Linear Algebra and its Applications 658 (2023) 62-85

Linear

journal homepage: www.elsevier.com/locate/laa

Contents lists available at ScienceDirect

Algebra and its Applications Abplications

On the sum of left and right circulant matrices

Matthew C. Lettington *,

L))

Check for
updates

Karl Michael Schmidt

School of Mathematics, Cardiff University, 23 Senghennydd Road, Cardiff, CF24

JAG, UK

ARTICLE INFO

ABSTRACT

Article history:

Received 27 September 2022
Accepted 28 October 2022
Available online 3 November 2022
Submitted by A. Boettcher

We consider square matrices arising as the sum of left
and right circulant matrices and derive asymptotics of the
sequence of their powers. Particular emphasis is laid on the
case where the matrix has consecutive integer entries; we find
explicit formulae for the eigenvalues and eigenvectors of the

MSC:
11B13
15B05
15B36
11B83
42A16

Keywords:

Circulant matrices
Discrete Fourier transforms
Moore-Penrose inverses
Sum-systems

matrix in this case and find its Moore-Penrose pseudoinverse.
The calculation involves the discrete Fourier transform of
integer vectors arising from sum systems and exhibits a
resonance phenomenon.
© 2022 The Author(s). Published by Elsevier Inc. This is an
open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A sum system [3,5,9] is a
by taking one element from
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systems with two component sets, each of cardinality n, arise naturally in the study of
n X n matrices with symmetry properties and consecutive integer entries.

For a simple example, consider the sum of a right-circulant (Toeplitz) matrix [2,6,11]
and a left-circulant (Hankel) matrix

a b c d e f a+d b+e c+f
c a b|l+]le f d]|l=]|ct+e a+f b+d
b ¢ a f d e b+f c+d a+e
The sum will have consecutive integer entries {ng,ng + 1,...,n¢ + 8} if and only if

{a,b,c}—l—{d,e,f} ="no + <9>

We here use the Minkowski set sum A+ B ={x+y:x € A,y € B} and the convention
aA+b=A{ax+b:x € A} for sets A,B C R and a,b € R as well as the notation
(n):={0,1,...,n—1} for any n € N.

The offset ng can easily be added or subtracted, so for standardisation we call a pair
of sets Ay ={ay,...,an}, Ay = {b1,...,bp} C Ny an n +n sum system if

A1 + A2 = <n2>,
ie. if
{aj+bp:je{l,...,n},ke{l,...,n}} ={0,1,...,n* — 1}

Clearly each component set of a sum system contains the number 0 as its smallest
element. Moreover, it was shown in Lemma 3.2 of [5] that the component sets of a sum
system have the palindromic property

aGAj:>maxAj—a€Aj (]G{LQ})

Therefore, if n is odd, n = 2v + 1, then %max A; € Aj, and by subtracting this middle
number from each element of the sum system components, we obtain a system of number
sets symmetric around 0.

Example 1. For v = 4 there exist the three 9 + 9 sum systems

{{0,1,2,3,4,5,6,7,8}, {0,9,18,27,36, 45,54, 63, 72} },
{{0,1,2,9,10,11, 18,19, 20}, {0,3,6,27,30,33,54,57,60}}
and {{0,1,2,27,28,29,54,55,56}, {0,3,6,9,12,15,18,21,24}},

which each generate the set of consecutive integers {0,1,2,...,79,80}. The first of these
sum systems, where A; = (n) and Ay = n(n), is called canonical sum system and exists
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analogously for all n € N 4 1. Subtracting half the largest number from each component
set, we obtain the centred systems

{{-4,-3,-2,-1,0,1,2,3,4}, {—36,—27,—18,-9,0,9,18,27,36}},
{{-10,-9,-8,-1,0,1,8,9,10}, {—30,—27, —24, 3,0, 3,24, 27,30}}
and {{—28,-27,-26,—1,0,1,26,27,28}, {—12,—9,—6,-3,0,3,6,9,12}},

respectively, the Minkowski set sum of each pair of sets giving the set of consecutive
integers {—40,—39,...,0,...39,40}.

We call a matrix arising as the sum of a left circulant and a right circulant matrix a
sum circulant matriz. It is clear that a sum circulant matrix whose left and right circulant
parts take their entries from the two component sets of a sum system has consecutive
integer entries, and it is not hard to see that conversely a sum circulant matrix with
consecutive integer entries must have left and right circular parts whose entries arise
from a sum system.

In the present paper, we study n X n sum circulant matrices with odd n = 2v 41, the
sequence of their powers and their Moore-Penrose pseudoinverses in greater generality.
We take particular interest in the case where the entries of their circulant summands are
taken from the two centred component sets of an n + n sum system.

Following on from this introduction and motivational results, we organise the paper
as follows. In Section 2 we give the definition of circulant Toeplitz and Hankel matrix
generators and show how the algebra of circulant Toeplitz matrices reflects the convolu-
tion algebra of their generating vectors (the central matrix columns). We also show how
the discrete Fourier transform can be used to diagonalise such matrices. These tools are
used throughout the remainder of the paper.

In Section 3 we consider the sequence of powers of general sum circulant matrices,
showing that, up to suitable rescaling, the subsequence of fourth powers always converges
to one of a small number of limit matrices that can be described as circulant Toeplitz
matrices with a generating vector of very simple Fourier transform. For the study of the
limits and convergents of sum circulant matrices whose generating vectors arise from
sum systems, it is therefore of great interest to know the Fourier transforms of these
generating vectors.

In Section 4, we use the characterisation of all sum systems in terms of joint ordered
factorisations of the pair of integers (n,n), established in [5], to find the Fourier trans-
forms of vectors created from the entries of centred sum system components in increasing
order. The result carries over to a certain class of permutations of the vector entries
that have covariant Fourier transforms. Finally, in Section 5, these results are used to
characterise the eigenvalues (and hence the characteristic polynomials) of sum circulant
matrices arising from sum systems and find their Moore-Penrose pseudoinverses.

Our investigations are motivated by the following previous results. In [8] properties
of odd-sided (2v + 1) x (2v 4 1) right circulant (Toeplitz) matrices M, with top row
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O,v, -1, v—1,-2,v—2,...,2, —v—1,1,—v)

were studied, establishing in particular that the Moore-Penrose inverse M, is given by
the right circulant matrix with top row (0, ’Tl, 0,...,0, %)

The sequence of powers of an n x n matrix M, (M, M? M3, M*,...) satisfies, by the
Cayley-Hamilton theorem, the n-term recurrence relation

an M7 iy M g o MR o M 4 g MY = 0,
n
where x(\) = apA¥ is the characteristic polynomial of M. If M is a sum circulant

k=0
matrix, then so is its Moore-Penrose pseudoinverse M ™, and the powers of M~ satisfy

a reciprocal recurrence to that of M (see Theorem 5.2 and Remark 4 in Section 5 of the
present paper). The sequence of powers of M~ can thus be viewed as a continuation of
the sequence of powers of M to negative indices.

For the matrices M, as defined in the example above, it was shown in [8] that the
characteristic polynomial applied to the matrix M, (by the Cayley-Hamilton theorem)
yields separate equations for the odd and even powers,

DTk MP =0, =) 0P TORf MEE,
k=0

k=0
where f, = ﬁ(”zts), s € {0,...,v}. Thus the entries of the odd matrix powers and

the entries of the even matrix powers obey separate recurrences, reflecting a split over
the superalgebra of centro-symmetric and centro-antisymmetric n X n matrices (cf. [4]).
When v = 2, the sequence generated from powers of M22k+1 contains interlacing
sequences of Fibonacci and Lucas numbers, up to powers of 5. On this basis, a natural
definition of higher-dimensional Fibonacci sequences was given in [1].
The recurrence relation obtained from the characteristic polynomial of M, was also
used [8] to obtain the recurrence for even integer values of the Riemann ¢ function,

247) = (—1)9+1! j7r2j — (_1)k772j72k 2%
¢(2j) = (=1) (2j+1)!+;(2j—2k+1)!« )]

Further relations for functions related to the ( function were obtained by expressing
these recurrences as Toeplitz determinants [8,7].

Similarly, the reverse recurrence corresponding to the powers of the Moore-Penrose
pseudoinverse M, contains (up to powers of n = 2v + 1) the Fleck numbers defined
modulo ¢ by
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For prime powers ¢ = p®, the Fleck numbers obey the congruence relation

Fo) = Y 1 (}) =0 moas?)

k=t mod p¢

e—1

where 8 = {#J and ¢ is Euler’s totient function. As indicated above, one can think

of these Fleck numbers with their intriguing divisibility properties as being generated by

powers of the Moore-Penrose pseudoinverse matrix M, .
2. Circulant matrix constructors and the discrete Fourier transform

Let n = 2v+1 be an odd positive integer and consider the n-dimensional vector space
C™. We treat its elements as column vectors and, as reflection symmetry will play an
essential role in the following, we use the indices —v,—v 4+ 1,...,v — 1,v. For ease of
notation, all index calculations are done in the cyclic ring Z/(nZ) = {-v,...,v}, so
v+ 1= —v etc.

The vector space C™ has two natural products; the componentwise product - : C™ x
Ccn - (Cn’

(u-v)g = uk vk (ke{-v,...,v};u,veC"™)
and the cyclic convolution x : C™ x C™ — C™,
14
(u*v), = Z Uj Vp—j (ke {-v,...,v}u,v e C"),
j=—v
that together with standard vector addition, give it two distinct commutative algebra

structures. (Some authors use the dot for the inner product >
T

u;7j, but as this can

=—v
easily be expressed as matrix multiplication in the form w 5,j we prefer to use the dot
for the componentwise product as defined above.)

Let J be the reflected unit matrix, Jjr = d;,—r (j,k € {—v,...,v}), where ¢ is the
Kronecker delta symbol. We then call u € C" even or odd if Ju = u or Ju = —u,
respectively, and split the vector space into its even and odd subspaces, C" = C} ¢ C”,
where C} := {u € C" : Ju = £u}. Then C7 is a subalgebra with either of the two
products and, with respect to this splitting, both (C™,-) and (C™, ) are superalgebras.

For the definition of the discrete Fourier transform, it is convenient to introduce the

function
e(x) == e 2™ (r € R);

then € satisfies the functional equations e(x+y) = €(x)e(y) and e(xy) = e(z)¥ (z,y € R).
This function has the property that e(x) = 1 & x € Z, and it is also useful to note that
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e(n/2) = (=1)" (n € Z). The discrete Fourier transform is the linear bijection on C™
generated by the matrix F', where

Fji, =¢€(jk/n) (J, ke {—v,...,v}),

with inverse
BRI P .
Fjyl = —e(=jk/n)  Gke{-v,....v}).

We remark that the entries of the Fourier transform F'u of a vector u € C™ are the values
v

the Laurent polynomial p,(z) = Y. wug 2" takes at the n-th roots of unity.
k=—v
We also define the Fourier conjugation F : C"*" — C™ " FM = FMF~! for any
matrix M € C™*",
Furthermore, we introduce the following methods of generating n x n matrices from

elements of C™, viz. the diagonal matriz constructor

D:C"— Crxm, D(u)jk = ujdjk (J,ke{-v,...,v}ueCm),
the circulant Toeplitz constructor

T:C"—C™™, T(u)jr = uj—g (J,ke{-v,...,v}ueC"),
and the circulant Hankel constructor

H:C"—Ccrxm, H(u)jk = wjtr (Gyke{-v,...,vhueCm™).

Then the following statements are easy to verify. Here C™*" is given the standard algebra
structure with matrix multiplication as product.

Lemma 2.1.

a) F:(C" %) — (C™,.) is an algebra isomorphism.
b) The dzagonal matriz constructor D : (C™,-) — C™ "™ is an algebra homomorphism.

d) H=TJ.

e) Fourier conjugation F : C™*™ — C™*"™ is an algebra isomorphism; moreover, FoT =
DoF.

() J:(C™:) = (C™:) and J : (C™ %) — (C", %) are algebra isomorphisms; also,
FJj=JF.

(g) JT = (ToJ)J.

(h) Ifu,v € C}, then H(u)H(v) = T(u)T(v) (and these commute); furthermore, T'(u)
and H(v) commute.

(
(
(¢) The circulant Toeplitz constructor T : (C™, %) — C™*™ is an algebra homomorphism.
(
(
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(i) Ifu,v € C™, then H(u)H(v) = =T (u)T(v) (and these commute); furthermore, T (u)
and H(v) anticommute.

We remark that parts (c) and (g) of the above Lemma imply the identities T'(u)T'(v) =
T(uxv), T(u)H(v) = Hux*v), Hw)T(v) = H(u* (Jv)) and H(uw)H(v) = T(u* (Jv))
for u,v € C™.

Part (f) of the above Lemma shows that the Fourier transform of an even or odd vector
is even or odd, respectively. The Fourier transforms of such vectors can be expressed more
conveniently for practical calculation as follows.

Lemma 2.2.

(a) If u e C™, then

v k
(Fu)p = —2i Zuj sin <27r‘]n) (ke {-v,...,v}),
j=1
and we have the inverse

2 . Jk :
u; = o kgl(Fu)k sin <27rn> (jef{-v....v}).
(b) Ifu e C%, then

n

(Fu) =g 423y cos (2#’“) (k€ {-v,....0}),

j=1

and we have the inverse

Uj:% ((FU)O“I‘QZ(FU)ICCOS <27T%)> (je{—y,,_,7y})_

k=1

3. The asymptotics of powers of sum circulant matrices

In this section we consider sum circulant matrices, i.e. n X n matrices of the form
M =T(u) + H(v), where u,v € C™.

Lemma 3.1. Let u,v € C* and M =T (u) + H(v). Then, for any m € Ny,
FM? = D(Fu)? — D(Fv)?,

which is a diagonal matriz.
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Proof. Observing that
FM = FMF~' = D(Fu) + D(Fv)/J,
we calculate

FM?* = FM?F~" = (D(Fu) + D(Fv)J)?
= D(Fu)? 4+ D(Fu)D(Fv)J — D(Fv)D(Fu)J — D(Fv)?
= D(Fu)?> — D(Fv)%. O

Remark 1. By the binomial theorem, the expression in Lemma 3.1 gives the even powers
of M,

M = zm: <7}1) (=1)? D(Fu)?™=9) D(Fv)% |,
§=0
and hence also the odd powers,
™ . , .
MAL = Fol ;0 <j ) (1) D(Fu)*m=D+1 D(Fy)?

+ ]2: (7) (1) D(Fu)*"™=9) D(Fv)> ]

In the case of linearly dependent generating vectors v = Ku, these formulae simplify to

MP™ = (1 - K*)™ F~' (D(Fu)®™),
M2m+1 — (1 _ KZ)m ]_-—1 (D(Fu>2m+1 (I+ KJ)) .

The following theorem, one of our main results, states that the subsequence of fourth
powers of a sum circulant matrix with odd generators converges to a simple limit matrix
after suitable rescaling.

Theorem 3.1. Let u,v € C™ and let M = T'(u)+ H (v) be the corresponding sum circulant

matriz. Let Cy 1= {max }\(Fu)? - (Fv)§| Furthermore, let wo, := F ™11y, where
Je{—v, v
Weo € CY is defined by

(Ge{-v,...,v}).

R 1 if |(Fu)§ - (FU)§| =Cup
Woo,j =
0 otherwise

Then
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4m

=T (Weo).

Proof. Due to the odd symmetry of u and v and Lemma 2.2 (a), the entries of Fu and
of Fv are purely imaginary and therefore their squares are (non-positive) real. Hence

i

(Fu)? — (Fu)2)?m (KFuﬁ——u%oﬂ)Qm A

— W m — 00).
c2m Cuv o )

By Lemma 3.1 and Lemma 2.1 (e), we hence find

cin ciy Cuw

— D(thso) = D(Fwe) = FT (Weo) (m — 00),

FMAm (FMZ)PT (D(Fu)2 - D(Fv)z)zm

and the statement of the Theorem follows. O
In the case of linearly dependent generating vectors v = Ku, we find
(Fu) — (Fv)i = (1= K?) (Fu); = (K* =) [(Fu);|* (€ {-v,...,v}),

bearing in mind that (Fu); is purely imaginary in the last step. Proceeding in analogy
to the proof of Theorem 3.1, we obtain the following statement.

Theorem 3.2. Let u € C™ \ {0} and K € C, and let M = T(u) + KH(u) be the corre-
sponding sum circulant matrixz. Then

) M2m
A RE— Tymoy L Wee):

where Cy = maxjei_y, oy |(Fu);|* and wee := F~ Moo with

(jef{-v,...,v}

00,j — .
0 otherwise

) {1 if [(Fu);?=C,
Remark 2. The preceding theorems show that after suitable rescaling, the sequence of
fourth powers of the sum circulant matrix M (or, in the case of linearly dependent
generating vectors, the sequence of even powers) approaches one of a fairly small number
of simply structured circulant Toeplitz matrices. Indeed, as the vector w., only has
entries 0 and 1 and is even with central entry 0 and at least one pair of non-zero entries,
there are only 2¥ — 1 possible different vectors .., and generically, i.e. excluding cases
where [(Fu)? — (Fv)3| (or, if v is a multiple of u, |(Fu)3|) is maximal for two or more
index pairs (—j,7), there are only v different vectors. For example, for v =2 (so n = 5)
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there are only the three possibilities W, € {(1,0,0,0,1)7,(0,1,0,1,0)7,(1,1,0,1,1)T)}.
Thus the fourth powers of all matrices of the form considered in Theorem 3.1 with n =5
have one of 3 (generically, of 2) different asymptotic shapes.

Note that the scaling factors appearing in the limit formula cancel out when ratios of
matrix entries are considered. Therefore Theorem 3.1 shows that the ratios of any two
matrix entries, keeping their places fixed as we proceed to higher powers, are sequences
of convergents to the corresponding ratios in the Toeplitz matrix with generating vector
Wy obtained as the inverse Fourier transform of w.,. For example, taking n = 5 and
u=(-2,-1,0,1,2)T (and v a multiple of u), we find

Fu ~ —2i(1.314328, —2.126627, 0, 2.126627, —1.314328)7 .

We can immediately read off @, = (0,1,0,1,0)7 and therefore

2 47 2 2 47
Weo = — | cOS —, cos —, 1, cos —, cos —
5 5 5 5 5
In terms of the Golden Rati

o :%(1+\/_)*72cos( )f161803 .. and its inverse
571 =~ (1— V) = 2cos (%) ~ 0.

61803. .., we can write this as

-2 _ _ T
Woo = ? (¢7_¢ 1a17_¢ 17¢)
4. The Fourier transform of sum system components

If the generating vectors u, v of a sum circulant matrix M = T'(u) + H(v) arise from
the two components

A1 :{0:a07...7an,1}7A2:{Ozbo,..., bnfl}

of an n 4+ n sum system as

T L = R N ()
then the entries of the matrix M are the integers —2v(v+1),...,2v(v+1), each appearing
exactly once. Due to the palindromic property of sum systems ([5] Theorem 3.3), aj, =
ap—1— ap_1—k and by = bp_1 —by_1- (k€ {0,...,n —1}), so u and v are odd vectors.
In particular, the results of Section 3 apply. It therefore seems an interesting question to
find the Fourier transforms F'u and Fv of these vectors. In this section, we express these
Fourier transforms in terms of the joint ordered factorisation of (n,n) that generated
the sum system. Specifically, let

((1’ fl)’ (2791)7 (17 f2)7 (2792)’ ) (17 fL)v (279L))
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be a joint ordered factorisation of (n,n), so

L L
ka:nv Hgk:na
k=1 k=1

with positive integers f1,..., fr,91,--.,90—1 > 2 and g1, > 1, where L is some natural
number. With the cumulative products

=1l  a=Jle Ge{o....L} (4.2)
k=1 k=1

(so fo = go =1 and f;, = §r = n) we can then write the two sum system components
as Minkowski set sums

L L
A =" feagralfe), Ax= ;fkgk—l<gk>v (4.3)
=1

k=1

(see [5] Theorem 6.7) and also split the index set as follows,

L
(n) = {Z fie—amy, : O gmgf—lL} (4.4)
k=1
L
_{nglmeOLSmﬁg—lL}, (4.5)
k=1
writing f := (f1,...,f)%, g :== (g1,.-.,92)T. We are here using multi-index notation,

in particular the partial ordering on N defined by
<y & Vke{l,...,L}:ap <y

also, 07, = (0,...,0)7 € NF and 1, = (1,...,1)T € NJ. In the following, note that we
use the symbol a | b as an abbreviation of b € aZ; in particular, a | 0 (a € N).

Theorem 4.1. Let n = 2v+1 be an odd natural number, and let fi, i (k € {0,...,L}) be
the cumulative products, as in (4.2), of a joint ordered factorisation of (n,n). For each
le{-v,...,v}, let klf denote the value of k € {0,...,L} such that fk’il Al and f?—k|l,
and let ki denote the value of k € {0,...,L} such that o Al and |1

Then the Fourier transforms of the vectors u and v defined as in (4.1) are

—1)ni —1)lni
(Ful = s g e (Pl = 5ol iy (e (v b\ (00D

(Fu)o = (Fv)o = 0.
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Corollary 4.1. In the situation of Theorem /.1,

2

(Fwt = (Fo)f = e s (B = 8y) (e v v\ (0D,

In the homogeneous case fr = g =: f (k € {1,...,L}), which corresponds to linearly
dependent u, v,

2

(Fu)f = (Fo)f = 4sin Tzﬂ'l/n)

(f2-1) leffl (1e{~v,...,v}\{0}).
Remark 3. In the formulae of Theorem 4.1 and Corollary 4.1, the factors fkg and 9y — are
determined by the divisibility properties of the index [ with respect to the last factors
in the joint ordered factorisation. In most cases ki = klf = L, but a resonance type
phenomenon occurs when gy, or f;, divide [ respectively.

In the homogeneous case, we can see that kil = L and therefore fki 1

~ 2
'I'l/f Z 'fk‘,lf—l (l S {71/,...,1/}). AAISO7 m
] € {1,...,v}. Hence |(Fu)? — (Fv)?| is maximal for [ = +1. By Theorem 3.1, the cor-

is strictly monotone decreasing in

responding vector W, will have entries oo ; = d)5),1 (j € {—V,...,v}. Hence Lemma 2.2
gives weo j = 2 cos 2’” (j € {-v,...,v}) such that
_[Afrsin? T\ .
im <m> (T'(u) + H(v))™ =T (w)-

We prepare the proof of Theorem 4.1 with some preliminary observations.

Lemma 4.1. Let n = 2v + 1 and consider the entries of a sum system component 0 =

ap < -+ < ap—1 and the corresponding odd vector u = (u—_y,...,u,), where
Qe .
Uj = Qjy, — n21 (je{-v,...,v}).
Then
n—1
e(—vi/n) 3 are(kl/n) ifle{—v,...,v}\ {0}
(Fu); = n—1 k=0
> are(kl/n) — 5= =0 if [=0.
k=0

Proof. We note that due to the palindromic property of the sum system component,

n
(ar + an—1-k) = 5 Ap—1-

7
|
N

k=0 k=0

Further,
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v

(Fup =37 (age0 = 1) 2it/n)

i=v 2
n—1 a n—1
=e(—vl/n) Zak e(kl/n) —e(—vl/n) "271 e(l/n)*,
k=0 k=0

and the result follows by observing that €(l/n) =1<1=0 (Il € {-v,...,v}) and that

§iaun 3%%%£?—0 (1€ {=v,...,u}\{0}). O

Lemma 4.2. Let n, f,g € N be such that f | n and g | n, and let | € Z. Then

(a)

g-1 1-2(lfg/n) ¢ n
S lififn) = {1—e<lf/n> L
g

= if 214

in particular,

|

(fj/n) =0

<
I
o

if % f1and £ | 1;
(b)

-1 1—e(lfg/n n
S e = et (200 /m) R — 9o/ it 5 11
j:OJ ! fol) i 2|

in particular,

g—1
U g
j;]e(lf]/n)*W

if % f1and & |1

Proof. Part (a) is a direct application of the formula for geometric sums. For part (b)
we observe that for m € N, g € C\ {1}

mz <ll_qq ) ! ((11_31?2) - <1qmq>'
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Lemma 4.3. Let n € N be odd, and let | € Z be such that 0 < |l| < n; furthermore, let
_ k
fife--- fL = n be a factorisation of n with f; € N (j € {1,...,L}) and fr = [] f;
j=1
(j€{0,...,L}). Then, for any k € {1,...,L},

L fi—1
I D+ 65k(my — 1) e(f—am;/n)
j=1 \'m;=0
— " fland 2|1,
—{ fe—1(@l/n)—1)  froa k
0 otherwise.

Proof. We first observe that at least one of the factors in the product (and hence the
whole product) vanishes unless the conditions (n/fr_1) f1 and (n/fy) | I are satisfied.
Indeed, the factors with j # k have the form

fi—1

> el fi-imj/n).

mj =0

By Lemma 4.2 (a), this is equal to 0 if (n/f;_1) /1 and (n/f;) | .

We note that n/fo = n does not divide 1. If (n/f1) | I, then the factor with j = 1
vanishes. Otherwise, if (n/f2) | [, then the factor with j = 2 vanishes. Continuing in this
way, we reach the question whether (n/f;) | I. If it does, we are in the situation we shall
consider in more detail later, otherwise, we ask whether (n/fry1) | 1. If it does, then the
factor with j = k + 1 vanishes. Otherwise, if (n/fx12) | I, then the factor with j = k 4 2
vanishes. Continuing in this way, we reach the question whether (n/f;_1) | I. If it does,
then the factor with j = L — 1 vanishes. Otherwise, the factor with 5 = L vanishes, since
n/fr =1 does divide I.

This leaves us with the case where (n/fr_1) f1 and (n/fy) | I. By Lemma 4.2 (b),
the factor with 7 = k in this case takes the form

fr—1

P B I
2, e =

For the preceding factors with j € {1,...,k—1}, we have (n/f;_1) /1, so by Lemma 4.2
(a) they have the form

fi—1

) f. m:/n) = é(lej/n)_l
mz il = =1

Thus the first k factors form a telescoping product
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k fi—1
T D (4 6u(m; —1)ef;—1m;/n)
j=1 \m;=0

_elfi/n) 1 e(fa/n) 1 e(lfior/n) 1 fu

€ e(lf; e(lfp_o/n) —1e(lfr_1/n) —1
e

e/n) 1"

For the remaining factors with j € {k +1,..., L}, we have (n/f;) | I, so by Lemma 4.2
(a),

fi—1 ~

> el famy/n) = f.

m; =0

Therefore the complete product takes the form

CRy z Jr frovr--- f
jl;[l m;o(l + 0k (my — 1)) e(lfj—1m;/n) | = W—IL

n

" fea(@/n) 1)

Proof of Theorem 4.1. Using the representation of the first sum system component as a
Minkowski sum (4.3), the corresponding splitting of the index set (4.4) and Lemma 4.1,
we find for [ € {—v,..., v} \ {0}

L L
e(vl/n) (Fu) = Z (Z fk1§k1mk> € %ijqmj
=1

0L <m<f—1p \k=1

L L .
= Z fk—lgk—lmkne (E fj—lmj)
0, <m<f—-1p \ k=1 j=1

L L
- ];fk—lgk—lj];[l(1+5jk(mj 1))5(% fj_lmj)

= XL: fr1G6—1 Z ﬁ(l +di(m; —1))€ (% fj—lmj>

k=1 0p<m<f-1p j=1
L L [ fi-1 l
= 2 Jr—19k-1 1_[1 ZO(I +0jk(m; —1))e (E fj_lmj)
= j=1 \m;=

By Lemma 4.3, we thus find
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- n e(—1/2
R ey ai)(—é(izi) if -0

and the expression for (Fu); claimed in the theorem follows when we observe that
e(—1/2) = (1) and e(t) —e(—5) = —2isinl/n.

Analogously, using the representation of the second component of the sum system in
(4.3), the splitting (4.5) and Lemma 4.3, we find

L L g;j—1 I
é(l/l/’fl) (F’U)l = Z.fkgk—l H Z (1 + 6jk(mj - 1))6 <E gj_lmj) s
k=1

j:l mj:O

and using Lemma 4.3 as above we obtain the expression for (F'v); claimed in the theo-
rem. 0O

Theorem 4.1 gives the Fourier transforms of vectors u, v arising from the two com-
ponents of the n + n sum system described by the given joint ordered factorisation,
under the hypothesis that the entries of these vectors are arranged in strictly monotone
increasing order, i.e. that

J1<j2 = Ujy < Ujyy Vi < Uy (jl,jg S {—V,...,V}).

However, the formulae of Theorem 4.1 are still useful in cases where the vector entries
are permuted in such a way that the Fourier transforms of the vectors are a permutation
of the Fourier transforms of the monotone increasing vectors. The following statement
gives a sufficient condition for this to be the case.

Lemma 4.4. Let m € {1,...,n— 1} be an integer coprime with n, so that (m, n ) = 1.

(a) The mapping mm : {—v,...,v} = {—v,..., v}, mn(j) :=mj (mod n)
(j € {-v, ..., v}) is a permutation.

(b) For any u € C" and @ € C" defined by @; = u ;) (j € {-v,...,v}), we have
(Fu)g = (Fu)x,, () (k€ {~=v,...,v}).

Proof. For (a), we only need to show that m,, is injective. Suppose j1,j2 € {—v,...,v}
are such that m,,(j1) = mm(j2), i.e. that m(j; — j2) = mjs — mja = 0 (mod n). This
implies j; = ja, since m is a unit in the ring Z/nZ.

For (b), note that

(Fi), = Z U_p g Bk n) = Z uj e(—mm (j)k/n) = _Z uje(—mgjk/n)
= Z uje(jrm(k)/n) = (Fu)x, 0y (k€{-v,...,v}). O

j=—v
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The number of different pairs u, v arising from the same sum system by permutations
of the type described in Lemma 4.4 is equal to the number of coprime numbers m €
{1,...,n—1}, i.e. equal to ¢(n), where ¢ is Euler’s totient function. Here we assume that
the same index permutation is applied to both v and v. However, due to the oddness of
the vectors, half of these are just the negatives of the other half.

5. Eigenvalues and pseudoinverses

We begin this section with some observations on the spectra of sum circulant matrices
with odd generators.

Theorem 5.1. Let u,v € C™. Then the matric M = T'(u) + H(v) has the (structural)
eigenvalue 0 with eigenvector w € C%, with wy = 1 (k € {—v,...,v}). The other
eigenvalues of M are

py =\ (Fu)? = (Fv)?  (je{l,...,v}).

If [L;t £ 0, then wt € C,, with

wE = (Fu — Fv); cos(2mjk/n) + i (Fu)3 — (Fv)? sin(2mjk/n)

(k € {—v,...,v}) are corresponding eigenvectors. In the case of coalescence of the pair
to a zero eigenvalue of algebraic multiplicity 2, ,u;r =p; =0, then

wg, = sin(2wjk/n) (ke{-v,...,v}); (5.1)
gwes an eigenvector w € C" if (Fu); = (Fv);,

wg, = cos(2mjk/n) (ke{-v,...,v}), (5.2)
gives an eigenvector w € CF if (Fu); = —(Fv);; in particular, if (Fu); = 0 = (Fv);,

then both (5.1) and (5.2) are eigenvectors, otherwise the geometric multiplicity of the
double eigenvalue ,uji =0 is equal to 1.

Proof. We begin by noting that FM = D(Fu) + D(Fv)J has non-zero entries only on
the two diagonals. Therefore the subspaces

Xj={zeC®:z2y,=0 (ke{-v,...,v}\{-7.4D} (j€{0,...,v})

are invariant under the linear mapping generated by the matrix M, and we can there-
fore restrict our attention to the eigenvalues and eigenvectors of the matrix on each
of these subspaces. As (Fu)g = (Fv)g = 0, the matrix acts as the null mapping on
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Xo and therefore has eigenvalue 0 and the corresponding eigenvector w € Xy C C"
with Wy = 0o (k € {—v,...,v}), using the Kronecker delta symbol. Then w = F~1
is an eigenvector of M for this eigenvalue, and by Lemma 2.2 (b) wy = 1/n for all
k € {—v,...,v}. Clearly any non-null multiple of this vector also is an eigenvector for
the same eigenvalue.

For j € {1,...,n}, the restriction of FM to the invariant subspace X is equivalent
to the 2 x 2 matrix

(o ) - )

If (Fu)? # (Fv)?, then the eigenvalues of this matrix are uji = +,/(Fu)j — (Fv)? with
eigenvectors

(Fu)j — (Fv); F )/ (Fu)] = (Fv)?
(Fu)j = (Fv);j £/ (Fu)] = (Fv)3

and the eigenvectors of M stated in the Theorem are obtained by applying the inverse
Fourier transform in Lemma 2.2 and multiplication by the constant n/2.

If (Fu); = (Fv);, then the 2 x 2 matrix has eigenvalue 0 of algebraic multiplicity 2
and geometric multiplicity 1, with the eigenvector (—1,1)7. If (Fu); = —(Fv);, then the
matrix has the same eigenvalue with eigenvector (1,1)”. The inverse Fourier transform
of Lemma 2.2 (a) and (b), respectively, gives corresponding eigenvectors of M in analogy
to the above. O

Example 2. Applying Lemma 4.4 with m = 2 to the centred 4 + 4 sum system
given in Example 1 with generators v = {—10,-9,—-8,-1,0,1,8,9,10} and v = 3u,
where n = 9, we see that the index permutation 7wy maps u to the generator o =
{-8,9,-1,10,0,-10,1,-9,8}. From 27* = 5 (mod 9), it follows that @, ;) = u,
(Ge{-v...,v}).

For all ¢(n) possible such mappings m,,, it follows that the eigenvalues of T'(u)
and T(u,, ) are the same, so that the respective characteristic polynomials coincide,
x(T(u)) = x(T(ur,)). If the same index permutation is applied to the generator
v, then Theorem 5.1 shows that the matrices M = T(u) + H(Ku) and M,
T(ur,, )+ H(Kug, ) have the same eigenvalues, and consequently the same characteristic
polynomial, x (M) = x(Mx,,). However, for two distinct permutations m,, # m,, the ma-
trix My, =, = T(ur, )+ H(vg,) will in general have different eigenvalues and different
characteristic polynomial from M = T'(u) + H(v).

Finally, we construct the Moore-Penrose pseudoinverses of sum circulant matrices.
For a matrix S, the Moore-Penrose pseudoinverse is the unique matrix S~ such that
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55878 =28,5755" =857, and SS~ and S7S are hermitian [10]. The pseudoinverse of
a circulant matrix is again a circulant matrix (see [11]).

As before, we consider the case of odd generating vectors u,v € C". By Theorem 5.1
the matrix T'(u) + H(v) has eigenvalue 0 and is therefore not invertible. As observed in
the proof of Lemma 3.1, the Fourier conjugate matrix FM = D(Fu) + D(Fv)J is very
simply structured and in particular has entries 0 off the two diagonals. The following
lemma shows that its pseudoinverse is a matrix of the same structure.

Lemma 5.1. Let 4,0 € C™. Then, with the vectors 47,0+ € C™ defined as

0 0 if ﬁk = ’ﬁk = 0,
=S 1 o = —qy if 43 =07 #0,
agu—kﬁ,% ﬁiv—kﬁg if i # of
forke{-v,...,v},
D(@™) + D(57)J = (D(a) + D(9)J) "
Proof. Using the facts that JD(w) = —D(w)J and D(w)D(y) = D(w - y) for any

w,y € C™, we find

(D(@) + D(0)J)(D(a™) + D(47)J)(D(@) + D(2)J)

The remaining three properties of the Moore-Penrose pseudoinverse can be verified in

analogous manner. O

As a direct consequence, we obtain the following statement.

Theorem 5.2. Let u,v € C* and let v~ = F~l47, v7 = F~197, where 47,97 are
defined as in Lemma 5.1 with 4 = Fu, ¥ = Fv. Then the pseudoinverse of the sum
circulant matric M = T'(u) + H(v) is

M~ =T(u")+ H(™).
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Proof. By Lemma 2.1 (d), (e), (f) and Lemma 5.1,

M+ =F Y FM*)F=F YD)+ D(%")J)F
=F 'D(Fu™)F+ F'D(Fv")FJ=Tu")+ H@v™). O

Remark 4. Consider a sum circulant matrix M and its Moore-Penrose pseudoinverse
M. In view of Theorems 5.1, 5.2 and Lemma 5.1, a straightforward calculation shows
that the non-zero eigenvalues of M~ are the inverses of the non-zero eigenvalues of M,
with the same eigenvectors. Also, the eigenvectors for the eigenvalue 0 are the same for
both M and M ™. These statements are not trivial, as sum circulant matrices are not in
general normal.

In the case where M (and hence M ™) only has the simple structural eigenvalue 0, it
follows that the characteristic polynomials x of M and x* of M~ are related as

X"\ = % X (%) ,

where P is the product of the non-zero eigenvalues of M, so x* is essentially the recip-
rocal of the polynomial y. Via the Cayley-Hamilton theorem, this shows that the powers
of M~ satisfy a recurrence relation that is the reverse of the recurrence for the powers
of M and can therefore be considered a continuation of the latter sequence to negative
powers. Note that negative powers of M do not exist directly as M is not invertible.

Specifically for sum circulant matrices generated by vectors u, v arising from a joint
ordered factorisation as in Eq. (4.1), we find the following pseudoinverses. Note that in
this case, by Theorem 4.1, (Fu); # 0 and (F'v); # 0 unless [ = 0.

Corollary 5.1. Let n = 2v + 1 be an odd natural number, and let fi, i (ked{0,...,L})
be the cumulative products, as in (4.2), of a joint ordered factorisation of (n n). For
each | € {—v,...,v}, let klj denote the value of k € {0,. L} such that Al and

J?—k|l, and let ki denote the value of k € {0,...,L} such that ="— 5o Ml and - |l Let

o 9, f_ o 5
) (*1)1% sin(ml/n) 2gil—2; if fkf # Ikf -1
A k _
= (=% PR -
~ gy, sin(wl/n) if fkf =04 1
.
i . ~kg o 7 ~
. (_1)l% SlD(’]Tl/’fL) %}T%fl if fkiq 7& gklffv
u= . PR
-1 . o 7 -
é"f)k; sin(rwl/n) if frg =345
l

forl e {—v,...,v}\ {0} and a5 = 05 = 0.
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Then T(F~Ya™)+ H(F~197) is the pseudoinverse of T(u)+ H(v), where u and v are
as in Eq. (4.1).

Specifically in the homogeneous case where all factors in the joint ordered factors
are the same and the resulting generating vectors u, v are linearly dependent, we can
give an explicit formula for the components of the generating vectors u™, v~ of the
Moore-Penrose pseudoinverse.

Theorem 5.3. Let n = 2v+ 1 be an odd natural number and suppose n = f¥ with natural
numbers f > 1, L. Let u,v € C™ be the vectors generated as in Eq. (4.1) from the sum
system with joint ordered factorisation fr, = gr = f (k€ {1,...,L}), and let 4, 0~ be
defined as in Corollary 5.1.

Then u™ := F~147 satisfies

L—1
o _ ) wr St GE{Lv—1))
_ P>

u;
L(f=1)+1 )
W (G =v),
where
1 if M is an odd integer,
Njm = § —1 if W is an odd integer,
0 otherwise;
moreover, u”; = —u; (j €{1,...,v}), ug =0 and v := F~'0% = fu~.

Proof. The main difficulty in using the formulae of Corollary 5.1 is to identify k:lf and
kj for each I € {—v,...,v}. In the homogeneous case, we have klf =kj ==k and L — Kk
is the greatest power of f that divides . Moreover, fr = §* = f*, so fi % Gi—1 for all k.
Consequently, Corollary 5.1 gives

i = (-1) s sin%l (le{-v,...,v}).

As this is an odd vector, the formula of Lemma 2.2 (a) gives

+_——4f )l in27r—jl inﬂ—l j v
uJ - n.i(f271) ;( 1) fkl s n S n (36{177 })

In this sum, the factor % is the greatest power of f that divides I; so it is equal to 1 if
[ is not a multiple of f, equal to f if [ is a multiple of f, but not of f2, equal to f2 if I
is a multiple of f2, but not of f3 etc. This consideration allows us to expand the sum in

a telescopic manner as follows,
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(Fr-1)/2 .
. 4 2mjl l
u; = Y (1) sin "I sin =
LSy

S —
n

n
=1

L—1 (fL777L_1)/2 .
_ . 2mif™l . owf™l
m—1 -1 711

£3m (~1)'sin =2 i T

=1

L-1}
2mjfml mlo1 mo1 ™
n i sin m/ cos(2j — 1)L — —cos(2j + 1)L
n n o 2 n 2

n

(j €{1,...,v}). Now for m € {0,

and, if —e!ZIEDTS™/n oL

(Fem-1)/2 (Frmm-n/2
Z (=1) cos(2j + 1) ﬂ-fml

— Re Z (_ei(2jil)7rfm/n)l
=1 =1

i (25 m L—m_
—Re [ —eiitDmf™/n 1 — (—e!RaEDmf™/n)(f 1)/2
1 + ei2ix)mfm/n
Re ¢/(2%1) 5 )2 L 1
___hee . ifm 4 (-1) : - Cos((2]:t1)7rf =L
2cos(2j £1)5%—  2cos(2j £ 1) % om 5
However, if —e 207" /m — 1 e if (2j £ 1)f™/n is an (odd) integer, then
(fL—mfl)/Q ﬂ-fml fL_”L B 1
(=1) cos(2j + 1) — 5

=1

Note that this case does not happen for (2j+1) f™ /n and for (2j—1) f™ /n simultaneously,
because then their difference 2™ /n would be an (even) integer, which is never the case
it me {1,...,L —1}. Combining this with Eq. (5.4), we obtain

(FE"-1)/2 . _
Z (1) sin 2mj S sin g
n
=1

n 4 B
where 7, is as defined in the Theorem. Clearly n;0 = —d;, for j € {1,..
Eq. (5.3) yields

., v}, so
4 . L—m
f

L
:Wﬂﬂ—n@”*wq+ng;wm

In the case j = v, the sum evaluates to —(L —1). O
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We conclude with an example.

Example 3. We take generating vectors from the 9+ 9 sum system which arises from the
homogeneous joint ordered factorisation ((1,3)(2,3)(1,3)(2,3)), giving

u={-10,-9,-8,—-1,0,1,8,9,10}7, and v = 3u,
(cf. Example 1, 2nd centred system in the Introduction). Here L =2 and f; = fo = g1 =

g2=3,50 fo=go=1,fi=d1 =3, fo =G> = 9. This yields &/ =k =k = k¢ = kI =
k =2, and k?{:kgzl, so that

and
9l 1= 0 1= 1 =91 =3 Gy =G =1

Hence we have that fkg #* §k£71 for all £ € {1,...,4}, and applying Corollary 5.1 gives

) ] —4 -3 -2 -
U = ﬁ (sin (Tﬂ) , —3sin (Tﬂ-) ,sin <Tﬂ> , —sin <?ﬁ) ,0, —sin (g) ,
sin o ) sin 9 ,sin 9 .

Applying the inverse Fourier transform we find that

us

) 1 . .
ur= %{7570’27*250717270’5}’ and v™ = SU’T’

where as promised by Theorem 5.2, we do indeed have that
Tw )+ H@") =T(F'a™) + H(F'%%) = (T(u) + H(v))™.

Comparing this with Theorem 5.3, we find that ;1 = —1, 921 = 1, and 131 = 0, which
agrees with the above entries for u™.

6. Conclusions

In this work we have established asymptotics for sequences of powers of n x n sum
circulant matrices of the form M = T'(u) + H(v), where u,v € C" are odd generators.
When the generators are taken from a two-dimensional sum system then the matrix has
consecutive integer entries; we find explicit formulae for the eigenvalues and eigenvectors
of the matrix in this case and find its Moore-Penrose pseudoinverse. The calculation
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involves the discrete Fourier transform of integer vectors arising from sum systems and
exhibits a resonance phenomenon.

The formulae Moore-Penrose inverse demonstrates an independence with regarding
the sum of the left and right circulant matrices and can be constructed from the two
individual component matrices.

Further topics for consideration could include taking the generating vectors from
alternative combinatorial sets.
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