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Abstract: Topoisomerases are essential enzymes that recognize and modify the topology of DNA
to allow DNA replication and transcription to take place. Topoisomerases are divided into type
I topoisomerases, that cleave one DNA strand to modify DNA topology, and type II, that cleave
both DNA strands. Topoisomerases normally rapidly religate cleaved-DNA once the topology has
been modified. Topoisomerases do not recognize specific DNA sequences, but actively cleave posi-
tively supercoiled DNA ahead of transcription bubbles or replication forks, and negative supercoils
(or precatenanes) behind, thus allowing the unwinding of the DNA-helix to proceed (during both
transcription and replication). Drugs that stabilize DNA-cleavage complexes with topoisomerases
produce cytotoxic DNA damage and kill fast-dividing cells; they are widely used in cancer chemother-
apy. Oligonucleotide-recognizing topoisomerase inhibitors (OTIs) have given drugs that stabilize
DNA-cleavage complexes specificity by linking them to either: (i) DNA duplex recognizing triplex
forming oligonucleotide (TFO-OTIs) or DNA duplex recognizing pyrrole-imidazole-polyamides
(PIP-OTIs) (ii) or by conventional Watson–Crick base pairing (WC-OTIs). This converts compounds
from indiscriminate DNA-damaging drugs to highly specific targeted DNA-cleaving OTIs. Herein we
propose simple strategies to enable DNA-duplex strand invasion of WC-OTIs giving strand-invading
SI-OTIs. This will make SI-OTIs similar to the guide RNAs of CRISPR/Cas9 nuclease bacterial
immune systems. However, an important difference between OTIs and CRISPR/Cas9, is that OTIs
do not require the introduction of foreign proteins into cells. Recent successful oligonucleotide
therapeutics for neurodegenerative diseases suggest that OTIs can be developed to be highly specific
gene editing agents for DNA lesions that cause neurodegenerative diseases.

Keywords: topoisomerases; inhibitors; gene editing; etoposide; camptothecin; CRISPR/Cas9

1. Introduction

This review concerns the potential use of oligonucleotide-recognizing topoisomerase
inhibitors (OTIs) as gene editors (abbreviations used in this paper are listed at the end of the
paper). We define OTIs as compounds in which a DNA-cleavage stabilizing topoisomerase
inhibitor has been linked to an oligonucleotide-recognizing element. Such bifunctional
OTIs are directed to cleave DNA at specific sites. OTIs are in many ways analogous to
the guide RNAs in CRISPR/Cas systems, but rather than using an exogenous Cas protein
to cleave DNA, they use endogenous DNA-cleaving enzymes–topoisomerases that are
present in every active cell (we define active cells as cells which are transcribing DNA
into RNA and/or replicating DNA). Because of this reliance on the intracellular cleavage
machinery, OTIs have an advantage over CRISPR/Cas in gene editing applications in vivo
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(in patient) such as editing of disease-causative mutations in humans. The possibility
of long-lasting correction by OTI gene editing, along with the progress on delivering
oligonucleotides to the CNS, have prompted this review. We propose that OTIs may
become an attractive strategy for monogenic diseases where a precise gene edit could
potentially give a permanent correction. The spontaneous deamidation of cytosine (or
5-methyl cytosine) to uracil (or thymine) can, if not corrected by DNA-damage repair (DDR)
processes, lead to permanent GC to AT transitions [1]. Some monogenic human diseases
might be cured by reversing such mutations; for example some subtypes of amyotrophic
lateral sclerosis (ALS) and potentially spinal muscular atrophy (SMA).

2. Gene Therapies for Neurodegenerative Diseases: Achieving “Permanent” Corrections

Today there are about 50 gene therapy clinical trials, a mix of antisense oligonucleotide
(ASO) and virus-mediated transgene delivery based one, ongoing for Alzheimer’s disease
(AD), Parkinson’s disease (PD), Huntingdon’s disease (HD), SMA and ALS [2]. ASO thera-
peutics typically target the underlying disease cause by modulating gene expression; they
do not change the genome so most of them require repeated injections for a long-lasting
effect [3]. On the other hand, viral-based delivery of human genes and associated regu-
latory elements, to replace or silence the expression of a faulty gene, ultimately promise
“permanent” corrections where a single dose of an agent could be sufficient to correct the
disease etiology.

Perhaps the most notable examples of transient and permanent gene correction are
the two disease-modifying therapies recently approved for SMA. In December 2016 the US
Food and Drug Administration (the FDA) approved the ASO drug nusinersen (Spinraza) for
type I SMA; clinical studies showed dramatic improvement in infants [4,5]. SMA is caused
by the loss of function of SMN protein due to a mutation or deletion in the SMN1 gene,
which if untreated can be lethal before the age of two [6]. However, the human genome has a
second gene, SMN2, which encodes the same protein sequence, but which has a single silent
point mutation causing a splicing variant such that the SMN protein encoded by SMN2
normally lacks the exon 7 encoded amino acids [7]. Nusinersen promotes alternative RNA
splicing of SMN2 gene and thus increases production of functional SMN protein; it was
developed by Ionis Pharmaceuticals-a company that specializes in developing antisense
therapeutics. Nusinersen is an 18mer oligonucleotide in which the phosphates of the RNA
backbone have been replaced by phosphorothioates and the 2’OH on the ribose groups
have been replaced by a 2’-O-methoxyethyl [3]. Since oligonucleotides do not readily cross
the blood–brain barrier, nusinersen is delivered every four months by direct injection (via
lumbar puncture) into the cerebrospinal fluid [8]. An alternative transgene-based SMA
treatment, onasemnogene abeparvovec (Zolgensma), was approved by FDA in 2019. The
onasemnogene abeparvovec formulation contains the SMN1 gene along with synthetic
promoters encoded by a nonintegrating stable extranuclear episome [9] that is delivered to
the patient via an adeno-associated virus serotype 9 (AAV9) [10]. Although the concept of
permanent correction is extremely attractive, side effects from the delivery vectors remain
the most significant caveat. Adeno-associated virus (AAV) vectors are amongst the most
successful and popular gene therapy delivery methods [2,11]. However, AAV vectors can
lead to immune responses and high doses have occasionally been lethal in clinical trials [2].

SMA represents the best known example of a monogenic neurological disorder that
can now be treated by gene therapy. However, most adult-onset neurodegenerative dis-
eases considered monogenic currently lack effective treatments, and ALS is one of the the
most prominent examples. ALS is an extremely heterogeneous disorder, with >25 genetic
subtypes identified for the familial disease (fALS) with the majority of mutations being
missense mutations [12]. Genes most commonly affected by single amino acid substitutions
are SOD1, TARDBP, FUS and TBK1, collectively accounting for ~40% of familial and ~10%
sporadic cases and jointly bearing >250 different point mutations. The vast majority of
these mutations alter the protein’s distribution and properties in a way that is not consistent
with a clear loss of function or gain function mechanism [13]. One prototypical example
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is the FUS gene. Over 20 missense mutations were identified in its nuclear localization
signal leading to cytoplasmic mislocalisation of the protein and causing both loss of its
nuclear functions (e.g., in splicing) [14] and its cytoplasmic toxicity via aggregation [15].
Similarly, cellular pathomechanisms are yet to be established for ~50 mutations affecting
TDP-43 protein encoded by the TARDBP gene [16]. Even mutations shown to be primarily
causing gain of function mechanisms, e.g., in SOD1, also lead to at least partial loss of
functionality [13]. Importantly, FUS, TDP-43 and other ALS-linked RNA-binding proteins
regulate their own levels (autoregulation) potentially creating obstacles for changing the
gene dosage; in addition, this may require introduction of bulky regulatory sequences such
as introns [17]. Therefore, many ALS subtypes would require precision correction gene
therapies, where the use of an mRNA degrading (splice-switching) ASO or a replacement
gene might be of limited utility. Given the large spectrum of ALS mutations, access to a
tunable therapeutic scaffold that can be easily personalized is also highly desirable.

An ideal therapeutic agent in the above cases might be a highly specific nucleic acid
capable of precise gene editing that does not require exogenous enzymatic machinery, does
not elicit an immune response, can be rapidly tuned and can be directly delivered into the
CNS. In this review we examine the possibility that OTIs could become such agents-initially
‘correcting’ diseases caused by GC to AT transitions; applicable to some ALS cases and
potentially to SMA.

3. DNA Topoisomerases, Anti-Cancer Drugs and OTIs

The double helical nature of DNA causes the accumulation of positive supercoils
ahead of transcription bubbles and replication complexes and negative supercoils (Figure 1)
or precatenanes behind [18,19]. Topoisomerases are essential enzymes that can modify the
topology of DNA by creating temporary DNA-strand breaks in one (type I) or both (type
II) DNA-strands [18,20,21]. Topoisomerases are needed to relax the positive supercoils
that accumulate ahead of transcription bubbles and replication forks and to remove nega-
tive supercoils and precatenanes and catenanes that would otherwise accumulate behind
transcription bubbles and replication forks [18,19,21,22]. Positive stranded RNA-viruses,
such as SARS-CoV-2, require a specific type IA topoisomerase (Supplementary Figure S1)
for efficient replication [23]. Eukaryotic type IIB-like topoisomerases (Spo11 and Top6BL
proteins in human, which cleave but do not religate DNA) are involved in formation of
double-strand DNA breaks in meiosis [24–26], facilitating DNA exchange in sexual repro-
duction, and will not be considered further in this article. Note that topoisomerases are
named such that odd numbered topoisomerases are type I (such as Top3A and Top3B-see
Table 1), whereas even numbered topoisomerases are type II (such as topoisomerase IV and
topoisomerase VIII-see Supplementary Table S1).
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Figure 1. Human Top1 and Top2 regulate DNA topology at a transcription bubble. (a) In the post-
mitotic cells of the central nervous system-human Top1 and human Top2 are expected to be active 
in regulating DNA topology near transcription bubbles. The only DNA replication in post-mitotic 
CNS cells will take place in mitochondria; and careful design may be needed to ensure that damage 
to replicating mitochondrial DNA does not take place [27]. RNAPII, RNA polymerase II, is shown 
in contact with Top1 [28]. (b) Human Top1 cleaves a single DNA strand forming a 3’ phosphotyro-
sine. By convention both cleaved and non-cleaved strands are numbered relative to the single DNA-
cleavage site. (c) Human Top2 (Top2 or Top2) can cleave both DNA strands forming two 5’ phos-
photyrosines. By convention both strands are numbered relative to the two 4-base-pair staggered 
DNA-cleavage sites. 

Table 1 gives an overview of human topoisomerases [29], topoisomerase targeting 
approved anticancer drugs [30] and derived OTIs [31–44]. Interestingly, although Top1 
modifies DNA by creating single stranded DNA-breaks, camptothecins (Table 1) are only 
cytotoxic to cells in S-phase. In cells synthesizing DNA, the replication fork is believed to 
collide with ‘‘trapped’’ Top1-DNA complexes, resulting in double-strand breaks and 
apoptotic cell death [45–47]. A small percentage of patients treated with double-stranded 
break causing type IIA topoisomerase inhibitors have developed therapy related leuke-
mias [48–51]. These type IIA topoisomerase therapy-related leukemias are due to balanced 
chromosomal translocations [51] in which, for example, the PML and RARA genes are 
rearranged to produce an oncogenic fusion protein [48]. These seem to be caused by two 
type IIA topoisomerases complexes producing spatially adjacent double-stranded DNA-
breaks which are mis-repaired. 
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Figure 1. Human Top1 and Top2 regulate DNA topology at a transcription bubble. (a) In the
post-mitotic cells of the central nervous system-human Top1 and human Top2β are expected to
be active in regulating DNA topology near transcription bubbles. The only DNA replication in
post-mitotic CNS cells will take place in mitochondria; and careful design may be needed to ensure
that damage to replicating mitochondrial DNA does not take place [27]. RNAPII, RNA polymerase
II, is shown in contact with Top1 [28]. (b) Human Top1 cleaves a single DNA strand forming a 3’
phosphotyrosine. By convention both cleaved and non-cleaved strands are numbered relative to the
single DNA-cleavage site. (c) Human Top2 (Top2α or Top2β) can cleave both DNA strands forming
two 5’ phosphotyrosines. By convention both strands are numbered relative to the two 4-base-pair
staggered DNA-cleavage sites.

Table 1 gives an overview of human topoisomerases [29], topoisomerase targeting
approved anticancer drugs [30] and derived OTIs [31–44]. Interestingly, although Top1
modifies DNA by creating single stranded DNA-breaks, camptothecins (Table 1) are only
cytotoxic to cells in S-phase. In cells synthesizing DNA, the replication fork is believed to col-
lide with “trapped” Top1-DNA complexes, resulting in double-strand breaks and apoptotic
cell death [45–47]. A small percentage of patients treated with double-stranded break caus-
ing type IIA topoisomerase inhibitors have developed therapy related leukemias [48–51].
These type IIA topoisomerase therapy-related leukemias are due to balanced chromosomal
translocations [51] in which, for example, the PML and RARA genes are rearranged to
produce an oncogenic fusion protein [48]. These seem to be caused by two type IIA topoi-
somerases complexes producing spatially adjacent double-stranded DNA-breaks which
are mis-repaired.

Table 1. Human topoisomerases, DNA-cleavage stabilizing anticancer drugs and derived OTIs.

Type of Topo
Polarity Mechanism Gene Name Protein Name Drug (Class) US Approval

Date (Comments)
Type of OTI. Date First

Publication (References)

IA TOP3A TOP3A None yet None
5’-PY TOP3B TOP3B

Strand passage

IB
3’-PY

Rotation

TOP1
TOP1MT

Top1
Top1mt

Topotecan (camptoth.) 1996
(mitochondrial

Top1mt not
specifically targeted)

Camptothecin-TFOs 1997
[31–39,41,42].

Camptothecin-PIPs 2001 [40,44]

IIA
5’-PY

Strand passage
/ATPase

TOP2A
TOP2B

Top2α
Top2β

Doxorubicin (anthracyc.) 1974
Etoposide (epipodophy.) 1983

Mitoxantrone
(anthracen.) 1987

Daunomycin-TFOs * 2008 [33].
Etoposide-TFOs 2006 [34]

Etoposide-Watson–Crick-OTIs **
2018 [43]

TFO = triplex forming oligonucleotide, PIP = Pyrrole-imidazole polyamides, * Daunomycin is also know as Daunoru-
bicin and is an anthracycline. ** Etoposide-Watson–Crick-OTIs cleave complementary DNA strands in vitro. Drug
class abbreviations: camptoth. = camptothecin; anthracyc. = anthracycline; epipodophy. = epipodophyllotoxin;
anthracen. = anthracenedione.

Oligonucleotide topoisomerase inhibitors (OTIs) described in the literature have been
made by covalently linking drugs that stabilize DNA-cleavage complexes with topoiso-
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merases either: (i) to DNA duplex recognizing triplex forming oligonucleotides (TFO-OTIs)
or DNA duplex recognizing pyrrole-imidazole-polyamides (PIP-OTIs) (ii) or to oligonu-
cleotides with sequences which form Watson–Crick base-pairs with a target DNA sequence
(see Table 1 for references). Watson–Crick-OTIs have not yet been shown to strand invade a
DNA duplex; this paper suggests strategies for devel-oping such WC-OTI strand-invasion.

3.1. Human Top1 and Top2α (/Top2β) Recognize the Phosphates on the DNA Backbone

The OTIs synthesized to date (Table 1) target either human Top1 or human Top2α
and Top2β (which share a 68% amino acid sequence ID [52]). In human top2β [53,54] or
top2α [55–57] crystal structures with DNA most protein contacts are with the phosphate
backbone of the DNA. Similarly in binary complexes of Top1 with DNA [58,59], or ternary
complexes with Top1, DNA and topotecan (or camptothecin) [45,46] most interactions are
with the phosphate backbone (Figure 2). This is consistent with the activity of human
Top1 and Top2α/2β being largely governed by DNA topology rather than specific base
recognition [19].
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trolled rotation about the phosphodiester bond between the −1 and +1 nucleotides on the intact 
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in a complex with topotecan (a camptothecin derivative). The figure is based on the 2.1Å structure 
with topotecan (pdb code 1K4T). Note the +1 G-C base-pair (in 1K4T). The topotecan occupies the 
‘same’ space as the +1 nucleotide pair in panel a. ‘The intercalation binding site is created by con-
formational changes of the phosphodiester bond between the +1 and −1 base pairs of the intact 
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camptothecin-TFO conjugates have been shown to be effective in targeting specific DNA 
sequences in cells [35,42], camptothecins (and OTIs based on camptothecins) seem to have 
quite a strong sequence preference at the DNA-cleavage site [60]. By convention DNA-
cleavage sites cut by topoisomerases are numbered from −3, −2, −1 on the 5’ side and +1 
+2, +3 on the 3’ side (the DNA is cleaved between nucleotides −1 and +1; there is no nucle-
otide with the number 0). Jaxel et al., 1991 [60] reported that 100% of 44 DNA-cleavage 
sites cleaved in the presence of camptothecin had a T at the −1 position and 75% had a G 

Figure 2. Simplified schematics of twelve base-pairs of DNA in TOP1 DNA-cleavage complexes.
(a) Simplified schematic of the central twelve base-pairs of DNA in a Top1 DNA-cleavage complex
(based on 2.1Å structure pdb code: 1a31). Interactions (<3.5Å) between the protein and the DNA are
represented by arrows (adapted from Figure 4–, panel G in [59]). Tyrosine 723 from Top1 has cleaved
the top strand. Top1 can be imagined as a hand holding the double-stranded DNA up-stream of the
DNA-cleavage site (red arrows and–red numbered nucleotides) and allowing controlled rotation
about the phosphodiester bond between the −1 and +1 nucleotides on the intact strand (two green
arrows) to relax the DNA. (b) A simplified schematic of the same DNA sequence in a complex with
topotecan (a camptothecin derivative). The figure is based on the 2.1Å structure with topotecan (pdb
code 1K4T). Note the +1 G-C base-pair (in 1K4T). The topotecan occupies the ‘same’ space as the
+1 nucleotide pair in panel a. ‘The intercalation binding site is created by conformational changes of
the phosphodiester bond between the +1 and −1 base pairs of the intact strand’ [45].

In the simplified view of the function of Top1, shown schematically in Figure 2a, Top1
is shown having cleaved the top DNA-strand (based on Figure 4 panel G in [59]). The DNA
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is then believed to be relaxed by a controlled rotation, rotating about the phosphate group
between nucleotides−1 and +1 on the uncleaved/intact strand [45,58]. The activity of Top1
is governed by the topological state of the DNA (Figure 1). Structures show a large number
of interactions with phosphates on the ‘upstream’ (twenty red arrows in Figure 2a) side
of the DNA-cleavage site. Inhibitors such as topotecan (Figure 2b purple) seem to block
rotation by occupying the same space as the +1 base-pair.

3.2. Camptothecin Derived TFO-OTIs Target Type IB Topoisomerases

A 1997 study [31] showed that a camptothecin analog could give sequence specific
DNA-cleavage by tethering it to a TFO. Camptothecin derived TFO-OTIs can now be mod-
elled into crystal structures [58,59] of type IB topoisomerases with camptothecins [45,46]
(Supplementary Figure S2). TFOs bind in the major groove of a DNA-duplex, and tend to
recognize runs of purines on one strand of the DNA duplex. In contrast pyrrole-imidazole-
polyamides (PIPs) bind in the minor groove of a DNA-duplex, can recognize any sequence
and have been used to make oligonucleotide-recognizing camptothecin derivatives [40,44]
(see Supplementary Figure S3 for modelling of a PIP-OTI). Although camptothecin-TFO con-
jugates have been shown to be effective in targeting specific DNA sequences in cells [35,42],
camptothecins (and OTIs based on camptothecins) seem to have quite a strong sequence
preference at the DNA-cleavage site [60]. By convention DNA-cleavage sites cut by topoi-
somerases are numbered from −3, −2, −1 on the 5’ side and +1 +2, +3 on the 3’ side (the
DNA is cleaved between nucleotides −1 and +1; there is no nucleotide with the number 0).
Jaxel et al., 1991 [60] reported that 100% of 44 DNA-cleavage sites cleaved in the presence
of camptothecin had a T at the −1 position and 75% had a G at +1 (see Figure 2b). The
sites cleaved by a camptothecin based PIP-OTI [44], were consistent with this strong T
G preference.

Etoposide (a type IIA inhibitor) based TFO-OTIs have also been described in the litera-
ture, with quite a long linker between the end of the oligonucleotide and the etoposide [34].
However, the authors stated that the linker arm used to conjugate the VP16 analog to the
TFO was not long enough to span the number of nucleotides between the cut site and
the TFO, raising the intriguing possibility that the TFO-etoposide might be bound to the
T-segment (Figure 3a and Supplementary Figure S4).
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Figure 3. Type IIA topoisomerases and schematics of three etoposide crystal structures. (a) Simplified
schematic of a reaction carried out by a type IIA topoisomerase. The gate or G-DNA (green cylinder)
is cleaved and another DNA duplex, the T (or transport segment;-black) is passed through the cleaved
DNA before religation. (b) Schematic of a 2.16Å human hTOP2βcore structure (pdb code: 3qx3) with
DNA and two etoposides (I) binding at the two DNA cleavage sites, four base-pairs apart. One
subunit is shown in red and blue, the other in grey. The DNA sequence (5′-3′) is the same for both
strands; the DNA has been cleaved by tyrosine 821. (c) In human TOP2β is a single subunit and
functions as a homodimer; the hTOP2βcore is residues 445-1201. Structural domains in hTOP2βcore

are TOPRIM (TOP) domain, GK = Greek key domain, WHD = winged helical domain, TOW = tower
domain, EX = exit gate domain. (d) Schematic of a 2.8Å structure of S. aureus gyraseCORE fusion
truncate DNA complex containing two etoposide (I) binding at the two DNA cleavage sites (pdb
code: 5cdn), four base-pairs apart. One gyraseCORE fusion truncate is shown in red and blue, the
other in grey. (e) Schematic of a 2.45Å structure of S. aureus gyraseCORE fusion truncate DNA complex
containing one etoposide (pdb code: 5cdp) (I) (f) DNA gyrase consists of two subunits, GyrB and
GyrA (domains are indicated). Note in the S.aureus gyraseCORE fusion truncate the GyrB and GyrA
subunits are fused into a single ‘subunit’ (B409-B644 + A2-A491) and the small greek key domain
(residues B544-B579) has been deleted.

3.3. Type IIA Topoisomerases and Their Inhibition by the Anti-Cancer Drug Etoposide

Humans have two very similar type IIA topoisomerases, Top2α and Top2β. These
two human type IIA topoisomerases are targeted by many anti-cancer drugs (Table 1)
including anthracyclines, such as doxorubicin and daunomycin, anthracendiones such as
mitoxantrone and epipodophyllotoxins such as etoposide [30,61]. Top2α plays the major
role in DNA-replication while Top2β is expressed widely in post-mitotic cells where it is
involved in transcription. Inhibition of Top2β by anthracyclines, such as doxorubicin and
daunomycin, is thought to be responsible for cardiotoxicity that limits the dose of these
drugs [61]. Top2α is believed to be the main target for anti-cancer drugs [61].

Etoposide is not a planar DNA-intercalator and stabilizes both single and double-
stranded DNA breaks with human topoisomerases [62] and as well as with the bacterial
type IIA topoisomerase DNA gyrase [63]. Figure 3a shows a generic type IIA mechanism.
Schematics are shown based on: a 2.16Å DNA-cleavage complex of etoposide with human
hTOP2βcore structure (Figure 3b) [54], and two structures of S. aureus gyraseCORE fusion
truncate [64] containing either two etoposide (Figure 3d) or one etoposide (Figure 3e). In
these crystal structures etoposide sits in the DNA-cleavage sites physically preventing
DNA-religation. The complex with only one etoposide bound has a larger area buried
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between the two subunits at the DNA-gate-suggesting the DNA-gate is more closed in the
complex with one etoposide than in that with two etoposides [63].

3.4. Sequence-Selective DNA Cleavage Using First-Generation Watson–Crick-OTIs

The structures shown in Figure 3b,e were used in modelling OTIs with a single etopo-
side covalently attached to an oligonucleotide [43]. These Watson–Crick type-OTIs were
able to specifically cleave a DNA strand whose sequence was that of an oncogenic PML-
RARA breakpoint fusion [43] (Figure 3). The OTIs designed by Infante Lara et al., (2018)
aimed to produce single stranded cleavage in the target sequence and did so (Figure 4). In
particular it was shown that a 30 mer OTI cleaved a target oncogenic fusion DNA sequence
with high specificity (although a 20 mer did not cleave so well) [43]. Interestingly, one of
the sites cleaved with an OTI and human Top2α had hardly any cleavage in the presence of
500 mM etoposide [43], suggesting WC-OTIs might be able to target any DNA sequence.
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metal chelating chemical moiety is covalently attached to an oligonucleotide to cleave 
DNA at a particular position [66,67]. In a 2020 paper describing this chemistry-based ap-
proach, an artificial metallonuclease (AMN) that oxidatively cuts DNA, was coupled to a 
TFO, to cleave specific DNA sequences without any enzyme [67]. This TFO-AMN ap-
proach is somewhat reminiscent of the camptothecin-TFOs, which target type IB topoiso-
merases to cleave a specific DNA sequence. The developed TFO-AMNs suggest an ap-
proach for getting a Watson–Crick-OTI to strand-invade, as shown in Figure 5. Other ap-
proaches to encourage WC-OTI strand-invasion could also be devised. 

50mer OTI – good cleavage
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3’ TACCTTCCAATCCTACCGTCTGATCCCGAGTCAGTCTTACTCCTTGTTTC 5’
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b

Figure 4. 50 mer and 30 mer Watson–Crick-OTIs cleave an oncogene target sequence. Adapted
from Figure 9 in [43] focusing on Top2α cleavage. (a) The target oncogenic PML-RARA sequence
to be cleaved is shown in green on the top line, with the RARA sequence bold and underlined at
the 3′ end; the 5′ sequence is from PML. The bottom line shows the 50 mer OTI with an etoposide
moiety covalently attached to the T (highlighted in yellow). DNA-cleavage gels showed that the OTI
promoted DNA-cleavage at four sites on the target (green) strand with relative intensities (in brackets)
24–25 (17), 23–24 (45), 20–21 (17), 19–20 (5). (b) The same target PML-RARA sequence is shown on
the top line, but coloured in cyan at the 3′ end to indicate the position of the major cleavage site.
Only two DNA-cleavage sites were observed with the 30 mer OTI, 23–24 (32), 20–21 (9) (red lightning
bolts show positions). The red box indicates where the 20 nucleotides are from Xtal structures with
etoposide (pdb codes: 3qx3, 5cdn and 5cdp);–based on the major DNA-cleavage site.

Figure 4 shows two OTIs, a 50 mer and a 30 mer, which are the same apart from
the length of the OTI, and both cleave the target oncogenic DNA target sequence more
effectively than 500 mM etoposide (see Figure 9 in [43]). The assay used detected the
cleavage of the DNA target sequence by radio-labelling the 5’ end of the target oligonu-
cleotide. Although Infante Lara et al. [43] showed that by coupling the drug etoposide to
an oligonucleotide the OTI could target DNA-cleavage of a specific complementary DNA
strand, DNA strand-invasion (i.e., DNA-cleavage of a plasmid or a DNA duplex containing
the target nucleotide sequence) has not yet been demonstrated [43]. Watson–Crick type
OTIs have not yet been reported for Top1 targeting compounds.
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3.5. Achieving Strand Invasion for Watson–Crick-OTIs

In a CRISPR/Cas system, in order to start ‘melting’ the DNA-duplex, to allow strand
invasion of the guide-RNA to take place, the Cas protein recognizes the three nucleotides
of the protospacer adjacent motif (PAM) [65]. Once the DNA duplex has started to melt
at the PAM motif the RNA can strand-invade. RNA-DNA duplexes are often more stable
than DNA-homoduplexes. A functional equivalent to the PAM type motif, to allow strand
invasion of WC-OTIs to take place, is yet to be developed. One strategy to achieve DNA
strand-invasion could be cleavage of the single DNA strand that the OTI is aiming to
replace. Such a scheme is shown in Figure 5, with initial single-stranded cleavage being
accomplished by an artificial metallonuclease (AMN) moiety attached to a TFO region
(cyan). This TFO-AMN (cyan) region of the oligonucleotide is envisioned to produce
multiple single-stranded nicks in cellular DNA, but strand-invasion by the WC-OTI region
(orange) is only envisioned as taking place when a complementary region is adjacent to the
single-stranded DNA-cut site (Figure 5c).

Two recent papers have suggested that DNA-targeted metallodrugs may become
suitable agents for gene editing by themselves [66,67]. In DNA-targeting metallodrugs, a
metal chelating chemical moiety is covalently attached to an oligonucleotide to cleave DNA
at a particular position [66,67]. In a 2020 paper describing this chemistry-based approach,
an artificial metallonuclease (AMN) that oxidatively cuts DNA, was coupled to a TFO,
to cleave specific DNA sequences without any enzyme [67]. This TFO-AMN approach is
somewhat reminiscent of the camptothecin-TFOs, which target type IB topoisomerases
to cleave a specific DNA sequence. The developed TFO-AMNs suggest an approach for
getting a Watson–Crick-OTI to strand-invade, as shown in Figure 5. Other approaches to
encourage WC-OTI strand-invasion could also be devised.
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metallo-nuclease (AMN) at the 5′ end. The copper binding AMN moiety is covalently attached to
a cyan highlighted T. Note the X is a nucleotide designed to recognize a C in a TFO [68]. (b) the
OTI recognizes a DNA-duplex (green letters) and the AMN cleaves one strand of the duplex (blue
lightning bolt). (c) The rest of the strand-invading OTI (orange letters) can now strand invade and
cleave the target oncogene (red lightning bolt–as in Figure 4b).

4. Using OTIs to Exploit ‘Safe’ DNA Repair Pathways in the CNS

DNA-cleavage stabilizing anti-cancer drugs (Table 1) kill cancer cells by creating multiple
double-stranded DNA-breaks. The bacterial immune CRISPR/Cas systems cuts up (makes
double stranded DNA-breaks in) the DNA of invading bacteriophage. However, while making
double stranded DNA-breaks for gene editing has advantages, it is potentially hazardous
and therapy related leukemias have been reported in the literature [10,29,55,56,69]. For this
reason, we suggest utilizing single stranded breaks for neurodegenerative in vivo gene
editing efforts with OTIs.

Chatterjee and Walker, reviewing DNA damage, repair and mutagenesis [1], described
how spontaneous deamination of 5-methyl cytosine produces thymine (Figure 6). The re-
sulting G-T base-pair is recognized by thymine DNA-glycosylase and repaired. Apparently,
GC to AT transitions account for at least one third of single-site mutations responsible for
hereditary diseases in humans [1], therefore ‘correcting’ such GC to AT mutations seems to
be a reasonable initial target for OTI therapeutics. Although the 5′-flanking base pair to
G·T mismatches influences the rate of removal of thymine [70] we assume, for the sake of
simplicity in this review, that the G-T mismatches will eventually be repaired in cells in the
CNS. Further experiments will need to be performed to demonstrate this; however, other
DNA repair pathways [1] might be exploited for ‘safe’ gene editing in the CNS.
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livered into cells for CRISPR/Cas9 based target cleavage, the sgRNA and the Cas9 enzyme. 
To be able to carry out precise targeting, a repair template is also required. Although Cas9 
does not have to be delivered as a ready enzyme (protein), and the Cas9-encoding DNA 
(ORF) or mRNA can be delivered instead, sometimes even fused to sgRNA, the delivery 
of such a large nucleic acid species remains challenging. Lentiviruses, adenoviruses and 
AAVs were tested as delivery vectors, with AAVs being most popular in gene therapy 
clinical trials due to a number of favorable characteristics [76]. However, AAV vectors 
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Figure 6. Deamidation of cytosine to uracil and 5-methylcytosine to thymine. The exocyclic amine
of cytosine can be spontaneously deamidated to give uracil and the excocyclic nitrogen of 5-
methylcytosine can be spontaneously deamidated to give thymine. Uracil is removed from DNA
by uracil-DNA glycosylase while the G:T base-pair resulting from spontaneous deamidation of
5-methylcytosine can be removed by thymine DNA glycosylase (Figure drawn with Marvin-Sketch,
from ChemAxon, https://www.chemaxon.com).
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5. OTIs: Better In Vivo (In-Patient) Gene Editors Than CRISPR/Cas?

Engineered nucleases called zinc finger nucleases (ZFN), transcription activator-like
effectors nucleases (TALENs) and the CRISPR/Cas9 system are the most well-known
DNA-targeting gene editing systems [66,71]. All three, once delivered into prokaryotic or
mammalian cells, can create double-stranded breaks at desired genomic loci [66,72]. The
CRISPR/Cas9 system has revolutionized genomic editing [73,74] because it lacks inherent
limitations of the other two systems, e.g., does not require complex design/assembly steps.
Although immensely useful in the research and for ex vivo gene editing [75], where the
delivery can be achieved with relative ease, the use of CRISPR/Cas in the context of human
patients is associated with a number of caveats.

5.1. Delivery

Efficient delivery of all the editing components to the site of action still remains a major
obstacle in the use of CRISPR/Cas. A minimum of two components have to be delivered
into cells for CRISPR/Cas9 based target cleavage, the sgRNA and the Cas9 enzyme. To be
able to carry out precise targeting, a repair template is also required. Although Cas9 does
not have to be delivered as a ready enzyme (protein), and the Cas9-encoding DNA (ORF)
or mRNA can be delivered instead, sometimes even fused to sgRNA, the delivery of such a
large nucleic acid species remains challenging. Lentiviruses, adenoviruses and AAVs were
tested as delivery vectors, with AAVs being most popular in gene therapy clinical trials
due to a number of favorable characteristics [76]. However, AAV vectors have a limited
packaging capacity (~4.7 kb), whereas Cas9 alone has a genetic size of ~4.5 kb, and together
with sgRNA (s), the total plasmid size can exceed 7 kb, making it impossible to deliver all
components using one vector. In contrast, delivery of OTIs, similar to other therapeutic
oligonucleotides, due to their small size can be achieved with relative ease both locally and
systemically, for example, intrathecal infusion [77]. Non-viral delivery methods include
lipid and polymer-based nanocarriers such as nanoparticles/liposomes, gold nanoparticles
or inorganic nanoparticles [78,79].

5.2. Immune Reactions to ‘Foreign’ Proteins

Recent findings show that the introduction of Cas9 into the human body may result
in immunogenicity. Antibodies to the two most widely used orthologs of Cas9, SaCas9
and SpCas9, alongside anti-SaCas9/SpCas9 T cells were identified in over 50% of serum
donors [80,81]. Whilst not being of much concern when used for ex vivo therapies, these
preexisting humoral and cell-mediated adaptive immune responses can elicit cytotoxic
T cell response specifically against Cas9-expressing cells. On the other hand, OTIs and
DNA-targeted metallodrugs [66,67] do not require introduction of foreign proteins and are
free of this inherent problem of CRISPR/Cas9.

5.3. Sequence-Specific Targeting and Strand-Invasion

Sequence-specific targeting [82,83] is relatively well developed for CRIPSR/Cas sys-
tems where the sgRNA has to stand-invade the target DNA-duplex. The recognition starts
at an adjacent PAM sequence required to initiate DNA melting [84–86]. Kolesnik et al. [87]
suggested preliminary PAM recognition may reduce the number of sites in a genome to
be fully melted and screened, thus accelerating the process of target searching. For OTIs
experiments need to be done to investigate sequence-specific targeting (and strand-invasion
for WC-OTIs). Spontaneous in vivo formation of RNA-DNA heteroduplexes (R-loops) is
well known in prokaryotic and eukaryotic cells [88]. The R-loop model may be used as a
template for target recognition by a DNA-duplex invading WC-OTI. R-loops can efficiently
nucleate at G-rich clusters [89] and are favored by excessive negative supercoiling that
destabilizes the DNA duplex [90,91]. Thus strand invading WC-OTIs could be designed
to recognize G-rich clusters to initiate strand invasion and then use Top2β for cleavage
(Top2β is involved in relaxation of transcription-induced negative supercoiling [92]).
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6. OTIs: A Tunable Scaffold for the Correction of Amyotrophic Lateral Sclerosis
Causative Mutations?

As stated earlier, a large population of ALS patients could potentially benefit from
the use of OTIs as gene editors. Here, a single ALS-causative mutation in the SOD1 gene,
G37R, successfully used for disease modelling in mice [93], is used as a case study. Three
camptothecin based PIP-OTIs are used for (‘a three cuts and you are out’–strategy to correct
this mutation [94] as shown in Figure 7 (see also Supplementary Figure S5). In Figure 7,
three PIP-OTIs are envisioned as producing three DNA-cleavage sites. DNA-repair is
then envisioned to remove the ‘cyan’ and ‘orange’ cleaved regions of one DNA-strand
(Figure 7b) before this replacing with an oligo (Figure 7c). Experimental cellular verification
of this (or other strategies) is needed (see also discussion).
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Therefore, careful cellular and in vivo [96] validation studies would be required to estab-
lish a proof-of-principle. Encouragingly, CRISPR-based SMN2 gene conversion was 
achieved in human iPSCs and rescued SMN protein levels [97]. 

3’  TTCCACACCCCTTCGTAATTTTCTGACTGACTTCCGGACGTACCTAAG 5’
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Figure 7. Modelling a theoretical correction by three camptothecin based PIP-OTIs of a mutation
associated with familial ALS. (a) A model (BDNA, 8 June 2022, from http://www.scfbio-iitd.res.
in/software/drugdesign/bdna.jsp) of nucleotides (one strand carbons in black, the other in green)
coding amino acids 30–45 (single letter code bottom line) of human SOD1 with a G37R mutation.
The single base-pair change causing the glycine to arginine mutation is highlighted in red. (b) Three
camptothecin based PIP-OTIs are shown coloured with cyan, magenta and yellow carbons, with
the intercalating camptothecin moiety in solid space-fill representation. Three positions (TG) cut on
the lower strand, in the presence of Top1 (see also Supplementary Figures S3 and S5) are indicated.
In cleavage complexes the T is covalently bonded to Top1 by a 3′ phosphotyrosine bond and the
camptothecin moiety intercalates between the TA and GC base-pairs at the DNA-cleavage site. (c) The
blue and orange oligonucleotides in b are envisioned to have been removed – and are replaced with
an oligonuleotide with a corrected G. The T in the central G-T mismatch should be removed by
thymine DNA-deglycoylase–after which the red T in the top strand should be corrected to C.

Strong DNA-sequence specificity was demonstrated for camptothecin based DNA-
cleavage [60], and experiments to date suggest this extends to camptothecin PIP-OTIs [44].
This suggests camptothecin-based OTIs primarily produce a single stranded DNA-cleavage
between at a T-G sequence on the cleaved strand. A similar strategy could potentially
be applied for some fALS mutations in the FUS gene, e.g., R521H (G1562A) and R518K
(G1533A) [95].

http://www.scfbio-iitd.res.in/software/drugdesign/bdna.jsp
http://www.scfbio-iitd.res.in/software/drugdesign/bdna.jsp
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7. OTIs: Could a Single Nucleotide Edit Cure Spinal Muscular Atrophy?

Humans have two genes, SMN1 and SMN2, that encode identical protein sequences [6,7],
whereas other mammals including primates have only one gene [6]. The loss of the SMN1
gene causes SMA because the paralogous SMN2 gene is differentially spliced (~90% of
the time) and the resultant mRNA normally lacks exon 7 [6,7], the amino acids encoded
by exon 7 are critical for protein oligomerisation and function [6]. A single silent point
mutation, at position 6 of exon 7, gives an exon splicing enhancer in SMN1 but an exon
splicing silencer in SMN2 [6]. In human evolution, the SMN1 gene is believed to have been
duplicated to give rise to the SMN2 gene (or SMN2 genes;-different people have different
numbers of SMN2 genes) [6]. A single GC to AT transition at position 840 (exon 7) is
responsible for the different splicing of SMN2 [7], therefore changing this AT base-pair in the
SMN2 gene into GC will convert it into SMN1 thereby theoretically curing SMA (Figure 8).
Figure 8 shows an editing scheme similar to that in Figure 7, but with a different target
sequence. However, complications may arise due to the existence of repetitive elements in
the SMN2 genomic region; which make it prone to rearrangements and deletions. Therefore,
careful cellular and in vivo [96] validation studies would be required to establish a proof-
of-principle. Encouragingly, CRISPR-based SMN2 gene conversion was achieved in human
iPSCs and rescued SMN protein levels [97].

Int. J. Mol. Sci. 2022, 23, 11541 14 of 21 
 

 

 
Figure 8. A theoretical correction, by three camptothecin based PIP-OTIs, of the exon 7 mutation 
associated with SMA. (a) DNA sequence from human SMN2 gene (NCBI’s RefSeq gene ID: 6607). 
Experimental evidence suggests that Exon 7 (underlined sequence–bottom line) is skipped because 
of alternative splicing due to a single base change (AT base-pair highlighted in red). (b) Three posi-
tions (TG) positions (5′–3′) on the upper, non-coding strand, to be targeted for cleavage by PIP-OTIs 
are underlined (note upper strand is drawn 3′–5′). (c) In the presence of Top1 (see also Supplemen-
tary Figures 3 and 5) three PIP-OTIs are predicted to cleave the DNA at three positions and remain 
covalently linked to the T’s. (d) After removal of the PIP-OTIs and covalently attached DNA–a gene 
editing oligonucleotide with a corrected G is introduced. (e) After the ‘theoretical’ correction of the 
G-T (in panel d) mismatch to G-C (panel e) exon 7 should be expressed (as in SMN1). 

8. Discussion: Can OTIs Combine the Powers of CRISPR/Cas and ASOs and Lack 
Their Inherent Weaknesses as In Vivo Gene Editors? 

The development of the ASO therapeutic nusinersen, showed how by modifying the 
phosphate backbone with phosphorothioates and using a 2’-O-methoxyethyl [3] a long 
lasting stable (resistant to nucleases) therapeutic agent could be made. However, for OTIs, 
although such modifications can be modelled on the computer graphics, it is difficult to 
predict affinities and specificities. So a ‘hit-to-lead’ optimization cycle for OTIs might con-
tain four stages: 

i. modelling nuclease resistant and OTI-target stabilizing mutations using computer 
graphics (and existing crystal structure from the PDB).  

ii. chemical synthesis of about ten such OTIs (PIP-OTIs, and/or TFO-OTIs/WC-OTIs).  
iii. biophysical assays (such as swithSENSE-[98]) to optimize relative affinities of modi-

fied OTIs for target DNA sequences ‘in vitro’-with purified topoisomerases.  
iv. using nuclease resistant OTIs in iPSC cells to compare their gene editing functionality 

with that of published CRISPR/Cas systems for similar diseases (e.g., [97,99,100]). We 
assume initially that OTI development pathways would aim at replicating and im-
proving on existing CRISPR/Cas gene editing in iPSCs. How many optimization cy-
cles it would take to achieve such an aim for a particular mutation is not yet clear.  
In this review, an outline of how OTIs could be directed to cleave a particular DNA 

sequence [31] is proposed. Because so much of drug development concerns safety, the 
initial OTIs we have proposed in this review focus on cleaving only one DNA-strand (Fig-
ures 5, 7 and 8). Note that the fate of OTI stabilized DNA-cleavage complexes in a cell will 
depend on the DNA repair mechanisms active in that particular cell type [101]. Here, we 
suggest that, for the post-mitotic cells of the CNS, thymine DNA glycosylase should 

SMN2    3’ GGAATGTCCCAAAATCTGTTTTAGTTTTTCTTCCTTCCACGAGTGTAA 5’
SMN2    5’ CCTTACAGGGTTTTAGACAAAATCAAAAAGAAGGAAGGTGCTCACATT 3’

SMN2    3’ GGAATGTCCCAAAATCTGTTTTAGTTTTTCTTCCTTCCACGAGTGTAA 5’
SMN2    5’ CCTTACAGGGTTTTAGACAAAATCAAAAAGAAGGAAGGTGCTCACATT 3’

SMN2    3’ GGAATGTCCCAAAATCTGTTTTAGTTTTTCTTCCTTCCACGAGTGTAA 5’
SMN2    5’ CCTTACAGGGTTTTAGACAAAATCAAAAAGAAGGAAGGTGCTCACATT 3’

TCCCAAAGTCTGTTTTAGTTTTTCTTCCTTCCACGAG
SMN2    3’ GGAATG TGTAA  5’
SMN2    5’ CCTTACAGGGTTTTAGACAAAATCAAAAAGAAGGAAGGTGCTCACATT  3’
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Figure 8. A theoretical correction, by three camptothecin based PIP-OTIs, of the exon 7 mutation
associated with SMA. (a) DNA sequence from human SMN2 gene (NCBI’s RefSeq gene ID: 6607).
Experimental evidence suggests that Exon 7 (underlined sequence–bottom line) is skipped because of
alternative splicing due to a single base change (AT base-pair highlighted in red). (b) Three positions
(TG) positions (5′–3′) on the upper, non-coding strand, to be targeted for cleavage by PIP-OTIs are
underlined (note upper strand is drawn 3′–5′). (c) In the presence of Top1 (see also Supplementary
Figures S3 and S5) three PIP-OTIs are predicted to cleave the DNA at three positions and remain
covalently linked to the T’s. (d) After removal of the PIP-OTIs and covalently attached DNA–a gene
editing oligonucleotide with a corrected G is introduced. (e) After the ‘theoretical’ correction of the
G-T (in panel d) mismatch to G-C (panel e) exon 7 should be expressed (as in SMN1).

8. Discussion: Can OTIs Combine the Powers of CRISPR/Cas and ASOs and Lack
Their Inherent Weaknesses as In Vivo Gene Editors?

The development of the ASO therapeutic nusinersen, showed how by modifying the
phosphate backbone with phosphorothioates and using a 2’-O-methoxyethyl [3] a long
lasting stable (resistant to nucleases) therapeutic agent could be made. However, for OTIs,
although such modifications can be modelled on the computer graphics, it is difficult to
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predict affinities and specificities. So a ‘hit-to-lead’ optimization cycle for OTIs might
contain four stages:

i. modelling nuclease resistant and OTI-target stabilizing mutations using computer
graphics (and existing crystal structure from the PDB).

ii. chemical synthesis of about ten such OTIs (PIP-OTIs, and/or TFO-OTIs/WC-OTIs).
iii. biophysical assays (such as swithSENSE-[98]) to optimize relative affinities of modi-

fied OTIs for target DNA sequences ‘in vitro’-with purified topoisomerases.
iv. using nuclease resistant OTIs in iPSC cells to compare their gene editing functional-

ity with that of published CRISPR/Cas systems for similar diseases (e.g., [97,99,100]).
We assume initially that OTI development pathways would aim at replicating and
improving on existing CRISPR/Cas gene editing in iPSCs. How many optimization
cycles it would take to achieve such an aim for a particular mutation is not yet clear.

In this review, an outline of how OTIs could be directed to cleave a particular DNA
sequence [31] is proposed. Because so much of drug development concerns safety, the
initial OTIs we have proposed in this review focus on cleaving only one DNA-strand
(Figures 5, 7 and 8). Note that the fate of OTI stabilized DNA-cleavage complexes in a cell
will depend on the DNA repair mechanisms active in that particular cell type [101]. Here,
we suggest that, for the post-mitotic cells of the CNS, thymine DNA glycosylase should
naturally repair G-T mismatches created by single strand OTI-based gene editing, in a
relatively safe manner. Replicating ex vivo cell-based CRISPR/Cas9 gene editing experi-
ments with OTIs may be a way forward to establish a proof of principle for their in vivo (in
patient) development. For adult-onset monogenic neurodegenerative diseases correction
after the disease onset still may provide a clinical benefit [102], but early correction, after
genetic testing, could become a cure.

Creating double stranded breaks in DNA, in a manner similar to that used by CRISPR/Cas
systems when they cut up the DNA of invading bacteriophages, might be useful for OTIs
targeting the cutting up of DNA encoding antimicrobial resistance genes in pathogenic
bacteria. However, obtaining OTIs with specificity for bacterial over human topoisomerases
and how to deliver such OTIs to bacteria may be challenging (see also supplementary dis-
cussion and Supplementary Table S1). DNA-cleavage stabilizing topoisomerase inhibitors
(Table 1) are widely used in cancer chemotherapy [29,61,103] and potential uses of OTIs
in cancer are discussed in the supplementary discussion. Exactly how eukaryotic topoi-
somerases interact with chromatin and other gene regulatory elements is still the subject
of research [21], so although we suspect that WC-OTIs will be able to cleave anywhere
in a transcribed gene, more experiments are needed to prove this. Using OTIs to create
double stranded DNA breaks to cut-up genes encoding oncogenic fusion proteins may
potentially be beneficial, but genetic heterogeneity and genomic instability are both hall-
marks of many cancers [104], so how safely this would work in the clinic remains uncertain.
Therapy related leukemias have been reported both for some gene therapies [69,105–107]
and for topoisomerase II drugs [48,50,108,109]. So for gene therapy in vivo (in patient)
Top1 targeting OTIs [31,38–41], that cleave only one DNA-strand, may be safer to develop.

The recently reported therapeutic effect of the ASO Tofersen in some adult patients
with SOD1 ALS, is a futher proof that ASOs can be successfully delivered and exert desired
activity in the CNS [110]. However, better therapeutic options for patients with ALS are
clearly needed [111]. The recent clinical approvals of oligonucleotide-based therapeu-
tics [112], together with the remarkable promise of genomic sequencing based personalized
medicines [113], suggests novel therapeutics, such as OTIs, that specifically target dif-
ferences in the DNA sequences between normal and lesioned cells in patients will be
worth developing.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms231911541/s1. References [35,114–132] are cited in the supplementary materials.
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Abbreviations

AAV Adeno-Associated Virus
AD Alzheimer’s disease
ALS Amyotrophic Lateral Sclerosis (fALS =familial ALS)
AMN Artificial metallo-nuclease
ASO Antisense oligonucleotide
Cas9 CRISPR-associated protein 9
CNS Central nervous system
CRISPR clustered regularly interspaced short palindromic repeats
DDR DNA-damage repair
FDA Food and Drug Administration
FUS Fused in sarcoma
gRNA guide RNA (sgRNA = single guide RNA)
HD Huntingdon’s disease
iPSCs induced pluripotent stem cells
OTI Oligonucleotide-recognizing Topoisomerase Inhibitor

(see individual definitions for: PIP-OTIs, SI-OTIs, TFO-OTIs and WC-OTIs)
PAM protospacer adjacent motif
PD Parkinson’s disease
PIP pyrrole-imidazole-polyamides
PML gene encoding Promyelocytic leukemia protein
RARA gene encoding Retinoic acid receptor alpha protein
SI Strand-invading
SOD1 gene encoding superoxide dismutase 1 protein
SMA spinal muscular atrophy
SMN Survival motor neuron protein

SMN1
gene encoding SMN (note alternative mRNA splicing gives more than one gene
product from the ten exons: 1, 2a, 2b, 3, 4, 5, 6a, 6b, 7 and 8)

SMN2
gene encoding SMN (note alternative mRNA splicing gives more than one gene
product, from the ten exons: 1, 2a, 2b, 3, 4, 5, 6a, 6b, 7 and 8)

TBK1 gene encoding TBK1 (a kinase)
TARDBP gene encoding TDP-43

TDP-43
TAR DNA-binding protein 43 (transactive response DNA binding protein 43-also
binds RNA)

TFO Triplex forming oligonucleotide
WC Watson–Crick
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