
path. The learned capability to avoid entering deteriorated
localisation regions is due to the introduction of our proposed
punishment reward r;,5; produced during training. Also the
use of LSTM cell enables observations from the past to
be encoded and passed to later time steps as hidden state
values of the network as shown in Fig. 3, which, in this
localisation case, gives the robot the ability to remember
where it has been and what it has seen in the past time steps.
Consequently, after the robot has thoroughly explored the
local regions, it will acquire enough environment information
around it and will make decisions based on information

-2 1

task 3
-3
4 — navigation task 1
—— navigation task 2
—— navigation task 3
-5 T + T t T T + T
—4 -3 -2 -1 o] 1 2 3 4 5

Fig. 9. Trajectories of the agent without localisation related reward 7,4
(red circles: goal region)

— navigation task 1
= navigation task 2
—— navigation task 3

—4 -3 -2 -1 0 1 2 3 4 5

Fig. 10. Trajectories of the agent trained with our method (red circles:
goal region)

collected. Finally, the robot will escape the local minimum
region.

In addition, we tested the agent in unseen environments
of different layouts, corridor entrance conditions and sizes
(Fig. 11, Fig. 12, Fig. 13). As shown in Fig. 11, the robot
can still navigate to the goal position without traveling in the
region dangerous for localisation (the red region). However,
interestingly, the agent behaved more conservatively than
needed in this case. At the beginning, the robot hesitated
at the two entrances of the two corridors, including one
corridor that is alike a symmetric corridor (the blue region in
the figure), which is actually safe for localisation. The robot

-

Fig. 11. A navigation example in the unseen environment-1

Target Position

Fig. 12. A navigation example in the unseen environment-2

finally abandoned entering this passage and chose another
one which presents more distinct features for localisation at
the entrance of the corridor.

V. CONCLUSION

In this work, we proposed a novel RL-based mapless
navigation method that does not rely on the availability
of ground truth robot poses as assumed in other works.
Instead, our work deploys on-board localisation algorithms
for robot pose estimation. In order to train a robot to avoid
navigating in regions where localisation algorithms would
fail, we designed a penalty 7,4 to regulate robot behaviours.
We proposed using the determinant of the pose estimation
covariance as the measure of localisation failures to decide
when to punish the robots. Because of the use of pose
estimation algorithm, the agent may encounter local minima
more easily. For this problem, we proposed to incorporate
history information embedded for decision making of the

Target Position

Fig. 13. A navigation example in the unseen environment-3

robot by stacking an LSTM cell in the robot policy network.
We tested our proposed method with the DQN architecture.
It can be clearly seen that the agent has learned the ability
of mapless navigation, while avoiding localisation-unsafe
regions or getting trapped in local minimum regions, thanks
to the localisation related penalty and the involvement of
history information in state representation in this work.

REFERENCES

[1] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement
learning: Continuous control of mobile robots for mapless navigation,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 1EEE, 2017, pp. 31-36.

[2] C. Wang, J. Wang, and X. Zhang, “A deep reinforcement learning
approach to flocking and navigation of uavs in large-scale complex
environments,” in 2018 IEEE Global Conference on Signal and
Information Processing (GlobalSIP). 1EEE, 2018, pp. 1228-1232.

[3] S. Zhao, H. Zhang, P. Wang, L. Nogueira, and S. Scherer, “Super
odometry: Imu-centric lidar-visual-inertial estimator for challenging
environments,” in 2021 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). 1EEE, 2021, pp. 8729-8736.

[4] O. Zhelo, J. Zhang, L. Tai, M. Liu, and W. Burgard, “Curiosity-driven
exploration for mapless navigation with deep reinforcement learning,”
arXiv preprint arXiv:1804.00456, 2018.

[5] A. Kanezaki, J. Nitta, and Y. Sasaki, “Goselo: Goal-directed obstacle
and self-location map for robot navigation using reactive neural
networks,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp.
696-703, 2017.

[6] L. Tai, S. Li, and M. Liu, “A deep-network solution towards model-
less obstacle avoidance,” in 2016 IEEE/RSJ international conference
on intelligent robots and systems (IROS). 1EEE, 2016, pp. 2759-2764.

[71 S. Choi, K. Lee, S. Lim, and S. Oh, “Uncertainty-aware learning
from demonstration using mixture density networks with sampling-
free variance modeling,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). 1EEE, 2018, pp. 6915-6922.

[8] K. Lee, H. Kim, and C. Suh, “Crash to not crash: Playing video games
to predict vehicle collisions,” in ICML 2017, 2017.

[9] L. Tai, P. Yun, Y. Chen, C. Liu, H. Ye, and M. Liu, “Visual-based
autonomous driving deployment from a stochastic and uncertainty-
aware perspective,” arXiv preprint arXiv:1903.00821, 2019.

[10] L. Tai and M. Liu, “A robot exploration strategy based on g-learning
network,” in 2016 ieee international conference on real-time comput-
ing and robotics (rcar). 1EEE, 2016, pp. 57-62.

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

(23]

[24]

H. Niu, Z. Ji, F. Arvin, B. Lennox, H. Yin, and J. Carrasco, “Ac-
celerated sim-to-real deep reinforcement learning: Learning collision
avoidance from human player,” in 2021 IEEE/SICE International
Symposium on System Integration (SII). 1EEE, 2021, pp. 144-149.
X. Ruan, D. Ren, X. Zhu, and J. Huang, “Mobile robot navigation
based on deep reinforcement learning,” in 2019 Chinese control and
decision conference (CCDC). 1EEE, 2019, pp. 6174-6178.

M. Pfeiffer, S. Shukla, M. Turchetta, C. Cadena, A. Krause, R. Sieg-
wart, and J. Nieto, “Reinforced imitation: Sample efficient deep
reinforcement learning for mapless navigation by leveraging prior
demonstrations,” IEEE Robotics and Automation Letters, vol. 3, no. 4,
pp. 4423-4430, 2018.

Y. Wang, H. He, and C. Sun, “Learning to navigate through complex
dynamic environment with modular deep reinforcement learning,”
IEEE Transactions on Games, vol. 10, no. 4, pp. 400412, 2018.

B. Moridian, B. R. Page, and N. Mahmoudian, “Sample efficient
reinforcement learning for navigation in complex environments,” in
2019 IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR). IEEE, 2019, pp. 15-21.

H.-T. L. Chiang, A. Faust, M. Fiser, and A. Francis, “Learning
navigation behaviors end-to-end with autorl,” IEEE Robotics and
Automation Letters, vol. 4, no. 2, pp. 2007-2014, 2019.

P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino,
M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu, et al., “Learning to
navigate in complex environments,” arXiv preprint arXiv:1611.03673,
2016.

M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Sil-
ver, and K. Kavukcuoglu, “Reinforcement learning with unsupervised
auxiliary tasks,” arXiv preprint arXiv:1611.05397, 2016.

J. Ye, D. Batra, A. Das, and E. Wijmans, “Auxiliary tasks and explo-
ration enable objectgoal navigation,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 16117-
16 126.

F. Lin, Z. Ji, C. Wei, and H. Niu, “Reinforcement learning-based
mapless navigation with fail-safe localisation,” in Annual Conference
Towards Autonomous Robotic Systems. Springer, 2021, pp. 100-111.
L. Bartolomei, L. Teixeira, and M. Chli, “Semantic-aware active
perception for uavs using deep reinforcement learning,” in 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 1EEE, 2021, pp. 3101-3108.

0. Bengtsson and A.-J. Baerveldt, “Robot localization based on scan-
matching—estimating the covariance matrix for the idc algorithm,”
Robotics and Autonomous Systems, vol. 44, no. 1, pp. 29-40, 2003.
S. Kohlbrecher, O. Von Stryk, J. Meyer, and U. Klingauf, “A flexible
and scalable slam system with full 3d motion estimation,” in 2011
IEEE international symposium on safety, security, and rescue robotics.
IEEE, 2011, pp. 155-160.

Z. Zhang and D. Scaramuzza, ‘“Perception-aware receding horizon
navigation for mavs,” in 20/8 IEEE International Conference on
Robotics and Automation (ICRA). 1EEE, 2018, pp. 2534-2541.

