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We consider square matrices arising as the sum of left 
and right circulant matrices and derive asymptotics of the 
sequence of their powers. Particular emphasis is laid on the 
case where the matrix has consecutive integer entries; we find 
explicit formulae for the eigenvalues and eigenvectors of the 
matrix in this case and find its Moore-Penrose pseudoinverse. 
The calculation involves the discrete Fourier transform of 
integer vectors arising from sum systems and exhibits a 
resonance phenomenon.
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1. Introduction

A sum system [3,5,9] is a collection of finite sets of integers such that the sums formed 
by taking one element from each set generate a prescribed arithmetic progression. Such 
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systems with two component sets, each of cardinality n, arise naturally in the study of 
n × n matrices with symmetry properties and consecutive integer entries.

For a simple example, consider the sum of a right-circulant (Toeplitz) matrix [2,6,11]
and a left-circulant (Hankel) matrix

⎛
⎜⎝ a b c

c a b

b c a

⎞
⎟⎠ +

⎛
⎜⎝ d e f

e f d

f d e

⎞
⎟⎠ =

⎛
⎜⎝ a + d b + e c + f

c + e a + f b + d

b + f c + d a + e

⎞
⎟⎠ .

The sum will have consecutive integer entries {n0, n0 + 1, . . . , n0 + 8} if and only if

{a, b, c} + {d, e, f} = n0 + 〈9〉.

We here use the Minkowski set sum A +B = {x + y : x ∈ A, y ∈ B} and the convention 
aA + b = {ax + b : x ∈ A} for sets A, B ⊂ R and a, b ∈ R as well as the notation 
〈n〉 := {0, 1, . . . , n − 1} for any n ∈ N.

The offset n0 can easily be added or subtracted, so for standardisation we call a pair 
of sets A1 = {a1, . . . , an}, A2 = {b1, . . . , bn} ⊂ N0 an n + n sum system if

A1 + A2 = 〈n2〉,

i.e. if

{aj + bk : j ∈ {1, . . . , n}, k ∈ {1, . . . , n}} = {0, 1, . . . , n2 − 1}.

Clearly each component set of a sum system contains the number 0 as its smallest 
element. Moreover, it was shown in Lemma 3.2 of [5] that the component sets of a sum 
system have the palindromic property

a ∈ Aj ⇒ maxAj − a ∈ Aj (j ∈ {1, 2}).

Therefore, if n is odd, n = 2ν + 1, then 1
2 maxAj ∈ Aj , and by subtracting this middle 

number from each element of the sum system components, we obtain a system of number 
sets symmetric around 0.

Example 1. For ν = 4 there exist the three 9 + 9 sum systems

{{0, 1, 2, 3, 4, 5, 6, 7, 8}, {0, 9, 18, 27, 36, 45, 54, 63, 72}},
{{0, 1, 2, 9, 10, 11, 18, 19, 20}, {0, 3, 6, 27, 30, 33, 54, 57, 60}}

and {{0, 1, 2, 27, 28, 29, 54, 55, 56}, {0, 3, 6, 9, 12, 15, 18, 21, 24}},

which each generate the set of consecutive integers {0, 1, 2, . . . , 79, 80}. The first of these 
sum systems, where A1 = 〈n〉 and A2 = n〈n〉, is called canonical sum system and exists 
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analogously for all n ∈ N +1. Subtracting half the largest number from each component 
set, we obtain the centred systems

{{−4,−3,−2,−1, 0, 1, 2, 3, 4}, {−36,−27,−18,−9, 0, 9, 18, 27, 36}},
{{−10,−9,−8,−1, 0, 1, 8, 9, 10}, {−30,−27,−24,−3, 0, 3, 24, 27, 30}}

and {{−28,−27,−26,−1, 0, 1, 26, 27, 28}, {−12,−9,−6,−3, 0, 3, 6, 9, 12}},

respectively, the Minkowski set sum of each pair of sets giving the set of consecutive 
integers {−40, −39, . . . , 0, . . . 39, 40}.

We call a matrix arising as the sum of a left circulant and a right circulant matrix a 
sum circulant matrix. It is clear that a sum circulant matrix whose left and right circulant 
parts take their entries from the two component sets of a sum system has consecutive 
integer entries, and it is not hard to see that conversely a sum circulant matrix with 
consecutive integer entries must have left and right circular parts whose entries arise 
from a sum system.

In the present paper, we study n ×n sum circulant matrices with odd n = 2ν +1, the 
sequence of their powers and their Moore-Penrose pseudoinverses in greater generality. 
We take particular interest in the case where the entries of their circulant summands are 
taken from the two centred component sets of an n + n sum system.

Following on from this introduction and motivational results, we organise the paper 
as follows. In Section 2 we give the definition of circulant Toeplitz and Hankel matrix 
generators and show how the algebra of circulant Toeplitz matrices reflects the convolu-
tion algebra of their generating vectors (the central matrix columns). We also show how 
the discrete Fourier transform can be used to diagonalise such matrices. These tools are 
used throughout the remainder of the paper.

In Section 3 we consider the sequence of powers of general sum circulant matrices, 
showing that, up to suitable rescaling, the subsequence of fourth powers always converges 
to one of a small number of limit matrices that can be described as circulant Toeplitz 
matrices with a generating vector of very simple Fourier transform. For the study of the 
limits and convergents of sum circulant matrices whose generating vectors arise from 
sum systems, it is therefore of great interest to know the Fourier transforms of these 
generating vectors.

In Section 4, we use the characterisation of all sum systems in terms of joint ordered 
factorisations of the pair of integers (n, n), established in [5], to find the Fourier trans-
forms of vectors created from the entries of centred sum system components in increasing 
order. The result carries over to a certain class of permutations of the vector entries 
that have covariant Fourier transforms. Finally, in Section 5, these results are used to 
characterise the eigenvalues (and hence the characteristic polynomials) of sum circulant 
matrices arising from sum systems and find their Moore-Penrose pseudoinverses.

Our investigations are motivated by the following previous results. In [8] properties 
of odd-sided (2ν + 1) × (2ν + 1) right circulant (Toeplitz) matrices Mν with top row
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(0, ν, −1, ν − 1, −2, ν − 2, . . . , 2, −ν − 1, 1,−ν)

were studied, establishing in particular that the Moore-Penrose inverse M÷
ν is given by 

the right circulant matrix with top row (0, −1
n , 0, . . . , 0, 1n ).

The sequence of powers of an n ×n matrix M , (M, M2, M3, M4, . . . ) satisfies, by the 
Cayley-Hamilton theorem, the n-term recurrence relation

αnM
j+n + αn−1M

j+n−1 + αn−2M
j+n−2 + · · · + α1M

j+1 + α0M
j = 0,

where χ(λ) =
n∑

k=0
αkλ

k is the characteristic polynomial of M . If M is a sum circulant 

matrix, then so is its Moore-Penrose pseudoinverse M÷, and the powers of M÷ satisfy 
a reciprocal recurrence to that of M (see Theorem 5.2 and Remark 4 in Section 5 of the 
present paper). The sequence of powers of M÷ can thus be viewed as a continuation of 
the sequence of powers of M to negative indices.

For the matrices Mν as defined in the example above, it was shown in [8] that the 
characteristic polynomial applied to the matrix Mν (by the Cayley-Hamilton theorem) 
yields separate equations for the odd and even powers,

ν∑
k=0

n2(ν−k)fν−kM
2k+1
ν = 0n =

ν∑
k=0

n2(ν−k)+1fν−kM
2k
ν ,

where fs = 1
2s+1

(
ν+s
2s

)
, s ∈ {0, . . . , ν}. Thus the entries of the odd matrix powers and 

the entries of the even matrix powers obey separate recurrences, reflecting a split over 
the superalgebra of centro-symmetric and centro-antisymmetric n × n matrices (cf. [4]).

When ν = 2, the sequence generated from powers of M2k+1
2 contains interlacing 

sequences of Fibonacci and Lucas numbers, up to powers of 5. On this basis, a natural 
definition of higher-dimensional Fibonacci sequences was given in [1].

The recurrence relation obtained from the characteristic polynomial of Mν was also 
used [8] to obtain the recurrence for even integer values of the Riemann ζ function,

ζ(2j) = (−1)j+1

(
jπ2j

(2j + 1)! +
j−1∑
k=1

(−1)kπ2j−2k

(2j − 2k + 1)!ζ(2k)
)
.

Further relations for functions related to the ζ function were obtained by expressing 
these recurrences as Toeplitz determinants [8,7].

Similarly, the reverse recurrence corresponding to the powers of the Moore-Penrose 
pseudoinverse M÷

ν contains (up to powers of n = 2ν + 1) the Fleck numbers defined 
modulo q by

F (r, t, q) =
∑

(−1)k
(
r

k

)
.

k≡tmod q
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For prime powers q = pe, the Fleck numbers obey the congruence relation

F (r, t, pe) =
∑

k≡tmod pe

(−1)k
(
r

k

)
≡ 0 (mod pβ),

where β =
⌊
r−pe−1

φ(pe)

⌋
and φ is Euler’s totient function. As indicated above, one can think 

of these Fleck numbers with their intriguing divisibility properties as being generated by 
powers of the Moore-Penrose pseudoinverse matrix M÷

ν .

2. Circulant matrix constructors and the discrete Fourier transform

Let n = 2ν+1 be an odd positive integer and consider the n-dimensional vector space 
Cn. We treat its elements as column vectors and, as reflection symmetry will play an 
essential role in the following, we use the indices −ν, −ν + 1, . . . , ν − 1, ν. For ease of 
notation, all index calculations are done in the cyclic ring Z/(nZ) = {−ν, . . . , ν}, so 
ν + 1 = −ν etc.

The vector space Cn has two natural products; the componentwise product · : Cn ×
Cn → Cn,

(u · v)k = uk vk (k ∈ {−ν, . . . , ν};u, v ∈ Cn)

and the cyclic convolution ∗ : Cn ×Cn → Cn,

(u ∗ v)k =
ν∑

j=−ν

uj vk−j (k ∈ {−ν, . . . , ν};u, v ∈ Cn),

that together with standard vector addition, give it two distinct commutative algebra 
structures. (Some authors use the dot for the inner product 

∑ν
j=−ν ujvj , but as this can 

easily be expressed as matrix multiplication in the form uT v, we prefer to use the dot 
for the componentwise product as defined above.)

Let J be the reflected unit matrix, Jjk = δj,−k (j, k ∈ {−ν, . . . , ν}), where δ is the 
Kronecker delta symbol. We then call u ∈ Cn even or odd if Ju = u or Ju = −u, 
respectively, and split the vector space into its even and odd subspaces, Cn = Cn

+ ⊕Cn
−, 

where Cn
± := {u ∈ Cn : Ju = ±u}. Then Cn

+ is a subalgebra with either of the two 
products and, with respect to this splitting, both (Cn, ·) and (Cn, ∗) are superalgebras.

For the definition of the discrete Fourier transform, it is convenient to introduce the 
function

e(x) := e−2πix (x ∈ R);

then e satisfies the functional equations e(x +y) = e(x)e(y) and e(xy) = e(x)y (x, y ∈ R). 
This function has the property that e(x) = 1 ⇔ x ∈ Z, and it is also useful to note that 
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e(n/2) = (−1)n (n ∈ Z). The discrete Fourier transform is the linear bijection on Cn

generated by the matrix F , where

Fjk = e(jk/n) (j, k ∈ {−ν, . . . , ν}),

with inverse

F−1
jk = 1

n
e(−jk/n) (j, k ∈ {−ν, . . . , ν}).

We remark that the entries of the Fourier transform Fu of a vector u ∈ Cn are the values 
the Laurent polynomial pu(z) =

ν∑
k=−ν

uk z
k takes at the n-th roots of unity.

We also define the Fourier conjugation F : Cn×n → Cn×n, FM = FMF−1 for any 
matrix M ∈ Cn×n.

Furthermore, we introduce the following methods of generating n × n matrices from 
elements of Cn, viz. the diagonal matrix constructor

D : Cn → Cn×n, D(u)jk = uj δjk (j, k ∈ {−ν, . . . , ν};u ∈ Cn),

the circulant Toeplitz constructor

T : Cn → Cn×n, T (u)jk = uj−k (j, k ∈ {−ν, . . . , ν};u ∈ Cn),

and the circulant Hankel constructor

H : Cn → Cn×n, H(u)jk = uj+k (j, k ∈ {−ν, . . . , ν};u ∈ Cn).

Then the following statements are easy to verify. Here Cn×n is given the standard algebra 
structure with matrix multiplication as product.

Lemma 2.1.

(a) F : (Cn, ∗) → (Cn, ·) is an algebra isomorphism.
(b) The diagonal matrix constructor D : (Cn, ·) → Cn×n is an algebra homomorphism.
(c) The circulant Toeplitz constructor T : (Cn, ∗) → Cn×n is an algebra homomorphism.
(d) H = TJ .
(e) Fourier conjugation F : Cn×n → Cn×n is an algebra isomorphism; moreover, F◦T =

D ◦ F .
(f) J : (Cn, ·) → (Cn, ·) and J : (Cn, ∗) → (Cn, ∗) are algebra isomorphisms; also, 

FJ = JF .
(g) JT = (T ◦ J)J .
(h) If u, v ∈ Cn

+, then H(u)H(v) = T (u)T (v) (and these commute); furthermore, T (u)
and H(v) commute.
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(i) If u, v ∈ Cn
−, then H(u)H(v) = −T (u)T (v) (and these commute); furthermore, T (u)

and H(v) anticommute.

We remark that parts (c) and (g) of the above Lemma imply the identities T (u)T (v) =
T (u ∗ v), T (u)H(v) = H(u ∗ v), H(u)T (v) = H(u ∗ (Jv)) and H(u)H(v) = T (u ∗ (Jv))
for u, v ∈ Cn.

Part (f) of the above Lemma shows that the Fourier transform of an even or odd vector 
is even or odd, respectively. The Fourier transforms of such vectors can be expressed more 
conveniently for practical calculation as follows.

Lemma 2.2.

(a) If u ∈ Cn
−, then

(Fu)k = −2i
ν∑

j=1
uj sin

(
2π jk

n

)
(k ∈ {−ν, . . . , ν}),

and we have the inverse

uj = 2i
n

ν∑
k=1

(Fu)k sin
(

2π jk
n

)
(j ∈ {−ν, . . . , ν}).

(b) If u ∈ Cn
+, then

(Fu)k = u0 + 2
ν∑

j=1
uj cos

(
2π jk

n

)
(k ∈ {−ν, . . . , ν}),

and we have the inverse

uj = 1
n

(
(Fu)0 + 2

ν∑
k=1

(Fu)k cos
(

2π jk
n

))
(j ∈ {−ν, . . . , ν}).

3. The asymptotics of powers of sum circulant matrices

In this section we consider sum circulant matrices, i.e. n × n matrices of the form 
M = T (u) + H(v), where u, v ∈ Cn

−.

Lemma 3.1. Let u, v ∈ Cn
− and M = T (u) + H(v). Then, for any m ∈ N0,

FM2 = D(Fu)2 −D(Fv)2,

which is a diagonal matrix.
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Proof. Observing that

FM = FMF−1 = D(Fu) + D(Fv)J,

we calculate

FM2 = FM2F−1 = (D(Fu) + D(Fv)J)2

= D(Fu)2 + D(Fu)D(Fv)J −D(Fv)D(Fu)J −D(Fv)2

= D(Fu)2 −D(Fv)2. �
Remark 1. By the binomial theorem, the expression in Lemma 3.1 gives the even powers 
of M ,

M2m = F−1

⎛
⎝ m∑

j=0

(
m
j

)
(−1)j D(Fu)2(m−j) D(Fv)2j

⎞
⎠ ,

and hence also the odd powers,

M2m+1 = F−1

⎛
⎝ m∑

j=0

(
m
j

)
(−1)j D(Fu)2(m−j)+1 D(Fv)2j

+
m∑
j=0

(
m
j

)
(−1)j D(Fu)2(m−j) D(Fv)2j+1J

⎞
⎠ .

In the case of linearly dependent generating vectors v = Ku, these formulae simplify to

M2m = (1 −K2)m F−1 (D(Fu)2m
)
,

M2m+1 = (1 −K2)m F−1 (D(Fu)2m+1 (I + KJ)
)
.

The following theorem, one of our main results, states that the subsequence of fourth 
powers of a sum circulant matrix with odd generators converges to a simple limit matrix 
after suitable rescaling.

Theorem 3.1. Let u, v ∈ Cn
− and let M = T (u) +H(v) be the corresponding sum circulant 

matrix. Let Cu,v := max
j∈{−ν,...,ν}

|(Fu)2j − (Fv)2j |. Furthermore, let w∞ := F−1ŵ∞, where 

ŵ∞ ∈ Cn
+ is defined by

ŵ∞,j =
{

1 if |(Fu)2j − (Fv)2j | = Cu,v

0 otherwise
(j ∈ {−ν, . . . , ν}).

Then
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lim
m→∞

M4m

C2m
u,v

= T (w∞).

Proof. Due to the odd symmetry of u and v and Lemma 2.2 (a), the entries of Fu and 
of Fv are purely imaginary and therefore their squares are (non-positive) real. Hence

((Fu)2j − (Fv)2j )2m

C2m
u,v

=
(
|(Fu)2j − (Fv)2j |

Cu,v

)2m

→ ŵ∞ (m → ∞).

By Lemma 3.1 and Lemma 2.1 (e), we hence find

FM4m

C2m
u,v

= (FM2)2m

C2m
u,v

=
(
D(Fu)2 −D(Fv)2

Cu,v

)2m

→ D(ŵ∞) = D(Fw∞) = FT (w∞) (m → ∞),

and the statement of the Theorem follows. �
In the case of linearly dependent generating vectors v = Ku, we find

(Fu)2j − (Fv)2j = (1 −K2) (Fu)2j = (K2 − 1) |(Fu)j |2 (j ∈ {−ν, . . . , ν}),

bearing in mind that (Fu)j is purely imaginary in the last step. Proceeding in analogy 
to the proof of Theorem 3.1, we obtain the following statement.

Theorem 3.2. Let u ∈ Cn
− \ {0} and K ∈ C, and let M = T (u) + KH(u) be the corre-

sponding sum circulant matrix. Then

lim
m→∞

M2m

(K2 − 1)mCm
u

= T (w∞),

where Cu = maxj∈{−ν,...,ν} |(Fu)j |2 and w∞ := F−1ŵ∞ with

ŵ∞,j =
{

1 if |(Fu)j |2 = Cu

0 otherwise
(j ∈ {−ν, . . . , ν}.

Remark 2. The preceding theorems show that after suitable rescaling, the sequence of 
fourth powers of the sum circulant matrix M (or, in the case of linearly dependent 
generating vectors, the sequence of even powers) approaches one of a fairly small number 
of simply structured circulant Toeplitz matrices. Indeed, as the vector ŵ∞ only has 
entries 0 and 1 and is even with central entry 0 and at least one pair of non-zero entries, 
there are only 2ν − 1 possible different vectors ŵ∞, and generically, i.e. excluding cases 
where |(Fu)2j − (Fv)2j | (or, if v is a multiple of u, |(Fu)2j |) is maximal for two or more 
index pairs (−j, j), there are only ν different vectors. For example, for ν = 2 (so n = 5) 
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there are only the three possibilities ŵ∞ ∈ {(1, 0, 0, 0, 1)T , (0, 1, 0, 1, 0)T , (1, 1, 0, 1, 1)T )}. 
Thus the fourth powers of all matrices of the form considered in Theorem 3.1 with n = 5
have one of 3 (generically, of 2) different asymptotic shapes.

Note that the scaling factors appearing in the limit formula cancel out when ratios of 
matrix entries are considered. Therefore Theorem 3.1 shows that the ratios of any two 
matrix entries, keeping their places fixed as we proceed to higher powers, are sequences 
of convergents to the corresponding ratios in the Toeplitz matrix with generating vector 
w∞ obtained as the inverse Fourier transform of ŵ∞. For example, taking n = 5 and 
u = (−2, −1, 0, 1, 2)T (and v a multiple of u), we find

Fu ≈ −2i(1.314328,−2.126627, 0, 2.126627,−1.314328)T .

We can immediately read off ŵ∞ = (0, 1, 0, 1, 0)T and therefore

w∞ = 2
5

(
cos 4π

5 , cos 2π
5 , 1, cos 2π

5 , cos 4π
5

)T

.

In terms of the Golden Ratio φ = 1
2
(
1 +

√
5
)

= −2 cos
( 4π

5
)

= 1.61803 . . . and its inverse 
φ−1 = −1

2
(
1 −

√
5
)

= 2 cos
( 2π

5
)

= 0.61803 . . . , we can write this as

w∞ = −2
5

(
φ,−φ−1, 1,−φ−1, φ

)T
.

4. The Fourier transform of sum system components

If the generating vectors u, v of a sum circulant matrix M = T (u) + H(v) arise from 
the two components

A1 = {0 = a0, . . . , an−1}, A2 = {0 = b0, . . . , bn−1}

of an n + n sum system as

uj = aν+j −
an−1

2 , vj = bν+j −
bn−1

2 (j ∈ {−ν, . . . , ν}), (4.1)

then the entries of the matrix M are the integers −2ν(ν+1), . . . , 2ν(ν+1), each appearing 
exactly once. Due to the palindromic property of sum systems ([5] Theorem 3.3), ak =
an−1 − an−1−k and bk = bn−1 − bn−1−k (k ∈ {0, . . . , n− 1}), so u and v are odd vectors. 
In particular, the results of Section 3 apply. It therefore seems an interesting question to 
find the Fourier transforms Fu and Fv of these vectors. In this section, we express these 
Fourier transforms in terms of the joint ordered factorisation of (n, n) that generated 
the sum system. Specifically, let

((1, f1), (2, g1), (1, f2), (2, g2), . . . , (1, fL), (2, gL))
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be a joint ordered factorisation of (n, n), so

L∏
k=1

fk = n,

L∏
k=1

gk = n,

with positive integers f1, . . . , fL, g1, . . . , gL−1 ≥ 2 and gL ≥ 1, where L is some natural 
number. With the cumulative products

f̃j =
j∏

k=1

fk, g̃j =
j∏

k=1

gk (j ∈ {0, . . . , L}) (4.2)

(so f̃0 = g̃0 = 1 and f̃L = g̃L = n) we can then write the two sum system components 
as Minkowski set sums

A1 =
L∑

k=1

f̃k−1g̃k−1〈fk〉, A2 =
L∑

k=1

f̃kg̃k−1〈gk〉, (4.3)

(see [5] Theorem 6.7) and also split the index set as follows,

〈n〉 =
{

L∑
k=1

f̃k−1mk : 0L ≤ m ≤ f − 1L

}
(4.4)

=
{

L∑
k=1

g̃k−1mk : 0L ≤ m ≤ g − 1L

}
, (4.5)

writing f := (f1, . . . , fL)T , g := (g1, . . . , gL)T . We are here using multi-index notation, 
in particular the partial ordering on NL

0 defined by

x ≤ y ⇔ ∀k ∈ {1, . . . , L} : xk ≤ yk;

also, 0L = (0, . . . , 0)T ∈ NL
0 and 1L = (1, . . . , 1)T ∈ NL

0 . In the following, note that we 
use the symbol a | b as an abbreviation of b ∈ aZ; in particular, a | 0 (a ∈ N).

Theorem 4.1. Let n = 2ν+1 be an odd natural number, and let f̃k, ̃gk (k ∈ {0, . . . , L}) be 
the cumulative products, as in (4.2), of a joint ordered factorisation of (n, n). For each 
l ∈ {−ν, . . . , ν}, let kfl denote the value of k ∈ {0, . . . , L} such that n

f̃k−1
� |l and n

f̃k
|l, 

and let kgl denote the value of k ∈ {0, . . . , L} such that n
g̃k−1

� |l and n
g̃k
|l.

Then the Fourier transforms of the vectors u and v defined as in (4.1) are

(Fu)l = (−1)lni
2 sin(πl/n) g̃kf

l −1, (Fv)l = (−1)lni
2 sin(πl/n) f̃k

g
l

(l ∈ {−ν, . . . , ν} \ {0}),

(Fu)0 = (Fv)0 = 0.
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Corollary 4.1. In the situation of Theorem 4.1,

(Fu)2l − (Fv)2l = n2

4 sin2(πl/n)

(
f̃2
kg
l
− g̃2

kf
l −1

)
(l ∈ {−ν, . . . , ν} \ {0}).

In the homogeneous case fk = gk =: f (k ∈ {1, . . . , L}), which corresponds to linearly 
dependent u, v,

(Fu)2l − (Fv)2l = n2

4 sin2(πl/n)
(
f2 − 1

)
f̃2
kf
l −1 (l ∈ {−ν, . . . , ν} \ {0}).

Remark 3. In the formulae of Theorem 4.1 and Corollary 4.1, the factors fkg
l

and gkf
l −

are 
determined by the divisibility properties of the index l with respect to the last factors 
in the joint ordered factorisation. In most cases kgl = kfl = L, but a resonance type 
phenomenon occurs when gL or fL divide l respectively.

In the homogeneous case, we can see that kf±1 = L and therefore f̃kf
±1−1 =

n/f ≥ f̃kf
l −1 (l ∈ {−ν, . . . , ν}). Also, 

∣∣∣ n2

2 sin2(πl/n)

∣∣∣ is strictly monotone decreasing in 

|l| ∈ {1, . . . , ν}. Hence |(Fu)2l − (Fv)2l | is maximal for l = ±1. By Theorem 3.1, the cor-
responding vector ŵ∞ will have entries ŵ∞,j = δ|j|,1 (j ∈ {−ν, . . . , ν}. Hence Lemma 2.2
gives w∞,j = 2

n cos 2πj
n (j ∈ {−ν, . . . , ν}) such that

lim
m→∞

( 4f2 sin2 π
n

n4(f2 − 1)

)2m

(T (u) + H(v))4m = T (w∞).

We prepare the proof of Theorem 4.1 with some preliminary observations.

Lemma 4.1. Let n = 2ν + 1 and consider the entries of a sum system component 0 =
a0 < · · · < an−1 and the corresponding odd vector u = (u−ν , . . . , uν), where

uj = aj+ν − an−1

2 (j ∈ {−ν, . . . , ν}).

Then

(Fu)l =

⎧⎪⎪⎨
⎪⎪⎩
e(−νl/n)

n−1∑
k=0

ak e(kl/n) if l ∈ {−ν, . . . , ν} \ {0}
n−1∑
k=0

ak e(kl/n) − nan−1
2 = 0 if l = 0.

Proof. We note that due to the palindromic property of the sum system component,

n−1∑
k=0

ak = 1
2

n−1∑
k=0

(ak + an−1−k) = n

2 an−1.

Further,
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(Fu)l =
ν∑

j=−ν

(
aj+ν − an−1

2

)
e(jl/n)

= e(−νl/n)
n−1∑
k=0

ak e(kl/n) − e(−νl/n) an−1

2

n−1∑
k=0

e(l/n)k,

and the result follows by observing that e(l/n) = 1 ⇔ l = 0 (l ∈ {−ν, . . . , ν}) and that

n−1∑
k=0

e(l/n)k = 1 − e(ln/n)
1 − e(l/n) = 0 (l ∈ {−ν, . . . , ν} \ {0}). �

Lemma 4.2. Let n, f, g ∈ N be such that f | n and g | n, and let l ∈ Z. Then
(a)

g−1∑
j=0

e(lfj/n) =
{1−e(lfg/n)

1−e(lf/n) if n
f � | l,

g if n
f | l;

in particular,

g−1∑
j=0

e(lfj/n) = 0

if nf � | l and n
fg | l;

(b)

g−1∑
j=0

j e(lfj/n) =

⎧⎨
⎩

1
1−e(lf/n)

(
e(lf/n) 1−e(lfg/n)

1−e(lf/n) − g e(lfg/n)
)

if n
f � | l,

g(g−1)
2 if n

f | l;

in particular,

g−1∑
j=0

j e(lfj/n) = g

e(lf/n) − 1

if nf � | l and n
fg | l.

Proof. Part (a) is a direct application of the formula for geometric sums. For part (b), 
we observe that for m ∈ N, q ∈ C \ {1}

m−1∑
jqj = q

d

dq

(
1 − qm

1 − q

)
= q

(
1 − qm

(1 − q)2

)
−m

(
qm

1 − q

)
. �
j=0
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Lemma 4.3. Let n ∈ N be odd, and let l ∈ Z be such that 0 < |l| < n; furthermore, let 

f1 f2 · · · fL = n be a factorisation of n with fj ∈ N (j ∈ {1, . . . , L}) and f̃k =
k∏

j=1
fj

(j ∈ {0, . . . , L}). Then, for any k ∈ {1, . . . , L},

L∏
j=1

⎛
⎝ fj−1∑

mj=0
(1 + δjk(mj − 1)) e(lf̃j−1mj/n)

⎞
⎠

=

⎧⎨
⎩

n

f̃k−1 (e(l/n) − 1)
if n

f̃k−1
� | l and n

f̃k
| l,

0 otherwise.

Proof. We first observe that at least one of the factors in the product (and hence the 
whole product) vanishes unless the conditions (n/f̃k−1) � | l and (n/f̃k) | l are satisfied. 
Indeed, the factors with j �= k have the form

fj−1∑
mj=0

e(lf̃j−1mj/n).

By Lemma 4.2 (a), this is equal to 0 if (n/f̃j−1) � | l and (n/f̃j) | l.
We note that n/f̃0 = n does not divide l. If (n/f̃1) | l, then the factor with j = 1

vanishes. Otherwise, if (n/f̃2) | l, then the factor with j = 2 vanishes. Continuing in this 
way, we reach the question whether (n/f̃k) | l. If it does, we are in the situation we shall 
consider in more detail later, otherwise, we ask whether (n/f̃k+1) | l. If it does, then the 
factor with j = k + 1 vanishes. Otherwise, if (n/f̃k+2) | l, then the factor with j = k + 2
vanishes. Continuing in this way, we reach the question whether (n/f̃L−1) | l. If it does, 
then the factor with j = L −1 vanishes. Otherwise, the factor with j = L vanishes, since 
n/f̃L = 1 does divide l.

This leaves us with the case where (n/f̃k−1) � | l and (n/f̃k) | l. By Lemma 4.2 (b), 
the factor with j = k in this case takes the form

fk−1∑
mk=0

mk e(lf̃k−1mk/n) = fk

e(lf̃k−1/n) − 1
.

For the preceding factors with j ∈ {1, . . . , k−1}, we have (n/f̃j−1) � | l, so by Lemma 4.2
(a) they have the form

fj−1∑
mj=0

e(lf̃j−1mj/n) = e(lf̃j/n) − 1
e(lf̃j−1/n) − 1

.

Thus the first k factors form a telescoping product



76 M.C. Lettington, K.M. Schmidt / Linear Algebra and its Applications 658 (2023) 62–85
k∏
j=1

⎛
⎝ fj−1∑

mj=0
(1 + δjk(mj − 1)) e(lf̃j−1mj/n)

⎞
⎠

= e(lf̃1/n) − 1
e(l/n) − 1

e(lf̃2/n) − 1
e(lf̃1/n) − 1

· · · e(lf̃k−1/n) − 1
e(lf̃k−2/n) − 1

fk

e(lf̃k−1/n) − 1

= fk
e(l/n) − 1 .

For the remaining factors with j ∈ {k + 1, . . . , L}, we have (n/f̃j) | l, so by Lemma 4.2
(a),

fj−1∑
mj=0

e(lf̃j−1mj/n) = fj .

Therefore the complete product takes the form

L∏
j=1

⎛
⎝ fj−1∑

mj=0
(1 + δjk(mj − 1)) e(lf̃j−1mj/n)

⎞
⎠ = fk fk+1 · · · fL

e(l/n) − 1

= n

f̃k−1(e(l/n) − 1)
. �

Proof of Theorem 4.1. Using the representation of the first sum system component as a 
Minkowski sum (4.3), the corresponding splitting of the index set (4.4) and Lemma 4.1, 
we find for l ∈ {−ν, . . . , ν} \ {0}

e(νl/n) (Fu)l =
∑

0L≤m≤f−1L

(
L∑

k=1

f̃k−1g̃k−1mk

)
e

⎛
⎝ l

n

L∑
j=1

f̃j−1mj

⎞
⎠

=
∑

0L≤m≤f−1L

⎛
⎝ L∑

k=1

f̃k−1g̃k−1mk

L∏
j=1

e

(
l

n
f̃j−1mj

)⎞⎠

=
∑

0L≤m≤f−1L

⎛
⎝ L∑

k=1

f̃k−1g̃k−1

L∏
j=1

(1 + δjk(mj − 1)) e
(
l

n
f̃j−1mj

)⎞⎠

=
L∑

k=1

f̃k−1g̃k−1
∑

0L≤m≤f−1L

L∏
j=1

(1 + δjk(mj − 1)) e
(
l

n
f̃j−1mj

)

=
L∑

k=1

f̃k−1g̃k−1

L∏
j=1

⎛
⎝ fj−1∑

mj=0
(1 + δjk(mj − 1)) e

(
l

n
f̃j−1mj

)⎞⎠ .

By Lemma 4.3, we thus find
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(Fu)l = e(−νl/n) f̃kf
l −1g̃kf

l −1
n

f̃kf
l −1 (e(l/n) − 1)

= e(−l/2)
e( l

2n ) − e(− l
2n )

ng̃kf
l −1,

and the expression for (Fu)l claimed in the theorem follows when we observe that 
e(−l/2) = (−1)l and e( l

2n ) − e(− l
2n ) = −2i sin l/n.

Analogously, using the representation of the second component of the sum system in 
(4.3), the splitting (4.5) and Lemma 4.3, we find

e(νl/n) (Fv)l =
L∑

k=1

f̃kg̃k−1

L∏
j=1

⎛
⎝ gj−1∑

mj=0
(1 + δjk(mj − 1)) e

(
l

n
g̃j−1mj

)⎞⎠ ,

and using Lemma 4.3 as above we obtain the expression for (Fv)l claimed in the theo-
rem. �

Theorem 4.1 gives the Fourier transforms of vectors u, v arising from the two com-
ponents of the n + n sum system described by the given joint ordered factorisation, 
under the hypothesis that the entries of these vectors are arranged in strictly monotone 
increasing order, i.e. that

j1 < j2 ⇒ uj1 < uj2 , vj1 < vj2 (j1, j2 ∈ {−ν, . . . , ν}).

However, the formulae of Theorem 4.1 are still useful in cases where the vector entries 
are permuted in such a way that the Fourier transforms of the vectors are a permutation 
of the Fourier transforms of the monotone increasing vectors. The following statement 
gives a sufficient condition for this to be the case.

Lemma 4.4. Let m ∈ {1, . . . , n − 1} be an integer coprime with n, so that ( m, n ) = 1.

(a) The mapping πm : {−ν, . . . , ν} → {−ν, . . . , ν}, πm(j) := mj (mod n)
(j ∈ {−ν, . . . , ν}) is a permutation.

(b) For any u ∈ Cn and ũ ∈ Cn defined by ũj = uπ−1
m (j) (j ∈ {−ν, . . . , ν}), we have 

(Fũ)k = (Fu)πm(k) (k ∈ {−ν, . . . , ν}).

Proof. For (a), we only need to show that πm is injective. Suppose j1, j2 ∈ {−ν, . . . , ν}
are such that πm(j1) = πm(j2), i.e. that m(j1 − j2) = mj1 − mj2 = 0 (mod n). This 
implies j1 = j2, since m is a unit in the ring Z/nZ.

For (b), note that

(Fũ)k =
ν∑

j=−ν

u−π−1
m (j) e(jk/n) =

ν∑
j=−ν

uj e(−πm(j)k/n) =
ν∑

j=−ν

uj e(−mjk/n)

=
ν∑

uj e(jπm(k)/n) = (Fu)πm(k) (k ∈ {−ν, . . . , ν}). �

j=−ν
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The number of different pairs u, v arising from the same sum system by permutations 
of the type described in Lemma 4.4 is equal to the number of coprime numbers m ∈
{1, . . . , n −1}, i.e. equal to φ(n), where φ is Euler’s totient function. Here we assume that 
the same index permutation is applied to both u and v. However, due to the oddness of 
the vectors, half of these are just the negatives of the other half.

5. Eigenvalues and pseudoinverses

We begin this section with some observations on the spectra of sum circulant matrices 
with odd generators.

Theorem 5.1. Let u, v ∈ Cn
−. Then the matrix M = T (u) + H(v) has the (structural) 

eigenvalue 0 with eigenvector w ∈ Cn
+, with wk = 1 (k ∈ {−ν, . . . , ν}). The other 

eigenvalues of M are

μ±
j = ±

√
(Fu)2j − (Fv)2j (j ∈ {1, . . . , ν}).

If μ±
j �= 0, then w± ∈ Cn with

w±
k = (Fu− Fv)j cos(2πjk/n) ± i

√
(Fu)2j − (Fv)2j sin(2πjk/n)

(k ∈ {−ν, . . . , ν}) are corresponding eigenvectors. In the case of coalescence of the pair 
to a zero eigenvalue of algebraic multiplicity 2, μ+

j = μ−
j = 0, then

wk = sin(2πjk/n) (k ∈ {−ν, . . . , ν}); (5.1)

gives an eigenvector w ∈ Cn
− if (Fu)j = (Fv)j,

wk = cos(2πjk/n) (k ∈ {−ν, . . . , ν}), (5.2)

gives an eigenvector w ∈ C+
n if (Fu)j = −(Fv)j; in particular, if (Fu)j = 0 = (Fv)j, 

then both (5.1) and (5.2) are eigenvectors, otherwise the geometric multiplicity of the 
double eigenvalue μ±

j = 0 is equal to 1.

Proof. We begin by noting that FM = D(Fu) + D(Fv)J has non-zero entries only on 
the two diagonals. Therefore the subspaces

Xj = {x ∈ Cn : xk = 0 (k ∈ {−ν, . . . , ν} \ {−j, j})} (j ∈ {0, . . . , ν})

are invariant under the linear mapping generated by the matrix FM , and we can there-
fore restrict our attention to the eigenvalues and eigenvectors of the matrix on each 
of these subspaces. As (Fu)0 = (Fv)0 = 0, the matrix acts as the null mapping on 
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X0 and therefore has eigenvalue 0 and the corresponding eigenvector ŵ ∈ X0 ⊂ Cn

with ŵk = δk,0 (k ∈ {−ν, . . . , ν}), using the Kronecker delta symbol. Then w = F−1ŵ

is an eigenvector of M for this eigenvalue, and by Lemma 2.2 (b) wk = 1/n for all 
k ∈ {−ν, . . . , ν}. Clearly any non-null multiple of this vector also is an eigenvector for 
the same eigenvalue.

For j ∈ {1, . . . , n}, the restriction of FM to the invariant subspace Xj is equivalent 
to the 2 × 2 matrix

(
(Fu)−j (Fv)−j

(Fv)j (Fu)j

)
=

(
−(Fu)j −(Fv)j
(Fv)j (Fu)j

)
.

If (Fu)2j �= (Fv)2j , then the eigenvalues of this matrix are μ±
j = ±

√
(Fu)2j − (Fv)2j with 

eigenvectors

⎛
⎝(Fu)j − (Fv)j ∓

√
(Fu)2j − (Fv)2j

(Fu)j − (Fv)j ±
√

(Fu)2j − (Fv)2j

⎞
⎠ ,

and the eigenvectors of M stated in the Theorem are obtained by applying the inverse 
Fourier transform in Lemma 2.2 and multiplication by the constant n/2.

If (Fu)j = (Fv)j , then the 2 × 2 matrix has eigenvalue 0 of algebraic multiplicity 2 
and geometric multiplicity 1, with the eigenvector (−1, 1)T . If (Fu)j = −(Fv)j , then the 
matrix has the same eigenvalue with eigenvector (1, 1)T . The inverse Fourier transform 
of Lemma 2.2 (a) and (b), respectively, gives corresponding eigenvectors of M in analogy 
to the above. �
Example 2. Applying Lemma 4.4 with m = 2 to the centred 4 + 4 sum system 
given in Example 1 with generators u = {−10, −9, −8, −1, 0, 1, 8, 9, 10} and v = 3u, 
where n = 9, we see that the index permutation π2 maps u to the generator ũ =
{−8, 9, −1, 10, 0, −10, 1, −9, 8}. From 2−1 ≡ 5 (mod 9), it follows that ũπ5(j) = uj

(j ∈ {−ν, . . . , ν}).
For all φ(n) possible such mappings πm, it follows that the eigenvalues of T (u)

and T (uπm
) are the same, so that the respective characteristic polynomials coincide, 

χ(T (u)) = χ(T (uπm
)). If the same index permutation is applied to the generator 

v, then Theorem 5.1 shows that the matrices M = T (u) + H(Ku) and Mπm
=

T (uπm
) +H(Kuπm

) have the same eigenvalues, and consequently the same characteristic 
polynomial, χ(M) = χ(Mπm

). However, for two distinct permutations πm �= π�, the ma-
trix Mπm,π�

= T (uπm
) + H(vπ�

) will in general have different eigenvalues and different 
characteristic polynomial from M = T (u) + H(v).

Finally, we construct the Moore-Penrose pseudoinverses of sum circulant matrices. 
For a matrix S, the Moore-Penrose pseudoinverse is the unique matrix S÷ such that 
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SS÷S = S, S÷SS÷ = S÷, and SS÷ and S÷S are hermitian [10]. The pseudoinverse of 
a circulant matrix is again a circulant matrix (see [11]).

As before, we consider the case of odd generating vectors u, v ∈ Cn
−. By Theorem 5.1

the matrix T (u) + H(v) has eigenvalue 0 and is therefore not invertible. As observed in 
the proof of Lemma 3.1, the Fourier conjugate matrix FM = D(Fu) + D(Fv)J is very 
simply structured and in particular has entries 0 off the two diagonals. The following 
lemma shows that its pseudoinverse is a matrix of the same structure.

Lemma 5.1. Let û, ̂v ∈ Cn
−. Then, with the vectors û÷, ̂v÷ ∈ Cn

− defined as

û÷
k =

⎧⎪⎪⎨
⎪⎪⎩

0
1

4ûk

ûk

û2
k−v̂2

k

v̂÷k =

⎧⎪⎪⎨
⎪⎪⎩

0 if ûk = v̂k = 0,
− 1

4v̂k if û2
k = v̂2

k �= 0,
v̂k

û2
k−v̂2

k
if û2

k �= v̂2
k

for k ∈ {−ν, . . . , ν},

D(û÷) + D(v̂÷)J = (D(û) + D(v̂)J)÷ .

Proof. Using the facts that JD(w) = −D(w)J and D(w)D(y) = D(w · y) for any 
w, y ∈ Cn

−, we find

(D(û) + D(v̂)J)(D(û÷) + D(v̂÷)J)(D(û) + D(v̂)J)

= D(û · û÷ · û− û · v̂÷ · v̂ + v̂ · û÷ · v̂ − v̂ · v̂÷ · û)

+D(û · û÷ · v̂ − û · v̂÷ · û + v̂ · û÷ · û− v̂ · v̂÷ · v̂)J,

and it is a straightforward componentwise calculation to check that

û · û÷ · û− û · v̂÷ · v̂ + v̂ · û÷ · v̂ − v̂ · v̂÷ · û = û,

û · û÷ · v̂ − û · v̂÷ · û + v̂ · û÷ · û− v̂ · v̂÷ · v̂ = v̂.

The remaining three properties of the Moore-Penrose pseudoinverse can be verified in 
analogous manner. �

As a direct consequence, we obtain the following statement.

Theorem 5.2. Let u, v ∈ Cn
− and let u÷ = F−1û÷, v÷ = F−1v̂÷, where û÷, ̂v÷ are 

defined as in Lemma 5.1 with û = Fu, v̂ = Fv. Then the pseudoinverse of the sum 
circulant matrix M = T (u) + H(v) is

M÷ = T (u÷) + H(v÷).
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Proof. By Lemma 2.1 (d), (e), (f) and Lemma 5.1,

M÷ = F−1(FM÷)F = F−1(D(û÷) + D(v̂÷)J)F

= F−1D(Fu÷)F + F−1D(Fv÷)FJ = T (u÷) + H(v÷). �
Remark 4. Consider a sum circulant matrix M and its Moore-Penrose pseudoinverse 
M÷. In view of Theorems 5.1, 5.2 and Lemma 5.1, a straightforward calculation shows 
that the non-zero eigenvalues of M÷ are the inverses of the non-zero eigenvalues of M , 
with the same eigenvectors. Also, the eigenvectors for the eigenvalue 0 are the same for 
both M and M÷. These statements are not trivial, as sum circulant matrices are not in 
general normal.

In the case where M (and hence M÷) only has the simple structural eigenvalue 0, it 
follows that the characteristic polynomials χ of M and χ÷ of M÷ are related as

χ÷(λ) = (−λ)n+1

P
χ

(
1
λ

)
,

where P is the product of the non-zero eigenvalues of M , so χ÷ is essentially the recip-
rocal of the polynomial χ. Via the Cayley-Hamilton theorem, this shows that the powers 
of M÷ satisfy a recurrence relation that is the reverse of the recurrence for the powers 
of M and can therefore be considered a continuation of the latter sequence to negative 
powers. Note that negative powers of M do not exist directly as M is not invertible.

Specifically for sum circulant matrices generated by vectors u, v arising from a joint 
ordered factorisation as in Eq. (4.1), we find the following pseudoinverses. Note that in 
this case, by Theorem 4.1, (Fu)l �= 0 and (Fv)l �= 0 unless l = 0.

Corollary 5.1. Let n = 2ν + 1 be an odd natural number, and let f̃k, ̃gk (k ∈ {0, . . . , L})
be the cumulative products, as in (4.2), of a joint ordered factorisation of (n, n). For 
each l ∈ {−ν, . . . , ν}, let kfl denote the value of k ∈ {0, . . . , L} such that n

f̃k−1
� |l and 

n
f̃k
|l, and let kgl denote the value of k ∈ {0, . . . , L} such that n

g̃k−1
� |l and n

g̃k
|l. Let

û÷
l =

⎧⎪⎪⎨
⎪⎪⎩

(−1)l 2i
n sin(πl/n)

g̃
k
f
l
−1

f̃2
k
g
l
−g̃2

k
f
l
−1

if f̃kg
l
�= g̃kf

l −1

− (−1)li
2ng̃

k
f
l
−1

sin(πl/n) if f̃kg
l

= g̃kf
l −1

v̂÷l =

⎧⎪⎪⎨
⎪⎪⎩

(−1)l 2i
n sin(πl/n)

f̃kg
l

f̃2
k
g
l
−g̃2

k
f
l
−1

if f̃kg
l
�= g̃kf

l −1,

(−1)li
2nf̃kg

l

sin(πl/n) if f̃kg
l

= g̃kf
l −1

for l ∈ {−ν, . . . , ν} \ {0} and û÷
0 = v̂÷0 = 0.
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Then T (F−1û÷) +H(F−1v̂÷) is the pseudoinverse of T (u) +H(v), where u and v are 
as in Eq. (4.1).

Specifically in the homogeneous case where all factors in the joint ordered factors 
are the same and the resulting generating vectors u, v are linearly dependent, we can 
give an explicit formula for the components of the generating vectors u÷, v÷ of the 
Moore-Penrose pseudoinverse.

Theorem 5.3. Let n = 2ν +1 be an odd natural number and suppose n = fL with natural 
numbers f > 1, L. Let u, v ∈ Cn

− be the vectors generated as in Eq. (4.1) from the sum 
system with joint ordered factorisation fk = gk = f (k ∈ {1, . . . , L}), and let û÷, v̂÷ be 
defined as in Corollary 5.1.

Then u÷ := F−1û÷ satisfies

u÷
j =

⎧⎪⎨
⎪⎩
− 1

n2(f+1)

L−1∑
m=1

ηj,m (j ∈ {1, . . . , ν − 1})
L(f−1)+1
n2(f2−1) (j = ν),

where

ηj,m :=

⎧⎪⎪⎨
⎪⎪⎩

1 if (2j−1)fm

n is an odd integer ,
−1 if (2j+1)fm

n is an odd integer ,
0 otherwise;

moreover, u÷
−j = −u÷

j (j ∈ {1, . . . , ν}), u÷
0 = 0 and v÷ := F−1v̂÷ = f u÷.

Proof. The main difficulty in using the formulae of Corollary 5.1 is to identify kfl and 
kgl for each l ∈ {−ν, . . . , ν}. In the homogeneous case, we have kfl = kgl := kl and L − kl
is the greatest power of f that divides l. Moreover, f̃k = g̃k = fk, so f̃k �= g̃k−1 for all k. 
Consequently, Corollary 5.1 gives

û÷
l = (−1)l 2if

n(f2 − 1)
1
fkl

sin πl

n
(l ∈ {−ν, . . . , ν}).

As this is an odd vector, the formula of Lemma 2.2 (a) gives

u÷
j = − 4f

n3(f2 − 1)

ν∑
l=1

(−1)l n

fkl
sin 2πjl

n
sin πl

n
(j ∈ {1, . . . , ν}).

In this sum, the factor n
fkl

is the greatest power of f that divides l; so it is equal to 1 if 
l is not a multiple of f , equal to f if l is a multiple of f , but not of f2, equal to f2 if l
is a multiple of f2, but not of f3 etc. This consideration allows us to expand the sum in 
a telescopic manner as follows,
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u÷
j = − 4f

n3(f2 − 1)

( (fL−1)/2∑
l=1

(−1)l sin 2πjl
n

sin πl

n

+
L−1∑
m=1

fm−1(f − 1)
(fL−m−1)/2∑

l=1

(−1)l sin 2πjfml

n
sin πfml

n

)
, (5.3)

(j ∈ {1, . . . , ν}). Now for m ∈ {0, . . . , L − 1}

sin 2πjfml

n
sin πfml

n
= 1

2 cos(2j − 1)πf
ml

n
− 1

2 cos(2j + 1)πf
ml

n
(5.4)

and, if −ei(2j±1)πfm/n �= 1,

(fL−m−1)/2∑
l=1

(−1)l cos(2j ± 1)πf
ml

n
= Re

(fL−m−1)/2∑
l=1

(−ei(2j±1)πfm/n)l

= Re

(
−ei(2j±1)πfm/n 1 − (−ei(2j±1)πfm/n)(fL−m−1)/2

1 + ei(2j±1)πfm/n

)

= − Re ei(2j±1)πfm

2n

2 cos(2j ± 1)πfm

2n
+ (−1)(fL−m−1)/2

2 cos(2j ± 1)πfm

2n
cos((2j ± 1)πf

L

2n ) = −1
2 .

However, if −ei(2j±1)πfm/n = 1, i.e. if (2j ± 1)fm/n is an (odd) integer, then

(fL−m−1)/2∑
l=1

(−1)l cos(2j ± 1)πf
ml

n
= fL−m − 1

2 .

Note that this case does not happen for (2j+1)fm/n and for (2j−1)fm/n simultaneously, 
because then their difference 2fm/n would be an (even) integer, which is never the case 
if m ∈ {1, . . . , L − 1}. Combining this with Eq. (5.4), we obtain

(fL−m−1)/2∑
l=1

(−1)l sin 2πjfml

n
sin πfml

n
= fL−m

4 ηj,m,

where ηj,m is as defined in the Theorem. Clearly ηj,0 = −δj,ν for j ∈ {1, . . . , ν}, so 
Eq. (5.3) yields

u÷
j = − 4f

n3(f2 − 1)

(
−fL

4 δj,ν +
L−1∑
m=1

fm−1(f − 1)f
L−m

4 ηj,m

)

= f

n2(f2 − 1) δj,ν − 1
n2(f + 1)

L−1∑
m=1

ηj,m.

In the case j = ν, the sum evaluates to −(L − 1). �
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We conclude with an example.

Example 3. We take generating vectors from the 9 +9 sum system which arises from the 
homogeneous joint ordered factorisation ((1, 3)(2, 3)(1, 3)(2, 3)), giving

u = {−10,−9,−8,−1, 0, 1, 8, 9, 10}T , and v = 3u,

(cf. Example 1, 2nd centred system in the Introduction). Here L = 2 and f1 = f2 = g1 =
g2 = 3, so f̃0 = g̃0 = 1, f̃1 = g̃1 = 3, f̃2 = g̃2 = 9. This yields kf1 = kf2 = kf4 = kg1 = kg2 =
kg4 = 2, and kf3 = kg3 = 1, so that

f̃kg
1

= f̃kg
2

= f̃kg
4

= f̃2 = 9, f̃kg
3

= f̃1 = 3,

and

g̃kf
1−1 = g̃kf

2−1 = g̃kf
4−1 = g̃1 = 3, g̃kf

3−1 = g̃0 = 1.

Hence we have that f̃kg
�
�= g̃kf

� −1 for all � ∈ {1, . . . , 4}, and applying Corollary 5.1 gives 
us

û÷ = i

108

(
sin

(
−4π

9

)
,−3 sin

(
−3π

9

)
, sin

(
−2π

9

)
,− sin

(
−π

9

)
, 0,− sin

(π
9

)
,

sin
(

2π
9

)
,−3 sin

(
3π
9

)
, sin

(
4π
9

))
.

Applying the inverse Fourier transform we find that

u÷ = 1
648 {−5, 0, 2,−2, 0, 2,−2, 0, 5} , and v÷ = 3u÷,

where as promised by Theorem 5.2, we do indeed have that

T (u÷) + H(v÷) = T (F−1û÷) + H(F−1v̂÷) = (T (u) + H(v))÷.

Comparing this with Theorem 5.3, we find that η1,1 = −1, η2,1 = 1, and η3,1 = 0, which 
agrees with the above entries for u÷.

6. Conclusions

In this work we have established asymptotics for sequences of powers of n × n sum 
circulant matrices of the form M = T (u) + H(v), where u, v ∈ Cn

−, are odd generators. 
When the generators are taken from a two-dimensional sum system then the matrix has 
consecutive integer entries; we find explicit formulae for the eigenvalues and eigenvectors 
of the matrix in this case and find its Moore-Penrose pseudoinverse. The calculation 
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involves the discrete Fourier transform of integer vectors arising from sum systems and 
exhibits a resonance phenomenon.

The formulae Moore-Penrose inverse demonstrates an independence with regarding 
the sum of the left and right circulant matrices and can be constructed from the two 
individual component matrices.

Further topics for consideration could include taking the generating vectors from 
alternative combinatorial sets.
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