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Abstract
Low-energy electronmicroscopy (LEEM) taken as intensity–voltage (I–V) curves
provides hyperspectral images of surfaces, which can be used to identify the
surface type, but are difficult to analyse. Here, we demonstrate the use of an algo-
rithm for factorizing the data into spectra and concentrations of characteristic
components (FSC3) for identifying distinct physical surface phases. Importantly,
FSC3 is an unsupervised and fast algorithm. As example data we use experi-
ments on the growth of praseodymium oxide or ruthenium oxide on ruthenium
single crystal substrates, both featuring a complex distribution of coexisting sur-
face components, varying in both chemical composition and crystallographic
structure. With the factorization result a sparse sampling method is demon-
strated, reducing the measurement time by 1–2 orders of magnitude, relevant
for dynamic surface studies. The FSC3 concentrations are providing the features
for a support vector machine-based supervised classification of the surface types.
Here, specific surface regions which have been identified structurally, via their
diffraction pattern, as well as chemically by complementary spectro-microscopic
techniques, are used as training sets. A reliable classification is demonstrated on
both example LEEM I–V data sets.

KEYWORDS
classification, hyperspectral analysis, low-energy electron microscopy, oxide films,
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1 INTRODUCTION

Low-energy electron microscopy (LEEM) is a powerful
experimental method that provides high-resolution hyper-
spectral data when used in the I–V imaging mode. In
many applications, the information sought is the spatial
distribution of surface types, that is, the structure of the
first few atomic layers of the investigated sample surface.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

This, as well as the electronic band structure, is encoded in
the energy-dependent elastic backscattering of low-energy
electrons at the surface, so-called intensity versus electron
energy, or in short LEEM I–V spectra. Differing from con-
ventional low-energy electron diffraction intensity–voltage
analysis (LEED I–V), where a number of diffracted beams
are recorded and analysed, LEEM I–V analysis is usually
restricted to the specular beam, that is, the (0,0) reflection
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2 MASIA et al.

in LEED, since the generation of higher-order LEED
reflections is not possible at very low electron energies due
to the small radius of the Ewald sphere given by the elec-
tronwavevector. For example, the de Broglie wavelength of
a 10 eV electron is 0.39 nm. This means that any scattering
vector corresponding to smaller lattice dimension falls
outside the Ewald sphere. At 100 eV, the electron wave-
length is 0.12 nm, increasing the size of the sphere. Thus,
the (0,0) reflection in LEED is the only reflection that can
be expected to occur for all unfaceted coexisting surface
phases regardless of their respective crystal structure.
Importantly, the resulting LEEM I–V spectra are difficult

and time-consuming to interpret. The dominating diffrac-
tion contrast is well understood for higher energies in the
context of conventional LEED I–V analysis.1,2 However,
the electron energies in LEEM are in the so-called VLEED
(very low energy electron diffraction) region at energies
below 50 eV. For these energies, the interaction of the elec-
tronswith the surface cannot be understood in terms of the
dynamic diffraction theory which is successfully applied
for higher energies.1,2 Instead, the theoretical description
is complex and electron band interactions must be taken
into account.3–6 Moreover, for a complete description of
the data, additional contrast mechanisms like phase con-
trast at steps need to be considered7–9 and calculations for
surfaces with large and inhomogeneous surface structures
are not available. To circumvent this problem, a finger-
printing approach has been established already in the early
1990s.10–12 The term fingerprinting refers to comparing
measured data with well-known spectra (I–V curves). The
knowledge on such spectra being a characteristic signa-
ture of a specific surface phase is usually established by
employing complementary methods like X-ray photoemis-
sion electron microscopy (XPEEM), providing chemical
information, or LEED reference data of homogeneous sur-
face regions. A typical task in a LEEM I–V experiment is
however the study of unknown surface phases, which thus
need to be identified without such prior knowledge. This
is the starting point of the present study.
The task at hand is sorting the measured spectra into

groups based on their similarity, at best with pixel resolu-
tion.Whenmonitoring dynamic changes of the surface, for
example by growth processes or during surface reactions,
this classification should be fast and allow for real-time
data acquisition and analysis. Capturing a hyperspectral
image stack with high-energy sampling rate and sufficient
signal to noise typically takes several 10 min, which is
often too slow to follow the growth dynamics. Instead, a
faster operation is required, which with present instru-
mentation can only be achieved by reducing the spectral
density of the measurement, that is, reducing the num-
ber of energies measured. Furthermore, short exposure
times can induce additional experimental artefacts, such as
fluctuations of the electron source brightness. While such

effects may be accounted for, for example by monitoring
the overall intensity as a reference, it is beneficial main-
taining a given exposure time and reducing the number of
spectral points instead.
In the literature, classification has been done using prin-

cipal component analysis of the I–V spectra, to reduce the
dimensionality of the single pixel data, followed by unsu-
pervised clustering algorithms like 𝑘-means.13 This type of
classification algorithm a priori assumes that each pixel
is representing only one phase. Mixed phases, however,
which are collected as a superposition of their components
into one pixel spectrum, must be accounted for afterwards
either by assignment to the most similar ‘majority’ phase,
or by leaving such pixels unclassified.
We show here a method (see sketch in Figure 1)

which factorizes the LEEM hyperspectral data into non-
negative components and concentrations, using the FSC3

algorithm.14–16 Using the concentrations, a supervised
classification is developed using pairwise support vector
machines (SVM) taking into account the uncertainty of
the training set to evaluate a classification probability. This
method provides a fast and reliable classification of surface
reconstructions, as we show in two examples, ruthenium
oxide (RuO2) and praseodymium oxide (PrO𝑥).
Furthermore, using the extracted component spectra,

we demonstrate a sparse sampling (SS) method similar
to our previous work,17 but using the FSC3 component
spectra for projection and the resulting concentrations for
classification. We show that even reducing the number
of spectral points to the number of components, which
in our example of PrOx are nine components, down from
235 in the original spectra, more than 90% of points were
classified, of which less than 10% were misclassified com-
pared to the result using all spectral points, while reducing
the acquisition time by a factor of 30 per classification for
the present conditions. We note that the performance is
dominated by the reduction in signal-to-noise ratio (SNR)
due to the reduced number of spectral points. The SNR is
of the order of 20 for each point, limited by the shot noise
of the order of 1000 electrons detected per pixel, and the
typical noise factor of the micro-channel plate amplifier
of about two.18 We therefore expect that taking data with
higher SNR, for example by a larger integration time or
a higher beam current, would improve the results of the
SS classifier, even when using the minimum number of
spectral points.
This article is structured as follows: Section 2 provides a

short explanation of the LEEM I–V technique, the physical
interpretation of I–V spectra and their use in fingerprint-
ing approaches. In Section 3, the two example data sets
analysed in this study are introduced and the respective
experimental details are provided. In Section 4, the data
analysis procedure is presented in detail, including the
pre-processing of the data, the factorization approach, the

 13652818, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jm

i.13155 by C
ardiff U

niversity, W
iley O

nline L
ibrary on [05/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MASIA et al. 3

F IGURE 1 Sketch of the analysis method. LEEM I–V stacks are recorded, and factorized into non-negative components and spectra by
FSC

3. Manually selected regions are used as a training set for a classifier on the resulting component concentrations. Sparse sampling
retrieves the FSC3 concentrations from a smaller number of spectral points, down to the number of FSC3 components. The spectral positions
are optimized for the smallest number of unclassified or misclassified points, resulting in a measurement speed-up by an order of magnitude

classification technique and the optimization by SS. The
results obtained on the example data sets are presented in
Section 5, followed by the conclusions.

2 LEEM I–VMETHODOLOGY

LEEM is a versatile technique used in surface science. It
provides means for in situ structural and electronic char-
acterisation of surfaces in ultra-high vacuum. An electron
beam with an electron energy of typically a few eV to
a few tens of eV is used to homogeneously illuminate
the imaged region of the sample surface. The elastically
backscattered electrons pass a lens system and are pro-
jected onto the detector, forming an image. This full-field
microscopy technique enables a high time resolution of the
order of 100 ms at a lateral resolution better than 10 nm.
Hence, LEEM allows for observing nanoscale surface pro-
cesses in real time. This can be exploited, for instance, to
study surface reactions in gas atmospheres up to 10−4 Torr
as well as growth mechanisms in molecular beam epitaxy
(MBE).19,20
A key feature of LEEM is that it can be operated in

a spectro-microscopic mode: When the electron energy
is varied in small steps across a given range, a distinct
intensity–voltage spectrum (I–V curve) can be acquired
for each individual pixel of the detector camera. The I–
V spectrum provides the energy-dependent reflectivity of
the sample surface, where contrast mainly arises from
the atomic structure and the electronic band structure. At
step edges and phase boundaries, phase contrast can addi-
tionally occur, and larger three-dimensional objects like

protrusions, pits and steps in the topography can cause
image distortions. Depending on the diffracted order that
is used for imaging, it is called bright field (using the spec-
ular (00) reflection), or dark-field imaging (using other
reflections).
During I–Vmeasurements the kinetic energy of the inci-

dent electrons is varied by tuning the start voltage applied
to the sample, which also affects the objective lens set-up
and hence the focussing of the obtained images. Therefore,
while sweeping the start voltage the objective lens current
is swept accordingly to maintain focussing.

2.1 Physical interpretation of I–V
spectra

In general, solving the Schrödinger equation for the
imaging electrons over the whole space of vacuum and
crystal is required to generate theoretical I–V curves.
This is needed in order to account for effects of both
diffraction and electronic band structure on the electron
reflection. State-of-the-art ab initio calculations, using
a Bloch wave ansatz in the crystal half space, are able
to reproduce experimental spectra.5,6 However, since
these calculations are complex and require an accurate
crystallographic model of an assumed phase a priori, the
backward problem, that is, the structural and electronic
characterization of unknown phases solely from their spe-
cific experimental I–V spectra, must be considered highly
complex. As mentioned before, to bypass this, I–V curves
can be used as a fingerprint for distinct surface phases.21
In this way, established fingerprints can be used to identify
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4 MASIA et al.

the phase of regions as small as the spatial resolution of
the imaging.

2.2 Fingerprinting and classification
approaches

LEEM offers several methods which allow for an assign-
ment of I–V curves to structure: By adjusting the electron
optics between sample and detector, it is possible to project
the LEED pattern from the back focal plane of the objec-
tive lens onto the detector. Using an aperture, the surface
area that constitutes the LEED pattern can be restricted
down to diameters of sub-micrometer dimensions. Thus, if
large enough regions of the surface phase in question exist,
information about the crystal structure can be inferred
and taken into consideration for determining the phase.
Furthermore, it is possible to select characteristic diffrac-
tion spots for imaging (dark-field LEEM), which enables
a highly resolved visualization of the spatial distribution
of the surface components with the corresponding spa-
tial periodicity in the crystal structure. Also, a LEEM
instrument can be used in emission mode by exciting the
surface with light, typically using a synchrotron as pho-
ton source to achieve high-intensity X-ray illumination
tunable in both photon energy and incident polarization,
making spectro-microscopic methods available via photo-
electron emission (XPEEM).22 The analysis of local X-ray
photoelectron and absorption spectra allows for a chemical
analysis of the studied surface phase.
This assignment allows to establish I–V fingerprints for

a range of surface phases. However, the identification of
surface regions based on these fingerprints is often far
from trivial. Firstly, the image stacks depicting a fine-
grained composition of species contain a considerable
amount of edge pixels, where spectra of neighbouring
phases are superimposed. Secondly, typical experiments
may involve a coexistence of numerous surface phases dis-
tributed with very different area fractions. Frequently, new
phases, having unknown I–V spectra, occur in addition
to the established ones. Hence, the first challenge usu-
ally consists of dissecting the data stack into an unknown
number of components, as many as there are physically
distinct phases present at the surface, and elaborate their
characteristic spectra therefrom.
De Jong et al.13 presented a method where the spec-

tra are first reduced in dimension by principal component
analysis, after which a 𝑘-means clustering algorithm is
employed to classify each pixel. The spectra compiled by
this can then be compared to the known fingerprints to
verify them. Significantly though, it is not trivial to sep-
arate an unknown number and distribution of phases in
the spectral space. Because no prior information is taken
into account, edge cases are not handled properly when

phases superpose or when two phases have a smaller
spectral variation from one another than what a third
phase might encompass in itself. Also, because the 𝑘-
means algorithm does not employ any statistical model,
evaluating the confidence in the classification requires
additional analysis.

3 EXPERIMENTAL DATA

Here we provide details of the experimental data sets used
in the analysis as exemplary data.

3.1 Praseodymium oxide

The PrO𝑥 LEEM I–V data were recorded on an ultrathin
praseodymium oxide film on a Ru(0001) surface, using
the Elmitec SPELEEM at the I311 beamline23,24 of the
MAX-lab synchrotron radiation facility in Lund, Sweden,
as described in detail in Refs. 25, 26. The detector sys-
tem of multi-channel plates and camera is comparable to
the one that is described in detail in Section 3.2. For the
reported measurements, data were captured without bin-
ning, resulting in a 1200 pixel by 1200 pixel resolution for
the full field of view. It shows a complex band-like mor-
phology of coalesced oxide islands, arranged along the step
edges of the substrate. The Ru substrate, which is covered
with an oxygen adlayer, can be identified reliably based on
its characteristic I–V fingerprint. The praseodymia bands,
on the other hand, comprise a rich substructure of coex-
isting surface species. Structural information was obtained
from the individual phases via 𝜇-LEED, and X-ray absorp-
tion spectra of the same region were collected in PEEM
mode. Finally, in good agreement with theoretical reflec-
tivity curves, five distinct praseodymiumoxide phases have
been characterized,with differences in stoichiometry, crys-
tallographic structure and even surface termination.While
this data set here serves to illustrate the complexity that
can arise in such growth experiments, and presents a chal-
lenging test case for the presented numerical approach, the
reader is referred to the original studies25,26 for a detailed
physical description of this surface system.

3.2 Ruthenium oxide

The RuO2 data set was recorded using the Elmitec
SPELEEM at the Institute of Solid State Physics at the
University of Bremen. The instrument is equipped with a
detection assembly ofmulti-channel plates and a phospho-
rous screen by PHOTONIS and a pco.1600 cooled charged
coupled device (CCD) camera by PCO for data acquisition
with low readout noise. A set of illumination apertures
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MASIA et al. 5

allows micro-diffraction measurements on areas as small
as 250 nm in diameter.
The sample was prepared in situ in the LEEM instru-

ment. Firstly, the substrate, a commercial Ru(0001) single
crystal by Mateck (<0.1◦ miscut), was cleaned by repeat-
edly oxidizing the surface with molecular oxygen and
then flash-annealing it to >1400◦C.27 It was then sub-
jected to atomic oxygen from an OBS 40 thermal cracker
(Dr. Eberl MBE-Komponenten GmbH). The cracker was
operated at 1780◦C; given the chamber geometry and the
manufacturer’s information, a cracking efficiency of 15% is
assumed. The total atomic oxygen dose used over a dura-
tion of ca. 180 min thus amounts to 1250 L. The sample
temperature was kept at 415◦C during the oxidation pro-
cess. After this preparation, the I–V LEEM image stackwas
acquired. For each energy in the range of 3–50 eV with a
step size of 0.2 eV, a bright field image was taken with an
exposure time of 4 s.

4 DATA ANALYSIS

LEEM I–V image stacks were processed using the analysis
pipeline detailed in the following.

4.1 Image pre-processing

At very low kinetic energies (<10 eV), the electron trajec-
tories are strongly deflected at topographical features. In
the analysis, we hence disregard images recorded in this
energy regime. The energy range to be excluded depends
on the respective topographical roughness of the sam-
ple region and was chosen individually for each data set,
that is, <7 eV for the PrO𝑥 data and <15 eV for the
RuO2 data.
For the PrO𝑥 data, containing 823 × 755 spatial pix-

els and 331 spectral points, we start by registering the
hyperspectral data in-plane to compensate for lateral
instrumental drift, using a translation vector between two
consecutive spectral frames determined by the Matlab
function imregtform. We then denoise the data applying
a singular value decomposition (SVD)14 on whitened data
(the intensity noise in the data is dominated by electron
shot noise, scaling proportional to the square root of the
intensity – we thus use the square root of the data which
has a noise independent of intensity, i.e. it is whitened),
and retain only the 50 SVD components of highest value in
the reconstructed data. We then correct for vignetting by
fitting the data at 7.8 eV, which provides the most homo-
geneous spatial pattern (excluding outliers below 67% or
above 144% of themean) with a two-dimensional Gaussian

function. The fit is then normalized to unity centre value
and the data at all energies are divided by it.
For the RuO2 data, containing 567 × 609 spatial pixels

and 236 spectral points, we had access to measurements
of the energy-independent system sensitivity and dark
current, which we used to correct the inhomogeneous illu-
mination. The registration profile was calculated on the
raw data in regions of high sensitivity. The profiles were
then applied to the sensitivity corrected images. Pixelswith
relative sensitivity below 2%were removed. After this, SVD
denoising is done as above, followed by vignetting correc-
tion using the spectrally averaged data for the fit, excluding
pixels with values above 135% of the mean.

4.2 Factorization

After pre-processing, the hyperspectral data are decom-
posed as a linear combination of components using FSC3,
which is employing a non-negative matrix factorization
(NMF) algorithm. In this method, the hyperspectral data
𝐷 are factorized as a linear combination of spectra 𝑆 dis-
tributed spatially according to the maps 𝐶, that is 𝐷 =

𝐶 × 𝑆 + 𝐸. The component concentrations𝐶 and spectra 𝑆
are found in an iterativeway, startingwith randomguesses,
by minimizing the Fröbenius norm of the error 𝐸, with
non-negativity constraints on 𝑆 and 𝐶. This factorization
method is different from other techniques, such as PCA,
where the data are expressed in terms of orthogonal com-
ponents which best represent the largest variance in the
data. Specifically, the orthogonality constraint results in
component spectra having positive and negative values,
different to physical components of intensity spectra. For
the PrO𝑥 data set, the standard FSC3 algorithm was used,
while for the RuO2 data set, we used a weighted algo-
rithm iteratively taking into account the spectral error 𝐸s

to improve retrieval of rare components, as described in
Ref. 15. The spectral error is defined as the average of the
square of the factorization error over the spectral domain,
normalized by the average of the square of the data over
both spectral and spatial domain,

𝐸s (𝑝) =
𝐩
∑

𝑠
𝐸2
𝑠,𝑝∑

𝑠

∑
𝑝
𝐷2
𝑠,𝑝

, (1)

where 𝐩 indicates the number of spectral and spatial points
in the image.
The weight at iteration step 𝑖 + 1 at spatial point 𝑝 is

taken as

𝑤𝑖+1(𝑝) =

(
𝑤𝑖(𝑝)

𝐸s(𝑝)⟨𝐸s⟩
)1−𝛼

, (2)
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6 MASIA et al.

where the ⟨.⟩ denotes the average over the spatial points,
and we used 𝛼 = 0.5. Positions with a resulting weight
exceeding 4

√
𝐩, were removed from the analysis in the

subsequent iteration. For the PrO𝑥 (RuO2) data set, nine
(six) components were found to represent the data well,
as judged using the spectral error showing a spatial aver-
age of around 1%. In the factorization, we have scaled
the individual component concentration maps with fac-
tors minimizing the concentration error 𝐸c defined as|1 −∑

𝑘
𝐶𝑘|, where 𝑘 is the component index and |.| is

the 2-norm. 14 The component spectra have been accord-
ingly scaled with the inverse factors to retain the resulting
factorized data.

4.3 Classification

The concentrations of the components obtained from the
factorization are used as features for a supervised clas-
sification using an SVM. Differently from unsupervised
classifiers, such as the k-means used in Refs. 13, where the
algorithm groups the pixels in classes depending on their
similarity, the SVMmethod is based on training the classi-
fier using prior knowledge. Here, the component spatial
distributions are used to identify the areas of a specific
class.While unsupervised classifiers do not require a train-
ing set, the number of classes needs to be determined by
defining a figure of merit of the classification, with no uni-
versal accepted method available yet. For the PrO𝑥 (RuO2)
data, 𝑁 = 7 (𝑁 = 5) areas were selected, each defining a
class. For each pair of classes (𝑖, 𝑗), we calculate a binary
SVM classifier using the two corresponding training sets,
and use it to determine, for each spatial point 𝑝 in the
image, the distance from the corresponding SVM hyper-
plane, 𝑑ij(𝑝). For each pair, we choose a distance scale to
provide a mean of +1(−1) for the training sets of class 𝑖(𝑗),
respectively, and determine the resulting standard devia-
tion 𝜎𝑖𝑗 of 𝑑𝑖𝑗 for class 𝑖. Assuming a Gaussian distribution,
we then calculate a probability density that a spatial point
𝑝 is associated to class 𝑖 as

𝔭ij(𝑝) =
1√

2𝜋𝜎𝑖,𝑗

exp

(
−
(𝑑ij(𝑝) − 1)2

2𝜎2ij

)
. (3)

The product of this density over all pairs of classes (𝑖, 𝑗),

𝑃𝑖(𝑝) =
∏
𝑗≠𝑖

𝔭ij(𝑝) (4)

defines a probability density that the spatial point is asso-
ciated to the class 𝑖. The class 𝑙 with the largest probability
density, that is 𝑃𝑙(𝑝) ≥ 𝑃𝑖(𝑝) for all classes 𝑖, is assigned to
the spatial point 𝑝. To quantify the likelihood of the classi-

fication, we normalize 𝑃𝑖(𝑝) by the product of the maxima
of the probability densities equation 3, yielding

𝑃̃𝑖(𝑝) =
∏
𝑗≠𝑖

√
2𝜋𝜎ij𝔭ij(𝑝) (5)

and define the normalized average standard deviation

𝜎̃𝑖 =

√
2

1 − 𝑁
log (𝑃̃𝑖) (6)

providing the average distance of the point from the
training set mean in units of the training set standard
deviations, quantifying the confidence of the classification.
We introduce a threshold 𝜎̃t, to define points with 𝜎̃𝑖 > 𝜎̃t
as unclassified.

4.4 Sparse sampling

In Refs. 17, we have introduced a method to increase
the acquisition speed in sequential hyperspectral imaging
based on the concept of SS. In that work, we have used
SVD to define a basis given by the highest singular val-
ues, and find the spectral positions of a small number of
spectral points minimizing the error in the reconstruc-
tion using this basis. SVD was used as opposed to NMF
to determine the basis since the reconstructed quantity
was subject to further non-linear processing prior to rep-
resenting physically constrained concentrations. Here, we
present a corresponding method for the LEEM data.
We use an image which covers the full spectral range

sampled at the Nyquist limit of the instrument spectral
resolution to determine a subset of the spectral points by
minimizing a figure of demerit (FOD) related to the classi-
fication results. The FSC3 spectra 𝑆 determined as detailed
in Section 4.2 are used as a basis for reconstruction. A
non-denoised hyperspectral image 𝐷∗, acquired at a lim-
ited number of 𝑁s spectral points, can be projected into
the set of spectra obtained from FSC3 of the data with
full spectral information, thus calculating the concentra-
tion distributions 𝐶∗ which can be used as features for
the classifications. The concentrations are determined by
solving the system 𝑆∗𝐶∗ = 𝐷∗ using a non-negativity con-
straint, where 𝑆∗ is given by 𝑆 taken at the spectral points of
𝐷∗. The classification obtained using the data with sparse
sampled spectral points can differ from the classification
resulting from the analysis of the data with full spectral
information. To inform the choice of the spectral points,
we define two FODs: (i) the fraction of points 𝑓l with
𝜎̃ > 𝜎̃t, representing the loss of information; (ii) the frac-
tion of misclassified points 𝑓m relative to the classification
using the full spectral information. To test the algorithm,
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MASIA et al. 7

we have divided the images into a 4 × 4 checker board
pattern, where the ‘black’ fields are used to define factor-
ization, classification and optimization of spectral points,
while the ‘white’ fields serve to verify the method on an
unseen data set.
We have considered different methods to determine

the set of 𝑁s spectral points: a sequential feature selec-
tion, a random sampling, a random walk sampling, a
gradient-based and a surrogate optimization algorithm.
For the sequential feature selection, we have used the

MATLAB function sequentialfs. A forward or backward
search direction can be selected. For the minimization of
𝑓l , we have obtained similar results for both directions,
while for𝑓𝑚 the forward direction, that is startingwith one
spectral point, resulted in higher FODs than the backward
direction.
In the random method, 𝑁s spectral points are sampled

with no memory of the previous step. We have consid-
ered 1000 sampling loops, and the set minimizing the FOD
is returned. For the random walk approach, we main-
tain an approximate sampling density from the previous
successful iteration. Starting with equidistant points cov-
ering the measured range, each iteration moves the points
to a random position within the interval covering half
the distance to the adjacent spectral points, in this way
conserving the spectral ordering and the local spectral
point density, while exploring the whole spectral range.
Using the data 𝐷∗ at the sparse spectral points 𝑆∗, we
determine the concentration maps 𝐶∗ as discussed, and
classify the points using the classifier obtained from the
full spectral information. The FOD’s for this classification
are evaluated and the new spectral points are kept for the
next iteration only if the FOD was reduced. The itera-
tion is stopped after a given number of loops – chosen to
be 1000.
The gradient-based optimization uses a ‘interior-point’

algorithm (MATLAB function fmincon), where the min-
imum change in the spectral point for the calculation
of finite-difference gradients is set to 1. The optimiza-
tion algorithm considers a continuous change in the
spectral points. The minimization function includes an
interpolation of both 𝑆 and 𝐷 for the calculation of 𝐶∗.
Finally, for the surrogate optimization we used the sur-

rogateoptMATLAB function. We have set a maximum of a
1000 function evaluations.
FSC3 factorization and classification using the full spec-

tral information of the black fields define our ground truth.
For validation, we sample the white fields at the set of 𝑁𝑠

spectral points, project and classify using the same classi-
fier, and evaluate its FOD.We have verified that using SVD
denoised data for training, testing and validation data was
not affecting the results significantly.

5 RESULTS

In this section, we present the results of the data analysis.
We use the PrO𝑥 data to demonstrate the method in detail
including SS, and then provide some results for RuO2 to
exemplify the generality of the method.

5.1 𝐅𝐒𝐂
𝟑 of PrO𝒙

Figure 2 shows the FSC3 analysis of the LEEM I–V stack
on PrO𝑥/Ru(0001) using nine components. The sample
morphology is clearly visible in these components with lit-
tle noise. As characterized before,26 the surface consists
of a flat substrate with bands of coalesced oxide islands
which nucleated at the atomic step edges of the Ru(0001)
substrate. In between, the bare substrate is visible in com-
ponent 8 and a transition region in the vicinity of the
island edges is highlighted in 3 and 7. The PrO𝑥 regions
comprise a complex substructure of five distinguishable
phases. In the central region, located directly at the step
edges, one phase is formed as rather small, circular cores
(prominent in 9). Approaching the island edges, this cen-
tral component is surrounded by a series of other distinct
oxide phases: the innermost surrounding phase is visible
in 2 and 4, a further outward one is discernible in 1

and, finally, 6 is located at the island rims. In addition,
a rather sparse phase is identified in 5. This component
is also located primarily at the atomic step edges of the
substrate as well as in a more extended, crescent-shaped
region.
In a previous analysis,25 the same data set was analysed

by comparing the recorded spectra with curves calculated
by ab initio scattering theory for a set of candidate phases.
The correlation between the calculated and observed
curves enabled an identification of the relevant surface
phases which are visualized in the detected components.
These results can be summarized as follows. The cores
as well as the surrounding components, here observable
in 2, 4 and 6, showed only subtle differences between
their respective I–V spectra and a reasonable agreement
with the theoretical spectrum of hexagonal Pr2O3(0001).
The variations of this oxide phase originate primarily from
the existence of two types of terraces which are sepa-
rated by atomic steps of half a unit-cell height and feature
distinct oxygen terminations. The additional separation
between the cores and the outer phase prominent in 1

was attributed to a different thickness and possibly also
concomitant variations in strain relaxation and distinct
surface reconstructions. Located only along the island
rims, a highly oxidized fluorite PrO2(111) phase was iden-
tified by an I–V spectrum matching well to the expected
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8 MASIA et al.

(A) (B)

F IGURE 2 FSC
3 analysis of LEEM I–V data taken on PrO𝑥 . (A) Concentrations of the components 𝑖 , 𝑖 = 1… 9 are given in the images

on a greyscale from𝑚 = 0 to𝑀 as labelled, together with the spectral error 𝐸s. For the latter, a logarithmic scale has been used between the
given𝑚 and𝑀. The concentration error 𝐸c is shown on a colour scale of red (blue) hue for 𝐸c > 0 (𝐸c < 0) as shown. The value is
proportional to log(|𝐸c|), with black indicating |𝐸c| ≤ 0.01. Each spatial region used as training set for classification is shown in one of the
images, and is encircled by coloured lines. (B) Component spectra 𝑆

theoretical spectrum. The additional sparse phase identi-
fied in 5 was ascribed to another Pr2O3 polymorph, the
cubic bixbyite-like phase Pr2O3(111), and the spectra of the
ruthenium substrate regions agree with a termination by a
(1 × 1) reconstructed oxygen adlayer.
The distribution of FSC3 components already reflects

the arrangement of these previously identified phases
remarkably well – in particular considering that no labo-
riously precalculated spectra were necessary for this anal-
ysis. The spectral error 𝐸s is larger in the substrate regions,
whereas the concentration error 𝐸c is large at the transi-
tion region, mostly on the left-hand side island rims. This
asymmetrymight be due to an imaging error caused by not
positioning the contrast aperture centred in Fourier space
and does not indicate the existence of an additional phys-
ical surface component. In addition, the height change
from the substrate to the islands, which was determined
to be about 3–4 nm by atomic force microscopy,26 causes
energy-dependent deflections of the electrons. Generally,
the concentration error is larger close to phase bound-
aries, which could be related to the coherent interference
between multiple phases not accounted for by a linear
mixing of intensities.

5.2 Classification of PrO𝒙

The FSC3 results shown in Figure 2 are used for a classifi-
cation as described in Section 4.3. The training sets used for

the classes are the areas enclosed in the colour-coded out-
lines shown in selected concentration images in Figure 2.
The resulting classification is given in Figure 3 with classes
c𝑖 represented by distinct hues, with a saturation encod-
ing the classification confidence 𝜎̃, where 𝜎̃ = 0 (highest
confidence) is fully saturated, dropping to zero saturation
(white) for 𝜎̃ ≥ 5. Again, the spatial structure of the sam-
ple is clearly visible, with the different phases discussed in
Section 5.1 evident. Notably, the classes are separated by
whitish regions of low classification confidence. Classes 7
and 4 are the Ru(0001)-(1 × 1)-O substrate and the transi-
tion regions at the island sidewalls, respectively. There is
a rather sharp transition between classes 2 and 3, where
the PrO𝑥 stoichiometry was found to change,25 favour-
ing the fully oxidized fluorite PrO2 phase at the island
rims over the Pr2O3 of the central regions. Similarly, a
sharp transition is observed between classes 2 and 5 on the
oxide islands, reflecting the assumed change in the sur-
face termination of the Pr2O3(0001) variations. This sharp
spatial separation is remarkable as there are only rather
subtle differences in the respective spectra. The island cen-
tres are consisting of classes 1 and 6, spaced by regions
of low classification confidence. With respect to the FSC3

results in Section 5.1, an even clearer distinction between
the physical surface components could be achieved. This is
illustrated by the clear separation of classes 3 and 5, which
were both prominent in 4 before.
The component concentration vectors calculated as

average and standard deviation over the training regions
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MASIA et al. 9

(A) (B) (C)

F IGURE 3 (A) Classification of LEEM I–V data taken on PrO𝑥 . The hue of the colour represents the assigned class 𝑖, with a saturation
given bymax(1 − 𝜎̃𝑖∕5, 0), indicating the assignment confidence. (B) Component concentrations with standard deviations taken from the
training regions indicated in Figure 2 with the same colour coding as the classification results. (C) Class LEEM I–V spectra (solid lines)
considering only points with 𝜎̃ ≤ 3, with the shaded region indicating plus and minus the standard deviation of the spectra classified into the
class region. The separate 𝜎̃ for each class are given in the Figure S1

of Figure 2A are given in Figure 3A and the resulting
average class spectra calculated considering only points
with 𝜎̃ ≤ 3 are given in Figure 3B as lines, together with
their range as shaded bands. They show a large variability
of c4, the transition region, and c1, the sparse Pr2O3(111)
phase at the step edges, while the other classes are well
defined, specifically c2, c5, c6 and the undisturbed sub-
strate regions c7. The large variability in the transition
regions between the substrate and the oxide islands can be
attributed to the aforementioned imaging artefacts whose
effect is dependent on the electron energy and is gradu-
ally decreasing with increasing distance to the edge of the
islands, leading to the inhomogeneous transition region.
On the other hand, the somewhat higher variability of c1,
the bixbyite-like phase, might be ascribed to an incoherent
strain state within these regions, which may arise due to
the underlying step edges on the substrate.
We have compared the classification results with unsu-

pervised classifiers (see Supporting Information Sec-
tion S2) including 𝑘-means and Gaussian mixture models
(GMM). The number of classes has been determined
by Silhouette value analysis. The GMM classification
obtained using features extracted by applying PCA on
the SVD-denoised data is in general agreement with our
supervised approach.
The correlation-based method using reference spec-

tra shown in Refs. 25 provides a similar classification to
Figure 3, with the major difference that only six reference
spectra were considered in the original analysis, resulting
in large regions of the substrate being unclassified. The
FSC3 analysis supports the assignment of an extra train-

ing region, as seen in 7, which allowed to classify the
substrate into two classes.

5.3 Sparse sampling of PrO𝒙

The sparse sampling method detailed in Section 4.4 was
applied to the PrO𝑥 data, with results shown in Figures 4
and 5, using 𝑓l and 𝑓m as FODs, respectively. The FODs
are shown in panel (a) for different number of spec-
tral points 𝑁s. We find that generally the FODs decrease
with increasing 𝑁s, as can be expected from the increas-
ing information available. An approximate scaling of both
FODs as 1∕𝑁s is found. This indicates that the FODs are
scaling with the square of the noise, as the noise is dom-
inated by shot noise scaling as 1∕

√
𝑁s. The sequential

approach provides the smallest values of the FODs among
the explored optimization methods, as expected consider-
ing the deterministic nature of this feature selection. The
spectral points obtained by the sequential selection are
shown in Figure 6. The sampling seems to favour points in
the low energy range 7–15 eV, which contains most of the
variability. The evolution of the sequential selection using
a backward algorithm is shown in Figure S15.
The random sampling methods reduce the values of 𝑓l

and 𝑓m obtained by equidistant sampling by 25 − 40% and
40 − 45%, respectively. Maintaining an approximate den-
sity of spectral points, as in the randomwalkmethod, limit
the possibility of sampling the low energy range appropri-
ately, resulting in higher FODs, if compared to the fully
random approach (see Figure 6). We also find that the
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10 MASIA et al.

(A)

(B)

(C)

(D)

(E)

(F)

F IGURE 4 Results of the classification using sparse sampling. (A) 𝑓l versus the number of spectral points 𝑁s for spectrally equidistant
points (black), random (blue), random walk (red), gradient-based (green) and surrogate (magenta) optimization and sequential selection
(cyan). The checker board black fields are used to define factorization, classification and optimization of spectral points, while white fields
serve to verify the method on an unseen data set. The empty symbols show the FODs during the optimization procedure (black fields), while
the full symbols (horizontally offset) refer to the FOD obtained when applying the method in the white validation fields. The latter are slightly
displaced on the horizontal axis for visibility. The dashed line shows 1∕𝑁s. The probability threshold used was 𝜎̃t = 3. The classification
images b-f combine the results obtained using the full spectral information (in the black fields) with the results of the sparse sampling (in the
white fields) obtained either using 𝑁s= 9 equidistant points or one of the optimization methods as labelled. Colour code as Figure 3. The
results for 𝜎̃t of 2 and 4 using the random and random walk sampling methods are given in Figure S6

random optimization of the spectral points is reducing
the FODs stronger for smaller 𝑁s. This can be under-
stood considering the increasing spectral separation of the
points for equidistant sampling with decreasing𝑁s, which
can miss out on relevant spectral features. Adjusting the
spectral positions, the points can be repositioned to sam-
ple such features better. For 𝑁s above 100, the random
optimization does not affect the FODs, while for 𝑁s = 9,
the minimum number required to reconstruct the nine
FSC3 components, the optimization improves the FODs by
about a factor of 2. We also notice that optimizing for one
FOD, also the other improves to some extent. The gradient-
based optimizationmethod returns an improvement to the
equidistant sampling FODs similar to the random walk
approach. We speculate that this method is limited by the
noise in the data which can affect the linear interpolation
required in the optimization routine. The surrogate opti-
mization performance at low 𝑁s is instead comparable to
the sequential selection, while the FODs tend to converge
to the values obtained by the random and gradient-based

methods for 𝑁s ≳ 30, probably due to the difficulties in
dealing with such large dimensionality parameter space.
The evolutions of the spectral points during optimization
are shown in Figures S8–S15, for the different methods and
values of 𝜎̃t.
The resulting classifications for equidistant, as well as

for 𝑓m or 𝑓l optimized positions, are shown for 𝑁s = 9

in Figures 4 and 5, respectively. They can be compared
with the classification using all spectral points shown in
Figure 3. We find that most features can be recovered by
the sequential and surrogate sampling, as also suggested
by the FOD values below 10%. It is important to note that
the different methods come with different computational
times. Table S1 gives an overview of the time needed to
complete the optimizations. A good balance achieving a
small FOD at low 𝑁s and short computational expense is
obtained with the surrogate optimization.
However, c1, which is only present in a small number

of spatial points, is mostly unclassified for the equidistant
spectral points, and a good classification is found only for
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MASIA et al. 11

(A)

(B)

(C)

(D)

(E)

(F)

F IGURE 5 Same as Figure 4, but for the minimization of 𝑓m. The results for 𝜎̃t of 2 and 4 using the random and random walk
optimization methods are given in Figure S7

the sequential method. The spectral points retrieved are
shown in Figure 6, together with LEEM intensity images
of a selected sample region at the spectral points.
The decrease in classification confidence and misclassi-

fication due to the sampling can be visualized by the ratio
of the 𝜎̃ calculated with the reduced 𝑁s (𝜎̃SS) and the full
spectral information (𝜎̃Full), see Figures S18–S19. As sug-
gested by the FOD, the sequential method provides the
lowest loss in confidence, as seen by the fainter colours,
and less misclassified points.
This example shows that the SS allows to reconstruct

spectra and classifications with a strongly reduced num-
ber of spectral points, allowing to speed up data acquisition
in the present case by a factor of 33. Notably, both the
fraction of non-classified points 𝑓l, and of misclassified
points 𝑓m, remain below 10% even in this case, a value lim-
ited by the SNR of the data rather than genuinely missing
spectral information.

5.4 𝐅𝐒𝐂
𝟑 and classification of RuO𝟐

In Figure 7A, a LEEM image from the Ru(0001) sur-
face after oxidation is presented, showing already at
a first glance the different types of islands that com-

prise the rich RuO2/Ru system. The presence of multi-
ple different RuO2 orientations is characteristic for Ru
oxidation and has previously been observed in PEEM
and LEEM.28,29 The formation of such oxides and their
application in catalysis is reviewed in Ref. 30. To
assign the islands and substrate regions observed to
the corresponding structures, I–V fingerprint spectra as
well as the 𝜇-LEED patterns are readily available in
literature.31,32
Figure 8 shows the FSC3 analysis (see Section 4.2) of the

I–V LEEM stack on RuO2 using six components with the
component spectra shown in Figure 8B. The component
concentration images (Figure 8A) clearly exhibit the sur-
face morphology expected from the single LEEM image
and emphasize different parts of the surface. We notice
that the weight is roughly proportional to the spectral
error. This is expected considering that, at convergence,
𝑤𝑖+1 = 𝑤𝑖 , yielding (see equation 2) 𝑤𝛼∕(1−𝛼) = 𝐸s∕⟨𝐸s⟩.
For 𝛼 = 0.5, this results in a proportionality between 𝐸s

and 𝑤.
As in the PrO𝑥 data, we manually select areas as

indicated by the coloured lines in the component concen-
tration images and perform a classification. The results are
shown in Figure 8C and the average I–V spectra of each
training region are presented in Figure 7B.
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12 MASIA et al.

(A)

(B) (D)

(C)

F IGURE 6 (A–C) Spectral points (symbols) obtained by minimizing the FODs, 𝑓l (A) and 𝑓m (C) using the random (blue), random walk
(red), surrogate (green) and sequential (orange) optimization. The solid line shows the spatially averaged spectrum of the data. (B,D) The
thumbnails show the LEED intensity of a selected region at the energies of the sampled spectral points, in the same horizontal order. The
colour frames identify the sampling method used to minimise 𝑓l in (B) or 𝑓m in (D). The results use 𝜎̃t = 3. The results for 𝜎̃t of 2 and 4 for the
random methods are given in Figures S16 and S17, respectively

Most of the surface is covered by elongated struc-
tures that are about 300 nm wide, 1–5 𝜇m long, and
are aligned along three different directions. This phase
has a large 1 contribution. It exhibits the typical mor-
phology of RuO2(110) islands grown below 500◦C sample
temperature21: The threefold island symmetry corresponds
to the formation of three different rotational domains
with the RuO2-[001] crystallographic direction aligning
with the primary directions of the substrate, Ru-⟨1120⟩.33
𝜇-LEED patterns taken in such sample regions (see
Figure S20b) and the corresponding I–V spectrum (see
Figure 7B) confirm this.
The classification shown in Figure 8C reliably assigns

this phase in red. Only some areas at the fringe of
RuO2(110) islands show low classification confidence –
this is attributed to non-diffraction contrast mechanisms
at these islands’ borders due to their height – a slight beam
tilt visible in 4 as different intensity at the edges of the
islands which give a differential contrast appearance.
In 6, some variation across the RuO2(110) islands’

width is visible with essentially two different contrast lev-
els. 6 emphasizes the peak at 22 eV,which is characteristic

for the substrate phase (see next paragraph). Variation
in this component thus can be interpreted as a variation
in the substrate signal, that is, a thickness variation of
the RuO2(110). This indicates a decreased thickness of the
RuO2(110) islands at their edges. As reported in Ref. 33,
RuO2(110) growth is limited to 1.6 nm (5ML) thickness
below 350◦C and then gradually increases with growth
temperature. In our case of 410◦C growth temperature,
small RuO2(110) islands at first only exhibit the contrast
level associated with less thickness, arguably limited from
further growth. After reaching a certain width, the island
allows for vertical growth again and form a thicker core in
their centre region.
On the right-hand side of the data set, there is a large,

arrowhead-shaped area that has a different contrast than
the above-mentioned ones. In the growth video, this phase
nucleates last and quickly grows to fill the area between the
encompassing RuO2(110) islands. The LEED pattern (see
Figure S20C) as well as the I–V spectrum show that this is
RuO2(101). The island exhibits two different contrast levels
as best seen in 2, 3 and 5. This is because the left side
of the island was subjected to a much higher electron flux
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MASIA et al. 13

(A)

(B)

F IGURE 7 (A) LEEM image of the oxidized Ru(0001) surface
taken at 19.0 eV with a field of view of 10 𝜇m. (B) Mean I–V spectra
extracted from the RuO2 data by averaging over the spatial regions
as indicated by encircling lines of corresponding colour in (A), used
as training set for the classification

at higher energies (>30 eV) during a 𝜇-LEED measure-
ment series. The surrounding area was not affected as the
electron beam was shielded by the illumination aperture.
The ‘substrate’, as mentioned, is most prominent in

6 and also features in several other components, most
strongly in4 an5, where theRu step edge decorations are
less pronounced. The signal weakest in 1 and 2, owing to
those components’ large emphasis on the region around 17
eV where the substrate I–V spectrum has a dip. In the clas-
sification image, it features as the blue phase. Based on the
I–V spectrum in Figure 7B and the (1 × 1) reconstructed
hexagonal LEED pattern (see Figure S20a), this ‘substrate’

phase can be assigned unambiguously to a one-monolayer
oxygen adlayer on Ru(0001), where each hcp hollow site is
occupied by a single O atom.6
The adlayer-covered substrate areas encompass small,

roundish islands (diameter≈ 10 nm) that decorate the orig-
inal Ru step edges. This phase has not been captured in
a separate component, due to its small surface coverage.
Still, its distribution on the surface is apparent in the clas-
sification image Figure 8B inside the blue (1 × 1)-O phase
as white areas where the classification confidence is low.
The close arrangement along step edges corroborates the
nucleation-and-growth process at single steps laid out in
Refs. 34 on a mesoscale. Presumably, the majority of the
nuclei evolved into RuO2(100) islands, exhibiting the char-
acteristic roundish shape.35 However, it is not possible to
get conclusive LEED images from areas this small.
Interestingly, there is still another phase as revealed

by the FSC3 analysis. Visible as highly negative values
in the concentration error 𝐸c in Figure 8A, there are
small spots of somewhat irregular, elongated shape that
exhibit a strongly reduced ‘concentration’. Parts of these
objects do, however, show up brightly in 2 (see inset
in Figure 8A, corresponding to RuO2(101)) while their
averaged I–V spectrum resembles that of RuO(110) (see
Figure 7B, the red curve resembles the purple one). This
indicates that they contain both orientations with grains
smaller than the LEEM’s lateral resolution, which in first
approximation leads to a linear mixing of intensities12 and
thus of the corresponding FSC3 components. The remain-
ing concentration error then is explained by the strong
faceting of some grains: Facet planes that are not paral-
lel to the surface cannot contribute significant intensities
in the specular direction, which is selected by the con-
trast aperture in I–V LEEM and represents the zeroth
order of diffraction for planes normal to the optical axis.
Hence, as a large surface fraction of such faceted regions
remains undetected, a decrease in the overall ‘concentra-
tion’ of crystalline material in the FSC3 results for these
islands. Furthermore, facet reflections of small inclination
can yet overlap the sampled specular direction over rather
broad energy intervals and hence appear as slowly vary-
ing additional background, as may be observable in the
purple curve in Figure 7B at higher energies. Following
these considerations, the phase is attributed to nanocrys-
talline RuO2 with diverse orientations as described by
Refs. 31 and 36. It should be noted that these obser-
vations illustrate the principal difficulties which arise
for any classification approach on faceted regions or
high local densities of defects and adspecies. In the pre-
sented approach, the FSC3 concentration error provides
the user with means for a facile detection of such areas
where particular care must be taken in classification and
physical interpretation.
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(A) (B)

(C)

F IGURE 8 FSC
3 analysis and classification of LEEM I–V data taken on a RuO2/Ru(0001) surface. (A) Concentrations of the components

𝑖 , 𝑖 = 1… 6 are given in the images on a greyscale from𝑚 = 0 to𝑀 as labelled, together with the spectral error 𝐸s, concentration error 𝐸c and
weight 𝑤 calculated by the weighted factorization. 𝐸s and 𝑤 are shown on a logarithmic scale between𝑚 and𝑀 as indicated. The
concentration error 𝐸c is shown on a colour scale red (blue) hue for 𝐸c > 0 (𝐸c < 0), with value proportional to log(|𝐸c|), and black indicating|𝐸c| < 0.01. The spatial regions used as training sets for classification into five classes are indicated by lines coloured according to the
associated class, in the component image where they are most pronounced. The inset of 2 shows an example of the regions used for the
training of c5, from𝑚 = 0.18 to𝑀 = 0.28. (B) Component spectra 𝑆. (C) Classification results, with the hue indicating the class, and the
saturation the confidence, as in Figure 3. The component concentrations over the training regions and the class spectra are shown in
Figure S4, and separate 𝜎̃ for each class are given in Figure S5

6 CONCLUSIONS AND OUTLOOK

We have demonstrated a novel data analysis pipeline for
LEEM I–V data. The data are represented by a few sur-
face phase components and their spatial concentration
maps. Details beyond this model are observable through
analysing the factorization error in both concentration
and spectrum.
For the RuO2 system, it could be shown that beside

mesoscale RuO2 islands of distinct orientations, a
nanocrystalline phase exists that contains RuO2(101) and
RuO2(110) grains with lateral sizes below this LEEM
instrument’s resolution, that is, <10 nm. A very convinc-
ing classification could also be achieved for the complex

example data set on PrO𝑥 featuring a clear distinction
between all pre-characterized surface phases despite of
their only subtle physical differences.
Using the concentrations, we have demonstrated a

supervised classification method which classifies every
point on the surface into one of the training phases, or
into non-classified if the mismatch to the training set is
exceeding a given value of standard deviations.
Based on this factorization, we show a sparse sam-

plingmethod using the spectral components to reconstruct
full spectra from a small number of spectral points fol-
lowed by classification. In the example given on the PrO𝑥

data set, a speed-up by a factor of 33 was achieved. This
opens the perspective of real-time classified imaging of
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MASIA et al. 15

processes on amulti-phase surface via dynamical LEEM I–
V. Notably, the component concentrations can also be used
for unsupervised classification.
The scripts for classification and SS analysis are available

at https://github.com/masiaf-cf/leem-svm-classify. Infor-
mation on the data underpinning the results presented
here, including how to access them, can be found in
the Cardiff University data catalogue at https://doi.org/10.
17035/d.2022.0153725100.
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