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Abstract
Predictive maintenance (PdM) cannot only avoid economic losses caused by improper maintenance but also
maximize the operation reliability of product. It has become the core of operation management. As an important
issue in PdM, the time between failures (TBF) prediction can realize early detection and maintenance of products.
The reliability information is the main basis for TBF prediction. Therefore, the main purpose of this paper is to
establish an intelligent TBF prediction model for complex mechanical products. The reliability information
conversion method is used to solve the problems of reliability information collection difficulty, high collection cost
and small data samples in the process of TBF prediction based on reliability information for complex mechanical
products. The product reliability information is fully mined and enriched to obtain more reliable and accurate TBF
prediction results. Firstly, the Fisher algorithm is employed to convert the reliability information to expand the
sample, and the compatibility test is also discussed. Secondly, BP neural network is used to realize the final prediction
of TBF, and PSO algorithm is used to optimize the initial weight and threshold of BP neural network to avoid falling
into local extreme value and improve the convergence speed. Thirdly, the mean-absolute-percentage-error and the
Coefficient of determination are selected to evaluate the performance of the proposed model and method. Finally, a
case study of TBF prediction for a remanufactured CNC milling machine tool (XK6032-01) is studied in this paper, and
the results show that the feasibility and superiority of the proposed TBF prediction method.
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1 Introduction
With the rapid development of Internet of Things, infor-
mation technology and Artificial Intelligence, Predictive
maintenance (PdM) has gradually attracted great attention
of scholars [1–4]. As a core of operation management in
the industrial system, PdM plays a vital role in reducing the
frequency of failures, improving operating efficiency, and
ensuring product quality [5, 6], and has become a research

*Correspondence: yanwei81@wust.edu.cn
4School of Automobile and Traffic Engineering, Wuhan University of Science
and Technology, Wuhan, 430081, China
5Department of Mechanical Engineering, School of Engineering, Cardiff
University, Cardiff, CF24 3AA, UK
Full list of author information is available at the end of the article

hotspot of Prognostics and Health Management (PHM)
in aerospace and manufacturing fields [7–9]. At present,
there are many methods to solve the problem of PdM of
equipment. These methods can be roughly divided into
two categories [10]: PdM methods based on fault mech-
anism [11–16] and data-driven. The data-driven methods
are divided into mathematical statistics [17–21] and arti-
ficial intelligence [22–26]. During the implementation of
PdM, through the accurate prediction of product failure
time, the most cost-effective maintenance window can be
determined before its failure. Furthermore, it can prevent
the operating deterioration of equipment and minimize
the shutdown time and maintenance costs through appro-
priate maintenance activities [27]. Therefore, improving
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the prediction accuracy of TBF is of great significance and
can bring tangible benefits to the industry.

As an important reliability index, fault time can show the
dynamic evolution process of faults, and have been pre-
dicted by a variety of data-driven methods, such as autore-
gressive moving average (ARMA) [28], singular spectrum
analysis (SSA) [29], support vector regression (SVR) [30],
artificial neural network (ANN) [31], etc. Due to the diffi-
culty of the reliability test for complex system, the reliabil-
ity information (such as TBF) is usually difficult to obtain
[32]. Most of the above methods are for component, and
are not applicable to the fault time prediction of complex
mechanical products.

To fill this gap, the paper proposed a machine learning-
based TBF prediction model with reliability information
conversion. Mainly through the information conversion
method based on Fisher algorithm to deeply mine the
multi-source reliability information, convert the multi-
source reliability information (such as fault data of similar
products, unit, subsystem, and reliability simulation test
data, etc. [33]) into the reliability information of the target
product, expand the sample size of the small sample tar-
get product. For data samples with certain errors after ca-
pacity expansion, BP neural network with good prediction
effect on time series data is selected to realize the final pre-
diction of TBF, and PSO algorithm is used to optimize the
initial weight and threshold of BP neural network to avoid
falling into local extreme value and improve the conver-
gence speed. Thus, more accurate TBF prediction results
can be obtained. The rest of this paper is organized as fol-
lows: Sect. 2 provides an overview of existing methods for
PdM. Section 3 introduces the methodology used in this
paper, including reliability information conversion, com-
patibility test and TBF prediction based on PSO-BP. Sec-
tion 4 is a case study, and the prediction results of TBF are
also analyzed in this section, followed by a brief summary
in Sect. 5.

2 Literature review
TBF prediction of complex mechanical products is a typi-
cal small sample problem. There are two methods to solve
the problem: one is mathematical methods suitable for
data analysis of small samples, such as Bayesian and poor
information method; The former can improve the evalu-
ation accuracy of the field test with small sample by fus-
ing the simulation prior information [34–37], but there is
problem of how to scientifically determine the prior distri-
bution before information fusion. The evaluation accuracy
will even drop when the prior information is distorted. In
recent years, scholars have carried out relevant research on
fault prediction, process evaluation and event prediction
in poor information situation, and achieved good results
[38–42]. But the core prediction model of this method is
the use of Grey Model alone or in combination with the

Bootstrap. This type of prediction method does not es-
sentially avoid the problem of averaging the weights af-
ter superposition calculation. The mean weight will cause
the instability and large prediction errors of the prediction
model. The second is expansion of small samples, such as
Bootstrap [43–45]. The Bootstrap relies too much on the
subsample, which is not conducive to the robust of pa-
rameter evaluation. While expanding the capacity of small
sample, the information conversion method can overcome
the problems of the above two methods. This method
was first proposed by Qian Xuesen in his research on two
bombs and one satellite, that is, in order to evaluate reli-
ability, it is often necessary to convert and synthesize ex-
perimental data in different environments [46]. At present,
there are mainly two information conversion methods for
converting reliability by environmental factors and regres-
sion conversion of reliability information. Because the lat-
ter has certain requirements on the distribution of relia-
bility information in use, that is, it is required to obey a
specific distribution. Therefore, it is necessary to find a
method that is not affected by the distribution of reliabil-
ity information to solve the problem of insufficient fault
data in the TBF prediction problem of mechanical prod-
ucts with small samples. As the Fisher algorithm is a linear
discriminant method based on the idea of variance anal-
ysis, which can better distinguish each population, and
have no requirements for the distribution of the popula-
tion [47]. Therefore, this paper uses the information con-
version method based on Fisher algorithm to expand the
capacity of small and medium-sized sample in TBF predic-
tion of complex mechanical products.

TBF belongs to time series data. Due to the excellent
performance in solving the problem of time series predic-
tion, machine learning is very consistent with the needs
of practical engineering problems [48]. To solve time se-
ries analysis problems, researchers have applied linear re-
gression model, SVM [49], decision tree and other ma-
chine learning models. The time series prediction based
on machine learning is a typical supervised learning task,
in which the input attribute is the time series data of his-
torical data, and the output label is the future data (on the
training set). Machine learning model is a data-driven way
to learn sequence features and establish the mapping rela-
tionship between historical data and future data. In prac-
tical application, the time series prediction method based
on machine learning performs better than the method
based on statistics [50]. In order to improve the accuracy
of time series prediction, researchers try to make a break-
through in model complexity and sequence feature expres-
sion [51]. As a classical feedforward neural network, BP
neural network has the advantages of good self-learning,
self-organization and adaptability, and strong fault toler-
ance for its structural characteristics, which allows cer-
tain errors of input samples. Good simulation effect can
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be achieved for the expanded data samples [52], which is
conducive to reduce the error of the method proposed in
this paper. However, the traditional BP neural network has
the defects that it is easy to fall into local extremum and
the convergence speed is slow or even non convergent [53].
In view of this defect, scholars use genetic algorithm (GA)
to optimize BP neural network [54, 55] and improve the
convergence speed. Compared with GA algorithm, parti-
cle swarm optimization (PSO) algorithm is simple in cal-
culation and requires less parameters adjustment. Using
PSO algorithm to optimize the initial weight and thresh-
old of BP neural network cannot only avoid falling into lo-
cal extreme value but also improve the convergence speed
[56]. Therefore, BP neural network with good prediction
effect on time series data is selected to realize the final pre-
diction of TBF in this paper, and PSO algorithm is also
adapted to optimize BP neural network to verify the fea-
sibility of information conversion method based on Fisher
algorithm.

3 Methodology
3.1 Reliability information conversion
The reliability information of a mechanical product (such
as: fault data of similar product, unit, subsystems, and data
of reliability simulation, etc. [52]) is various and have mul-
tidimensional characteristics. Specifically, according to the
performance reliability analysis of the products, the relia-
bility information can be divided into three dimensions:
time, hierarchy, and information source. In terms of time
dimension, it includes design phase information, manu-
facturing phase information, simulation operation phase
information, etc. In the hierarchy dimension, it includes
part level information, unit level information, subsystem
level information and system level information. In this di-
mension, the amount of information presents an inverted
pyramid; In the dimension of information source, it in-
cludes expert judgment information, performance degra-
dation information, similar product information, etc. In
order to use the information effectively and fully reflect its
value, it needs to be processed deeply in the process of us-
ing reliability information, that is, the reliability informa-
tion needs to be effectively converted before they can be
used. Since the Fisher algorithm is a linear discriminant
method established based on the idea of variance analysis,
it can better distinguish each population, and this discrim-
inant method does not make any requirements on the dis-
tribution of the population [53]. Therefore, the paper pro-
posed an information conversion method based on Fisher
algorithm to convert the reliability information. The fol-
lowing paragraph describes the detail.

The central idea of the conversion method is to apply the
Fisher algorithm to divide the information samples, pair
the sample points in two different environments, and then
use the geometric mean of the ratio to calculate the envi-
ronmental factor. Assume that the reliability information

samples in environments A and B are represented by X
and Y , respectively, X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , ym}
(n ≥ m). As shown in Fig. 1, to convert the sample infor-
mation in environment A into environment B, the specific
process of information conversion based on Fisher algo-
rithm is as follows:

1) Rearrange the order of sample information. Rearrange
the sample information in the samples X and Y in ascend-
ing order:

X : x(1) < x(2) < · · · < x(n),

Y : y(1) < y(2) < · · · < y(m).

2) Find center points of sample data. Calculate the center
points of sample X and Y respectively according to Eq. (1).

|x(r) – X| = min
1≤i≤n

|x(i) – X|,

|y(s) – Y | = min
1≤j≤m

|y(s) – Y |.
(1)

x(r) divides the sample X into three parts: {x(1), x(2), . . . ,
x(r–1)}, {x(r)}, {x(r+1), x(r+2), . . . , x(n)};

y(s) divides the sample Y into three parts: {y(1), y(2), . . . ,
y(s–1)}, {y(s)}, {y(s+1), y(s+2), . . . , y(m)}.

3) Construct sample pairings. If: n = m, and r = s, con-
struct sample pairing: (x(i), y(j)), i = j = 1, 2, . . . , n; otherwise,
keep sample pairing: (x(r), y(s)), then, the samples are paired
in two cases:

(i) For the left sample points of x(r) and y(s), if r – 1 ≥ s – 1,
cluster the sample X based on Fisher, the cluster class is
s – 1, and the mean value of each class is y∗

j , construct sam-
ple pairings: {y∗

j , yj}, 1 ≤ j ≤ s – 1; Otherwise, cluster the
sample Y based on Fisher, the cluster class is r – 1, and the
mean value of each class is y∗

j , construct sample pairings:
{y∗

j , yj}, 1 ≤ i ≤ r – 1.
(ii) For the right sample points of x(r) and y(s), if n – r ≥

m–s, cluster the sample X based on Fisher, the cluster class
is m – s, and the mean value of each class is y∗

j , construct
sample pairings: {y∗

j , yj}, s + 1 ≤ j ≤ m; Otherwise, cluster
the sample Y based on Fisher, the cluster class is n – r, and
the mean value of each class is y∗

j , construct sample pair-
ings: {y∗

j , yj}, r + 1 ≤ i ≤ n.
4) Calculate the conversion factor. After pairing the sam-

ples with the method in step 3), calculate the conversion
factor according to Eq. (2).

K = m

√
y∗

1
y1

· y∗
2

y2
· · · y∗

m
ym

. (2)

5) Get the conversion function. The following Eq. (3) can
convert the information of the sample X under environ-
ment A into the sample Y under environment B, so as to
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Figure 1 Information conversion process based on Fisher algorithm

achieve the purpose of expanding the capacity of the sam-
ple Y .

y′
i = xi · K–1. (3)

3.2 Compatibility test
After the information conversion through the method in
Sect. 3.1, it is necessary to use a certain method to judge
whether the conversion result is valid, that is, the reliability
information can truly reflect the characteristics of statisti-
cal parameters, which requires that the reliability informa-
tion and the small sample field information of the target
mechanical product approximately obey the same distri-
bution, and this goal is achieved through the compatibility
test. Wilcoxon rank sum test, Smirno test, Mood test, etc.
can all be used to test the compatibility directly using sam-
ple data [57]. The rank sum test is adopted in this paper,
which can effectively test whether the data from different
samples obey the same overall distribution when the over-
all distribution is not clear. Assume that the reliability in-
formation sample is: X = {x1, x2, . . . , xn}. The on-site relia-

bility information sample of the target mechanical product
is: Y = {y1, y2, . . . , ym}, consider a trade-off hypothesis:

Null hypothesis H0: X and Y belong to the same popula-
tion;

Alternative hypothesis H1 : X and Y do not belong to the
same population.

Combine the sample information of the two samples into
a new sample population, and arrange the new sample in-
formation in order from small to large to obtain a new sam-
ple: Z, Z = {z1, z2, . . . , zn+m}, z1 ≤ z2 ≤ · · · zn+m. The sub-
script i is called the rank of the new sample information,
i = 1, 2, . . . , n + m. If xk = zj, xk ∈ {x1, x2, . . . , xn}, then it is
considered that the rank of elements xk in sample X in the
new sample is j, and note that: r(xk) = j. The rank sum of
sample X is T =

∑n
k=1 r(xk).

Based on the rank sum test table, under significance level
α, if T meets: T1(α) < T < T2(α), the null hypothesis should
be accepted, otherwise, the null hypothesis should be re-
jected and the alternative hypothesis need to be accepted.
When the values of n and m are both large (n, m > 10), the
rank sum T approximately obeys normal distribution, that
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Figure 2 BP neural network prediction structure

is:

T =
n∑

k=1

r(xk) ∼ N
(

n(n + m + 1)
2

,
nm(n + m + 1)

2

)
. (4)

At this time, the Z test method of normal distribution is
used to test the compatibility. Under the significance level
α, the test rule is as shown in Eq. (2):

P
{∣∣∣∣T – n(n+m+1)

2√
nm(n+m+1)

12

∣∣∣∣ < μα|H0

}
= 1 – α. (5)

Here μα represents the α quantile of the standard nor-
mal distribution. When Eq. (5) is established, under the
confidence: 1–α, the null hypothesis will be accepted; oth-
erwise, the two samples are considered not to meet the re-
quirements of the compatibility test.

3.3 TBF prediction based on PSO-BP
3.3.1 Prediction model
After the reliability information is converted to the target
mechanical product through the above steps, an enlarged
data sample is obtained, which is composed of reliability
information of different dimensions and source. Since the
reliability information of each different source (such as the
TBF to be discussed in this paper) generally has the char-
acteristics of time series, the BP Neural Network with bet-
ter prediction effect on time series data is selected to real-
ize the final prediction of TBF in this paper, to verify the
feasibility of the information conversion method based on
Fisher algorithm. The prediction model is shown in Eq. (6).

y(t) = f (y(t – n), y(t – n + 1), . . . , y(t – 1). (6)

Here y(t) represents the TBF value at time t, n is the
number of input neuron nodes of the BP neural network,

that is, the TBF at time t is affected by the previous nth
times, the specific value of n is determined according to
the number of faults. The predicted network structure is
shown in Fig. 2.

Here f is the hidden layer, and the number of nodes in the
hidden layer of the prediction model is determined by the
empirical equation and the trial-and-error method. The
empirical equation is defined as Eq. (7).

m =
√

n + l + α. (7)

Here m is the number of hidden layer nodes, n is the
number of input nodes, l is the number of output nodes,
and α is a constant between 1 and 10. It can be seen from
the above analysis that the value of m is between 3 and 12.
Determining the optimal number of nodes by trial and er-
ror method.

BP Neural Network is a multi-layer feedforward neu-
ral network. Its weights are adjusted by Back-Propagation
learning algorithm, which has good nonlinear mapping
ability, generalization ability and fault tolerance ability, and
is easy to implement in engineering. But the initial value is
randomly assigned, and it is easy to fall into a local mini-
mum [58]. PSO is an algorithm with good global searching
ability. It only needs optimized function and does not need
other auxiliary information. PSO algorithm is adapted in
this paper to find the global optimal particle by updating
particle speed and position, so as to optimize the weight
and threshold of BP neural network, and then realize the
establishment of TBF prediction model based on PSO-
BP. The process of PSO-BP prediction model is shown in
Fig. 3.

3.3.2 Performance evaluation
The ultimate goal of this paper is to use the above method
to predict the TBF of the target mechanical product.



Zhang et al. Autonomous Intelligent Systems            (2022) 2:15 Page 6 of 11

Figure 3 PSO-BP network modeling

Firstly, the converted reliability information is used as the
training set to train the prediction model, and then the
TBF in the actual operation stage of the target mechanical
product is selected as the test set to test the prediction ef-
fect of the model, and two evaluation metrics as shown in
Eq. (8): the mean-absolute-percentage-error (MAPE) and
the coefficient of determination (R2) are selected to evalu-
ate the performance of the model and verify the feasibility
of information conversion method based on Fisher algo-
rithm.⎧⎨

⎩MAPE =
∑

i | yi–ŷi
yi

|
N ,

R2 = 1 –
∑

i(yi–ŷi)2∑
i(yi–ȳi)2 .

(8)

Here yi is the true value, ŷi is the predicted value, ȳi is the
mean value of the true value, and N is the sample size.

4 Case study
4.1 Case description
Taking the remanufactured CNC milling machine tool
(XK6032-01) as an example, due to its single piece produc-

Table 1 Fault data during actual operation stage

Target product TBF(h)

XK6032-01 421 457 106 575 178 2390 889 246

tion mode and part blank value, it is impossible for reman-
ufacturing product entities to carry out huge destructive
on-site tests. In addition, it is extremely difficult to build
the system level simulation test model and platform of per-
sonalized remanufacturing products, which is costly and
difficult to accurately simulate all working conditions in
the process of re-service. Therefore, the target product of
this case belongs to a typical small sample. The TBF data
(as shown in Table 1) and its related reliability information
(TBF) were collected respectively. Perform TBF prediction
for the remanufactured CNC milling machine according to
the process shown in Fig. 4.

4.2 Results
4.2.1 Conversion results of reliability information
The machine tool is used as the target environment, and
the reliability information of each source is converted to
the working environment of the remanufactured machine
tool according to the information conversion method in
Sect. 3.1. The compatibility test is carried out respectively
with the fault data of the actual operation stage, and finally
the expanded fault information table of the CNC machine
tool as shown in Table 2 is obtained.

According to the number of faults of Table 2, the num-
ber of input neurons in the TBF prediction model based on
PSO-BP neural network is determined to be n = 3, that is,
the TBF at the fourth moment is affected by the TBF at the
first three moments. In the process of training the model,
the fault data of the first three moments is used as input,
and the fault data of the fourth moment is used as output.
For information sources with more than 4 failures, the slid-
ing time window is used to obtain the value, the window
size is set to 4, and the step size is set to 1. Based on this,
according to the order of Table 2, the data from different
sources of each dimension is input into the neural network
training model in turn. A total of 34 groups of data can be
used for model training. Take the data in Table 1 as the
test set (5 groups in total) to test the trained model, and
the prediction performance of this model is measured by
the metrics in Eq. (8).

4.2.2 Prediction results
In this prediction, the neural network toolbox in Matlab is
used for network training. The prediction model reaches
convergence after 378 iterations. The prediction perfor-
mance of the training set is shown in Fig. 5, and the pre-
diction performance of the test set is shown in Fig. 6.

As can be seen from Fig. 5, the predicted value of each
point in the training set almost completely coincides with
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Figure 4 TBF Prediction of the remanufactured CNC milling machine tools

Table 2 Fault data after converted (TBF)

Serial number Information source Conversion results(h)

1 Workbench 35 252 347 467
2 Servo unit 23 786 236 15
3 Spindle 124 535 516 2725
4 Control system 13 263 134 125 463 571
5 Similar MT 1 478 486 85 542 186 2486 934 235
6 Similar MT 2 524 876 35 1896 376 1288 1045
7 Similar MT 3 496 480 64 530 192 2576 928 240
8 Same MT 1 698 976 495 1056 964 1275
9 Same MT 2 153 1384 356 89 1768 2757
10 Same MT 3 31 458 356 976 275 1897 243 1125
11 Trial phase 528 94 56 15 2451 1763

Note: Similar MT stands for similar remanufacturing CNC machine tools, and Same MT stands for same remanufacturing CNC machine tools.

the true value, and the error is almost zero, indicating that
the TBF prediction model based on PSO-BP has a very
good prediction effect on the training set.

It can be seen from Fig. 6 that the change trend of the true
value of the test set and the predicted value are basically

the same, indicating that the prediction model has a good
prediction effect on the change trend of TBF. The specific
prediction error is shown in Table 3.

It can be seen from Table 3 that, except for test point 3,
the absolute value of the relative error of the other points
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Figure 5 Comparison of the predicted value of the training sample with the true value

Figure 6 Comparison of the predicted value of the test sample with the true value

Table 3 The relative error of each point in the test set

Test
point 1

Test
point 2

Test
point 3

Test
point 4

Test
point 5

True value 575 178 2390 889 246
Predicted value 604.20 167.29 3301.87 881.51 238.69
Relative error –0.0508 0.0602 –0.3815 0.0084 0.0297

is less than 10%, which is within the allowable error range.
At this time, the mean-absolute-percentage-error of the
model is 0.1061, in general, if the MAPE is less than 10%,
the model prediction accuracy is high; the coefficient of de-
termination of the model is 0.9902, in general, R2 is within
[0, 1], and the value is closer to 1, the higher the prediction
accuracy of the model will be. It can be seen that the pre-

diction accuracy of the model is high, which proves that
the proposed method has a good prediction effect on TBF.

4.3 Discussion
In order to verify whether PSO-BP neural network model
is superior to other intelligent models in predicting the
time series data after sample expansion, standard BP neu-
ral network and GA-BP neural network are selected for
comparative analysis. The experimental results are shown
in Table 4.

To express the prediction accuracy and convergence
speed of each model more intuitively, the above results
are displayed in the form of bar graph, as shown in Fig. 7.
Because the iteration times are dimensional parameters,
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Figure 7 Performance comparison of prediction models

Table 4 Performance comparison of prediction models

Metrics BP GA-BP PSO-BP

MAPE 0.12038 0.10893 0.1061
R2 0.81995 0.88784 0.9902
Epoch 2425 973 878

they are processed to calculate the iteration rate, that is,
the ratio of iteration times to total times.

Generally, the smaller the MAPE, the closer to 1 of R2,
the smaller the iteration rate, the higher the prediction ac-
curacy of the model, and the faster the convergence speed.
It can be seen from Fig. 7 that the performance of PSO-BP
is better than the other two intelligent models, indicating
that this model is more suitable for the prediction of time
series data with small sample after the expansion of sample
size.

Through the above analysis, some advantages of the pro-
posed approach can be summarized as follows. 1) The in-
formation conversion method based on Fisher algorithm
converts the multi-source reliability information into the
target product itself, overcomes the influence of the spe-
cific distribution of the reliability information, expands the
sample size of complex mechanical products. 2) The TBF
prediction model based on PSO-BP neural network avoids
the problem of data samples affected by certain errors af-
ter capacity expansion, has high accuracy, and provides
method support for PdM of complex mechanical products.

However, the proposed reliability information conver-
sion method based on the Fisher algorithm has some prob-
lems and deficiencies in the process of converting experi-
mental information. The basic idea of the Fisher algorithm
is similar to dichotomy, that is, it needs to divide all data
into two categories firstly, and then divide one of them into
two categories too, recursive in turn. Therefore, the clas-

sification result obtained by this method is a local optimal
solution, which has a certain impact on the accuracy of en-
vironmental factors.

5 Conclusions
Aiming at the problems of reliability information collec-
tion difficulty, high collection cost and small data samples
in the process of TBF prediction of complex mechanical
products, a machine learning-based TBF prediction model
with reliability information conversion is proposed in this
paper. The information conversion method based on the
Fisher algorithm is used to deeply mine the reliability in-
formation of multiple-source reliability information, con-
vert the multi-source reliability information into the target
product itself, and expand the sample size of small sample
target products. For data samples with certain errors af-
ter capacity expansion, BP neural network with good pre-
diction effect on time series data is selected to realize the
final prediction of TBF, and PSO algorithm is used to opti-
mize the initial weight and threshold of BP neural network
to avoid local extreme value and improve the convergence
speed. Taking a remanufactured machine tools as an ex-
ample to verify the proposed approach. The results show
that the TBF prediction model based on PSO-BP proposed
in this paper has a good prediction effect on the sample
data after the reliability information conversion and ex-
pansion using the Fisher algorithm, and provides a strong
basis for the PdM and reliability growth of remanufactured
machine tools. In the future work, we should consider an
optimization method to get the global optimal solution of
data segmentation and pairing, improve the sample pair-
ing effect of data, and improve the accuracy of conversion.
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