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BACKGROUND: Recent studies have demonstrated that blocking the PI3Kδ signalling enzyme (by administering a small molecule
inhibitor, PI-3065) can potently improve the anti-tumour T-cell response through direct inhibition of Tregs. This treatment also has a
negative impact on MDSC numbers but the primary mechanism driving this effect has remained unclear.
METHODS: The 4T1 breast cancer mouse model was used in combination with PI-3065 to gain insights into the effect of PI3Kδ
inhibition on MDSCs.
RESULTS: PI-3065 treatment resulted in a concomitant reduction in MDSC expansion and tumour size. However, targeting Tregs
independent of PI-3065 was also associated with reduced tumour volume and MDSC numbers. Surgical removal of tumours
resulted in a rapid and significant decline in MDSC numbers, whilst ex vivo studies using cells from PI-3065-treated mice
demonstrated no direct effect of the inhibitor on MDSC activity.
CONCLUSIONS: Our data suggest that MDSCs are not inhibited directly by PI-3065 treatment but that their reduced recruitment
and immunosuppression within the tumour microenvironment is an indirect consequence of PI3Kδ-inhibition-driven tumour
control. This indicates that PI3Kδ inhibition drives tumour immunity by breaking down multiple immunosuppressive pathways
through both direct mechanisms (on Treg) and indirect mechanisms, secondary to tumour control (on MDSCs).
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INTRODUCTION
Immunotherapy can result in the eradication of tumour burden,
however, for the majority of patients a sufficient T-cell response
fails to develop and ultimately treatment is unsuccessful. Treat-
ment failure is partly driven by immunosuppressive cells such as
myeloid-derived suppressor cells (MDSCs) and regulatory T cells
(Tregs) which restrain the activities of anti-tumour CD8+ T cells.
Elevated numbers of both Tregs and MDSCs occur in the peripheral
blood of cancer patients, including breast cancer patients, and
have been associated with cancer stage and poor prognosis [1–5].
Thus, successful targeting of MDSCs and Tregs through depletion
or inhibition is an important goal for cancer therapy.
MDSCs are a population of cells of myeloid origin with potent

immunosuppressive capacity, particularly in the tumour microen-
vironment [6]. In mice, there are two main subpopulations of
MDSCs, all of which are CD11b+, namely monocytic-MDSCs (M-
MDSCs), characterised by the expression of the phenotypic markers
Ly6G− Ly6Chi, and polymorphonuclear-MDSCs (PMN-MDSCs), deli-
neated by Ly6G+ Ly6Clo expression [7, 8]. MDSCs express high levels
of Arginase-1 (Arg-1), Nitric Oxide (NO) reactive oxygen species
(ROS), and secrete IL-10 and TGFβ, all of which play a role in
suppressing T-cell function [9]. Furthermore, studies to date have
demonstrated that MDSCs promote T-cell immunosuppression

through their ability to induce and recruit suppressive Tregs [10–12].
Whilst MDSCs appear to induce de novo Treg expansion, recent
evidence points to reciprocity between MDSCs and Tregs, whereby
Treg depletion results in reduced numbers of both PMN-MDSCs and
M-MDSCs, suggesting that Tregs support the survival and expansion
of MDSCs [13].
Several studies have demonstrated that targeting phosphoinosi-

tide 3-kinase δ (PI3Kδ) can improve anti-tumour immune responses
[14]. Tregs are reliant on PI3Kδ and genetic or pharmacological
inhibition of PI3Kδ significantly reduce Treg proliferation and
recruitment [15–19]. MDSCs use PI3Kδ alongside the PI3Kγ isoform
for survival and function [20]. Consequently, targeting both Tregs
and MDSCs by inhibiting PI3Kδ signalling has the potential
to unleash powerful anti-tumour T-cell responses and ultimately
control tumour burden.
We and others recently demonstrated that the PI3Kδ-selective

inhibitor PI-3065, reduces the expansion and suppressive capacity
of Tregs, conferring CD8+ T-cell-mediated tumour control in the
4T1 mouse model of breast cancer [17, 18]. As it is known that 4T1
tumours are associated with a significant expansion of MDSCs
in vivo, we now used this model to examine how treatment
with PI-3065 alters MDSC behaviour. We specifically sought to
determine whether pharmacological inhibition of PI3Kδ affects
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MDSCs directly or indirectly as a result of alleviating the tumour-
promoting effects of Tregs.

MATERIALS AND METHODS
Tumour model
Adult (8-week-old) female BALB/c and BALB/c Nude (CAnN.Cg-Foxn1/Crl)
mice were purchased from Charles River, Depletion of REGulatory T-cell
(DEREG) mice, a strain of BALB/c mice developed using a Bacterial Artificial
Chromosome (BAC) containing the foxp3 locus and a diphtheria toxin
receptor (DTR)-eGFP fusion protein inserted into the first exon of the foxp3
gene [21], were bred and housed in filter-top cages in specific pathogen-
free conditions, with standard chow and water provided ad libitum.
Experiments were conducted in accordance with Home Office UK
guidelines. Mice were randomly assigned to treatment groups by animal
technicians who were not directly involved in the study, researchers were
not blinded to treatment groups. The 4T1 breast cancer cell line was
obtained from ATCC (CRL-2539) and maintained in culture medium (RPMI
1640, 10% FCS, 2 mM L-glutamine, 1 mM sodium pyruvate, and 50mg/ml
penicillin-streptomycin). In all, 1 × 105 4T1 cells were injected subcuta-
neously into the mammary fat pad. Tumours were measured using digital
callipers from day 7 up to three times per week until the mouse was
sacrificed. The following calculation was used to determine tumour
volume: (length × width × short)*(3.14/6), [where short equals the lower of
the length and width measurements and provides an estimate of height].
Tumour and spleen weight was measured at endpoint following excision
of the tumour from the host.

In vivo drug treatment
PI-3065 was provided by Genentech and administered by oral gavage at a
dose of 75mg/kg, with vehicle-treated mice given an equivalent volume of
carrier solution, as described previously [17]. Mice were dosed daily from
day −1 prior to tumour injection until the termination of the experiment.
As described previously, the Tregs of DEREG mice were selectively ablated
by injection of diphtheria toxin (DT) three times per week from day 5 post
tumour injection [21].

Tissue dissociation
Spleens were isolated from tumour-bearing mice, mechanically disaggre-
gated and then passed through a 70-μm filter, prior to lysis of red blood
cells using RBC lysis buffer (Biolegend).

Flow cytometry
Cells were washed twice with PBS and stained using LIVE/DEAD Aqua
(Invitrogen) according to the manufacturer’s instructions. Cells were
washed twice with FACS buffer and Fc receptors blocked with anti-
CD16/32 (clone 93; Biolegend). Cells were surface stained with the
following antibodies (all from Biolegend): CD11b (M1/70, PE), CD11c (N418,
BV605), Ly6G (1A8, FITC, BV421), Ly6C (HK1.4, APC), CD45 (30-F11, APC/Fire
750, PE-Cy7), c-KIT (ACK2, BV421), NK1.1 (PK136, APC/Fire 750), CD19 (ID3/
CD19, PE), CD3 (17A2, BV785), CD8 (53–6.7, BV421), CD4 (GK1.5, FITC),
FoxP3 (FJK-16s, APC).

Tumour resection surgery
Tumours of comparable sizes were removed at day 18 post tumour
injection. Mice were anaesthetised (isofluorane) and given a subcutaneous
injection with the anti-inflammatory analgesic, Metacam (Boehringer
Ingelheim). The tumour and the surrounding area were shaved and
swabbed with Hibiscrub antibacterial wash and Surgical Spirit. Aseptic
techniques were used to excise the tumour and close the wound using
horizontal mattress sutures (Ethicon). Mice, placed in a heated recovery
chamber until consciousness was regained, were monitored postoperative
for well-being and suture strength. At day 21 (3 days post resection) and
day 28 (10 days post resection), spleens were isolated from both resected
mice and tumour-bearing mice at the equivalent time points and the
splenic MDSC populations enumerated.

T-cell/MDSC co-culture proliferation assay
CD8+ T cells were isolated from naive spleens using a negative magnetic
bead selection kit (Biolegend). MDSCs were isolated from the spleens of
mice bearing 4T1 tumours that had either been treated with vehicle or PI-
3065 using a negative magnetic bead selection kit (Stemcell). CD8+ T cells

were labelled with Tag-It-Violet (Biolegend) prior to stimulation with plate-
bound anti-CD3 10 μg/ml (Biolegend, 145–2C11), 1 μg/ml soluble anti-
CD28 (Biolegend, 37.51) and 30 IU/ml IL-2. MDSCs were added to the CD8+

T cells at a ratio of either 1:1 (MDSCs:CD8) or 4:1. Cocultures were left for
3 days prior to flow cytometric analysis.

Statistical analyses
In figures 1–4, the statistical differences between groups were assessed for
normality to determine if a parametric or non-parametric statistical test
should be employed. For normally distributed datasets, either an unpaired
t test was used to compare two groups or for multiple groups, one-way
ANOVA with a Tukey’s multiple comparison post hoc test was performed.
For non-normally distributed datasets, a Mann–Whitney t test was used to
compare between groups and a Kruskal–Wallis test with Dunn’s multiple
comparison post hoc test used to compare between multiple groups.
P values of ≤0.05 were considered significant, with values of ≤0.01
considered highly significant. The number of mice used and replicates is
detailed for each figure in the corresponding figure legend. The
proliferation index used in Fig. 5 was calculated using the following
formula; (total number of cell divisions/cells that went into division).

RESULTS
PI3Kδ inhibitor treatment leads to a significant reduction in
splenic MDSCs
Upon subcutaneous inoculation of 4T1 breast cancer in mice
expressing endogenously inactivated PI3Kδ, a significant reduc-
tion in spleen-associated expansion of MDSCs was observed [17].
Using the same 4T1 tumour model, we now sought to examine
the impact on this MDSC expansion of a pharmacological
approach to inhibiting PI3Kδ. Daily oral administration of the
PI3Kδ-selective inhibitor PI-3065 [17] led to a significant control of
tumour growth, accompanied by a significant reduction in the
splenomegaly normally observed in mice bearing 4T1 tumours
(Fig. 1a, b and Supplementary Fig. 1). Detailed flow cytometric
analysis of the immune cells present in the spleens of tumour-
bearing vehicle- or PI-3065-treated animals revealed that spleno-
megaly was driven by a 40-fold expansion of PMN-MDSCs
(CD11b+ Ly6G+ Ly6Clo) in vehicle-treated tumour-bearing animals,
and to a lesser extent by expansion of M-MDSCs (CD11b+

Ly6G−Ly6Chi,, 30-fold expansion) (Fig. 1c). NK cells also demon-
strated a 14-fold expansion in both vehicle and PI-3065-treated
animals, but when total numbers of cells were compared in the
spleen, the dominant population driving splenomegaly was the
PMN-MDSC population (Fig. 1d). PI-3065 treatment significantly
reduced the splenic expansion of both MDSC subpopulations by
day 28 post tumour injection (Fig. 1e, f). Although PI3Kδ inhibitors,
such as Idelalisib have been used as a clinical therapy in chronic
lymphocytic leukaemia (CLL), we saw no significant impact of PI-
3065 on B-cell numbers in the spleen.

MDSC expansion is driven by tumour growth
The reduction in splenic MDSCs was associated with reduced Treg
numbers and reduced tumour volume in PI-3065-treated mice,
whilst vehicle mice exhibited a significantly elevated frequency of
splenic MDSCs, high frequencies of Treg and larger tumours.
These findings are in line with our previous study, which showed
that administration of PI-3065 results in Treg inactivation,
unleashing an anti-tumour CD8+ T-cell response and altering
the ratio of CD8:Tregs in favour of tumour control [17, 18].
With these data in mind, we hypothesised that the effect of the

PI3Kδ inhibitor on MDSC was mediated indirectly via effects on
Treg and/or tumour growth. To test this, we first examined MDSC
numbers in mice where Treg were depleted by administration of
diphtheria toxin (DT) to DEREG mice [21]. We found a comparable
reduction in tumour size and fewer MDSCs in the spleen upon DT-
induced Treg depletion in tumour-bearing DEREG mice as upon
treatment with PI-3065 (Fig. 2a–c), supporting the hypothesis that
MDSC expansion is profoundly influenced by the control of
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tumour growth following Treg depletion. To determine whether
tumour or Treg was the major driver of MDSC expansion, we
measured MDSC in tumour-bearing nude mice. These data clearly
indicate that the tumour promotes MDSC expansion in the
absence of Tregs (Fig. 2d, e).
To confirm the importance of the tumour in expanding and

maintaining splenic MDSCs we employed a tumour resection
model in vehicle-treated, Treg-replete mice. We injected mice with
tumours at day 0, and then split the mice into two groups; mice
undergoing surgical tumour resection and mice whose tumours
would continue to grow (Fig. 2f). We observed that following
tumour resection at day 21, the numbers of both PMN-MDSCs and

M-MDSCs were dramatically reduced in the spleen at day 3 post
excision compared to animals with a tumour in situ (Fig. 2g, h). In
the case of tumours that continued to grow, the MDSC numbers
also expanded, however, in mice whose tumours had been
removed, the numbers of MDSCs in the periphery remained low.
These data confirm that the presence of tumour is critical for the
expansion and maintenance of peripheral MDSCs and are
compatible with previous studies demonstrating that 4T1
tumours, through the secretion of stem cell factor (SCF) [22]
promote PMN-MDSC expansion via c-kit receptor signalling
[23, 24]. We found that whilst the proportion of c-Kit+ MDSCs
was similar in small (treated) and large (control) tumours (Fig. 3a,
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injection in mice treated with either vehicle or PI-3065 (13–36 mice/group/timepoint). c Fold change compared to tumour-naive mice of
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b), there was a reduction in the absolute number of c-Kit+ PMN-
MDSCs and M-MDSCs, corresponding with fewer overall MDSCs
in the spleen (Figs. 1e, f and 3c, d). To assess the impact of
reduced splenic MDSC numbers on tumoural MDSC recruitment

we examined small (treated) and large (control) tumours at day 21
post tumour injection. Flow cytometric analysis revealed no
difference in tumoural MDSC infiltration when normalised per
gram of tissue (Fig. 3e, f), indicating that the impact of PI-3065
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treatment upon MDSC is inhibition of splenic expansion rather
than intra-tumoural recruitment.

Inhibition of PI3Kδ does not directly affect MDSC numbers
Whilst the above data support the premise that tumours drive
MDSC expansion and that inhibition of tumour growth via Treg
depletion controls this expansion, they do not rule out direct
effects of PI3Kδ-inhibition on MDSCs. Indeed, studies to date have
suggested that MDSCs require signalling via PI3Kδ for maximal
suppressive effect [17]. In addition, studies indicate that inhibition
of PI3K using the pan-PI3K inhibitor LY294002 can reduce c-KIT
expression on hematopoietic cells [25, 26] thereby indicating a
possible mechanism whereby PI3Kδ inhibition could directly
impinge on MDSC numbers.
To determine if targeting the PI3Kδ signalling pathway affected

MDSC numbers in the absence of direct effects on Tregs or
tumours, we injected tumours into BALB/C Nude mice and treated
with either vehicle or PI-3065. PI-3065 treatment in the absence of
T cells conferred no tumour control (Fig. 4a). Analysis of spleens at
day 28, post injection, revealed comparable spleen weights
(Fig. 4b) and PMN-MDSC and M-MDSC populations (Fig. 4c, d).

Taken together, these data indicate that PI-3065 treatment does
not directly target MDSCs in vivo.

MDSC immunosuppression is not affected by PI3Kδ inhibition
We have previously demonstrated that the addition of PI-3065 to
splenocytes has a direct effect on CD8+ T-cell proliferation in vitro
[18], thus a different approach was needed to examine the
suppressive capacity of MDSC exposed to PI3Kδ inhibition. To
establish if therapeutic administration of PI-3065 resulted in the
development of MDSCs with inferior suppressive capacity in
tumour-bearing hosts, ex vivo suppression assays were performed.
Splenic CD8+ T cells from naive mice were stimulated with anti-
CD3 and CD28 antibodies and co-cultured with MDSCs isolated
from tumour-bearing vehicle- or PI-3065-treated mice. At a ratio of
1:1, neither vehicle- or PI-3065-derived MDSCs had a notable
effect on CD8+ T-cell proliferation (Fig. 5a, b). At a higher ratio of 4
MDSCs per T cell, we observed that both vehicle- and PI-3065-
treated MDSCs reduced CD8+ T-cell proliferation. However, there
was no significant difference between MDSCs derived from either
vehicle- or PI-3065-treated mice, implying no direct effect of the
inhibitor on MDSC activity.
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DISCUSSION
Previous studies have demonstrated that both M-MDSCs and
PMN-MDSCs are dependent on PI3K signalling for optimal
immunosuppression [20]. Genetic inactivation of PI3Kδ in mice
resulted in both reduced numbers of peripheral MDSCs in tumour-
bearing hosts and ex vivo reduced capacity to suppress T-cell

proliferation [17]. As an extension of these studies, we sought to
determine whether pharmacological inhibition of PI3Kδ using the
small molecule inhibitor PI-3065, also targets MDSCs therapeuti-
cally. We observed that animals treated with PI-3065 had reduced
tumour burden and that in both vehicle- and drug-treated
animals, tumour size correlated with splenomegaly driven by
MDSC expansion. Following surgical removal of tumours in
untreated mice, the numbers of MDSCs reduced dramatically
within 3 days, to almost negligible levels, indicating that MDSC
numbers are largely controlled by tumour burden and not by
administration of PI-3065 per se. Studies in gastric cancer have
recently demonstrated increased MDSC numbers in the spleen
and peripheral blood that correlate with tumour stage [27, 28].
Furthermore, the expansion of MDSCs in the peripheral blood of
breast cancer patients is reversed following surgical excision of the
primary tumour [4], demonstrating that the tumour is critical for
supporting MDSCs in the periphery.
Tregs and MDSCs are known to play reciprocal roles within the

tumour microenvironment, with MDSCs promoting de novo
induction of Treg [10, 11], whilst Tregs can subsequently promote
MDSC expansion [29, 30]. Selective depletion of Tregs in tumour-
bearing DEREG mice resulted in both reduced tumour burden and
splenic MDSC expansion comparable with PI-3065 treatment.
However, tumour-driven MDSC expansion was observed in nude
mice which lack Treg indicating that it is the tumour and not Tregs
that drives this expansion. Splenic MDSC expansion was compar-
able in PI-3065- and vehicle-treated nude mice indicating no
direct effect of the PI3Kδ-inhibitor on MDSC. Overall, these data
demonstrate that the tumour, and not Treg or inhibition of PI3Kδ
signalling, is the most significant influence on splenic MDSC
numbers.
Finally, given that Ali and colleagues previously demonstrated

impaired immunosuppression by PI3Kδ genetically deficient
MDSCs [17], we sought to address if MDSC suppression in vivo
could be ameliorated by pharmacological PI3Kδ blockade. Using
MDSCs isolated from PI-3065-treated mice, we observed equiva-
lent immunosuppression on a per cell basis ex vivo. Although a
caveat of this approach is that the in vivo effects of PI-3065 on
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MDSC may be reversed in ex vivo cultures, meaning that we
cannot conclude that the MDSCs present in PI-3065-treated mice
are unaffected functionally, the data does indicate that inhibition
of PI3Kδ in vivo does not result in an irreversible block in the
suppressor function of these cells. This finding is compatible with
data published by Davis and colleagues, who demonstrated that a
reduction in MDSC suppression could only be achieved with a
dual PI3Kδ/γ inhibitor, IPI-145 [31]. As MDSCs are known to
employ both the PI3Kδ and γ isoforms for downstream signalling
(reviewed in ref. [14]), it is feasible that pharmacological targeting
of PI3Kδ alone, is not sufficient to inhibit their suppressive
mechanisms. Gyori et al. and colleagues reported similar findings
in the MC38 colon carcinoma model, whereby T-cell-mediated
control of tumour growth could only be achieved if treatment
with the PI3Kδ inhibitor, Idelalisib, which resulted in reduced intra-
tumoural Treg numbers, was combined with a CSF1R inhibitor to
reduce numbers of tumour associated macrophages [32].
The tumour itself is central to the immunosuppression

mediated by MDSCs, as removal of the tumour dramatically
reduces the peripheral MDSC population, enabling the establish-
ment of a feedback loop favouring tumour rejection. Alleviation of
immunosuppression by surgical removal of tumours has also been
reported in patients with colorectal cancer [33], highlighting the
critical role the tumour plays in amplifying immunosuppressive
pathways. Thus, whilst inactivation of Treg appears to be the
primary effect of PI-3065 treatment, our data indicate that through
initiating immune-mediated control of tumour growth, a cascade
of events is unleashed which serve to break down immunosup-
pressive pathways, further enhancing tumour immunity.
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