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ABSTRACT

We propose novel third-order less oscillatory and less diffusive compact stencil-based upwind schemes for the approximation of the continu-
ity equation. The proposed schemes are based on the constrained interpolation profile-conservative semi-Lagrangian schemes. An important
feature of the proposed schemes is that the interpolation functions are constructed using only variables within one upwind cell (a cell average
and two boundary values). Furthermore, the proposed schemes have third-order accuracy and are also less oscillatory, less diffusive, and fully
conservative. The proposed schemes are validated through various benchmark problems and comparisons with experiments of two droplets
collision/separation and droplet splashing. The numerical results have shown that the proposed schemes have third-order accuracy for
smooth solution, and capture discontinuities and smooth solutions simultaneously without numerical oscillations. The proposed schemes
can capture the secondary vorticity of lid-driven cavity flow of Re¼ 7500 with a Cartesian grid of 64� 64. The numerical results of two drop-
lets collision/separation of We¼ 40 show that the proposed schemes can reproduce droplets collision/separation with quite coarse grids.
These numerical results of droplet splashing have demonstrated that proposed schemes can reduce numerical diffusions well against existing
schemes and robust.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0112953

I. INTRODUCTION

In this paper, we propose novel third-order less oscillatory and
less diffusive compact stencil-based upwind schemes for the approxi-
mation of the continuity equation

@/
@t
þ @ðu/Þ

@x
¼ 0; (1)

where / is the scalar and u is the velocity. The proposed method is
based on the constrained interpolation profile-conservative semi-
Lagrangian (CIP-CSL) schemes.15,16,18,27,34–36

The CIP-CSL schemes are solvers of the conservation equation
based on a multi-moment concept, which uses both cell average and
boundary value as variables. In CIP-CSL schemes, the order of accu-
racy can be improved by using both cell average and boundary value
without using wider stencils (e.g., the CIP-CSL schemes can achieve
third-order accuracy only with variables within a cell). On the other

hand, most of other schemes such as the essentially non-oscillatory
schemes (ENO),9,22,23 weighted essentially non-oscillatory schemes
(WENO),13,17 and the piecewise parabolic method (PPM)6 use only
single-moment (a type of variables, for instance, cell average if finite
volume methods and point value if finite difference methods). In these
single-moment-based schemes, a wider stencil must be used to
increase the order of accuracy. Thus, the CIP-CSL schemes are a dif-
ferent type of schemes from finite volume or finite different schemes.

The CIP-CSL schemes have been applied to various fluid prob-
lems1,30,31,33 such as droplets collision/separation,44 droplet impact on
dry surface,46 droplet splashing on dry surface,41–44 interactions
between particles and free surface flow,44 and oceanic flows.37 The
fluid solvers30,31,33,44 based on the CIP-CSL schemes are highly effi-
cient especially for incompressible flow simulations. For instance, the
fluid solvers can simulate droplet splashing on a hydrophobic sub-
strate at least qualitatively with a coarse grid (192� 192� 48) and the
numerical simulation was completed within 2 hours on a standard
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desktop computer (Intel Core i7–3820 3.6GHz, 8 GB memory).44 As
drawbacks of the CIP-CSL schemes against single-moment-based
schemes, the schemes require additional memory and calculation time
for these additional degrees of freedom (DoF) because CIP-CSL
schemes use both cell average and boundary value as variables.
Although the drawback on additional memory cannot be resolved,
these additional DoF surely improve fluid calculations (i.e., numerical
resolution is increased by the additional DoF) and memory is not so
expensive recently. If the calculation time is also proportionally
increased due to the additional DoF, the use of the CIP-CSL schemes
would not have many advantages against single-moment-based
schemes because it is almost like just increased numerical resolution of
single-moment-based schemes. However, if the CIP-CSL schemes are
used within semi-implicit formulations (the pressure is solved implic-
itly and velocity explicitly) such as VSIAM330,31,33 or VSIAM3-TM,44

the computational time is not increased proportionally. Such semi-
implicit formulations are mainly used for incompressible flow simula-
tions. In VSIAM3 and VSIAM3-TM, these additional DoF are used
only for velocity and not used for pressure. Then, although the calcula-
tion cost of velocity is surely increased, the cost of pressure calculation
is identical to that of single-moment-based schemes. As it is well
known, in incompressible flow simulations based on the semi-implicit
formulations, the pressure calculation dominates the total calculation
time (typically >80%). Therefore, additional calculation time by the
additional DoF is small for the total calculation time. However, the
accuracy of velocity is meaningfully improved due to the additional
DoF. If the CIP-CSL schemes are used for full explicit formulations
(e.g., compressible flow simulations), the calculation cost is propor-
tionally increased as DoF and the advantages are not so clear com-
pared to incompressible flow cases. Therefore, in this paper, we focus
only on incompressible flows as applications of the proposed schemes.

There are several compact stencil-based CIP-CSL schemes such
as CIP-CSL2 (CIP-CSL with second-order polynomial function)36 and
CIP-CSLR (CIP-CSL with rational function).35 In CSL2, which is
based on a second-order polynomial interpolation function, three
moments within the upwind cell (i.e., a cell average and two boundary
values) are used to construct the interpolation function (the details are
explained in Subsection IIA). CSL2 has third-order accuracy even
though the interpolation function is constructed based on moments
within one upwind cell. However, as a disadvantage, CSL2 is oscilla-
tory. In CSLR, the same moments with CSL2 are used to construct the
interpolation function and oscillations have successfully been mini-
mized by using the rational function. However, CSLR cannot maintain
third-order accuracy.

In this paper, we propose the CSL2T (CSL second-order polyno-
mial and hyperbolic tangent functions) and CSL2R (CSL second-order
polynomial and rational functions) schemes, which can maintain
third-order accuracy of CSL2 but can also minimize oscillations like
CSLR. In this paper, we focus on solvers, which can construct interpo-
lation functions using only variables within one upwind cell because
such solvers can avoid loss of accuracy near wall boundaries (the pro-
posed schemes can maintain third-order accuracy even near wall
boundaries) and practically important. In this paper, we also propose
non-oscillatory selector (NOS). NOS is used to switch between an
oscillatory high-order schemes such as CSL2 and a non-oscillatory
scheme (e.g., CSLT or CSLR). There are some similar concepts with
NOS such as limiters,10,21 boundary variation diminishing (BVD),7,24

and multi-dimensional optimal order detection (MOOD).5 As an
advantage of NOS against limiters, NOS can maintain third-order
accuracy. Although we also tried some limiters, these limiters did not
work well for CSL schemes. This will be because CSL schemes use not
only cell averages like finite volume methods but also boundary values.
In this paper, we have employed a hyperbolic tangent function12,32,39

as a non-oscillatory solution like BVD schemes. However, the selection
strategies of high-order interpolation function and the hyperbolic tan-
gent function are totally different. Although NOS uses discrete maxi-
mum principle to select a suitable interpolation function like MOOD,
there are many differences with MOOD. For instance, although
MOOD is for high-order finite volume schemes, NOS is for mixed for-
mulations, which uses both finite volume and finite difference meth-
ods. MOOD has not employed the hyperbolic tangent function as a
candidate of interpolation functions.

The details of proposed CIP-CSL schemes and some existing
CIP-CSL schemes are given in Sec. II. In Sec. III, numerical results of
sine wave propagation test, Jiang-Shu test, Burgers’ equation, Zalesak
problem, lid-driven cavity flows, droplet collision and separation, and
droplet splashing are given. The summary is given in Sec. IV.

II. NUMERICAL METHODS

In this section, we review CSL2 and CSLR schemes, and propose
third-order less oscillatory and less diffusive compact stencil-based
upwind schemes (CSL2T and CSL2R with NOS). In Secs. II A and
IIB, CSL236 and CSLR35 are explained. In Sec. II C, we propose the
CSLT scheme based on the hyperbolic tangent function. In Sec. IID,
we propose NOS and the CSL2T scheme based on CSL2 and CSLT
schemes. In Sec. II E, we also propose the CSL2R scheme based on
CSL2, CSLR, and NOS.

A. CIP-CSL2 scheme

The CIP-CSL2 scheme36 would be the simplest CIP-CSL formu-
lation. The CIP-CSL2 scheme uses three moments in the upwind cell
(i.e., one cell average �/i and two boundary values /i�1=2 and /iþ1=2)
to interpolate within the upwind cell (i.e., between xi�1=2 and xiþ1=2)
as shown in Fig. 1. Then, we can interpolate between xi�1=2 and xiþ1=2
by a quadratic function UCSL2

i ðxÞ,

UCSL2
i ðxÞ ¼ CCSL2

2;i ðx � xi�1=2Þ2 þ CCSL2
1;i ðx � xi�1=2Þ þ CCSL2

0;i : (2)

By using the following constraints,

/i�1=2 ¼ UCSL2
i ðxi�1=2Þ; (3)

/iþ1=2 ¼ UCSL2
i ðxiþ1=2Þ; (4)

FIG. 1. Schematic figure of the CIP-CSL2 scheme. ui�1=2 < 0 is assumed. The
moments, which are indicated by gray color (/i�1=2;

�/ i , and /iþ1=2), are used to

construct the quadratic interpolation function UCSL2
i ðxÞ.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 112104 (2022); doi: 10.1063/5.0112953 34, 112104-2

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


�/ i ¼
1

Dx

ðxiþ1=2
xi�1=2

UCSL2
i ðxÞdx; (5)

these coefficients CCSL2
2;i ; CCSL2

1;i ; and CCSL2
0;i can be calculated as follows:

CCSL2
2;i ¼

1
Dx2
ð�6�/i þ 3/i�1=2 þ 3/iþ1=2Þ; (6)

CCSL2
1;i ¼

1
Dx
ð6�/ i � 4/i�1=2 � 2/iþ1=2Þ; (7)

CCSL2
0;i ¼ /i�1=2: (8)

By using the interpolation function UCSL2
i ðxÞ, the boundary value

/i�1=2 is updated by the conservation equation of a differential form

@/
@t
þ u

@/
@x
¼ �/

@u
@x
: (9)

A semi-Lagrangian approach is used for Eq. (9)

/�i�1=2 ¼
UCSL2

i�1 ðxi�1=2 � ui�1=2DtÞ if ui�1=2 � 0;

UCSL2
i ðxi�1=2 � ui�1=2DtÞ if ui�1=2 < 0;

(
(10)

@/
@t
¼ �/�

@u
@x
: (11)

The cell average �/i is update by a finite volume formulation

/nþ1
i ¼ /n

i �
FCSL2
iþ1=2 � FCSL2

i�1=2
Dx

; (12)

where FCSL2
i�1=2 is the flux at the cell boundary xi�1=2,

FCSL2
i�1=2 ¼

�
ðxi�1=2�ui�1=2Dt
xi�1=2

UCSL2
i�1 ðxÞdx if ui�1=2 � 0;

�
ðxi�1=2�ui�1=2Dt
xi�1=2

UCSL2
i ðxÞdx if ui�1=2 < 0:

8>>>>><
>>>>>:

(13)

B. CIP-CSLR scheme

The CIP-CSLR scheme is briefly explained here. In the CIP-
CSLR scheme,35 the following function UCSLR

i ðxÞ,

UCSLR
i ðxÞ ¼

CCSLR
2;i CCSLR

1;i ðx� xi�1=2Þ2 þ 2CCSLR
2;i ðx� xi�1=2Þ þ /i�1=2

1þ CCSLR
1;i ðx� xi�1=2Þ

� �2 ;

(14)

is used to interpolate between xi�1=2 and xiþ1=2. The coefficients,
CCSLR
2;i ; CCSLR

1;i , and CCSLR
0;i , are determined as follows:

CCSLR
2;i ¼ CCSLR

1;i /i þ ð/i � /i�1=2Þ=Dx; (15)

CCSLR
1;i ¼ 1

Dx

jð/i�1=2 � /iÞj þ e

jð/i � /iþ1=2Þj þ e
þ 1

 !
; (16)

CCSLR
0;i ¼ /i�1=2; (17)

by using the same constraints with these of CSL2 [(3)–(5)]. Here, e is a
small number to avoid zero division. We used e ¼ 10�15 for all results
in this paper. The rest of the procedure is the same with CSL2.

C. CIP-CSLT scheme

We propose the CSLT (CSL with tangent hyperbolic function)
scheme, which uses a hyperbolic tangent function as the interpolation
function (Fig. 2). A similar scheme has been proposed in Ref. 16. In
Ref. 16, only cell averages were used to construct the hyperbolic tan-
gent function (like standard finite volume methods) and a wider sten-
cil (three cells) was used. In the proposed scheme, not only cell
averages but also boundary values are used (like CIP-CSL schemes)
and a shorter stencil (one cell average and two boundary values) is
used. The interpolation function is defined as

UCSLT
i ðxÞ ¼ /min þ

/max � /min

2

� 1þ c tanh b
x � xi�1=2

Dx
� ~xi

� �� �� �
; (18)

where /min ¼ minð/i�1=2;/iþ1=2Þ; /max ¼ maxð/i�1=2;/iþ1=2Þ, and
c ¼ sgnð/iþ1=2 � /iþ1=2Þ. ~xi is the jump location and can be calcu-
lated by using (5). b is the parameter to control jump thickness. The
rest of the procedure is the same with CSL2. The CIP-CSLT scheme is
a non-oscillatory scheme because the interpolation function (the
hyperbolic tangent function) is a monotonic function with a minimum
of /min and a maximum of /max.

D. Non-oscillatory selector (NOS) and CIP-CSL2T
scheme

We propose non-oscillatory selector (NOS), which can prevent
numerical oscillations of a high-order scheme such as CSL2 by com-
bining with a non-oscillatory scheme such as CSLT and CSLR. The
basic idea of the proposed selector is that first we solve the equation
using a high-order scheme like CSL2. If oscillations are detected for
some cell averages and/or boundary values, we recalculate these oscil-
latory cell averages and/or boundary values using a non-oscillatory
scheme like CSLT. If numerical oscillations are not detected, we simply
use the solution of the high-order scheme. Some schematic examples
are shown in Fig. 3. For instance, if CSL2 is used as the high-order
scheme, CSL2 possibly causes numerical oscillations as shown in Figs.
3(a) and 3(b) because CSL2 employs the quadratic function as the
interpolation function. If the interpolation functions, which are indi-
cated by the dotted ellipses in Figs. 3(a) and 3(b), are used to update
/iþ1=2; /iþ1=2 possibly causes some numerical oscillations. For such
cases (when an oscillation was detected), we recalculate /iþ1=2 using
CSLT as shown in Figs. 3(a) and 3(b). CSLT has employed the hyper-
bolic tangent function (a monotonic function) as the interpolation
function, so we can prevent the oscillation. If numerical oscillations

FIG. 2. Schematic figure of the CIP-CSLT scheme. ui�1=2 < 0 is assumed. The
moments, which are indicated by gray color (/i�1=2;

�/ i , and /iþ1=2), are used to
construct the step function UCSLT

i ðxÞ.
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are not detected like Fig. 3(c), we simply use the solution by CSL2. We
also consider a successive gradient in this selector. The procedure is as
follows (here we consider that CSL2 is the high-order scheme and
CSLT is the non-oscillatory scheme):

Step 1: Update all cell averages (�/
CSL2;nþ1
i ) and boundary values

(/CSL2;nþ1
i�1=2 ) using CSL2.

Step 2: If the cell average �/
CSL2;nþ1
i is oscillatory, the fluxes FCSL2

i�1=2
and FCSL2

iþ1=2 are replaced with FCSLT
i�1=2 and FCSLT

iþ1=2, and �/i is re-

updated using CSLT (neighbor cell averages associated with FCSLT
i�1=2

or FCSLT
iþ1=2 are also re-updated). Then, we also re-update the bound-

ary values, /i�1=2 and /iþ1=2 using CSLT. We assume that
�/
CSL2;nþ1
i is oscillatory when (�/

CSL2;nþ1
i > �/

max;n
i � e) or

(�/
CSL2;nþ1
i < �/

min;n
i þ e). Here, �/

max;n
i is the maximum value of

the variables (at time step n), which are used to calculate
�/
CSL2;nþ1
i , and �/

min;n
i is the minimum value of these variables.

Step 3: If the boundary value /CSL2;nþ1
i�1=2 is oscillatory, /i�1=2 is re-

updated using CSLT. Then, FCSL2
i�1=2 is replaced with FCSLT

i�1=2 (if it was

not replaced in step 2) and also re-updates cell averages, which are
associated with FCSLT

i�1=2. We assume that /CSL2;nþ1
i�1=2 is oscillatory

when (/CSL2;nþ1
i�1=2 > /max;n

i�1=2 � e) or (/CSL2;nþ1
i�1=2 < /min;n

i�1=2 þ e). Here,

/max;n
i�1=2 is the maximum value of the variables (at time step n),

which are used to calculate /CSL2;nþ1
i�1=2 , and /min;n

i�1=2 is the minimum

value of these variables.
Exception CSLT cannot handle preexisting cusps (when
�/i > maxð/i�1=2;/iþ1=2Þ � e or �/i < minð/i�1=2;/iþ1=2Þ þ e)
because then ~x is going to be infinity. For preexisting cusps,

FIG. 3. Schematic figure of the non-oscillatory selector (NOS) for three different cases. (a) and (b) show typical cases when CSL2 is oscillatory and (c) a typical non-oscillatory
case of CSL2.

TABLE I. L1 and L1 errors in sine wave propagation at t¼ 1.

Method N L1 error L1 order L1 error L1 order

CSL2 40 9:79� 10�5 � � � 1:53� 10�4 � � �
80 1:23� 10�5 2.99 1:93� 10�5 2.99
160 1:53� 10�6 3.01 2:41� 10�6 3.00
320 1:92� 10�7 2.99 3:01� 10�7 3.00

CSLR 40 2:29� 10�3 � � � 1:19� 10�2 � � �
80 5:53� 10�4 2.05 4:75� 10�3 1.33
160 1:29� 10�4 2.10 1:83� 10�3 1.38
320 2:75� 10�5 2.23 6:91� 10�4 1.41

CSL2T
(any b,
a � 4:001)

40 9:79� 10�5 � � � 1:53� 10�4 � � �
80 1:23� 10�5 2.99 1:93� 10�5 2.99
160 1:53� 10�6 3.01 2:41� 10�6 3.00
320 1:92� 10�7 2.99 3:01� 10�7 3.00

CSL2T
(b ¼ 4:0,
a ¼ 3:999)

40 8:50� 10�4 � � � 4:12� 10�3 � � �
80 1:75� 10�4 2.29 1:61� 10�3 1.36
160 3:22� 10�5 2.44 5:86� 10�4 1.46
320 5:58� 10�6 2.53 2:00� 10�4 1.55

CSL2R
(a � 4:001)

40 9:79� 10�5 � � � 1:53� 10�4 � � �
80 1:23� 10�5 2.99 1:93� 10�5 2.99
160 1:53� 10�6 3.01 2:41� 10�6 3.00
320 1:92� 10�7 2.99 3:01� 10�7 3.00

CSL2R
(a ¼ 3:999)

40 8:99� 10�4 � � � 4:39� 10�3 � � �
80 2:00� 10�4 2.17 1:86� 10�3 1.24
160 3:68� 10�5 2.44 6:73� 10�4 1.46
320 7:23� 10�6 2.35 2:59� 10�4 1.38
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alternative solvers are required. In this paper, CSL2 is used for
cusps when the successive gradient (ri) is less than a; otherwise,
the first-order upwind scheme is used. The successive gradient is
defined as

ri ¼ max
j�/ i � /i�1=2j
j/iþ1=2 � /i j

;
j/iþ1=2 � �/ij
j�/ i � /i�1=2j

 !
: (19)

In this paper, a ¼ 4:01 is mainly used.

NOS is intuitive and easy to implement. We call the scheme,
which combined CSL2 and CSLT as CSL2T (CSL with second-order
polynomial and hyperbolic tangent functions).

E. CIP-CSL2R scheme

By using NOS, we can minimize numerical oscillations of CSL2
with any less-oscillatory scheme. In this paper, we also proposed
CSL2R (CSL with second-order polynomial and rational functions)
scheme, which is based on CSL2 and CSLR. The procedure is almost

FIG. 4. Numerical results of Jiang-Shu test at t¼ 2 (1 period). (a)–(d) are numerical results by CSL2, CSLR, CSL2T (b ¼ 4), and CSL2R, respectively. N¼ 200 and
CFL¼ 0.4 are used.

FIG. 5. Numerical results of Jiang-Shu test at t¼ 2 (1 period). (a)–(c) are numerical results by CSL2T with b ¼ 3, b ¼ 5, and b ¼ 10, respectively. N¼ 200 and CFL¼ 0.4 are used.
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same with CSL2T. We can simply replace CSLT with CSLR in the
CSL2T scheme.

III. NUMERICAL RESULTS
A. Sine wave propagation

The conservation equation (1) is solved with the initial condition
/ðx; 0Þ ¼ sin ð2pxÞ. The domain ½0; 1�, u(x)¼ 1 and periodic bound-
ary conditions are used. Four different grid sizes (N¼ 40, 80, 160, and
320) are used with Dt ¼ 0:4Dx and Dx ¼ 1=N . Errors are defined as
follows:

L1 ¼
1
N

XN
i¼1
j/i � /exact;ij; (20)

L1 ¼ maxðj/i � /exact;ijÞ: (21)

TABLE II. L1 and L1 errors in the complex wave propagation test at t¼ 1 (1 period).
N¼ 200 and CFL¼ 0.4 are used.

L1 error L1 error

CSL2 1:49� 10�2 2:46� 10�1

CSLR 1:90� 10�2 2:60� 10�1

CSL2T (b ¼ 3) 1:27� 10�2 2:33� 10�1

CSL2T (b ¼ 4) 1:22� 10�2 2:33� 10�1

CSL2T (b ¼ 5) 1:19� 10�2 2:32� 10�1

CSL2T (b ¼ 10) 1:12� 10�2 2:31� 10�1

CSL2R 1:28� 10�2 2:33� 10�1

FIG. 6. Numerical results of Burgers’ equation at t¼ 1. N¼ 100 and CFL¼ 0.2 are used.

FIG. 7. Top views of numerical results of Zalesak problem (after one revolution).
(a)–(d) are numerical results by CSL2, CSLR, CSL2T (b ¼ 4), and CSL2R, respec-
tively. The dotted and solid lines represent 0.5 contour lines of numerical results
and the exact solution, respectively. A Cartesian grid of 100� 100 was used.
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Table I shows the numerical results. CSL2 has third-order accuracy.
CSLR cannot maintain third-order accuracy. CSL2T and CSL2R have
third-order accuracy when a � 4:001. This means that NOS does not
disturb the accuracy of the CSL2 scheme when a � 4:001. If a � 4:00
(for instance, a ¼ 3:999) is used, the order of accuracy cannot be

maintained in both CSL2T and CSL2R. In this paper, a ¼ 4:01 is used
for the rest of results.

B. Jiang-Shu test

We validate proposed CSL schemes through Jiang-Shu problem13

u(x)¼ 1, the domain ½�1; 1�, N¼ 200, Dt ¼ 0:4Dx; Dx ¼ 2=N , and
periodic boundary conditions are used in this test. The initial condi-
tion is given as

/ðx; 0Þ ¼

1
6
ðGðx; bJS; z � dÞ þ Gðx;bJS; z þ dÞ þ 4Gðx;bJS; zÞÞ if � 0:8 � x < �0:6;

1 if � 0:4 � x < �0:2;
1� j10ðx � 0:1Þj if 0:0 � x < 0:2;
1
6
ðFðx; aJS; a� dÞ þ Fðx; aJS; aþ dÞ þ 4Fðx; aJS; aÞÞ if 0:4 � x < 0:6;

0; otherwise;

8>>>>>>>>>><
>>>>>>>>>>:

(22)

where

Gðx; bJS; zÞ ¼ e�bJSðx�zÞ2 ; (23)

Fðx; aJS; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxð1� ðaJSÞ2ðx � aÞ2; 0Þ

q
; (24)

where a¼ 0.5, z ¼ �0:7; d ¼ 0:005; aJS ¼ 10, and bJS ¼ logð2Þ= ð36d2Þ.

FIG. 8. Numerical results of Zalesak problem (after one revolution). (a)–(d) are
numerical results by CSL2, CSLR, CSL2T (b ¼ 4), and CSL2R, respectively. A
Cartesian grid of 100� 100 was used.

TABLE III. L1 errors in Zalesak problem (after one revolution and four revolutions). A
Cartesian grid of 100� 100 was used.

Schemes
L1 Error after
one revolution

L1 error after
four revolutions

CSL2 1:55� 10�2 2:21� 10�2

CSLR 1:73� 10�2 2:75� 10�2

CSL2T (b ¼ 4) 1:28� 10�2 1:97� 10�2

CSL2R 1:30� 10�2 1:99� 10�2

FIG. 9. Numerical results of lid-driven cavity flows of Re¼ 7500. (a)–(c) are numerical results by CSLR, CSL2T (b ¼ 4), and CSL2R, respectively. A Cartesian grid of 128� 128
was used. The solid and dot lines represent x- and y-components of the velocity fields on the lines x¼ 0 and y¼ 0, respectively. Dots represent numerical results by Ghia et al.8
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Figure 4 shows the results at t¼ 2 (1 period). CSL2 is oscillatory
around discontinuities as shown in Fig. 4(a). Although CSLR can pre-
vent numerical oscillations, the result is diffusive as shown in Fig. 4(b).
CSL2T (b ¼ 4) and CSL2R can minimize numerical oscillations of
CSL2 without increasing diffusions much [Figs. 4(c) and 4(d)].

Figure 5 shows the results when the parameter b in CSLT was
altered. If a smaller b [e.g., Fig. 5(a)] is used, the solution becomes
slightly diffusive and errors are increased as shown in Table II. If a
larger b [e.g., Figs. 5(b) and 5(c)] is used, the solution becomes less dif-
fusive and errors are decreased as shown in Table II. If a large b (e.g.,
b ¼ 10) is used, CSL2T can delete numerical oscillations almost with-
out increasing diffusion as shown in Fig. 5(c). Although it is better to
use larger b for the 1D test problem, there are some side effects of
sharp sigmoid function in multidimensional fluid simulations (an
example is shown in lid-driven cavity flows later). Therefore, in this
paper, b ¼ 4 is mainly used. CSL2T is superior to CSL2R when b � 3
is used in this test.

C. Burgers’ equation

In this test, we solve the inviscid Burgers’ equation in its conser-
vative formulation

@u
@t
þ @ðu

2=2Þ
@x

¼ 0; (25)

with the initial condition uðx; 0Þ ¼ 0:5þ 0:4 cosð2pxÞ. N¼ 100,
CFL¼ 0.2, and periodic boundary conditions are used. Figure 6 shows
the results at t¼ 1. The reference solution is created by using
CSL3CW with N¼ 10 000. CSL2 has numerical oscillation around the
discontinuity. CSLR, CSL2T, and CSL2R can capture the discontinuity
well without numerical oscillation. CSL2T and CSL2R are slightly less
diffusive than CSLR around the discontinuity.

D. Zalesak problem

Zalesak’s test problem47 in which a notched circle is rotated is
widely used as a test of scalar advection schemes. The initial condition
is given by

/ ¼
1 if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � 0:5Þ2 þ ðy � 0:75Þ2

q
< 0:17 and

ðy > 0:85 or jx � 0:5j > 0:03Þ;
0 if others;

8>>><
>>>: (26)

uðx; yÞ ¼ ðy � 0:5; 0:5� xÞ: (27)

The one revolution is completed with 628 time steps.
Figure 7 shows numerical results (top view of 0.5-contour) by

CSL2, CSLR, CSL2T (b ¼ 4), and CSL2R after one revolution. Both
results show good agreement with the exact solution. Figure 8 shows
the perspective views of the numerical results by CSL2, CSLR, CSL2T
(b ¼ 4), and CSL2R. As shown in Fig. 8, the numerical result by CSL2
is oscillatory (a), CSLR can minimize numerical oscillations but the
result is diffusive panel (b). CSL2T and CSL2R can minimize

FIG. 11. Numerical results of lid-driven cavity flows of Re¼ 7500. These lines are
numerical results by CSLR, CSL2T (b ¼ 4), and CSL2R, respectively. A Cartesian
grid of 64� 64 was used.

FIG. 10. Numerical results of lid-driven cavity flows of Re¼ 7500. (a)–(c) are numerical results by CSLR, CSL2T (b ¼ 4), and CSL2R, respectively. A Cartesian grid of
64� 64 was used.
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oscillations without increasing numerical diffusions much as shown in
Figs. 8(c) and 8(d), respectively. Table III shows L1 errors after one
revolution and four revolutions. The result indicates that CSL2T is
superior to CSL2R in this test and the trend is unchanged after four
revolutions.

E. Lid-driven cavity flows

The proposed CIP-CSL schemes were applied to lid-driven cavity
flow problems, and these numerical results are compared with numer-
ical results by Ghia et al.8 Figure 9 shows numerical results of lid-
driven cavity flows of Re¼ 7500 by CSLR, CSL2T (b ¼ 4), and CSL2R
(CSL2 is not considered hereafter because such oscillatory schemes
cause some issues such as unnatural oscillations in solutions, and
instability of calculations). A Cartesian grid of 128� 128 was used. All

numerical results have shown good agreements with the reference
solution by Ghia (a grid of 256� 256 was used in the reference solu-
tion). However, as shown in Fig. 9, we cannot observe differences of
these results clearly with the resolution 128� 128. Therefore, we com-
pare these results with a lower numerical resolution. Figure 10 shows
the numerical results when a Cartesian grid of 64� 64 was used. In
this resolution, it is clear that CSL2T and CSL2R are superior to CSLR.
To observe the differences among CSL2T, CSL2R, and CSLR more
clearly, we plotted numerical results of CSLR, CSL2T, and CSL2R
together, and magnified the area �0:5 � x � 0 and �1 � y � �0:5.
As shown in Fig. 11, CSL2T is slightly superior to CSL2R. We also
study the effect of b of CSL2T in this test. As shown in Fig. 12(a), if b
¼ 3 is used, CSL2T is even less accurate than CSLR. If b is increased
from b ¼ 3 up to around b ¼ 4:5, the results are improved and are
superior to results by CSL2R as well as CSLR. However, as shown in

FIG. 13. Numerical results of lid-driven cavity flows of Re¼ 1000 (a) and 5000 (b) when a Cartesian grid of 128� 128 was used.

FIG. 12. Numerical results of lid-driven cavity flows of Re¼ 7500. (a) Represents numerical results by CSL2T with b ¼ 3, b ¼ 3:5, b ¼ 4, and b ¼ 4:5. (b) Represents
numerical results by CSL2T with b ¼ 4, b ¼ 5, b ¼ 6, and b ¼ 10. A Cartesian grid of 64� 64 was used.
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Fig. 12(b), if b is increased further around from b ¼ 4:5, the results
are getting worse. Based on these results in Fig. 12, optimal b would be
around 4 � b � 5. If around 4 � b � 5 is used, CSL2T is superior to
CSL2R. In this paper, b¼ 4 is used hereafter.

Figures 13(a) and 13(b) show numerical results of Re¼ 1000 and
5000 by CSL2T (b ¼ 4), respectively. CSL2T can also simulate cavity
flows of other Reynolds numbers well. We have also confirmed that
CSLR and CSL2R schemes can also simulate cavity flows of these
Reynolds number well. Figure 14 shows the velocity field of Re¼ 7500 by
CSL2T when a Cartesian grid of 64� 64 was used. Secondary vorticity at
bottom right corner has been captured with the resolution of 64� 64.

F. Two droplets collisions and separations

We performed three-dimensional numerical simulations of two
droplets collision and separation, which involves topology change of
liquid interfaces.3 The numerical method to simulate free surface flows
is based on VSIAM3-TM,44 the CLSVOF (coupled level set19,26 and
volume-of-fluid11,14) method,25,38 the THINC/WLIC (tangent of
hyperbola for interface capturing/weighted line interface calculation)
scheme,12,32,39 and the density scaled balanced continuum surface
force model43,45 with level set curvature correction.42 For the full
details of the implementation of the free surface flow solver, see Refs.
40 and 42–44.

Figures 15(a)–15(c) show snapshots of the numerical results of
two droplets collision and separation (We¼ 40) by CSLR, CSL2R, and

FIG. 15. Numerical results of two droplet
collisions and separation by CSLR (a),
CSL2T (b), and CSL2R (c) with the corre-
sponding experimental result (d).3 The
time evolution is from right to left. The
mesh size is D ¼ D=7:4. Reproduced
with permission from N. Ashgriz and J. Y.
Poo, “Coalescence and separation in
binary collisions of liquid drops,” J. Fluid
Mech. 221, 183 (1990). Copyright 1990
Cambridge University Press.

FIG. 14. Numerical results of lid-driven cavity flows of Re¼ 7500 by CSL2T (b ¼ 4).
A Cartesian grid of 64� 64 was used.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 112104 (2022); doi: 10.1063/5.0112953 34, 112104-10

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


CSL2R, respectively. The corresponding experimental result can be
found in Ref. 3. In these numerical simulations, quantitative parame-
ters were used. The density ratio is 1.25:1000 (air:liquid). The mesh
size D ¼ D=7:4 was used, where D is the diameter of initial droplets.
In this numerical resolution (D ¼ D=7:4), only CSL2T could repro-
duce the separation, and CSL2R and CSLR failed to do it. However, if
the resolution was increased, CSLR and CSL2R could also reproduce
the separation with D ¼ D=7:5 and D ¼ D=8:0, respectively. The
numerical results have demonstrated that CSL2T and CSL2R can
reduce numerical diffusion in the free surface flow application com-
pared to CSLR, and CSL2T is slightly better than CSL2R in this test.
Although there are some previous numerical work of droplet collision
and separations,2,4,20,28 compared to these previous work, our simula-
tion has captured the phenomena with a quite course grid.

G. Droplet splashing

We performed numerical simulations of prompt splashing using
CSLR, CSL2T, and CSL2R with VSIAM3-TM.44 The corresponding
experimental result can be found in Ref. 29. In the numerical simula-
tions, quantitative parameters, the densities qliquid ¼ 1000, qair ¼ 1:25
kg/m3, viscosities lliquid ¼ 1:0� 10�3, lair ¼ 1:82� 10�5 Pa s, surface
tension r ¼ 7:2� 10�2 N/m, gravity 9.8m/s2, initial droplet diameter
D¼ 1.86mm, impact speed 2.98m/s, and the equilibrium contact angle
163	 are used. A Cartesian grid of 224� 224� 48 is used. The mesh
size D ¼ D=45 was used. Figure 16 shows the result. CSLR, CSL2T, and
CSL2R can capture the physics of droplet splashing including satellite
droplets and spikes. It seems that CSL2T and CSL2R capture satellite
droplets and spikes more than CSLR and that the results by CSLR are
more diffusive than these by CSL2T and CSL2R. The result has also
shown the CSL2T and CSL2R as well as CSLR are robust.

IV. SUMMARY

We proposed novel third-order less oscillatory and less diffusive
compact stencil-based upwind schemes, which are called the CIP-
CSL2T and CIP-CSL2R schemes for the approximation of hyperbolic
conservation laws. We also proposed NOS, which can select a suitable
CSL scheme between CSL2 and CSLT in CSL2T, and CSL2 and CSLR

in CSL2R. Both CSL2T and CSL2R have third-order accuracy for the
sine wave test and capture discontinuities and smooth solutions without
numerical oscillations. The proposed schemes could capture the second-
ary vorticity at bottom right corner of lid-driven cavity flow of
Re¼ 7500 with a Cartesian grid of 64� 64. The numerical results of
two droplets collision/separation of We¼ 40 show that the proposed
schemes can reproduce droplets collision/separation with low numerical
resolutions of 7.4–7.5 meshes for the diameter of initial droplets. The
numerical results of droplet splashing have demonstrated that proposed
schemes can reduce numerical diffusions well against CSLR and robust.
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FIG. 16. A comparison among the numerical results by CSLR (a), CSL2T (b), and CSL2R (c). A distilled water droplet of 1.86 (mm) impacts onto a superhydrophobic substrate
(the equilibrium angle is 163	). The droplet impact speed is 2.980 (m/s). A Cartesian grid of 224� 224� 48 and a ¼ 1:5Dx is used. The mesh size is D ¼ D=45. The corre-
sponding experimental result can be found in Ref. 29.
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