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ABSTRACT The formulation of dynamic pricing is one of the emerging solutions to guide residential
demand for the benefits of the bulk power system. However, the schedule of residential demand in response
to time-differentiated energy prices could cause congestions in distribution networks at both the lowest-
price and highest-price time intervals. To enable the adoption of dynamic pricing, this work presents a novel
framework to manage the constraints of distribution networks based on the concept of Transactive Energy
System (TES). The TES-based framework produces incentives during network issues to unlock customers’
flexibility services to reschedule controllable assets (e.g., batteries). By running Home Energy Management
Systems (HEMS), the flexibility of customers to modify schedules are quantified against predefined set of
incentives. For each incentive, the amounts of net-demand change per customer are aggregated and submitted
through aggregators to the Distribution System Operator (DSO) in the forms of both generation offers
(reducing demand) and demand offers (increasing demand). The latter are crucial to cater for generation-
driven network issues. The resulting aggregators’ staircase bidding curves are embedded to an advanced
Optimal Power Flow (OPF) model to identify the successful offers to manage network constraints whilst
minimizing incentives paid to aggregators. This allows defining incentives and quantities directly without
extensive iterations betweenDSO and aggregators. The application of the framework to an urban 11kV feeder
shows its effectiveness to manage congestions. Further, the highly variations in dynamic prices increase the
amounts of incentives particularly when flexibility services are requested at evening and night time intervals.
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I. INTRODUCTION20

The transition towards advanced residential electricity pric-21

ing schemes plays an important role to support the operation22

of power systems particularly with the wide-scale adoption23

of residential low-carbon technologies [1], [2], [3]. In partic-24

ular, the formulation of residential time-differentiated pricing25

instead of the traditional flat retail tariff is considered as26

one of the potential emerging solutions to guide power con-27

sumption of residential customers for the benefits of power28

The associate editor coordinating the review of this manuscript and

approving it for publication was Miadreza Shafie-Khah .

system operators [4]. This dynamic pricing scheme may also 29

support the uptake of residential batteries and Home Energy 30

Management Systems (HEMS) to reduce customers’ electric- 31

ity payments [5]. However, the management of residential 32

demand in response to a dynamic price signals defined by the 33

System Operator (SO) may lead to adverse technical impacts 34

on local distribution networks [6]. Most of customers’ power 35

consumption could be scheduled towards the lowest-price 36

time intervals to reduce electricity bills. Thus, the diversity of 37

load will be affected resulting in new local peak demand [7]. 38

During the highest-price time intervals, reverse power flows 39

could also be created when residential customers maximize 40
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energy export to increase revenues. Therefore, the adop-41

tion of residential dynamic pricing may overload distribu-42

tion networks (lines and transformers) and/or cause voltage43

issues [8].44

To limit the aforementioned technical impacts on distribu-45

tion networks, it is important that Distribution System Oper-46

ators (DSOs) enhance their new roles to manage transactions47

of power flows across congested networks [9], [10]. Future48

distribution network management systems could be empow-49

ered based on the concept of Transactive Energy System50

(TES) to manage local energy exchanges to alleviate network51

issues. In this respect, incentive-based price signals could be52

defined to procure flexibility from residential customers to53

reschedule their flexible controllable assets (e.g., batteries)54

for the benefits of distribution networks [11]. The resulting55

incentives combined with dynamic prices can enable manag-56

ing network constraints.57

The implementation of TES in practice requires the exis-58

tence of aggregators to unlock the potential flexibility from59

the grid-edge to submit offers to DSOs [12]. Like the whole-60

sale electricity markets, DSOs could receive a set of offers61

from aggregators to either reduce or increase the aggregate62

net-demand of a group of individual customers to solve net-63

work issues [13], [14], [15]. Each offer determines the amount64

of net-demand change and the corresponding price. This65

in turn requires developing advanced TES-based decision-66

making algorithms to define feasible offers to solve network67

issues with the minimum amounts of incentives.68

In the literature, different TES models have been pro-69

posed to minimize the electricity payments of a community70

with multiple individual customers in response to day-ahead71

energy market prices [16], [17], [18], [19], [20]. To support72

the operation of power system (e.g., reducing peak demand,73

supporting balancing mechanisms), the energy transactions74

are managed in real time. For this purpose, the studies in75

[16] and [17] combined the market prices with an adequate76

incentive to encourage customers rescheduling their control-77

lable elements. However, the adopted algorithms produced78

the same amount of incentives for all customers without79

taking into account their contributions in reducing electricity80

payments. This in turn might cause unnecessary increase in81

the total amount of incentives paid to customers. Further,82

the role of customers and aggregators in [16] and [17] were83

limited to the response to the price signals. To minimize84

incentives, advanced bid-based TES models are proposed85

in [18], [19], and [20]. Each submitted bid includes the86

quantities of net-demand change and the corresponding price.87

Within these models, the incentives were provided according88

to customers’ offers and flexibility to modify their initial net-89

demand schedules. However, the formulations did not cater90

for network constraints.91

Advanced TES models were proposed in [21], [22], [23],92

[24], [25], [26], [27], [28], [29], and [30] to cater for the93

constraints of distribution networks. This was done either94

by the definition of power thresholds to the aggregate net-95

demand [21], [22], [23], [24], [25] or by using Optimal96

Power Flow (OPF) [26], [27], [28], [29], [30] as the decision- 97

making algorithm. For instance, the price-based OPF pre- 98

sented in [26] aims to solve congestions through the provision 99

of incentive signals to customers in return of controlling their 100

power consumption for the benefits of distribution networks. 101

The above studies assumed that DSOs/aggregators have the 102

ability to directly control customers’ assets to solve network 103

issues. This might not be implementable in practice. The 104

aggregators may not have access to the full data of distri- 105

bution networks to manage network constraints. In contrast, 106

DSOswith unbundling regulation rules do not have direct link 107

with customers’ meters. Further, the adoption of OPF to man- 108

age large numbers of controllable variables may significantly 109

increase the computational burden of the optimization engine. 110

Thus, the scalability of the TES algorithm will be limited. 111

A few models in the literature realistically model the inter- 112

actions between customers, aggregators and DSOs [27], [28], 113

[29], [30]. Although iterative optimization-based approaches 114

were adopted to define the successful bids, extensive iter- 115

ations between the DSO and aggregators were required to 116

agree on quantities and prices. Furthermore, the proposed 117

algorithms are limited to solve demand-driven network issues 118

(at the low-price). All the previous mentioned studies do not 119

cater for network issues resulting from reverse power flows 120

when energy export of residential customers is increased to 121

sell energy at high prices. 122

Based on the above, Table 1 provides a summary of the 123

gaps in the literature. To bridge the gaps from previous stud- 124

ies, this work presents a framework to manage the constraints 125

of distribution networks under residential dynamic energy 126

pricing using the concept of transactive energy system. The 127

TES-based framework produces incentive-based price signals 128

during network issues to procure flexibility from residential 129

customers to reschedule their controllable assets. By run- 130

ning HEMS, the maximum flexibility to modify schedules 131

are assessed per residential customer against the predefined 132

set of incentives. The resulting amounts of potential net- 133

demand changes are aggregated and submitted through aggre- 134

gators to the DSO in the form of generation offers (reducing 135

demand) and demand offers (increasing demand). Each offer 136

determines the quantity of potential net-demand change and 137

the corresponding price. The successful offers are identified 138

using an optimal power flow model formulated to minimize 139

the allocated incentives to aggregators (in return of net- 140

demand adjustment) whilst respecting network constraints. 141

The contributions of this work compared to previous stud- 142

ies could be summarized via the following bullet points: 143

• The TES-based framework caters for both congestions 144

and voltage issues resulting from the response of resi- 145

dential customers to dynamic price signals. 146

• The framework deals with network issues due to the loss 147

of diversity of load at both the lowest-price (demand- 148

driven network issues) and highest-price time inter- 149

vals (generation-driven network issues). This provides 150

improvement from previous studies that are limited to 151

demand-driven network issues. 152
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TABLE 1. Features of TES in the literature-comparisons.

• The modelling of a novel approach to determine the153

quantities and prices of aggregate flexibility services154

(net-demand adjustment) that could be unlocked from155

residential customers to support distribution networks.156

• The provision of both generation offers (reducing157

demand) and demand offers (increasing demand) from158

aggregators to manage network constraints. This pro-159

vides improvement from previous studies that are160

limited to generation offers.161

• The realistic modelling of interactions between the162

DSO, aggregators and customers instead of using single163

centralized entity to directly control residential flexible164

assets.165

• The modelling of an optimization-based approach to166

procure the best amounts of generation flexibility167

(reducing demand) and demand flexibility (increasing168

demand) from residential customers to manage thermal169

and voltage constraints.170

• The incorporation of aggregators’ offers in the decision-171

making algorithm provides a direct approach to define172

the incentives without the need to extensive iterations173

between the DSO and aggregators to agree on quantities174

and prices.175

The rest of this paper is structured as follows: Section II176

provides an overview of the framework. Section III presents177

the formulations of OPF, the process to define offers and178

HEMS. The framework is demonstrated using an urban179

11kV feeder with electric vehicles (EVs) and batteries in180

Section IV. The key remarks are given in Section V. Finally,181

the conclusions are drawn in Section VI.182

II. FRAMEWORK OF THE TRANSACTIVE ENERGY SYSTEM183

FOR DISTRIBUTION NETWORK MANAGEMENT184

The framework of the proposed TES is shown in Fig. 1. The185

figure describes graphically the process to solve congestions186

and voltage issues in distribution networks resulting from187

the response of residential customers to the energy market188

prices (£/MWh). The TES aims to procure flexibility services 189

from residential customers to reschedule their controllable 190

elements for the benefits of distribution networks. For this 191

purpose, incentive-based price signals (£/MW) are produced 192

during time intervals of network issues to remunerate res- 193

idential customers who are contributing to managing net- 194

work constraints. The framework also assumes the presence 195

of spatially-distributed aggregators (e.g., an aggregator at 196

each distribution substation) across distribution networks to 197

interact with residential customers, the DSO and SO. The 198

existence of aggregators is important particularly in countries 199

with regulatory rules that do not allow DSOs to have direct 200

access to the individual customers’ meters. The proposed 201

framework provides clear roles of residential customers, 202

aggregators and DSOs. The details are explained as follows. 203

In response to the electricity energy market prices defined 204

by the SO, each customer aims to minimize the daily energy 205

payment through the optimal management of controllable 206

flexible assets. For this purpose, the HEMS described in [7] 207

and [31] is adopted to define the optimal daily schedule of 208

EVs and batteries. The resulting customers’ net-demand pro- 209

files are then aggregated and sent to the DSO through aggre- 210

gators. The response of customers to the energy prices may 211

result in the violations of network constraints. Thus, a dis- 212

tribution Network Management System (NMS) is introduced 213

to check for the violations of network constraints. Based on 214

the net-demand profiles submitted by aggregators, an AC 215

power flow is run at each time step in the operational plan- 216

ning (e.g., one day) to calculate network voltages and power 217

flows throughout lines and transformers. For any time step 218

with congestion or voltages issues, the TES is triggered to 219

procure flexibility services from aggregators to maintain net- 220

work constraints within limits. The DSO requests offers from 221

aggregators to modify their power schedules. In response 222

to the DSO’s request, each aggregator is connected to the 223

TES platform to submit a set of offers to either reduce 224

or increase the net-demand from the customers. Each offer 225
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FIGURE 1. Framework of the transactive energy system in distribution networks.

provides the quantity of the potential net-demand adjustment226

(MW) and the corresponding price (£/MW). The quantities227

of the set of offers per aggregator are gradually increased228

from a small value of net-demand adjustment towards the229

maximum possible net- demand change. The prices of the230

set of offers also increase with the amounts of net-demand231

adjustments.232

The type of offers requested from the aggregators (gener-233

ation offers or demand offers) are defined according to the234

network operating conditions at the time step of triggering235

the TES. It is important to determine whether the causes236

of network issues are due to the significant increase in net-237

demand (demand-driven network issues) or excess export238

(generation-driven network issues). Also, the contributions239

of aggregators in the severity of network issues have to be240

defined to determine the type of requested offers. This is241

in particular necessary since the net-demand of aggregators242

could be either positive (demand) or negative (generation)243

due to the different response of residential customers to the244

energy prices. If it is found that the reduction of an aggre-245

gator’s net-demand reduces the severity of network issues,246

generation offers will be requested accordingly. Demand247

offers will be requested from an aggregator if the increase of248

its net demand contributes positively to solving the network249

issues.250

The quantities in the offers are determined according to the251

flexibility of individual residential customers to adjust their252

net-demand (e.g., shifting demand, discharging or charging253

batteries) in response to the predefined set of prices. Although254

the offer is placed at a particular time step, its delivery may255

have negative impacts in the subsequent time intervals and256

thus increase customers’ electricity payments. For instance,257

the usage of batteries to solve demand-driven network issues 258

in the early morning (e.g., voltage drop issues) may reduce 259

the volume of stored energy and increase import during night 260

periods that aremostly associatedwith high electricitymarket 261

prices. Thus, the offers placed by the aggregators are defined 262

to compensate the adverse impacts on customers’ bills. At a 263

particular offer’s price, the HEMS is run per residential cus- 264

tomer to determine the maximum net-demand change that 265

each customer could deliver without affecting the desired 266

daily electricity payment. To define adequately the flexibility 267

per aggregator, the offers’ prices are also gradually increased 268

between their minimum and maximum values in small steps. 269

The customers’ response at each offer’s price are aggregated 270

to define the offer’s quantity. 271

Once all the aggregators submit their offers to the DSO, 272

an AC OPF-based optimization engine at the DSO’s network 273

management system identifies (selects) the successful gen- 274

eration and demand offers (single offer could be selected at 275

most from an aggregator). Since the DSO will pay the cost 276

of net-demand adjustments, the AC OPF is formulated to 277

minimize the amounts of payments to the aggregators whilst 278

respecting thermal and voltage constraints. The outcomes 279

of the OPF are then notified to the aggregators to deliver 280

the quantities of the successful offers. Then, the prices of 281

successful offers are sent to individual customers (incentive- 282

based price signal) to achieve the committed power. 283

III. MODELING OF THE TRANSACTIVE ENERGY SYSTEM 284

This section presents the modeling of the transactive energy 285

system including the decision-making algorithm, the process 286

to define aggregators’ generation and demand offers as well 287

as the HEMS. 288
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A. DSO: DECISION-MAKING ALGORITHM289

The decision-making algorithm at the DSO aims to iden-290

tify the most feasible generation and demand offers from291

aggregators to solve the network issues resulting from the292

response of individual customers to the energy market prices.293

For this purpose, anACOPFmodel is formulated tominimize294

the amounts of incentives given to the aggregators whilst295

respecting the thermal and voltage constraints. The necessity296

to trigger the OPF at a particular time step (set T indexed by t)297

is determined based on the existing network operating condi-298

tions. To check for congestions and voltage issues, AC power299

flows is run at each time step in the planning horizon.300

To drive the OPF at a time step t∗, the active and reactive301

power of non-controllable loads (set D indexed by d) and the302

net-demand of aggregators (set A indexed by a) are all sent303

to the optimization engine. Further, the aggregators submit a304

set of offers upon the DSO’s request to either increase net-305

demand (demand offers) or decrease net-demand (generation306

offers). Each generation offer (set IG indexed by ig) consists307

of both the amount of power generation 1Goffera,ig that could308

be injected (i.e., demand reductions) to the grid and the price309

π
offer
a,ig to deliver it. In contrast, the quantities and prices of310

demand offers (set ID indexed by id ) represent the addi-311

tional demand1Doffera,id (e.g., charging batteries) that could be312

created and the corresponding prices , πoffera,id . The quantities313

and prices of generation and demand offers are all modelled314

in the OPF as non-negative parameters. The generation and315

demand offers are determined according to the flexibility of316

residential customers to adjust their initial demand. It is worth317

to note that an aggregator could submit either generation318

or demand offers according to the DSO request as per the319

network operating conditions.320

The objective function is formulated in (1) to minimize the321

cost of net-demand adjustment to solve network issues.322

Min
∑

a∈A

∑
ig∈IG

1Goffera,ig π
offer
a,ig β

offer
a,ig323

+

∑
a∈A

∑
id∈ID

1Doffera,id π
offer
a,id γ

offer
a,id (1)324

where βoffera,ig and γ offera,id are binary variables used to define the325

status of generation and demand offers per each aggregator,326

respectively (e.g., βoffera,ig = 1 means that the generation offer327

ig from aggregator a is accepted). To guarantee the adoption328

of a single offer from each aggregator, the constraint in (2)329

is formulated. It is worth to highlight that it is possible that330

the DSO may not procure offers from an aggregator (e.g.,331

offers with high prices). Therefore, the modelling considers332

the inclusion of an offer per aggregator whose quantities and333

prices are set to zero (i.e., no adjustment of net-demand).334 ∑
id∈ID

γ
offer
a,id +

∑
ig∈IG

β
offer
a,ig = 1 : ∀a ∈ A (2)335

By multiplying offers’ quantities (1Goffera,ig ,1D
offer
a,id ) and their336

adoption status (βoffera,ig , γ offera,id ), the optimal levels of additional337

generation and demand (1G∗a,1D
∗
a) provided by each aggre-338

gator can be identified as given in (3) and (4); respectively.339

The aggregators are notified with the successful offers. Each 340

aggregator is committed to adjust its initial net-demand at the 341

time step t∗(p̃a,t=t∗ ) according to the quantities of accepted 342

generation and demand offers. Therefore, the committed 343

active power of each aggregator (pa,t=t∗ ) is formulated in (5). 344

1G∗a =
∑
ig∈IG

1Goffera,ig β
offer
a,ig ; ∀a ∈ A (3) 345

1D∗a =
∑
id∈ID

1Doffera,id γ
offer
a,id ; ∀a ∈ A (4) 346

pa,t=t∗ = p̃a,t=t∗ +1D∗a −1G
∗
a (5) 347

The applied incentives (πg∗a , πd∗a ) in return of delivering the 348

quantities in the accepted generation and demand offers are 349

given in (6) and (7), respectively (i.e., prices defined by the 350

aggregators in the accepted offers). 351

πg∗a =
∑
ig∈IG

π
offer
a,ig β

offer
a,ig ; ∀a ∈ A (6) 352

πd∗a =
∑
id∈ID

π
offer
a,id γ

offer
a,id ; ∀a ∈ A (7) 353

The optimization problem is also subject to the traditional 354

Kirchhoff’s voltage and current laws (KVL and KCL) as well 355

as to thermal and voltage constraints which are modelled to 356

keep both power flows throughout the network branches (set 357

L indexed by l) and network voltages all within limits. 358

At each bus (set B indexed by b), the balance of active 359

and reactive power are given in the constraints (8) and (9), 360

respectively. 361

px =
∑

a∈A|ρa=b

pa,t=t∗ +
∑

d∈D|ρd=b

pd 362

+

∑
l∈L|ρ(1,2)l=b

f (1,2),(p)l (8) 363

qx =
∑

a∈A|ρa=b

pa,t=t∗ tan (φa)+
∑

d∈D|ρd=b

qd 364

+

∑
l∈L|ρ(1,2)l=b

f (1,2),(q)l (9) 365

where ρu denotes the bus (b) to which each network element 366

is connected (u ⊂ {a, d, l}). The modelling considers the 367

active and reactive power of non-controllable loads (pd , qd ) 368

and the committed active power of aggregators (pa,t=t∗ ) as 369

well as power flows from the upstream grid (px , qx). Further, 370

the reactive power of aggregators is considered assuming 371

a fixed power factor (φa). The KVL equations in [32] are 372

used to calculate the active and the reactive power injections 373

(f (1,2),(P)l , f (1,2),(Q)l ) for each branch at the start and end 374

bus (represented by 1 and 2, respectively). The voltage and 375

thermal constraints (applied at the start and the end of each 376

V−b ≤ Vb ≤ V
+

b ; ∀b ∈ B (10) 377(
f (1,2),(p)l

)2
+

(
f (1,2),(q)l

)2
≤
(
f +l
)2
; ∀l ∈ L (11) 378

network branch l) are given in (10) and (11), respectively. 379
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where Vb is the voltage magnitude at bus b, V (−,+)b are the380

allowable voltage limits and f (+)l is the thermal capacity of381

network branch l.382

To solve the above Mixed Integer Non-Linear Program-383

ming problem (MINLP), the iterative approach in [33] is384

adopted. The binary decision variables related to the status of385

generation and demand offers (βoffera,ig , γ
offer
a,id ) are relaxed and386

considered as continuous variables whose values are between387

zero and one. This enables reducing the computational burden388

through the adoption of a Non-Linear Programming (NLP)389

optimization problem. However, these values need adjust-390

ment. To do so, a threshold, ε is defined to exclude offers391

with status values smaller than ε. The OPF is carried out iter-392

atively until the status of offers are binary whilst increasing393

ε throughout the iterations (e.g., from 0.1 to 1.0 in steps of394

0.1). This allows identifying the most feasible offers to solve395

technical issues (i.e., offers’ status with unity values).396

B. AGGREGATORS: GENERATION OFFERS397

This Section provides the formulation to explain mathemati-398

cally how the aggregators would respond to a call for gener-399

ation offers at t = t∗ to reduce its initial net-demand at the400

time step t∗ (p̃a,t=t∗ ). The definition of aggregators’ offers401

is quantified based on the flexibility of residential customers402

(set H indexed by h) to reduce demand in response to a403

generation offer’s price πofferh,ig
. To do so, HEMS is run at each404

residential customer to adjust the control actions of flexible405

elements from t∗ (i.e., time step when offers are requested)406

until the end of the day (t ≥ t∗). Thus, the price signal sent to407

the HEMS consists of two components. The first component408

is the energy market prices (πMt ) and the second component409

is the generation offer’s price πofferh,ig
that is applied at t∗ to410

remunerate demand reduction (£/MW). The resulting power411

profile ph,ig,t from the HEMS is used to calculate the flexi-412

bility of the residential customer to provide generation offer.413

The quantity of the generation offer (1Gofferh,ig ) per residential414

customer is calculated in (12) as the difference between the415

initial residential power at t = t∗ (p̃h,t=t∗ ) and the new416

adjusted power (ph,ig,t=t∗ ) that is obtained from the HEMS417

at a generation offer’s price.418

1Gofferh,ig = p̃h,t=t∗ − ph,ig,t=t∗ (12)419

Once generation offers from residential customers are quan-420

tified, the aggregators’ offers can be defined 1Goffera,ig , as421

given in (13).422

1Goffera,ig =
∑

h∈H |ρh=a

1Gofferh,ig (13)423

where ρh indicates the aggregator of residential customer h.424

To enable the aggregator submitting a set of generation offers,425

the above process is repeated and the HEMS per residential426

customer is fed with different predefined values of gener-427

ation offer prices πofferh,ig
. The adopted prices are gradually428

increased from zero in small steps to a large value that could429

trigger the maximum flexibility per residential customer to430

reduce demand. Mathematically, the objective of HEMS is 431

formulated in (14) to maximize the amount of generation 432

offer 1Gofferh,ig (non-negative variable) that could be delivered 433

at a generation offer’s price πofferh,ig
. 434

Max 1Gofferh,ig (14) 435

Since HEMS might be triggered multiple times in the day 436

(in response to the DSO requests to solve network issues), it is 437

important to preserve power consumption before the current 438

time step (t∗), as formulated in (15). 439

ph,ig,t = p̃h,t ; ∀t < t∗ (15) 440

The delivery of generation offers at t = t∗ may increase 441

demand in the subsequent time steps (t > t∗) to satisfy cus- 442

tomers’ energy needs. However, this may increase electricity 443

payments particularly when power consumption is moved to 444

time intervals with higher energy prices. For this purpose, the 445

constraint in (16) is formulated to ensure that revenues earned 446

from delivering offers compensate the potential increase in 447

electricity payments due to rescheduling. Thus, the overall 448

daily electricity payment (Costdailyh,ig ) is maintained below a 449

desired one (Costdesiredh ). For simplicity, it is assumed that 450

the desired payment is the same as the one found by only 451

responding to the energy market prices. 452

Costdailyh,ig ≤ Cost
desired
h (16) 453

The daily electricity payment consists of three parts. The 454

first part is related to the cost of electricity up to the current 455

time step (Cost t<t
∗

h ). Its value is calculated according to the 456

previous power consumptions (p̃h,t ) and the energy market 457

prices (πMt ) as well as the revenues received from previous 458

applied incentives, as given in (17). 459

Cost t<t
∗

h =

t∗−1∑
t=1

(
p̃h,tπMt 1t −1G

∗
h,tπ

g∗
h,t −1D

∗
h,tπ

d∗
h,t

)
460

(17) 461

where 1t is the time step (in hour), 1G∗h,t and π
g∗
h,t are the 462

quantities and prices of previously accepted generation offers, 463

respectively. In contrast,1D∗h,t and π
d∗
h,t are the quantities and 464

the prices of previously accepted demand offers, respectively. 465

The second and third part of electricity payment are the cost 466

at the current time step (Cost t=t
∗

h,ig ) and the cost in the next time 467

steps (Cost t>t
∗

h,ig ), as given in (18) and (19), respectively. 468

Cost t=t
∗

h,ig = ph,ig,t=t∗π
M
t=t∗1t −1G

offer
h,ig π

offer
h,ig (18) 469

Cost t>t
∗

h,i g =

T∑
t=t∗+1

ph,ig,tπ
M
t 1t (19) 470

Based on above, the electricity payment is given in (20). 471

Costdailyh,ig = Cost t<t
∗

h + Cost t=t
∗

h,ig + Cost
t>t∗
h,ig (20) 472
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C. AGGREGATORS: DEMAND OFFERS473

Here, the objective of HEMS is formulated in (21) to max-474

imize the amount of demand offer (1Dofferh,id ) in response475

to a particular incentive πofferid . The demand offer per each476

residential customer is mathematically formulated in (22)477

as the difference between the value of demand at t = t∗478

in the new adjusted power profile (ph,id ,t=t∗ ) and the initial479

residential power profile (p̃h,t=t∗ ). Like generation offers,480

demand offers are restricted to maintain customers’ desired481

daily electricity payment. Thus, the objective of HEMS is482

subject to the constraints in (15)–(17) and (19)–(20). The cost483

at the current time step (Cost t=t
∗

h,id ) is given in (23).484

Max1Dofferh,id (21)485

1Dofferh,id = ph,id ,t=t∗ − p̃h,t=t∗ (22)486

Cost t=t
∗

h,id = ph,id ,t=t∗π
M
t=t∗1t −1D

offer
h,id π

offer
id (23)487

Once demand offers are quantified per each customer, the488

aggregators’ offers can be then found, as given in (24).489

1Doffera,id =
∑

h∈H |ρh=a

1Dofferh,id (24)490

The HEMS at each residential customer is also run for dif-491

ferent values of offers’ prices to determine the quantities of492

demand offers per aggregator.493

D. HEMS: CONTROLLABLE ELEMENTS494

The flexibility of residential customers to respond to market495

prices and the provision of generation and demand offers496

can be achieved by controlling the output power of residen-497

tial batteries (set ST indexed by st), pst,h,t , and the power498

consumption of EVs (set EV indexed by ev), pev,h,t . Further499

to the objectives in (14) and (21), the HEMS is also called500

(at t = 1) to determine the minimum electricity payment that501

could be achieved whilst responding only to market prices502

(Costdesiredh ), as modelled in (25).503

Costdesiredh = Min
T∑
t=1

pMh,tπ
M
t 1t (25)504

where pMh,t is power consumption responding to energy prices.505

The objectives of HEMS to provide generation and demand506

offers in (14) and (21), respectively as well as the objective507

in (25) are all subject to set of operational constraints. For508

this purpose, the formulation proposed in [7] and [31] to509

model batteries and EVs are adopted. For completeness, the510

formulations are given. They are presented independently of511

generation offers (set IG indexed by ig) and demand offers512

(set ID indexed by id ) for the sake of simplicity.513

The active power output of residential batteries is modelled514

using two non-negative variables (pchst,h,t , p
dis
st,h,t ) to indicate515

charging and discharging power, respectively. The values of516

both variables are maintained within the battery rating Pratedst,h .517

The battery output power pst,h,t could be either positive518

(discharge) or negative (charge). Also, a binary variable519

αst,h,t is adopted to model the status of the battery at each 520

time step. Further, the stored energy in battery Estorest,h,t at each 521

time step is restricted below its energy rating Eratedst,h . The 522

corresponding constraints are given in (26) –(32). 523

0 ≤ pdisst,h,t ≤ P
rated
st,h (26) 524

0 ≤ pchst,h,t ≤ P
rated
st,h (27) 525

pst,h,t = pdisst,h,t − p
ch
st,h,t (28) 526

0 ≤ pdisst,h,t ≤ αst,h,t × P
rated
st,h (29) 527

0 ≤ pchst,h,t ≤
(
1− αst,h,t

)
× Pratedst,h (30) 528

Estorest,h,t = Estorest,h,t−1 +

(
pchst,h,tη

ch
−
pdisst,h,t
ηdis

)
×1t (31) 529

Estorest,h,t ≤ Eratedst,h (32) 530

where ηch and ηdis are the charging and discharging efficien- 531

cies, respectively. 532

The HEMS also manages the charging actions of EV to 533

achieve the required energy level Eev,h between the arrival 534

and the departure time step Tev,h ≡
[
T arrev,h,T

dep
ev,h

]
. This is 535

done by controlling the charging power pev,h,t within its rated 536

value Pratedev,h . The EV constraints are given in (33) –(35). 537

pev,h,t ≤ Pratedev,h ; ∀t ∈ Tev,h (33) 538

pev,h,t = 0; ∀t /∈ Tev,h (34) 539∑
t∈Tev,h

(
pev,h,t ×1t

)
= Eev,h (35) 540

The resulting demand of a house pMh,t is formulated using 541

the power balance constraint in (36) considering critical 542

demand of uncontrollable residential assets (pCDh,t ). 543

pMh,t = pCDh,t + pev,h,t − pst,h,t (36) 544

IV. RESULTS 545

A. CASE STUDY: DESCRIPTIONS 546

The proposed TES framework is applied to a UK urban 11kV 547

feeder with 2700 residential customers. The single-line repre- 548

sentation of the network is given in Fig. 2 [34]. The residential 549

load profiles are produced using the tool developed by the 550

Centre for Renewable Energy Systems Technology (CREST) 551

considering half-hourly resolution [35]. It is considered that 552

each customer has a 14kWh battery with round trip efficiency 553

of 90% and power rating of 3.6kW [36]. Further, it is assumed 554

that 50% of the residential customers have EVs. The charg- 555

ing profiles of EVs are produced according to the statistics 556

provided in [7]. This includes the users’ driven distances, 557

arrival times and departure times. For demonstration pur- 558

poses, a price signal from theUK electricitymarket is adopted 559

from [37] and provided in Fig. 3. It is also assumed the exis- 560

tence of a single aggregator per distribution transformer to 561

facilitate the interactions between the downstream residential 562

customers and the TES. The modeling language AIMMS 563

[38] is used to formulate the HEMS and the decision-making 564

algorithm at the TES. The HEMS is formulated as a Mixed 565
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FIGURE 2. UKGDS 11 kV feeder.

Integer Linear Programming (MILP) optimization problem566

and it is solved using the CPLEX solver [39]. In contrast, the567

CONOPT solver [40] is utilized to determine the decision-568

variables of the TES decision-making algorithm whose for-569

mulation is a Non-Linear Programming (NLP) optimization570

problem.571

B. IMPACT ASSESSMENTS OF DYNAMIC572

RESIDENTIAL PRICING573

To demonstrate the benefits of the proposed TES, this section574

presents the response of residential customers to the adopted575

price signal and the corresponding technical impacts on576

the 11kV feeder. For this purpose, the HEMS presented in577

Section III-D is employed at residential customers to mini-578

mize electricity payments. For each customer with EV, the579

HEMS defines both the best time to start charging and580

the charging power profiles. Also, the HEMS determines581

the optimal charging and discharging actions of batteries.582

For demonstration purposes, Fig. 4 shows both the result-583

ing aggregate charging profiles of EVs (in red) and the power584

outputs of batteries (in blue) of all the residential customers.585

To reduce electricity payments, it can be seen that most of the586

power consumption of EVs is scheduled towards the lowest-587

price time intervals (i.e., between 2:30 –7:00 a.m.). Taking588

into account that the charging actions of EVs must occur589

between their arrival and departure times, the flexibility to590

schedule EVs is limited. Thus, this figure shows that part of591

the EVs power consumption is scheduled between 00:00 and592

2:00 a.m. whose energy prices are 18% higher than the lowest593

price. It is worth to highlight that diversity in EVs’ charging594

preferences could be seen positively from the perspective of595

distribution networks. The diversity supports reducing the596

peak demand in the network.597

However, the wide-scale adoption of batteries (as consid-598

ered here) affects the diversity of demand. Batteries improve599

the ability of HEMS to manage the net-demand of resi-600

dential customers to reduce electricity payments. Different601

from EVs, batteries are more flexible to be controlled to602

maximize the financial benefits of customers. Batteries could603

be charged during the lowest-price intervals. The resulting604

stored energy can be then utilized to support customers’605

energy consumption needs at the highest price intervals606

(05:00 –06:00 p.m.). During the highest price intervals, it is607

also possible to harness the stored energy to create additional608

FIGURE 3. Half-hourly daily market price signal (£/MWh).

FIGURE 4. Aggregate daily power profiles (MW) for EVs and batteries
under dynamic residential pricing.

FIGURE 5. Power flow at head of the feeder (MVA) under dynamic
residential pricing (before the functioning of TES).

revenues for residential customers by injecting power back to 609

the grid. This can be clearly seen in the aggregate profiles of 610

batteries presented in Fig. 4. 611
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The charging actions all are occurred between612

2:30 –7:00 a.m. In contrast, the discharging actions are placed613

between 4:30 –.7:30 p.m. Once the response of residential614

customers are found, power flow simulation is carried out615

to assess the impacts on the 11kV feeder. The power flows616

throughout lines and network voltages are found at each time617

step (half- hourly). For illustration purposes, the power flows618

at the head of the feeder are presented in Fig. 5 along with619

the thermal limit of the feeder (i.e., continuous ratings of620

conductors whose values are obtained in practice from the621

manufacturers’ datasheets). It can be seen that the response622

of customers to the price signal increases the feeder’s loading623

above its thermal limit. In particular, its loading reaches624

10.5MW (i.e., 50% overloading) between 4:00 a.m. and625

7:00 a.m. due to the charging actions of EVs and batteries.626

Further, the significant export from customers at time inter-627

vals with high energy prices creates reverse power flows and628

congestion issues (4:30 –.7:30 p.m.).629

Based on the above, the results clearly demonstrate the630

impacts of dynamic residential pricing on the technical con-631

straints of distribution networks particularly at both the632

lowest-price and highest-price time intervals. This in turn633

highlights the need to request both generation offers (reduc-634

ing demand) and demand offers (increasing demand) from635

residential customers to solve demand-driven and generation-636

driven network issues, respectively.637

C. TES FOR CONGESTION MANAGEMENT:638

GENERATION OFFERS639

This section demonstrates the process to solve congestions640

between 4:00-7:00 a.m. due to excess import. To cater for641

network issues, the aggregators are requested to submit gen-642

eration offers (i.e., offers to reduce demand). Each offer643

determines the quantity of demand reduction from the last644

schedule and the corresponding price. The ability of an645

aggregator to reduce demand is quantified in response to a646

set of predefined amounts of incentives whose values are647

starting from 0£/MW (no incentive) to 150£/MW in small648

steps of 5£/MW. The selected incentive is applied at the time649

of network issues. Thus, the price signal consists of both650

the original energy market price (£/MWh) and the value of651

incentive (£/MW) that rewards power change from the last652

schedule. In response to the updated price signal, the HEMS653

at each individual customer aims to determine the maximum654

generation offer (i.e., demand reduction) whilst achieving the655

same total daily energy cost. Fig. 6 shows the response of an656

aggregator with 300 customers to an incentive of 100£/MW657

applied at 4:00 a.m. For this aggregator, each customer has658

EV and battery. With the adopted incentive (blue line), it can659

be seen in Fig. 6 (a) that the aggregator exports 0.9MW back660

to the grid at 4:00 a.m. Compared to the previous aggrega-661

tor’s power at no-incentive (imported power of 1.2MW), the662

amount of generation offer is 2.1MW. It can be noticed in663

Fig. 6 (b) that the resulting generation offer is mostly obtained664

from batteries. Their charging status at 4:00 a.m. are modified665

from charging to discharging. In particular, the discharged666

FIGURE 6. Generation offers at 04:00 a.m. from an aggregator with
300 customers (each customer with EV and battery) at incentive of
100£/MW: (a) power profile of the aggregator (MW), (b) power profile of
batteries (MW) and (c) accumulated energy payments (£).

FIGURE 7. Total generation offers from aggregators at 4:00 a.m.

power becomes 0.97MW. It is important to highlight that 667

the delivery of generation offer is at the expense of stored 668

energy in batteries that is originally being used to support 669

local energy consumption in the next time steps. Thus, the 670

aggregator’s power increases slightly during time intervals 671
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FIGURE 8. Generation offers from aggregators between 04:00 a.m. and 07:00 a.m.

TABLE 2. Accepted generation offers and incentives Between 04:00 a.m. and 07:00 a.m.

FIGURE 9. Power flow at head of the feeder (MVA) with procuring
generation offers between 4:00 a.m. and 7:00 a.m.

between 7:30 a.m. and 4:00 p.m. Further, the volume of672

discharged energy between 4:30 p.m. and 7:30 p.m. becomes673

smaller (i.e., smaller revenues). However, the amount of674

incentives received at 4:00 a.m. (208£) compensates and675

balances the financial adverse impacts. This can be clearly676

seen in Fig. 6 (c). The total daily energy payments of all677

the customers at the end of the day (318 £) is the same as678

the one achieved by only responding to the energy market679

prices (black line). Thus, the net-demand change of 1.97MW680

represents the maximum residential flexibility that could be681

triggered in response to an incentive of 100 £/MW whilst682

respecting the customers’ desired daily energy payments. It is683

also worth to note that it might be possible to unlock larger684

volume of residential flexibility by increasing the applied685

incentive. However, this depends on the constraints of con-686

trollable appliances.687

The DSO collects generation offers from the aggregators.688

The submitted offers depend on the number of residential689

customers and the type of controllable elements within each690

aggregator. For illustration, the resulting offers are aggregated691

and presented in Fig. 7. The figure shows the amount of692

generation offer in response to each incentive. It can be693

noticed that the minimum incentive to trigger generation 694

offers is 25£/MW. Below this incentive, the financial returns 695

are not enough to compensate the adverse impacts on the 696

customers’ energy bills. Also, the amount of generation offers 697

increases with the adoption of higher incentives. The max- 698

imum generation offer that could be achieved is 18 MW. 699

However, the marginal increase in generation offers becomes 700

smaller after an incentive of 125£/MW. This staircase curve 701

demonstrates the importance of defining the proper value of 702

incentive to trigger the required amount of generation offers 703

from aggregators. For instance, it is not possible to increase 704

the total amount of generation offers when the applied incen- 705

tive is above 25£/MW and smaller than 50£/MW. 706

To determine the accepted offers and incentives, the DSO 707

runs the proposed TES algorithm. At 4:00 a.m., it is possible 708

to decide the proper amount of incentive graphically. It can 709

be seen that the cross between the excess loading of 2.9MW 710

and the generation offers’ curve is going to be the incentive 711

required to solve congestions. Therefore, an incentive value 712

of 25£/MW is the minimum one to maintain power flows 713

at the head of the feeder below its limit. By using the OPF, 714

it is found that the total amount of accepted offers is 3.7MW 715

which makes about 59% of the available generation offers 716

(6.3MW). This shows the effectiveness of the OPF to identify 717

the successful offers to manage network constraints whilst 718

minimizing the incentives paid by theDSO to the aggregators. 719

The above process is repeated at each time step with 720

overloads due to excess demand (4:30 a.m.–7:00 a.m.). 721

Fig. 8 presents a summary of the total generation offers. 722

The accepted offers and the resulting incentives are given 723

in Table 2. It can be noticed that the maximum amount of 724

generation offers (19.4MW) is almost the same throughout 725

the time steps (see Fig. 8). However, the incentive to release 726

this maximum gradually increases from a time step to the 727

next one. For instance, an incentive of 25£/MW is able to 728

trigger generation offer at 4:00 a.m. compared to 100£/MW 729
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FIGURE 10. Demand offers at 04:30 p.m. from an aggregator with 300 customers (each customer with EV and battery) at incentive of 100£/MW:
(a) Power profile of the aggregator (MW), (b) power profile of batteries (MW).

FIGURE 11. Demand offers from aggregators between 04:30 p.m. and 07:30 p.m.

TABLE 3. Accepted demand offers and incentives between 04:30 p.m. and 07:30 p.m.

at 6:00 a.m. This increases the value of procured power730

(£/MW) from aggregators. For example, the optimal incentive731

at 6:00 a.m. is 38% (1.4MW) higher than the one at 4:00 a.m.732

(see Table 2 ). Since the accepted offers are selected from dis-733

crete values of aggregators’ offers, it is also worth to note that734

the quantities of accepted offers are slightly higher than what735

it is exactly required to alleviate congestions. To this end, the736

application of TES between 4:00 a.m. and 7:00 a.m. enables737

managing effectively network constraints through procuring738

the adequate amount of generation offers from aggregators.739

During those time intervals, the power flows are maintained740

within limits as shown in Fig. 9. However, generation-driven741

network issues between 4:30 p.m.–6:30 p.m. (due to excess742

export from residential customers) have not been yet solved.743

D. TES FOR CONGESTION MANAGEMENT:744

DEMAND OFFERS745

Here, TES is utilized to solve congestions due to excess746

export between 4:30 p.m.–6:30 p.m. (i.e., reverse power flows747

as shown in Fig. 9). To do so, aggregators are requested748

to submit demand offers (i.e., reduce export) to decrease749

intensities of reverse power flows and alleviate congestions.750

Like generation offers, the amounts of demand offers are751

quantified in response to a set of incentives (from 0£/MW 752

to 150£/MW in steps of 5£/MW). 753

For illustration purposes, Fig, 10 (a) presents the profile 754

of an aggregator with 300 customers with only respond- 755

ing to the energy market prices. This aggregator maximizes 756

energy exports back to the grid to maximize its revenues 757

from the sold energy to the system operator at high prices 758

of 240£/MWh. The maximum export reaches 0.94MW. With 759

an incentive of 100£/MW applied at 4:30 p.m. (blue line), the 760

aggregator is encouraged to reduce export to deliver demand 761

offer. This is done by rescheduling the control actions of 762

batteries from the last schedule (black line). It can be seen in 763

Fig. 10 (b) that batteries go into idling mode at 4:30 p.m. with 764

zero output power (i.e., discharging is stopped). This enables 765

the provision of demand offer of 1.1MW. To compensate 766

revenues’ losses, the volume of discharged power is increased 767

in the subsequent time steps. To cope with any network issues 768

resulting from rescheduling, the TES algorithm continues 769

monitoring network’ operating conditions and defines the 770

proper amount of incentives. The results are summarized in 771

Fig. 11 and Table 3. Different from generation offers, there 772

are variations in the energymarket prices when demand offers 773

are requested. This in turn affects the response of aggregators 774
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FIGURE 12. Power flow at head of the feeder (MVA) with procuring
generation offers (4:00 a.m.-7:00 a.m.) and demand offers
(4:30 p.m. -7:30 p.m.).

to the adopted incentives. In particular, the allocated incen-775

tives to reduce export (i.e., demand offers) depend on the776

variations in energy market prices and the intensity of excess777

loading as well as the constraints of residential controllable778

appliances.779

During time intervals with relatively high energy prices780

(i.e., 5:00 p.m. – 6:00 p.m.), the aggregators require higher781

amounts of incentives to reduce export. For instance, the782

minimum incentive to trigger demand offers at 5:00 p.m.783

is 75£/MW which is 300% higher than what is needed at784

04:30 p.m. (25£/MW). To release the maximum flexibility to785

deliver demand offers, higher amounts of incentives are also786

needed. The incentive required to achieve a demand offer of787

10MWat 5:00 p.m. is double the one used at 04:30 p.m. when788

the energy market price is relatively small. The variations789

in energy prices also affect the total amount of incentives790

paid to aggregators. To cope with excess loading of 1.3MW791

at 5:30 p.m., the total amount of incentives is 327% higher792

than the one at 04:30 p.m. (49£). It can be also seen that793

the amounts of accepted offers depend on the volume of794

excess loading. In particular, 1.4% of the available offers795

is only accepted at 7:30 p.m. with excess loading of 2%.796

The continuous procurement of generation and demand offers797

enables managing effectively network constraints throughout798

the day. For comparison purposes, the final line’s loadingwith799

TES is given in Fig. 12 along with the original loading.800

E. PERFORMANCE COMPARISON OF TES801

For completeness, this Section aims to compare the perfor-802

mance of the proposed TES-based framework against other803

approaches proposed in the literature. For this purpose, the804

rule-based approach proposed in the studies [21], [22], [23],805

[24], [25] to mitigate the impacts on distribution networks806

is adopted. The approach considers managing the response807

of residential demand to the market prices below predefined808

export and import power limits. The approach is applied to809

the UK urban 11kV feeder in Fig. 2 with 2700 residential cus-810

tomers. The effects of different values of power limits on both811

the management of network constraints and the reduction in812

daily energy cost of aggregators are also quantified.813

FIGURE 13. Management of network constraints using predefined import
and export power limits: Daily energy cost versus different residential
power limits for an aggregator with 300 customers (each customer with
EV and battery).

For demonstration purposes, Fig.13 shows the daily energy 814

cost of an aggregator with 300 customers (each customer 815

with EV and battery) for different power limits starting from 816

0.5 kW to 4.5 kW per residential customer (in steps of 817

0.5 kW). From the aggregators’ perspectives, the adoption of 818

a large value of power limit allows customers to almost freely 819

exchange power from/to the distribution network to minimize 820

their energy bills. The figure shows a significant reduction 821

in the daily energy cost with large values of power limits. 822

In particular, the energy cost at a power limit of 4.5 kW is 823

75% smaller than the one obtained at a conservative limit 824

of 0.5 kW. However, the adoption of a large power limit 825

results in network issues (shaded area in red). The results 826

show that the selection of a power limit larger than 1.5 kW 827

is not feasible from the perspective of distribution networks. 828

Thus, deciding the most-adequate value of power limit to 829

manage network constraints effectively (i.e., below 1.5 kW 830

per residential customer) is at the expense of minimizing 831

energy cost. In contrast, the TES-based framework provides 832

better performance for both the customers and the distribution 833

networks. The TES-framework allows customers to minimize 834

their bills whilst managing network constraints effectively. 835

In particular, it is found that the energy cost with TES equals 836

the minimum possible energy cost that could be achieved by 837

using large power limit (4.5 kW per residential customer). 838

Also, the power flows of lines and transformers as well as 839

network voltages by using TES are all managed effectively 840

(see Fig. 12). 841

V. KEY REMARKS 842

For the benefits of the readers, the key remarks resulting 843

from the application of the proposed TES framework are 844

summarized as follows: 845

• The control of residential batteries for the benefits of 846

customers (reducing electricity bills) creates new peak 847

demand of distribution networks during the lowest price 848

intervals. Further, the discharge of batteries during the 849

highest price time intervals to maximize revenues from 850

sold energy causes congestions in distribution networks. 851
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• The superposition of energy dynamic market prices with852

adequate incentive supports customers to reschedule the853

operation of their controllable elements for the benefits854

of distribution networks to solve network issues.855

• The generation and demand offers from aggregators856

to solve network issues are found effective to repre-857

sent the flexibility of individual residential customers to858

manage their net-demand in response to predefined set859

of incentives.860

• The staircase curve between the quantities and the prices861

of offers demonstrates the importance of defining the862

proper value of incentive to trigger the required amount863

of residential flexibility.864

• The adoption of higher incentives allows increasing the865

quantities of offers (net-demand change). However, the866

marginal increase in offers becomes smaller after a par-867

ticular incentive value which represents the maximum868

amount of flexibility that could be triggered from an869

aggregator.870

• The application of TES enables managing network871

constraints through procuring the adequate amount of872

generation/demand offers from aggregators. In particu-873

lar, the power flows at the head of the feeder with TES874

are maintained within limits. However, the incentive875

required to release a particular amount of residential876

flexibility to solve network issues increases from a time877

step to the next one.878

VI. CONCLUSION879

This work presents a framework to manage congestions and880

voltage issues in distribution networks resulting from the881

wide-scale adoption of dynamic residential pricing whose882

price signals are defined from the perspective of the bulk883

power system. The management of network constraints are884

carried based on the concept of Transactive Energy Sys-885

tem (TES). To solve network issues, offers are requested886

from aggregators that are spatially distributed across distri-887

bution networks to either reduce demand (generation offers)888

or increase demand (demand offers). The offers are placed889

according to residential customers’ flexibility to modify their890

last schedules in return of adequate amounts of incentives. For891

this purpose, the optimal control actions of residential flexible892

assets particularly electrical vehicles (EVs) and batteries are893

determined using the Home Energy Management System894

(HEMS), which is formulated as a Mixed Integer Linear895

Programming (MILP) optimization problem. Further, an AC896

Optimal Power Flow (OPF) algorithm is modelled to opti-897

mally identify the best aggregators’ offers to respect network898

constraints with the minimum amounts of incentives. The899

effectiveness of the TES-based framework is demonstrated900

on an 11kV urban distribution feeder with 2700 residential901

customers with EVs and batteries.902

The results demonstrate the conflicting interactions903

between distribution networks and residential time-904

differentiated pricing for the benefits of the bulk power905

system. By controlling residential demand to minimize elec-906

tricity payments, the natural diversity of customers’ net- 907

demand is affected. In particular, the results show that most of 908

customers’ power consumption is moved towards the lowest- 909

price time intervals whilst increasing energy export at the 910

highest-price to maximize revenues from selling energy. For 911

the studied feeder, the resulting significant import and reverse 912

power flows cause congestions. 913

Further, it is found that the TES-based framework enables 914

managing effectively network constraints by procuring gen- 915

eration and demand offers. From customers’ perspective, the 916

allocated incentives maintain desired electricity payments 917

and compensate adverse financial impacts due to reschedul- 918

ing. The results also demonstrate that the allocated incentives 919

are influenced by energy prices. In particular, larger amounts 920

of incentives are required at the highest-price to trigger flex- 921

ibility to deliver demand offers. The results also demonstrate 922

that customers’ flexibility is progressively reduced through- 923

out the day. This in turn leads to higher amounts of incentives. 924

It is important to highlight that the implementation of the 925

TES-framework in practice requires addressing information- 926

related challenges such as communication issues (e.g., syn- 927

chronization), measurement errors and privacy of customers 928

as well as customers’ commitment to the accepted offers. 929
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