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Comparison of Acoustic Voice Features Derived FromMobile
Devices and Studio Microphone Recordings
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Summary: Objectives/Hypothesis. Improvements in mobile device technology offer new opportunities for
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remote monitoring of voice for home and clinical assessment. However, there is a need to establish equivalence
between features derived from signals recorded from mobile devices and gold standard microphone-preamplifiers.
In this study acoustic voice features from android smartphone, tablet, and microphone-preamplifier recordings
were compared.
Methods. Data were recorded from 37 volunteers (20 female) with no history of speech disorder and six volun-
teers with Huntington’s disease (HD) during sustained vowel (SV) phonation, reading passage (RP), and five syl-
lable repetition (SR) tasks. The following features were estimated: fundamental frequency median and standard
deviation (F0 and SD F0), harmonics-to-noise ratio (HNR), local jitter, relative average perturbation of jitter
(RAP), five-point period perturbation quotient (PPQ5), difference of differences of amplitude and periods (DDA
and DDP), shimmer, and amplitude perturbation quotients (APQ3, APQ5, and APQ11).
Results. Bland-Altman analysis revealed good agreement between microphone and mobile devices for funda-
mental frequency, jitter, RAP, PPQ5, and DDP during all tasks and a bias for HNR, shimmer and its variants
(APQ3, APQ5, APQ11, and DDA). Significant differences were observed between devices for HNR, shimmer,
and its variants for all tasks. High correlation was observed between devices for all features, except SD F0 for
RP. Similar results were observed in the HD group for SV and SR task. Biological sex had a significant effect on
F0 and HNR during all tests, and for jitter, RAP, PPQ5, DDP, and shimmer for RP and SR. No significant effect
of age was observed.
Conclusions. Mobile devices provided good agreement with state of the art, high-quality microphones during
structured speech tasks for features derived from frequency components of the audio recordings. Caution should
be taken when estimating HNR, shimmer and its variants from recordings made with mobile devices.
Key Words: Mobile devices−Acoustic voice features−Huntington’s disease−Microphone.
INTRODUCTION
Mobile devices are widely available, with the majority of the
global population having a least one device, such as a smart-
phone or tablet. Portable, easy-to-use technology has been
making its way into health research in recent years, though
the use of notifications reminders,1 passively monitoring
health,2−4 or actively engaging with participants.5−7 The
recent COVID-19 pandemic has highlighted the need to fur-
ther harness the potential of mobile devices, to enable
research and healthcare monitoring to be conducted from a
distance when necessary. Although there is still some
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resistance to the feasibility of real-world applications for
mobile devices,8 the evidence indicates that healthcare
workers9 and patients10 are ready to take advantage of this
opportunity to improve care and communication in hospi-
tals, clinics, and homes.

The quality of microphones embedded in mobile devices
has improved with advances in technology, offering a low-
cost, and accessible alternative to studio microphones tradi-
tionally used for speech analysis. Changes in acoustic voice
features can be used to quantify speech impairment in neu-
rodegenerative disorders including Parkinson’s disease (PD)
and Huntington’s disease (HD),11−13 and offer the potential
for quantitative clinical evaluation of symptoms and disease
progression. However, there is a need to ensure the equiva-
lence of acoustic voice features derived from recordings
made from microphones in mobile devices before they can
be deployed in healthcare applications.

The use of mobile devices to record structured and free
speech has been previously investigated, mainly in healthy
individuals14−18 and with synthetic voice samples,19,20 but
also in populations with speech disorders, such as glottic
cancer, vocal fold paralysis, and dysphonia.21−24 No signifi-
cant differences were reported between recordings of the
open vowel [a:] from an iOS smartphone allied with an iRig
when compared with the gold standard computer/preampli-
fier configuration in healthy individuals.14 A subsequent
study in an English-speaking cohort, during sustained vowel
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FIGURE 1. Schematic diagram of experimental set-up for speech
recording with three devices simultaneously.
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(SV) and reading passage (RP), compared acoustic features
from audio recorded with both studio microphone and
iPhone.16 Acceptable agreement in the mean fundamental
frequency across devices was observed, however the random
error for jitter and shimmer were deemed too high for prac-
tical applications. Another study in healthy participants,
which analyzed SV and RP, showed correlation between
features derived from mobile devices, landline phone, and
head-mounted microphone, but only the fundamental fre-
quency and cepstral peak prominence had an error below
10% when compared with microphone recordings.15 Signifi-
cant bias has also been reported for all acoustic voice fea-
tures analyzed during SV and RP for a range of Android
and iOS devices simultaneously recording voice from 22
speakers.18 Shimmer and HNR, but not fundamental fre-
quency, were reported to differ across devices in a Flemish
Dutch-speaking cohort of both healthy and patients with a
variety of speech disorders, when assessing SV and RP.22

Considering the available evidence, while various
approaches have been used to compare the performance of
mobile devices and studio microphones, their findings are
not always in agreement. This may be due to differences in
the language spoken, devices, and methods of speech collec-
tion or analysis. Additionally, the majority of validation
studies presented to-date have focused on analyzing acoustic
voice features in speech tests comprised of SV and RP tasks,
few have included syllable repetition (SR) in the
analysis.25,26 Consequently, it remains unclear whether
acoustic voice features recorded using mobile devices pro-
vide sufficient agreement with gold standard microphone to
be used in remote monitoring and clinical assessment.

Several studies have analyzed speech in PD using mobile
technology,25,27−29 including a mobile device validation
study.30 However, though quantitative analysis of speech in
HD is receiving increasing attention, the reliability of
mobile devices for monitoring speech in HD has not been
examined to-date. Characterizing changes and patterns of
speech in those with HD can add to our understanding of
this disorder. Such differences, measured reliably with
mobile technology, may be used in clinical evaluations of
disease progression or person-centered outcomes in future
clinical trials of interventions for those with HD. Lessons
learnt from studying those with HD may have implications
for those with other less well defined dementias, now and
into the future.

The objective of this study was to compare acoustic fea-
tures extracted from voice recordings using mobile devices
(smartphone and tablet) and a high-quality studio micro-
phone allied with an audio interface/preamplifier in a group
of control participants and participants with HD. Three
speech tests were examined, SV, RP, and SR, and acoustic
voice features were extracted, focusing primarily on features
related to voice quality including jitter and shimmer. The
results provide guidance on the use of mobile devices for
recording speech for the analysis of acoustic voice features
during vocal tasks typically used during motor speech
assessment.
MATERIAL AND METHODS

Data collection
Thirty-seven healthy adults (aged 34.16 § 12.75 years; 20
female) and six participants with genetically confirmed HD
(aged 53.5 § 16.78 years; three female and three males, all
with manifest stages of HD) gave their written consent to
participate in the study which was approved by the Univer-
sity College Dublin Human Research Ethics Committee, in
collaboration with Bloomfield Health Services, Dublin.
Voice was recorded simultaneously with a smartphone
device (Google Pixel 4), a tablet (Samsung Tab S6 Lite) and
a headset omnidirectional microphone (6066, DPA, Den-
mark) with a sound interface (Mix Pre3 II, Sound Devices,
USA) connected to a laptop. The recordings took place in
the university research laboratory for the healthy partici-
pants (control group) and in the clinical setting for the HD
group, with environmental noise measured with a sound
level meter, always below 45 dBA. Participants were seated
wearing the headset microphone, and facing the tablet and
the smartphone, which were both placed on tripods, at the
height of the participants’ mouth, approximately 5 to 10 cm
away, Figure 1. The equipment and protocol for data collec-
tion were selected according to the recommendations for
instrumental assessment of voice from the American
Speech-Language-Hearing Association.31 Acoustic data
were recorded during SV phonation ([a:]),32,33 reading of
the Rainbow Passage32,33 and SR ([pa], [ta], [ka], [pataka],
and [pati]) tasks, commonly known as sequential and alter-
nating motor rate tasks.33 Participants were asked to sustain
the vowel “ah” for as long as they could during one breath.
They were instructed to read the Rainbow Passage at their
own pace, as they would naturally read out loud. Finally,
participants were asked to repeat each syllable as fast and as
clearly as they could for 5 seconds. Participants repeated the
tasks two or three times. Audio data were sampled at 24-bit,
44.1 kHz or 48 kHz, and saved in an uncompressed .wav
format.
Signal analysis
Preprocessing
Speech signals were filtered with a fourth order Butterworth
band-pass filter between the 10 Hz and 5 kHz, and down-
sampled to 44.1 kHz for consistency across devices. The
mean was removed from each signal, 0.5 seconds of data at
the start and end of the signal was discarded to avoid edge
errors, and the signal was padded with zeros for 2 seconds
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at the start and end. Finally, each signal was normalized
with respect to its maximum amplitude.
Voiced/unvoiced detector
A voiced/unvoiced detector was developed to ensure that
the estimated features corresponded to voiced frames. The
Teager-Kaiser Energy operator (TKO)34 was applied to all
recordings, followed by a three-sample maximum rolling
window, and a five-sample mean rolling window. Finally,
the recordings were low-passed filtered at 10 Hz with a sec-
ond order Butterworth filter, to extract the signal envelope.
The methods for voiced/unvoiced detector for the record-
ings for each speech task (SV, SR, PR) differed after this
step.

For the SV task, a threshold was implemented to detect
candidates for the onset and offset times, Figure 2. The
threshold for the control group was set as 10% of the mean
of the Teager-Kaiser envelope, and for the HD group, 20%
of the mean of the envelope. The onset/offset times were
defined for each phonation. If the signal contained more
than one voice break during phonation, then the interval
between each pair of detected voice onset/offset times was
calculated and the pair with the maximum interval chosen.

The onset/offset detector was used also for the detection
of the voice signal during RP, with a threshold of 70% of
the mean of the Teager-Kaiser envelope for the control
group and 80% of the mean of the envelope for the HD
group. All the voiced parts during the passage were
detected, Figure 2. The unvoiced parts were not included in
the analysis.

For the SR, the onset/offset detector was deployed with
the threshold for detection set as the mean of the Teager-
Kaiser envelope for both the control and the HD group.
Each pair of onset and offset times corresponded to a sylla-
ble, Figure 2. A minimum duration of the syllable phona-
tion of 0.05 seconds was applied to avoid detection of noise
with short duration and high amplitude. Each syllable repe-
tition was analyzed individually without windowing. The
FIGURE 2. Sample audio data recorded using a microphone from a re
using the voiced/unvoiced detector for each speech task are indicated.
first and last syllables were removed to avoid detecting noise
at the beginning and end of the recording, unless five or less
syllable repetitions were detected in the trial.
Feature estimation
For SV, a 0.5 seconds moving window with 50% overlap
was applied to the detected voiced data for feature estima-
tion. Acoustic voice features were estimated for each 0.5-
second epoch and averaged across all epochs to obtain the
final estimate for that feature. To avoid edge errors, the first
and last window of each signal were discarded if the vowel
was sustained for more than 5 seconds total. Otherwise, the
entirety of the signal was analyzed.

For PR, each voiced interval was used as one epoch for
feature calculation. Finally, acoustic voice features were
estimated for each syllable for the SR task and the median
value across one repetition of the task was taken as the value
of that feature.

The features examined are commonly used in voice
assessment in neurodegenerative diseases, such as PD35 and
HD,36 and were compared across devices. The following fre-
quency-based features were estimated for each recording:
Median and standard deviation of the fundamental fre-
quency (F0 and SD F0), harmonics-to-noise ratio (HNR),
local jitter in percentage (jitter), and the jitter variants: rela-
tive average perturbation of jitter in percentage (RAP), five-
point period perturbation quotient in percentage (PPQ5),
difference of differences of periods in percentage (DDP). In
addition, the following amplitude-based features were also
estimated: shimmer in decibels (shimmer), and the shimmer
variants: three-point amplitude perturbation quotient in
percentage (APQ3), the five-point amplitude quotient in
percentage (APQ5), the 11-point amplitude quotient in per-
centage (APQ11), the difference of differences of amplitude
in percentage (DDA). The features were estimated using
custom Python scripts as described below. Following publi-
cation, the control data and Python code for estimating
acoustic voice features will be made publicly available.
presentative control subject. The onset and offset times determined
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A number of different methodologies and algorithms
have been used to estimate the fundamental frequency of
audio signals.37−40 Here, a 70:30 weighted linear combina-
tion was implemented to calculate the fundamental fre-
quency,35 with 70% being comprised of a modified Praat F0
calculation37 and a Librosa41 implementation of the YIN
algorithm38 accounted for the remaining 30%. The 70:30
weighting was selected to provide accurate estimates of F0
across epochs of varying length, including shorter epochs
for which the YIN algorithm is susceptible to higher vari-
ability. The modified version of the Praat algorithm for esti-
mating the fundamental frequency was implemented in
Python without the path finder and with a preference for
higher frequencies. For estimation of the fundamental fre-
quency, each voiced epoch was divided into 0.04-second
windows with 75% overlap. Within each window, candi-
dates for F0 that fell within the frequency range of interest
(75 Hz and 600 Hz) were identified and the candidate that
represented the lowest lag selected as F0. The median value
of F0 across all windows within each epoch was estimated.

HNR was also estimated based on the Praat algorithm,37

which calculates the heights of the peaks of the autocorrela-
tion function. Each epoch was divided into 0.08-second win-
dows with 75% overlap. The highest amplitude peaks within
the autocorrelation function were identified, the two with
the greatest amplitude were chosen and their difference in
amplitude calculated. If the absolute difference was less
than 10% the algorithm defaulted to the candidate lying at
the higher frequency. Otherwise, the algorithm chose the
candidate with the highest amplitude in the autocorrelation.

The jitter and its variants were estimated from a period
sequence formed by taking the inverse of the fundamental
frequency for each window within an epoch as described
above. Shimmer and its variants were calculated from the
amplitude sequence formed by the normalized value of the
amplitude of the signal at each instance of glottal opening
and closing identified using the MATLAB toolbox Voice-
box for each epoch.42

In addition to the effect of device, acoustic voice features
estimated using the entire phonation of the vowel were com-
pared with the values obtained by averaging across overlap-
ping 0.5-second epochs.
Statistical analysis
Bland Altman analysis43 was used to examine the agreement
between features estimated from acoustic data recorded
using the different devices. Linear mixed models (LMM)44

were implemented in R45 for each speech task and cohort
group separately, to investigate differences in the acoustic
features across devices for each cohort. For all features,
device, age, and biological sex were included as fixed effects
and the intercept for participants was included as a random
effect. For the SR task, all five syllables were included into
the same model, and syllable was added as another random
effect. P values were obtained by comparing the model with
a null model without the effect of device using an
ANOVA.44 The effect of device was investigated, along
with the effect of age and sex as a secondary objective. If a
significance difference was observed, the False Discovery
Rate was used as a post hoc test within the devices group.
Bonferroni correction was applied to account for multiple
comparisons within each family of speech task (SV, RP,
and SR), with the threshold for significance set at P < 0.004.
Correlation analysis between microphone and mobile devi-
ces was performed using the Spearman rank-order correla-
tion coefficient. Correlations were examined for the control
group only, due to the small sample size of the HD group.
Threshold levels of significance for correlation coefficients
were also adjusted for multiple comparisons using Bonfer-
roni correction.
RESULTS
The results for each of the vocal tasks are presented sepa-
rately in four sections: 3.1 Sustained vowel phonation, 3.2
Reading passage, 3.3 Syllable repetition, and 3.4 Effect of
biological sex, age, and epoch size. Within the first three sec-
tions (3.1, 3.2, and 3.3), an analysis of the Bland-Altman
plots is first presented, followed by the results of the linear
mixed models and the correlation analysis between devices.
Lastly, Section 3.4 presents the effect of biological sex and
age on acoustic voice features across the devices is
described. At the end of Section 3.4, the effect of the length
of the time epoch chosen for analysis in the SV test is also
reported. Exact P values for all statistical tests are presented
in the Appendix.
Sustained vowel phonation
Bland-Altman analysis revealed a significant bias in HNR,
and shimmer and its variants, with both mobile devices
when compared with the microphone recording during SV
phonation in control and HD groups, Figure 3.

Linear mixed model analysis revealed significant differen-
ces in HNR, and shimmer and its variants, between micro-
phone and mobile devices for both cohort groups, with
lower HNR and higher shimmer values observed with the
mobile devices, Figure 4. Values for the mean and standard
deviation of the estimated acoustic voice features along with
the P values for the linear-mixed models are presented in
the Appendix in Tables A.1 and A.2 for the control and HD
groups, respectively. Post hoc analysis confirmed significant
differences in these features between microphone and smart-
phone, and microphone and tablet, but not between smart-
phone and tablet for these features, Table A.2. A strong
correlation was observed between both mobile and the stu-
dio microphone recordings for all features examined for the
control group, Table 1.
Reading passage
During passage-reading, Bland-Altman analysis revealed a
significant bias in HNR, jitter, RAP, DDP, shimmer and its
variants between microphone and mobile devices for the



FIGURE 3. Bland-Altman plots comparing the gold standard microphone with mobile devices during the SV for the control group: (a) funda-
mental frequency, (b) standard deviation of the fundamental frequency, (c) harmonics-to-noise ratio, (d) jitter, (e) 5 five-point perturbation quo-
tient, and (f) shimmer; and for the HD group: (g) fundamental frequency, (h) standard deviation of the fundamental frequency, (i) harmonics-to-
noise ratio, (j) jitter, (k) 5 five-point perturbation quotient, and (l) shimmer. Data points and confidence intervals for the comparison of micro-
phone and smartphone are indicated in blue; data points and confidence intervals for the comparison of microphone and tablet are in green (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.).
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FIGURE 4. Violin plots illustrating the distribution of the estimated features during SV for the control group: (a) fundamental frequency,
(b) standard deviation of the fundamental frequency, (c) harmonics-to-noise ratio, (d) jitter, (e) 5 five-point perturbation quotient, and
(f) shimmer; and for the HD group: (g) fundamental frequency, (h) standard deviation of the fundamental frequency, (i) harmonics-to-noise
ratio, (j) jitter, (k) 5 five-point perturbation quotient, and (l) shimmer.
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control group. Additionally, significant bias was observed
for SD F0 and PPQ5 between microphone and tablet,
Figure 5. Significant bias was observed for F0, HNR, shim-
mer and its variants when comparing microphone and
mobile devices for recordings for the HD group. Additional
bias was observed for RAP, PPQ5 and DDP when compar-
ing microphone with smartphone for the HD group,
Figure 5.

Linear mixed models confirmed an effect of device on all
features except F0 in the control group, Figure 6 and
Table A.3. Further post hoc analysis revealed differences
between microphone and smartphone for HNR, shimmer
and its variants. Differences between microphone and tablet
were observed for all features that reported an effect of
device. In the HD group, significant differences were
observed in HNR, PPQ5, shimmer, APQ3, APQ5, and
DDA. Post hoc analysis revealed differences between micro-
phone and smartphone, and between microphone and tablet
for HNR, shimmer, APQ3, APQ5, and DDA, Table A.4.
As for the RP task, correlation analysis revealed that all the



TABLE 1.
Correlation Coefficients Rho for All the Features Estimated From Each Task Recorded From the Control Group

Feature Sustained Vowel Reading Passage Syllable Repetition

Microphone Vs

smartphone

Microphone Vs

Tablet

Microphone Vs

Smartphone

Microphone Vs

Tablet

Microphone Vs

Smartphone

Microphone Vs

Tablet

F0 1.00 ** 1.00 ** 1.00 ** 1.00 ** 0.98 ** 0.96 **

SD F0 0.97 ** 0.82 ** 0.73 ** 0.55 * 0.74 ** 0.72 **

HNR 0.97 ** 0.94 ** 0.99 ** 0.98 ** 0.97 ** 0.97 **

Jitter 0.93 ** 0.82 ** 0.83 ** 0.72 ** 0.89 ** 0.89 **

RAP 0.91 ** 0.83 ** 0.94 ** 0.84 ** 0.90 ** 0.89 **

PPQ5 0.90 ** 0.81 ** 0.89 ** 0.80 ** 0.88 ** 0.84 **

DDP 0.91 ** 0.83 ** 0.93 ** 0.84 ** 0.90 ** 0.89 **

Shimmer 0.88 ** 0.80 ** 0.95 ** 0.90 ** 0.84 ** 0.78 **

APQ3 0.83 ** 0.85 ** 0.93 ** 0.88 ** 0.83 ** 0.74 **

APQ5 0.88 ** 0.83 ** 0.90 ** 0.86 ** 0.91 ** 0.85 **

APQ11 0.88 ** 0.77 ** 0.94 ** 0.88 ** 0.95 ** 0.95 **

DDA 0.83 ** 0.85 ** 0.92 ** 0.86 ** 0.81 ** 0.76 **

* P < 0.004.

** P < 0.001.
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features were highly correlated across devices except SD F0
for the control group, Table 1.
Syllable repetition
Similar to the sustained phonation task, a significant bias
was observed for HNR, shimmer and its variants when
comparing microphone with mobile devices for the control
group, Figure 7. A significant bias was also observed in the
control group when comparing jitter, RAP and DDP from
the tablet and microphone recordings. When analyzing fea-
tures from the HD group, a significant bias with mobile
devices was observed for HNR, PPQ5, and shimmer and its
variants.

A significant effect of devicewas observed forHNR, shim-
mer and its variants, in both groups, Figure 8, Tables A.5,
A.6. Additionally, an effect of device was also observed for
RAP in the control group. Post hoc analysis revealed signifi-
cant differences between all three devices for HNR, shim-
mer, APQ3, APQ5, and DDA in the control group, and
between microphone and tablet for RAP and APQ11. For
the HD group, an effect of device was observed when com-
paring microphone and smartphone, and microphone and
tablet, but not between smartphone and tablet. Correlation
analysis confirmed a high correlation coefficient between
microphone and smartphone, and microphone and tablet
from the control group estimated features (P < 0.001),
Table 1.
Effect of biological sex, age, and epoch size
An effect of biological sex on the fundamental frequency
and on the harmonics-to-noise ratio was observed for the
control group (P < 0.004) during the SV task. No significant
difference with biological sex was observed for any feature
in the HD group during the SV task, Table A.7. An effect of
biological sex on F0, HNR, shimmer and its variants was
also observed during the RP task for the control group,
with an effect of biological sex observed only for F0 for the
HD group. For the SR task, an effect of biological sex was
observed in all features with the exception of APQ5,
APQ11, and DDA for the control group, Table A.7. No sig-
nificant effect of biological sex was observed in the HD
group.

Age had no significant effect in any of the features esti-
mated from all three speech tasks, SV, RP, and SR,
Table A.8. Finally, the effect of epoch length was investi-
gated for the SV task. When the entire signal was analyzed
the results were consistent with those obtained using a mov-
ing epoch, with an effect of device observed for HNR, shim-
mer, and its variants for both cohort groups, Table A.9.
DISCUSSION
In this study, quantitative acoustic voice features extracted
from speech recordings made using Android mobile devices
were compared with those derived from recordings made using
gold standard technology, an omnidirectional microphone
allied with a preamplifier. Acoustic voice features were esti-
mated from audio recordings during three speech tasks, sus-
tained phonation of the vowel [a:], reading of the Rainbow
Passage, and repetition of syllables in healthy control partici-
pants and in a small cohort of participants with HD.

The results indicate that fundamental frequency could be
estimated with similar accuracy across all devices and
speech tasks examined for both the control group in a labo-
ratory setting and the HD group in a clinical setting, con-
sistent with a number of previous studies.14,16,29,46 No
difference in F0 was observed across devices and tasks,
with a significant bias observed only in the case of RP task
for the HD group, Figure 5. The observed bias, however,
was small at 0.66 Hz between microphone and smart-
phone, and �0.53 Hz between microphone and tablet for



FIGURE 5. Bland-Altman plots comparing the gold standard microphone with mobile devices during RP for the control group: (a) funda-
mental frequency, (b) standard deviation of the fundamental frequency, (c) harmonics-to-noise ratio, (d) jitter, (e) 5 five-point perturbation
quotient, and (f) shimmer; and for the HD group: (g) fundamental frequency, (h) standard deviation of the fundamental frequency, (i) har-
monics-to-noise ratio, (j) jitter, (k) 5 five-point perturbation quotient, and (l) shimmer. Blue markers and confidence intervals refer to the
comparison of microphone and smartphone, and green markers and confidence intervals refer to the comparison of microphone and tablet
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.).
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FIGURE 6. Violin plots illustrating the distribution of the estimated features during RP for the control group: (a) fundamental frequency,
(b) standard deviation of the fundamental frequency, (c) harmonics-to-noise ratio, (d) jitter, (e) 5 five-point perturbation quotient, and
(f) shimmer; and for the HD group: (g) fundamental frequency, (h) standard deviation of the fundamental frequency, (i) harmonics-to-noise
ratio, (j) jitter, (k) 5 five-point perturbation quotient, and (l) shimmer.
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mean values of 167.24 Hz for microphone, 167.90 Hz for
smartphone, and 167.77 Hz for tablet, Table A.4. As the
first harmonic in the frequency domain, the fundamental
frequency can be clearly detected even in the presence of
noise or interference. In contrast, HNR was consistently
different across devices for all tasks in control and HD
groups, Figures 3 to 8 and Tables A.1 to A.6. A bias in the
HNR recorded using the microphone and smartphone was
observed for all tasks in both groups. The bias in HNR
was relatively large, at approximately �2 dB in all compar-
isons, Figures 3, 5, and 7.
Good agreement across devices was observed for the
other frequency-derived features, SD F0, jitter, and its var-
iants, RAP, PPQ5, and DDP, Figures 3, 5, and 7, in partial
agreement with previous studies.14,16,29 The exception to
this was during SR for the control group in which significant
differences were observed between microphone and tablet
for the jitter variant RAP. Though significant bias was pres-
ent for some features during SR, Figure 7, unlike linear
mixed models, Bland-Altman analysis does not account for
repeated measures within subjects or multiple comparisons,
thus the mean of repeated measures must be estimated



FIGURE 7. Bland-Altman plots comparing the gold standard microphone with mobile devices during the SR for the control group:
(a) fundamental frequency, (b) standard deviation of the fundamental frequency, (c) harmonics-to-noise ratio, (d) jitter, (e) 5 five-point
perturbation quotient, and (f) shimmer; and for the HD group: (g) fundamental frequency, (h) standard deviation of the fundamental fre-
quency, (i) harmonics-to-noise ratio, (j) jitter, (k) 5 five-point perturbation quotient, and (l) shimmer. Blue markers and confidence intervals
refer to the comparison of microphone and smartphone, and green markers and confidence interval refer to the comparison of microphone
and tablet (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.).
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FIGURE 8. Violin plots illustrating the distribution of the estimated features during the SR. Data presented here represent control group
(N = 37) and participants with HD (N = 6), repeating five different syllables. Control group: (a) fundamental frequency, (b) standard devia-
tion of the fundamental frequency, (c) harmonics-to-noise ratio, (d) jitter, (e) 5 five-point perturbation quotient, and (f) shimmer; and for the
HD group: (g) fundamental frequency, (h) standard deviation of the fundamental frequency, (i) harmonics-to-noise ratio, (j) jitter, (k) 5 five-
point perturbation quotient, and (l) shimmer.
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rather than using the individual data points.43 Furthermore,
the relative bias introduced by the tablet was relatively small
(1.29%, 0.83%, and 1.96% for the jitter, RAP, and DDP,
respectively).

The amplitude-based features, shimmer and its variants,
APQ3, APQ5, APQ11, and DDA, were found to be signifi-
cantly different between microphone and smartphone, and
between microphone and tablet recordings for all tasks
across both groups, Figures 4, 6, and 8 and Tables A.1 to
A.6. Significant bias was observed across all tasks and
groups. This result is not unexpected since shimmer pro-
vides a measure of the variability in the amplitude of the sig-
nal.47 The experimental setup used a smartphone and tablet
placed at the same height as the participants mouth, how-
ever, the microphone was head mounted, so it was placed
closer to the source, leading to a higher amplitude voice sig-
nal. Relatively higher levels of environmental noise were
thus likely present in the mobile devices, even though noise
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was kept below 45 dBA. Despite the differences observed
between devices for the amplitude-based features, correla-
tion analysis revealed a high correlation (rho > 0.7, P <
0.001) for all features examined, apart from SD F0 for the
RP task, Table 1. These differences in correlation across
devices between RP and the other speech tasks may be due
to the more dynamic nature of the task48 which would lead
to a greater variability in the acoustic features extracted
from it, especially SD F0, which is the variance of the fun-
damental frequency.

Previous comparison studies between mobile devices
and microphone for acoustic voice analysis of healthy
and pathological voices have reported conflicting results.
Our results are in agreement with previous findings of
high correlation between F0, SD F0, and jitter from
microphone and Android smartphone devices.49 How-
ever, the analysis in that study was conducted on run-
ning speech using a custom-made application for
Android. Another study which analyzed SV and RP in a
Dutch-speaking population found that F0 and jitter were
consistent across devices, and HNR and shimmer were
significantly different when comparing a head-mounted
microphone with smartphone and tablet,22 which is in
agreement with our findings.

Our results are in partial agreement also with previous
studies which reported that F0 and jitter are reliable
measures across devices during sustained phonation of
vowel [a:], but unlike our study, reported that shimmer
could also be reliably estimated.16,29 Our results indicate
that F0 and jitter can be reliably estimated across devi-
ces but caution should be taken when estimating shim-
mer. This is in partial agreement with earlier results
comparing signals recorded using an AKG microphone
and Samsung smartphone during SV [a:] which observed
that F0 and shimmer were consistent across devices in a
control group, though jitter differed, and all the three
features were consistent across devices in a cohort with
pathological voices.46 Also, in partial agreement with
our findings, a previous study found no differences
between any of the acoustic voice features estimated
from the SV [a:] with iOS iPad and iPhone allied with
an iRig when compared with a studio microphone allied
with a preamplifier.14 This difference in results could be
due higher performance and signal quality of the iRig
which is an audio interface for musical instruments. In
contrast to our findings, a previous study reported that
HNR was consistent when measured with a head-
mounted microphone and smartphone held by the partic-
ipant.29 This difference could be due to several factors,
including differences in native language (Czech), or vari-
ability in the cohorts examined, which comprised of con-
trols, PD, and sleep disorder participants.

The effect of biological sex is expected on the fundamen-
tal frequency, with males typically having a lower F0 than
females.50 This was confirmed by differences in biological
sex observed for fundamental frequency during the SV and
SR tasks for the control group, Table A.7. However, they
were not observed in SV and SR tasks performed by the par-
ticipants with HD, Table A.7. The effect of sex might have
been more pronounced in RP since it involves the phonation
of different words that may have led to a greater sensitivity
to biological sex, even with a small sample size which may
not have been sufficient to distinguish between sex in highly
structured tasks, such as SV and SR. In addition, while the
effect of disease was not investigated in this study, it may
have had an effect on the acoustic features estimated. An
effect of biological sex was also present in HNR in the SV
task, and in SD F0, HNR, jitter, RAP, PPQ5, DDP, and
shimmer in the SR task. No effect of age was observed in
any of the features across all tests and cohorts, Table A.8.

The linear mixed model,44 together with Bland-Altman
and correlation analysis, provides a more comprehensive
evaluation of the effect of device on acoustic voice fea-
tures than a single metric alone. The results of the linear
mixed models were almost always in agreement with the
Bland-Altman plots, confirming significant differences
where a significant bias was observed. However, though
linear mixed models can control for multiple factors and
avoid pseaudoreplication, it is essentially a comparison
of means. The correlation analysis showed that all the
features were highly correlated across devices even where
significant bias was observed. This is in line with previ-
ous findings of high correlation between acoustic voice
features from microphone and smartphones examined
for control participants and synthesized voice data.19,51

Collectively the results suggest that frequency-based fea-
tures can be accurately derived from recordings with
mobile devices, but that amplitude-based features and
HNR, though highly correlated across devices, may be
sensitive to device type and location.
CONCLUSIONS
Acoustic voice features can be reliably estimated using
mobile devices for sustain phonation of vowel [a:], read-
ing of the Rainbow Passage and repeating syllables, [pa],
[ta], [ka], [pataka], [pati], if consistency in device and
device placement is ensured. Caution should be taken
with HNR and amplitude-based features such as shim-
mer, APQ3, APQ5, APQ11, and DDA, as these features
are sensitive to environmental noise and signal amplitude
which is dependent on the position of the device and
microphone quality.
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TABLE A.1.
Mean § Standard Deviation of Estimated Acoustic Voice Features Estimated From the Sustained Vowel Phonation Task,
and Their Respective P Value From Linear Mixed Models (LMM) Comparison Between Microphone and Smartphone, and
Microphone and Tablet for Features Estimated From Recordings From the Control Group (* Indicates Significant Differ-
ence Following Bonferroni Correction)

Feature Mean § Standard Deviation P Values (LMM)

Microphone Smartphone Tablet Microphone Vs.

Smartphone

Microphone Vs.

Tablet

Smartphone Vs.

Tablet

F0 166.38 § 49.53 166.36 § 49.54 167.10 § 50.03 0.995 0.995 0.995

SD F0 1.11 § 0.45 1.19 § 0.63 1.96 § 2.76 0.836 0.072 0.072

HNR 20.24 § 3.25 17.44 § 3.46 16.96 § 3.32 <0.001 * <0.001 * 0.028

Jitter 0.19 § 0.06 0.20 § 0.08 0.33 § 0.48 0.930 0.053 0.053

RAP 0.08 § 0.02 0.09 § 0.04 0.17 § 0.28 0.905 0.035 0.035

PPQ5 0.12 § 0.03 0.13 § 0.06 0.26 § 0.47 0.915 0.056 0.056

DDP 0.24 § 0.07 0.26 § 0.12 0.52 § 0.84 0.905 0.035 0.035

Shimmer 0.41 § 0.25 0.54 § 0.28 0.59 § 0.29 <0.001* <0.001 * 0.108

APQ3 2.46 § 1.54 3.21 § 1.74 3.40 § 1.83 <0.001* <0.001 * 0.286

APQ5 2.87 § 1.75 3.77 § 1.93 3.95 § 1.84 <0.001* <0.001 * 0.312

APQ11 3.63 § 2.03 4.78 § 2.07 5.26 § 2.07 <0.001* <0.001 * 0.017

DDA 7.37 § 4.62 9.63 § 5.23 10.21 § 5.48 <0.001* <0.001 * 0.286

* Significant difference.

TABLE A.2.
Mean § Standard Deviation of Estimated Acoustic Voice Features Estimated From the Sustained Vowel Phonation Task,
and Their Respective P Value From Linear Mixed Models (LMM) Comparison Between Microphone and Smartphone, and
Microphone and Tablet From Recordings From Participants with HD (* Indicates Significant Difference Following Bonfer-
roni Correction)

Feature Mean § Standard Deviation P Values (LMM)

Microphone Smartphone Tablet Microphone Vs

Smartphone

Microphone Vs

Tablet

Smartphone Vs

Tablet

F0 164.76 § 35.05 164.20 § 33.97 164.37 § 34.51 0.772 0.772 0.772

SD F0 12.27 § 9.16 10.27 § 5.41 11.89 § 7.82 0.718 0.718 0.718

HNR 9.25 § 2.56 10.29 § 2.31 9.79 § 2.38 0.002* 0.001* 0.574
Jitter 3.34 § 2.89 2.50 § 1.62 3.07 § 2.34 0.596 0.596 0.596

RAP 1.46 § 1.73 0.96 § 0.97 1.26 § 1.36 0.537 0.498 0.537

PPQ5 1.62 § 2.48 1.06 § 1.21 1.43 § 1.79 0.565 0.540 0.565

DDP 4.27 § 5.22 2.79 § 2.90 3.73 § 4.07 0.537 0.498 0.537

Shimmer 1.07 § 0.25 0.94 § 0.20 1.01 § 0.24 0.026* 0.003* 0.272

APQ3 4.73 § 1.36 3.89 § 1.11 4.25 § 1.28 0.001* <0.001* 0.466

APQ5 5.79 § 1.26 4.86 § 1.05 5.23 § 1.22 <0.001* <0.001* 0.377

APQ11 5.20 § 2.84 4.45 § 2.33 4.63 § 2.62 <0.001* <0.001* 0.343

DDA 13.60 § 3.86 11.20 § 3.15 12.20 § 3.75 0.001* <0.001* 0.466

* Significant difference.



TABLE A.3.
Mean § Standard Deviation of Estimated Acoustic Voice Features Estimated From the Reading Passage Task, and Their
Respective P Value From Linear Mixed Models (LMM) Comparison Between Microphone and Smartphone, and Micro-
phone and Tablet From the Control Group (* Indicates Significant Difference Following Bonferroni Correction)

Feature Mean § Standard Deviation P Value (LMM)

Microphone Smartphone Tablet Microphone Vs

Smartphone

Microphone Vs

Tablet

Smartphone Vs

Tablet

F0 156.28 § 42.62 156.62 § 42.17 155.96 § 42.48 0.801 0.801 0.801

SD F0 9.06 § 7.09 10.97 § 8.49 11.78 § 8.36 0.078 0.001* 0.099

HNR 11.05 § 3.09 9.18 § 2.78 8.45 § 2.67 <0.001* < 0.001* <0.001*
Jitter 2.11 § 1.65 2.87 § 2.33 3.57 § 3.31 0.018 < 0.001* 0.007

RAP 0.73 § 1.05 1.12 § 1.30 1.57 § 1.97 0.035 < 0.001* 0.003*

PPQ5 0.84 § 1.20 1.19 § 1.60 1.61 § 2.57 0.171 0.003* 0.067

DDP 2.10 § 3.09 3.20 § 3.87 4.41 § 5.78 0.044 < 0.001* 0.009

Shimmer 0.90 § 0.29 1.09 § 0.30 1.22 § 0.33 <0.001* < 0.001* <0.001*
APQ3 3.49 § 1.32 4.61 § 1.36 5.40 § 1.60 <0.001* < 0.001* <0.001*
APQ5 4.49 § 1.50 5.83 § 1.44 6.61 § 1.56 <0.001* < 0.001* <0.001*
APQ11 3.96 § 2.51 4.91 § 3.20 5.76 § 3.47 0.001* < 0.001* 0.002*

DDA 9.92 § 3.65 13.26 § 3.86 15.55 § 4.52 <0.001* < 0.001* <0.001*

* Significant differences.

TABLE A.4.
Mean § Standard Deviation of Estimated Acoustic Voice Features Estimated From the Reading Passage Task, and Their
Respective P Value From Linear Mixed Models (LMM) Comparison Between Microphone and Smartphone, and Micro-
phone and Tablet From Recordings From Participants With Hd (* Indicates Significant Difference Following Bonferroni
Correction)

Feature Mean § Standard Deviation P Values (LMM)

Microphone Smartphone Tablet Microphone Vs

Smartphone

Microphone Vs

Tablet

Smartphone Vs

Tablet

F0 167.24 § 40.83 167.90 § 40.77 167.77 § 40.79 0.915 0.915 0.915

SD F0 4.40 § 1.90 4.39 § 1.19 4.13 § 1.36 0.976 0.677 0.677

HNR 15.49 § 4.21 11.54 § 3.67 11.25 § 3.93 <0.001* <0.001* 0.506

Jitter 0.77 § 0.22 0.95 § 0.29 0.90 § 0.31 0.058 0.131 0.485

RAP 0.16 § 0.05 0.27 § 0.11 0.27 § 0.15 0.011 0.011 0.979

PPQ5 0.28 § 0.10 0.39 § 0.15 0.40 § 0.18 0.009 0.006 0.656

DDP 0.46 § 0.14 0.79 § 0.33 0.80 § 0.45 0.008 0.008 0.925

Shimmer 0.65 § 0.21 0.93 § 0.19 1.02 § 0.25 <0.001* <0.001* 0.044

APQ3 2.87 § 1.13 4.31 § 1.27 4.91 § 1.72 <0.001* <0.001* 0.036

APQ5 3.51 § 1.44 5.45 § 1.66 6.38 § 2.17 <0.001* <0.001* 0.035

APQ11 4.42 § 1.34 6.28 § 1.99 7.12 § 2.88 0.066 0.015 0.349

DDA 8.33 § 3.27 12.55 § 3.72 14.38 § 5.35 <0.001* <0.001* 0.056

* Significant difference.
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TABLE A.5.
Mean § Standard Deviation of Estimated Acoustic Voice Features Estimated From the Syllable Repetition Task, and Their
Respective P Value From Linear Mixed Models (LMM) Comparison Between Microphone and Smartphone, and Micro-
phone and Tablet From Recordings From the Control Group (* Indicates Significant Difference Following Bonferroni
Correction)

Feature Mean § Standard Deviation P Value (LMM)

Microphone Smartphone Tablet Microphone Vs

Smartphone

Microphone Vs

Tablet

Smartphone Vs

Tablet

F0 167.75 § 46.02 169.50 § 46.82 170.64 § 46.75 0.198 0.022 0.232

SD F0 13.86 § 18.11 15.99 § 21.15 15.97 § 21.57 0.199 0.199 0.969

HNR 10.08 § 3.96 9.29 § 3.56 8.64 § 3.64 <0.001* <0.001* <0.001*
Jitter 4.71 § 6.55 5.53 § 6.96 6.09 § 8.14 0.081 0.003* 0.175

RAP 2.13 § 3.77 2.56 § 3.78 3.00 § 4.65 0.085 0.002* 0.085

PPQ5 2.17 § 3.74 2.43 § 4.05 2.54 § 4.41 0.673 0.673 0.683

DDP 6.11 § 10.85 7.23 § 10.85 8.20 § 13.28 0.179 0.014 0.179

Shimmer 0.87 § 0.55 1.03 § 0.56 1.20 § 0.78 <0.001* <0.001* <0.001*
APQ3 3.16 § 1.93 4.35 § 2.23 5.03 § 2.44 <0.001* <0.001* <0.001*
APQ5 2.89 § 2.40 4.03 § 2.92 4.65 § 3.18 <0.001* <0.001* <0.001*
APQ11 1.60 § 3.39 2.14 § 3.79 2.52 § 4.61 0.047 0.002* 0.188

DDA 8.46 § 5.22 11.83 § 6.12 13.86 § 6.93 <0.001* <0.001* <0.001*

* Significant difference.

TABLE A.6.
Mean § Standard Deviation of Estimated Acoustic Voice Features Estimated From the Syllable Repetition Task, and Their
Respective P Value From Linear Mixed Models (LMM) Comparison Between Microphone and Smartphone, and Micro-
phone and Tablet From Recordings From Participants With Hd (* Indicates Significant Difference Following Bonferroni
Correction)

Feature Mean § Standard Deviation P Values (LMM)

Microphone Smartphone Tablet Microphone Vs

Smartphone

Microphone Vs

Tablet

Smartphone Vs

Tablet

F0 200.88 § 81.26 207.59 § 81.86 208.24 § 82.95 0.872 0.872 0.939

SD F0 6.93 § 4.79 7.52 § 5.41 6.74 § 4.80 0.747 0.747 0.747

HNR 15.20 § 5.10 11.66 § 4.70 11.10 § 4.89 <0.001* <0.001* 0.062

Jitter 1.14 § 1.06 1.28 § 0.88 1.30 § 1.04 0.936 0.936 0.936

RAP 0.29 § 0.49 0.43 § 0.40 0.54 § 0.63 0.385 0.245 0.385

PPQ5 0.41 § 0.35 0.62 § 0.51 0.61 § 0.55 0.151 0.151 0.929

DDP 0.88 § 1.47 1.30 § 1.21 1.58 § 1.90 0.450 0.295 0.450

Shimmer 0.65 § 0.26 1.05 § 0.41 1.18 § 0.67 <0.001* <0.001* 0.129

APQ3 2.77 § 1.40 4.89 § 2.59 6.79 § 2.67 0.001* <0.001* 0.138

APQ5 3.84 § 1.86 6.40 § 2.77 6.79 § 2.67 <0.001* <0.001* 0.268

APQ11 5.20 § 3.18 8.10 § 3.90 8.35 § 3.86 <0.001* <0.001* 0.714

DDA 8.28 § 4.23 14.56 § 7.82 17.04 § 12.23 0.002* <0.001* 0.131

* Significant difference.
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TABLE A.7.
P Values for the Effect of Biological Sex on the Estimated Features (* Indicates Significant Difference Following Bonferroni
Correction)

Feature Sustained Vowel Reading Passage Syllable Repetition

Control HD Control HD Control HD

F0 0.000 * 0.067 <0.001 * <0.001 * <0.001 * 0.089

SD F0 0.286 0.234 0.551 0.221 0.003 * 0.761

HNR 0.000 * 0.618 <0.001 * 0.061 <0.001 * 0.063

Jitter 0.074 0.262 0.011 0.311 <0.001 * 0.577

RAP 0.217 0.206 0.016 0.194 <0.001 * 0.810

PPQ5 0.156 0.254 0.025 0.183 <0.001 * 0.687

DDP 0.217 0.206 0.016 0.173 <0.001 * 0.834

Shimmer 0.018 0.855 <0.001 * 0.054 <0.001 * 0.123

APQ3 0.043 0.631 <0.001 * 0.018 0.001 * 0.082

APQ5 0.020 0.680 <0.001 * 0.076 0.783 0.090

APQ11 0.004 0.593 0.003 * 0.742 0.098 0.366

DDA 0.043 0.631 <0.001 * 0.029 0.009 0.080

TABLE A.8.
P Values for the Effect of Age on the Estimated Features (* Indicates Significant Difference Following Bonferroni
Correction)

Feature Sustained Vowel Reading Passage Syllable Repetition

Control HD Control HD Control HD

F0 0.067 0.143 0.131 0.035 0.128 0.374

SD F0 0.050 0.288 0.120 0.934 0.130 0.740

HNR 0.372 0.699 0.385 0.919 0.111 0.557

Jitter 0.066 0.237 0.055 0.822 0.252 0.679

RAP 0.182 0.167 0.046 0.689 0.223 0.803

PPQ5 0.056 0.171 0.035 0.863 0.099 0.818

DDP 0.182 0.167 0.044 0.664 0.185 0.824

Shimmer 0.439 0.780 0.697 0.632 0.744 0.342

APQ3 0.467 0.551 0.794 0.250 0.212 0.199

APQ5 0.398 0.664 0.475 0.131 0.039 0.212

APQ11 0.383 0.790 0.102 0.070 0.769 0.149

DDA 0.467 0.551 0.642 0.190 0.066 0.188
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TABLE A.9.
P Values for the Features Estimated From the Entire Signal for Sustained Vowel for Both Groups (* Indicates Significant
Difference Following Bonferroni Correction)

Feature Control HD

Microphone Vs.

Smartphone

Microphone vs.

Tablet

Smartphone Vs.

Tablet

Microphone Vs.

Smartphone

Microphone Vs.

Tablet

Smartphone Vs

Tablet

F0 0.998 0.998 0.998 0.873 0.873 0.873

SD F0 0.448 0.050 0.147 0.424 0.424 0.766

HNR 0.000 * 0.000 * 0.041 0.002 * 0.001 * 0.575

Jitter 0.397 0.037 0.141 0.514 0.514 0.734

RAP 0.363 0.030 0.137 0.434 0.376 0.615

PPQ5 0.461 0.019 0.067 0.398 0.320 0.595

DDP 0.363 0.030 0.137 0.434 0.376 0.615

Shimmer 0.000 * 0.000 * 0.124 0.004 * <0.001 * 0.315

APQ3 0.001 * 0.000 * 0.235 <0.001 * <0.001* 0.617

APQ5 0.000 * 0.000 * 0.317 <0.001 * <0.001 * 0.558

APQ11 0.000 * 0.000 * 0.047 <0.001 * <0.001 * 0.226

DDA 0.001 * 0.000 * 0.235 <0.001 * <0.001 * 0.617
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