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Summary  

 

CF pulmonary disease is characterised by recurrent and persistent bacterial 

infections, which eventually lead to premature death. Given mounting concerns 

regarding antimicrobial resistance, novel surveillance methodology and therapeutics 

are needed to enable effective treatment of CF lung infections.  

 

Current sampling techniques for studying the paediatric CF lung microbiome are 

invasive and time-consuming. This thesis used paediatric induced sputum (IS) 

samples from the CF Sputum Induction Trial (Ronchetti et al. 2018a) to study 

microbial diversity and the effects of clinical treatment. The dataset represents the 

largest study to date using exclusively paediatric IS samples. Results demonstrated 

clear correlations between clinical features and diversity measures, mirroring 

previous literature obtained from more invasive techniques and supporting the use of 

IS as a routine surveillance method.   

 

OligoG CF-5/20 is a novel anti-biofilm therapy currently undergoing clinical trials. To 

understand its mechanism of action and potential clinical effects, this work used 

Fourier transform infrared spectroscopy to analyse a small set of CF sputum samples 

from the CF SpIT trial and explore the interaction of OligoG CF-5/20 with respiratory 

mucin.  Results demonstrated interaction at key mucin structures including glycan 

moieties and the peptide backbone, providing a potential mechanism of action to 

explain the modification of CF sputum.  

 

Reflecting the intended clinical use of OligoG CF-5/20 as a prolonged treatment for 

patients, an evolutionary model was utilised to study the effects of OligoG CF-5/20 

treatment on P. aeruginosa. Phenotypic and genotypic characterisation of P. 

aeruginosa exposed to 2% OligoG CF-5/20 showed a reduction in colonies with multi-

drug resistant-associated phenotypes. Exposure to 2% OligoG CF-5/20 and 

azithromycin improved bacterial susceptibility to other classes of antibiotics. 

 

These studies provide an insight into the role of culture-independent methods for 

airway sampling and the development of a novel therapy to treat multi-drug resistant 

bacteria in children with CF. 
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1.1 Introduction 

 

Cystic fibrosis (CF) is an autosomal recessive disease, affecting more than 10,400 

people in the UK (Cystic Fibrosis Trust 2019, 2nd February-b). It is a life-shortening 

condition. Babies born today with CF have a median predicted survival of 47 years 

according to recent data from the UK Cystic Fibrosis Trust (Charman et al. 2018). 

Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane 

conductance regulator (CFTR) gene (Katkin 2019b). The effects of CFTR mutations 

are seen in multiple systems, including the respiratory, gastrointestinal and 

genitourinary systems. The disease phenotype is characterised by progressive lung 

disease, exocrine pancreatic insufficiency and resulting gastrointestinal 

malabsorption, malnutrition and growth impairment, sinus disease and CF-related 

diabetes (Ratjen et al. 2015). The pulmonary manifestations of the disease are the 

principal cause of morbidity and mortality, and their management is the focus of this 

work.  

  

1.2 Cystic fibrosis 

1.2.1 Genetics 

Cystic fibrosis is a heterogenous disease, with a mutation in a single gene, CFTR, 

which is located on the long arm of Chromosome 7. The CFTR gene was first 

identified in 1989 and research is ongoing to fully understand its role (Riordan et al. 

1989). To date, there are 2063 known mutations in the CFTR gene, though not all of 

these are disease causing (see ‘Cystic fibrosis mutations database’, and ‘CFTR2’). 

The most common mutation is F508del, with 89.5% of the UK CF population carrying 

at least one of this mutation (Charman et al. 2018).  

 

CFTR mutations are grouped in six classes according to their functional 

consequences. Mutations can reduce channel number, protein function or both, and 

the resulting phenotypic severity can vary significantly (Ratjen et al. 2015). Mutations 

resulting in loss of CFTR expression on the cell surface or loss of CFTR function are 

considered severe mutations, typically displaying both lung disease and pancreatic 

insufficiency (Ratjen et al. 2015). Less severe phenotypes are often caused by 

mutations with residual CFTR function (Ratjen et al. 2015). The patient’s genotype 

has a significant influence on disease severity and the associated clinical 

manifestations, though environmental factors and non-CFTR gene modifiers also play 
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a role (Ratjen et al. 2015). Genotyping is important prognostically and also guides the 

development and implementation of existing modulatory therapies.  

 

1.2.2 Clinical diagnosis 

A newborn screening programme for CF has been in place throughout the United 

Kingdom since 2007. All babies are screened in the first week of life using a blood 

sample taken from the heel. The UK uses the immunoreactive trypsin (IRT)-DNA-IRT 

protocol, which identifies babies with a raised IRT and then screens these children 

for the most common CF mutations. Infants identified to have two CFTR disease-

causing mutations, or one or no gene mutations but raised IRT, are referred to CF 

specialist centres for a sweat test (Edmondson et al. 2018).  

 

Diagnosis is made following demonstration of a raised sweat chloride level (>60 

mmol/L), indicating a positive sweat test, in combination with a positive newborn 

screen. For older children and adults not identified by screening, there should be 

evidence of possible CF-related disease in at least one organ plus evidence of CFTR-

mutation to confirm diagnosis (Katkin 2019a). 

 

1.2.3 Treatment for CF-related lung disease 

Developments in CF management have dramatically improved patient outcomes, but 

treatments remain complex and onerous for patients. Despite the introduction of 

screening, specialist multi-disciplinary centres and expensive therapies, the disease 

is still associated with significant morbidity and early death (Castellani et al. 2018).  

 

Clinical treatment predominantly focuses on preventing and treating infections (with 

oral, nebulised and intravenous antimicrobials), airway clearance (with mucolytic 

therapies and physiotherapy) and anti-inflammatory agents to reduce chronic 

inflammation (De Boeck and Amaral 2016). Aggressive therapy is required for proven 

infections, often involving hospital admissions and intravenous antibiotics.  

 

There have been significant advances in CF therapies in recent years, particularly 

with regards to CFTR modulators, which work at the level of the protein dysfunction 

(Bell et al. 2020; Konstan and Flume 2020). However, no single treatment is yet able 

to prevent the sequelae that eventually lead to progressive disease, and a 

combination of therapies is required. Consequently, the burden of daily treatment for 

patients and their families remains huge (Brennan 2020).  
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1.3 The respiratory tract  

 

The respiratory tract is composed of conducting airways (nose, mouth, pharynx, 

larynx, trachea, bronchi and conducting bronchioles) and respiratory airways 

(respiratory bronchioles, alveolar ducts and alveoli) (Saint-Criq and Gray 2017). Air 

is warmed, humidified and conducted to the respiratory airways where gaseous 

exchange occurs. The bronchial epithelium is predominantly composed of ciliated 

cells, goblet cells and basal cells, with submucosal glands including ciliated and non-

ciliated serous and mucous cells residing in the cartilaginous conducting airways 

(Saint-Criq and Gray 2017). The alveolar epithelium consists of alveolar type I and 

type II cells (Saint-Criq and Gray 2017).  

 

Airway mucus consists of 90-98% water, ions (at similar concentrations to plasma), 

gel-forming mucins and many other proteins, peptides and small molecules 

(Widdicombe and Wine 2015). It is a key component of innate immunity (Borowitz 

2015). Grossly, it protects the underlying epithelium by providing a physical barrier 

and pH buffer, while the smaller macromolecular components provide protective 

antimicrobial, anti-inflammatory and antioxidant properties (Widdicombe and Wine 

2015). It is continuously removed and replaced through the process of mucociliary 

clearance (Widdicombe and Wine 2015). Mucus is removed, along with entrapped 

particles, by the activity of cilia in the apical membranes of epithelial cells 

(Widdicombe and Wine 2015).  

 

The conducting airway epithelium is protected from respiratory gases by a thin liquid 

layer called the airway surface liquid (ASL), which aids the removal of pathogens and 

particulate matter by mucociliary clearance (Saint-Criq and Gray 2017). This film of 

liquid consists of two phases: the ‘periciliary layer’ lies between the cilia and is free of 

gel-forming mucins; and a mucous gel which just touches the tips of the cilia 

(Widdicombe and Wine 2015). ASL hydration is carefully managed through ion/water 

transport across the surface epithelium, plus fluid secretion from the submucosal 

glands (Saint-Criq and Gray 2017).  

 

By active secretion of chloride and bicarbonate ions, airway glands are able to 

facilitate secretion of water across the epithelium (Widdicombe and Wine 2015). 

These processes pull sodium ions into the lumen via the paracellular pathway by 

creating a negatively-charged environment. The resulting trans-epithelial 
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concentration gradient enables the osmotic movement of water into the lumen, mainly 

via the transcellular pathway (Widdicombe and Wine 2015). CFTR and calcium ion 

(Ca2+) -activated chloride channels predominantly affect anion secretion at the apical 

membrane, though other transporters and pathways are known to be involved 

(Widdicombe and Wine 2015; Saint-Criq and Gray 2017). CFTR, alongside ANO1, 

also conducts bicarbonate ions, which contributes to the volume and pH of fluid 

secreted (Saint-Criq and Gray 2017).  

 

1.4 The respiratory tract in cystic fibrosis 

 

CFTR dysfunction has a number of key pulmonary manifestations. These include 

abnormal mucus adhesion and structure, delayed mucociliary clearance due to 

flattened cilia and airway fluid liquid (ASL) depletion, dysregulated inflammation and 

abnormal mucosal defences leading to infection (Ratjen et al. 2015). These combined 

features lead to a cascade of local airway destruction, lung injury, eventual 

bronchiectasis, and finally respiratory failure (Ratjen et al. 2015). 

 

1.4.1 CFTR dysfunction 

CFTR principally acts as a chloride channel, transporting ions across the apical 

membrane of the epithelium (Ratjen et al. 2015). It is also involved in bicarbonate 

secretion and inhibition of sodium transport (Ratjen et al. 2015).  Chloride ion 

transport across the apical membrane relies on three factors: CFTR activity or open 

state probability; the number of CFTR channels; and the single channel conductance, 

which is affected by the electrochemical gradient across the membrane (Saint-Criq 

and Gray 2017). It is proposed that within the CF respiratory tract, impaired 

bicarbonate transport leads to: reduced removal of Ca2+ from the condensed mucins, 

dysfunctional mucin expansion, stasis of the mucus within ducts and increased mucus 

viscosity (Quinton 2008; Borowitz 2015).  

 

Mutations in CFTR reduce electrolyte-driven fluid secretion from airway glands and 

surface epithelia, resulting in thickened, HCO3- -deficient secretions that are difficult 

to clear (Widdicombe and Wine 2015). In CF, the fluid secreted by the glands is 

reduced in volume whilst being increased in viscosity (Jayaraman et al. 2001; 

Widdicombe and Wine 2015).  
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CFTR has been shown to regulate other ion channels and transporters, such as the 

epithelial sodium channel (ENaC), as well as influencing ASL pH through reduced 

HCO3- and Cl- secretion (Saint-Criq and Gray 2017). The effect of endogenous 

antimicrobials within a depleted ASL are also compromised due to the reduced 

bicarbonate content and increased acidity of gland secretions (Widdicombe and Wine 

2015; Saint-Criq and Gray 2017). This makes mucus more difficult to clear via 

mucociliary or cough clearance, as well as limiting the accessibility to antimicrobials 

(Widdicombe and Wine 2015; Saint-Criq and Gray 2017). The resulting static, yet 

hyper-secreted, airway mucus provides an ideal environment for progressive 

bacterial colonisation and infection, stimulating the inflammatory cascade and leading 

to chronic airway obstruction and eventually bronchiectasis (Widdicombe and Wine 

2015; Kunzelmann et al. 2017; Katkin 2019b). Mucus can also “plug” mucus glands, 

becoming fixed to the goblet cells or gland orifice and contributing to further airway 

obstruction (Ratjen et al. 2015).  

 

1.4.2 Inflammatory lung disease 

In healthy individuals, pathogens entering the airways are cleared rapidly. Following 

identification by epithelial cells, inflammatory pathways are activated, neutrophils 

move into the airway lumen and the infection is eradicated (Saint-Criq and Gray 

2017). This process is regulated by CFTR and its absence results in an upregulation 

of proinflammatory products (Saint-Criq and Gray 2017). CFTR absence also leads 

to abnormal antioxidant quantities within the ASL, resulting in increased airway 

inflammation, epithelial damage and abnormal reconstitution of the epithelium (Saint-

Criq and Gray 2017). There is also evidence that the acidic ASL pH may contribute 

to the patient’s ability to kill bacteria by the highly pH-sensitive innate defensins within 

the airways (Ratjen et al. 2015). This may be related to the CFTR-dependent 

bicarbonate defect in the airways and the negative effect on the function of various 

defensins, which operate optimally at neutral or alkaline pH (Borowitz 2015). 

 

Chronic neutrophilic inflammation is seen extensively throughout the airways in cystic 

fibrosis. Neutrophils act through the release and activation of enzymes, such as 

neutrophil elastase, as part of the defence against bacteria (Sly et al. 2013). To 

prevent lung damage, the lung produces α1-antitrypsin which binds to extracellular 

neutrophil elastase and stops digestion of elastin (Sly et al. 2013). Active neutrophilic 

inflammation is associated with increased free neutrophil elastase, elastin digestion 

and airway damage leading to bronchiectasis (Sly et al. 2013). It is not clear whether 
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lung inflammation in CF only occurs as a result of infection or whether other factors, 

such as abnormal mucus, are proinflammatory regardless of infection (Ratjen et al. 

2015). Bronchoalveolar lavage (BAL)-based studies have shown free neutrophil 

elastase activity in BAL fluid to be a key risk factor for early, persistent bronchiectasis 

in CF patients, in addition to pulmonary infection (Sly et al. 2013). In particular, lung 

lobes with more severe bronchiectasis are associated with more extensive 

inflammation (Sly et al. 2013). In one series of infants identified through newborn 

screening, 77.2% of patients had detectable levels of the pro-inflammatory cytokine 

IL-8, and 29.8% had detectable neutrophil elastase activity. The level of inflammation, 

regardless of infection status, was also greater than that expected in healthy infants 

(Sly et al. 2009). Mott et al. demonstrated neutrophilic inflammation was associated 

with progression of bronchiectasis and air trapping, and potentially indicative of 

significant future lung disease in infants with CF (Mott et al. 2012).  

 

These studies highlight evidence of clinically significant lung disease developing in 

infancy, despite the absence of respiratory symptoms (Sly et al. 2009). However, the 

temporal relationship between infection and inflammation remains under investigation 

given differing outcomes from previous studies (Armstrong et al. 2005; Sly et al. 

2009).  

 

1.5 Respiratory Mucus 

 

Mucus is produced by the healthy airway, providing a protective coating. The mucus 

barrier is an important component of the innate immune system, providing protection 

by entrapping foreign particles and pathogens and dissolving noxious gases 

(Thornton et al. 2008). These external insults are cleared by ciliary transport or 

coughing.  

 

Contained within respiratory mucus are molecules key to host defence, including 

secretory IgA, collectins, defensins, cathlicidins and histatins (Thornton et al. 2008). 

These are likely to have direct physical interaction with mucins, as well as being 

simply held within solution by the biophysical properties of mucus (Thornton et al. 

2008).  

 



8 
 

1.6 Respiratory mucins 

1.6.1 Mucin structure 

The functional and rheological properties of mucus are predominantly due to mucins. 

Submucosal glands contain mucous cells which secrete gel-forming mucins and fluid, 

and CFTR-expressing serous cells which provide the majority of the fluid from gland 

secretions (Widdicombe and Wine 2015; Saint-Criq and Gray 2017). Gel-forming 

airway mucins are also produced by goblet cells of the surface epithelium and Clara 

cells, with the latter forming the predominant secretory cell type within the respiratory 

bronchioles (Widdicombe and Wine 2015). Submucosal glands are most abundant in 

the nasal cavities and upper airways, as these areas are most at risk of deposition of 

large particles (Widdicombe and Wine 2015). They also increase at the bifurcation of 

airways, where there is increased turbulence and greater impact of large particles on 

the epithelium (Widdicombe and Wine 2015).  

 

Mucin glycoproteins are the most significant macromolecular component of mucus 

gel in the healthy state (Henke et al. 2007). They are polydisperse in mass (2-40 x 

106 Da) and length (0.5-10 μm) (Thornton et al. 1990). Mucins provide the structural 

framework of the mucus barrier, prevent airway dehydration, sequester pathogens 

and potentially clear the host-protective protein and peptides after use (Thornton et 

al. 2008).  Mucins are classified by their MUC protein backbone, which is encoded by 

MUC genes; there are 21 known proteins within this gene family (Rose and Voynow 

2006; Ma et al. 2018; Morrison et al. 2019). MUC genes are localised on 

chromosomes 1, 3, 4, 6, 7, 11, 12 and 19. There are 13 identified airway mucins (Ma 

et al. 2018). MUC1, MUC4, MUC5AC, MUC5B and MUC16 are the five major mucins 

expressed in the airways (Lillehoj et al. 2013; Taherali et al. 2018). 

 

Respiratory mucins belong to one of three classes: membrane-tethered mucins 

(MUC1, MUC4, MUC16, MUC20), gel-forming mucins which are expressed by airway 

epithelium (MUC2, MUC5AC and MUC5B) and the secreted non-gel-forming mucin 

(MUC7) (Henke et al. 2004; Ma et al. 2018). The site of production depends on the 

specific mucin: MUC5AC and MUC5B are produced by goblet cells in the 

tracheobronchial surface epithelium, whereas MUC5B alone is secreted by 

submucosal glands (Henke et al. 2007). Typically, tethered mucins are found in the 

periciliary space within the respiratory tract, forming a protective barrier for the 

epithelium (Borowitz 2015). Gel-like mucins lie on top and trap particulate matter and 

microorganisms prior to removal via mucociliary clearance. MUC5B and MUC5AC 
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play key roles in mucociliary clearance and host defence against infection 

(Widdicombe and Wine 2015). Similarly, gland fluid secretion is essential to facilitate 

mucociliary clearance and prevent airway infections.  

 

All gel-forming mucins, including MUC5B and MUC5AC, share a similar core protein 

known as the apomucin. This consists of the following structures: von Willebrand 

factor (vWF) domains in the N- and C-terminal regions, cysteine-rich domains 

throughout the protein backbone, with a cysteine knot (CK) at the C-terminal end, and 

a variable number of tandem repeat (VNTR) region (Morrison et al. 2019). The latter 

structure, the VNTR region, is the site for extensive glycosylation.  

 

1.6.2 Mucin glycosylation 

Glycosylation occurs in the endoplasmic reticulum as part of the mucin protein 

maturation. O-glycosylation of serine and threonine residues throughout the VNTR is 

initiated by linkage of N-acetyl-D-galactosamine (GalNAc), which can produce eight 

different glycan core structures. Thereafter, a backbone structure is linked and then 

a peripheral terminal sugar added, providing the area of mucin glycan variation. 

These polyanionic, hydrophilic, glycosylated blocks contain sialic and sulphate ester 

terminals and alternate with the cysteine-rich blocks of the core apoprotein, which are 

hydrophobic (Verdugo 2012).  Mucins structurally resemble “bottlebrushes”, with 

branched oligosaccharide chains arranged radially around the protein backbone 

(Bansil and Turner 2006). Many of the covalently attached O-glycans are sialylated 

or sulphated (Thornton et al. 2008). The O-linked glycans make up 80% of the mucin’s 

molecular weight (Ma et al. 2018). With possible variation in the number of glycans 

per amino acid, distribution pattern and glycan size, mucins can each produce a 

different glycosylation profile and resulting biological properties (Morrison et al. 2019).  

 

Gel-forming mucins are synthesised and packaged in goblet cells. The anionic sites 

of mucin molecules, in particular the glycan structures attached to the apomucins, are 

shielded by calcium and hydrogen cations in the intracellular environment. This 

enables these large biopolymers to be highly organised and tightly packaged inside 

secretory granules, prior to release (Morrison et al. 2019). It is proposed that 

exocytosis occurs when HCO3- neutralises the H+ cations and complexes the Ca2+ 

cations, enabling the unshielded mucin anions to repel one another. The condensed 

mucins then expand into a mature mucus matrix and are expelled into the airway 

lumen (Yang et al. 2013). This process occurs by two separate signalling pathways: 
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a Ca2+-mediated pathway which stimulates goblet cell exocytosis; and a cAMP-

mediated pathway which enables HCO3- secretion and subsequent discharge of 

exocytosed mucins (Yang et al. 2013). On exocytosis, the mucins undergo volume 

expansion of up to 4000-fold, and this process relies on Ca2+-chelation and osmotic 

pressure (Verdugo 2012). 

 

1.6.3 Environmental interactions 

The overall mucin structure has a significant impact on its interaction with other 

proteins within the lung environment. Areas of potential interaction include the 

formation of N- and C-terminus disulphide bonds, enabling mucin monomers to form 

dimers and multimers respectively. These bonds can result in linear polymers and 

complex multimeric networks, and will affect the mucus viscoelasticity (Morrison et al. 

2019). Polymeric mucins are a subset of secreted mucins which possess cysteine-

rich domains at their N and C termini. They form through end-to-end disulphide bonds 

and are polydisperse in mass and length, existing as a random-coil conformation in 

solution (Wagner et al. 2018). The gel-forming ability of these structures is affected 

by the polymers’ degree of mucin polymerisation (Thornton et al. 2008).  

 

In aqueous solution, mucins form reversible bonds, including chain entanglements 

and hydrophobic interactions, which together create a highly complex network. This 

is stabilised by the electrostatic repulsion provided by the negatively-charged glycan 

chains (Wagner et al. 2018). The strength of these interactions, and resulting elastic 

properties of these polymers, is affected by solution pH, and the concentration of ions 

(particularly Ca2+ and Na+) and other small molecules within the ASL (Verdugo 2012; 

Wagner et al. 2018). 

 

1.7 Mucus in health 

 

In health, mucin production by goblet cells and submucosal glands is a carefully 

balanced process. The lung epithelium is able to tailor the mucin composition of 

mucus by altering the amounts secreted by the epithelial surface and submucosal 

glands; this results in mucus with different functional properties depending on the 

environmental challenge (Thornton et al. 2008). There is a basal level of mucin 

secretion at the surface epithelium, aiding constant airway protection and 

maintenance. Acute stimulation to degranulate can be prompted by smoke, allergens 

or infection, causing a rapid increase in mucin within the airways (Thornton et al. 
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2008; Morrison et al. 2019). This ensures that airway epithelium is primed to respond 

rapidly to a variety of external challenges.   

 

Membrane-tethered mucins are attached to the airway epithelial microvilli and cilia, 

providing an osmotic barrier and aiding ciliary motility. Secreted mucin proteins form 

viscoelastic gels through the retention of water, allowing unwanted particles to be 

trapped and subsequently cleared. Together, these mucins interact within the ASL to 

enable mucociliary clearance (Ma et al. 2018). When ionic- or pH flux is altered within 

the ASL, or mucin regulation is altered, mucociliary transport may become ineffective 

(Ma et al. 2018).  

 

Mucins appear to have a function in the management of infection by controlling 

virulence and suppressing disease progression, with enhanced MUC gene 

expression following exposure to bacteria, including Pseudomonas aeruginosa and 

Staphylococcus aureus (Wagner et al. 2018). It is speculated that MUC5AC may be 

an acute-response mucin and MUC5B is produced in response to more chronic 

airway insults, therefore increasing during infection and inflammation (Thornton et al. 

2008). Other authors have reported that, in mouse models, MUC5AC has a protective 

role against viral infections, providing a decoy for viral receptors (Ehre et al. 2012) 

and MUC5B is required for mucociliary clearance and prevention of chronic infection 

by bacterial species (Roy et al. 2014).  

 

Mucin can provide a nutrient source, encouraging the growth of certain commensal 

bacteria and promoting a stable microbial community. It may protect against epithelial 

adhesion and cytotoxicity of pathogens by interacting directly with them via the mucin 

glycan structures. These may provide a ‘decoy’ from host cell glycans, diverting the 

pathogen away from host cell glycans and potentially facilitating mucus clearance of 

the pathogen (Wagner et al. 2018).   

 

1.8 Mucus in respiratory disease 

 

Chronic muco-obstructive diseases, such as CF, chronic obstructive pulmonary 

disease (COPD), asthma and chronic bronchitis are all associated with upregulation 

of airway mucus production. This is achieved through a combination of goblet cell 

hyperplasia, metaplasia and gland hypertrophy, resulting in increased mucus 

production (Morrison et al. 2019).  
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The respiratory mucus of diseased airways will also contain inflammatory cells, 

bacteria and fungi and their resulting debris inflammatory mediators, cells and 

polymerized DNA from inflammatory cell necrosis (Henke et al. 2007). This is termed 

‘sputum’ when expectorated (Ma et al. 2018). Sputum predominantly contains 

MUC5AC and MUC5B mucins, with only small amounts of MUC2 (Henke et al. 2007).  

 

1.9 Mucins in cystic fibrosis 

 

The process of exocytosis of the gel-forming mucins is adversely affected in CF. 

Dysfunctional or absent CFTR leads to impairment of cAMP-activated CFTR-

dependent HCO3- secretion. This results in reduced HCO3- secretion, and therefore 

decreased availability of HCO3-  to complex with the cations “shielding” mucin anions, 

thus limiting mucin expansion (Yang et al. 2013). Specifically, the sequestration and 

removal of Ca2+ and H+ cations during exocytosis does not occur properly, leading to 

reduced mucin swelling, transportation and release into the lumen (Yang et al. 2013). 

Calcium-mediated mucin exocytosis occurs, but with insufficient HCO3- in the 

extracellular fluid due to CFTR dysfunction, the mucins are unable to expand properly. 

This results in aggregated mucus on the mucosal surface and an overall reduction in 

available mucins (Henke et al. 2004; Yang et al. 2013).  

 

Mutations in the CFTR gene reduce sodium concentration in mucus by decreasing 

epithelial sodium channel (ENaC) activity, leading to reduced ASL volume (Morrison 

et al. 2019). Taherali et al. (2018) describe the resultant mechanism of airway 

dehydration, whereby mucus osmotic pressure is greater than periciliary layer (PCL) 

and therefore draws water from the PCL, eventually leading to its collapse. The cilia 

are unable to beat effectively, highly concentrated mucus adheres to the epithelium 

and mucociliary clearance of the highly viscoelastic mucus layer is impaired (Taherali 

et al. 2018). These mucins demonstrate increased polymeric entanglement with 

increased solute-mucin interactions occurring as a result of greater numbers of non-

salt molecules in the concentrated ASL. This can also affect the viscoelasticity of the 

mucus gel (Morrison et al. 2019). 

 

Goblet cell hyperplasia and upregulation of MUC genes both contribute to the 

sustained over-production of mucin reported in CF (Rose and Voynow 2006). 

However, studies are conflicting in their reports of mucin production in CF. Despite 
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goblet cell hyperplasia in the CF airway, some studies have shown that mucin 

production is actually reduced in CF patients not experiencing pulmonary 

exacerbation, with a 70% decrease in MUC5B and 93% decrease in MUC5AC in CF 

sputum compared to healthy subjects (Henke et al. 2004). However, during 

exacerbation, increases in mucin production only reach levels comparable to healthy 

subjects (Henke et al. 2007), showing preservation of the inflammatory and immune 

mediators’ ability to mount an appropriate response to infection. Other studies have 

shown that the ratio of different mucins is varied in CF patients compared to control 

samples, with increases in MUC5AC and MUC5B and higher relative abundance of 

MUC5B in CF patients (Burgel et al. 2007; Thornton et al. 2008).  

 

It is also well-recognised that there are practical difficulties with studying in vivo 

sputum samples and sampling mucins accurately, and therefore one should be 

cautious when drawing firm conclusions regarding relative quantities of specific 

mucins within sputum (Thornton et al. 2008; Horsley et al. 2014). There is evidence 

that mucins undergo proteolytic degradation prior to expectoration in CF patients with 

chronic infections (Ehre et al. 2014). Therefore, sputum samples may not represent 

the mucin composition and elasticity seen in the smaller airways (Horsley et al. 2014). 

 

1.9.1 Structural mucin changes in CF 

Airway mucins have multiple types of O-glycan chains with significant variation seen 

between individuals in health and disease (Lamblin et al. 2001). All mucin O-glycans 

share the N-acetylgalactosamine (GalNAc) residue that is linked to the central 

apomucin. However, thereafter there is substantial opportunity for variation, based on 

the subsequent core structure, the O-glycan chains attached forming the backbone, 

and the terminal sugar (Lamblin et al. 2001). The ‘building blocks’ of the carbohydrate 

derivative chains include galactose, N-acetylglucosamine (GlcNAc), mannose, 

fucose and sialic acid (Brockhausen et al. 2009).The four possible sugars present at 

the O-glycan chain termination are fucose, galactose, GalNAc and N-

acetylneuraminic acid. There may also be the addition of tissular or histo-blood group 

antigens added: ABH, Secretor and Lewis; or sulphate (Lamblin et al. 2001). Lewis 

antigen structures are trisaccharide and tetrasaccharide capping groups which may 

be further sulphated and sialylated (Lewis et al. 2013a). Secreted airway mucins 

demonstrate increased sialylation and sulphation, with a lower O-glycosylation per 

protein weight (Davril et al. 1999; Venkatakrishnan et al. 2015). However, membrane-

bound mucins have less sialylation and a higher degree of fucosylation on their O-
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glycans (Venkatakrishnan et al. 2015). Sialic acid and sulphate both contribute 

anionic properties to mucins, and fucosylation provides hydrophobic properties (Rose 

and Voynow 2006). Modifications in these terminal groups cause changes in the 

viscoelastic properties of the mucus, as the addition of charged residues influences 

mucin aggregation (Lewis et al. 2013a).  

 

O-glycosylation of mucins can be altered in infection and inflammation. In CF, 

changes in respiratory mucins are likely predominantly related to environmental 

factors, rather than directly as a result of the CFTR defect (Thornton et al. 2008). CF 

mucins exhibit increased levels of expression of sialylated and sulphated-Lewis x 

determinants during inflammation and infection (Rose and Voynow 2006; Henke et 

al. 2007).  These changes can be induced by increased inflammatory mediators, such 

as TNFα, as well as components of bacterial cell walls, leading to an increase in 

enzymatic activity and resultant alteration in mucin glycosylation (Delmotte et al. 

2002; Lewis et al. 2013a). Interactions between both sialyl- and sulphated Lewis x 

and bacteria and viruses have been previously demonstrated (Scharfman et al. 2000). 

 

The sulphated Lewis x antigen is the main sulphated sugar in CF respiratory mucin 

(Lewis et al. 2013a). This is overexpressed in the mucins of severely infected CF 

patients and those with evidence of inflammation, as a result of cytokine secretion  

(Davril et al. 1999). When compared to other respiratory diseases such as chronic 

bronchitis, sialyl Lewis x appears to be more prevalent in CF sputum, providing a 

clear correlation with specific diseases (Davril et al. 1999). It is likely that the CFTR 

mutation also contributes to altered terminal mucin glycosylation (Rose and Voynow 

2006). Identification of sialylated and fucosylated structures in mucins in salivary 

secretions, where salivary glands would not typically be infected in CF, support this 

hypothesis (Shori et al. 2001). Similarly, the hyper-sulphation seen in a xenograft 

model of CF airway mucosa suggests that such alterations are due to the primary 

disease defect (Zhang et al. 1995). 

 

Mucin oligosaccharides are highly heterogenous, and such diversity is likely an 

evolved response to the varied pathogens and other ligands entering the airway 

milieu (Thornton et al. 2008). Though mucus in the healthy lung has been shown to 

have beneficial mucin-microbe interactions, CF mucus does not seem to provide the 

same protection, particularly to microbes such as P. aeruginosa (Wagner et al. 2018). 

This may be related to altered mucin gene expression and production (Henke et al. 

2004; Henke et al. 2007), degradation of mucin (Flynn et al. 2016), altered 
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glycosylation patterns affecting the signalling potential of mucin (Schulz et al. 2007) 

and dehydration of the mucus gel layer (Lai et al. 2009) (Wagner et al. 2018). 

 

1.9.2 DNA in CF sputum 

In health, large polymeric extracellular DNA (eDNA), predominantly derived from 

epithelial cell breakdown, represents about 0.02% of the total mucus mass (Lai et al. 

2009). In CF, an accumulation of eDNA increases the viscosity and elasticity of mucus 

(Lethem et al. 1990). Increased neutrophil lysis during infective exacerbations further 

increases eDNA content by up to 0.5-1.5% of mucus by weight resulting in 

significantly altered mucus viscoelasticity (Mrsny et al. 1996; Lai et al. 2009). DNA 

has a significant influence on CF sputum rheology, with evidence supporting the use 

of DNase as a form of airway clearance (Zahm et al. 1995; Horsley et al. 2014). When 

analysing CF sputum, it is important to consider the role of eDNA and any contribution 

this may be making. 
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1.10 Infection in Cystic Fibrosis 

 

Cystic fibrosis is characterised by infection of the airway early in childhood. Infection 

includes predominantly bacterial and fungal Infections, with eventual colonisation of 

the airways by dominant CF pathogens. Environmental factors within the CF lung, 

including hyper-secreted viscous mucus, plus the increased DNA and actin resulting 

from neutrophil necrosis, create a low oxygen environment in which pathogens can 

survive and establish drug-resistant biofilms (Moreau-Marquis et al. 2008).  

Mucociliary clearance of bacteria and fungi is maintained by the activity of the CFTR 

anion channel within the healthy lung. However, in CF, the reduction in Cl- and HCO3- 

decreases the periciliary surface liquid volume and thereby effective clearance of 

such opportunistic bacteria (Stanton 2017). The increased quantity and thickness of 

the mucus produced in CF patients leads to ciliastasis and an inability to effectively 

clear bacteria from the airways (Matsui et al. 1998) 

 

Children with CF will typically receive antibiotic courses following positive airway 

cultures and when recurrent infection or colonisation is suspected, long-term 

antibiotics are often commenced. Despite aggressive therapy, the effects of chronic 

infection will eventually lead to permanent lung damage and eventually respiratory 

failure and death.   This work focuses on P. aeruginosa infection. As one of the key 

CF pathogens, it represents a clear focus for CF microbiology research and 

development of targeted therapeutics. 

 

1.11 Pseudomonas aeruginosa infection 

 

Many children isolate P. aeruginosa on broncho-alveolar lavage samples within the 

first few years of life (Burns et al. 2001; Rosenfeld et al. 2001). Kidd et al. (2015) 

demonstrated successful initial eradication in 90% of cases, but 44% of children 

reacquired P. aeruginosa before the age of 5 years (Kidd et al. 2015).  

 

P. aeruginosa secretes a variety of virulence factors which adversely affect 

mucociliary clearance. Pyocyanin reduces CFTR Cl- secretion, ciliary beating and 

mucociliary transport; rhamnolipids promote ciliastasis; and bacterial alginate 

increases mucus production making immune recognition and bacterial clearance 

much more difficult (Ballok and O'Toole 2013). 
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Infections can initially be managed with acute courses of antibiotics, but most P. 

aeruginosa infections will eventually persist and become chronic. There are a number 

of clinical definitions for chronic pseudomonal infection, with the most recent 

Cochrane review (2017) requiring “the presence of P. aeruginosa in monthly 

specimens for six successive months or the development of precipitating antibodies 

to P. aeruginosa or both” (Hewer and Smyth 2017). Within the UK, 5.4% of the 

paediatric CF population have chronic infection, with an increase up to 44.5% of the 

overall adult population (Charman et al. 2018).  

 

Prior to chronic infection, there is often intermittent isolation from respiratory tract 

specimens, which may represent transient colonies or simply the limitations of 

sampling from young patients with CF (Hewer and Smyth 2017). As infection 

becomes established, the quantity and type of P. aeruginosa alters, with an increased 

density of colonies present and the change from non-mucoid to mucoid phenotypes 

seen (Rosenfeld et al. 2001; Hewer and Smyth 2017). At this stage, pathogen 

elimination is considered impossible, either by host immune responses or established 

antimicrobial treatments (Lund-Palau et al. 2016).  P. aeruginosa is a highly versatile 

opportunistic bacterium and the most prevalent pathogen in adults with CF. It is a 

significant cause of morbidity and mortality in CF patients, associated with 

accelerated disease progression (Lund-Palau et al. 2016). The resultant chronic 

bacterial infection, and associated airway inflammation, leads to death from 

respiratory failure in 80% of all patients (Bhagirath et al. 2016). Evidence suggests 

initial colonisation is by naturally abundant environmental strains, though patient-to-

patient transmission can occur, depending on the degree and duration of close patient 

contact (Burns et al. 2001; Folkesson et al. 2012).  CF patient susceptibility to P. 

aeruginosa is not fully understood and the proposed mechanisms relating to 

interactions with the CFTR protein remain unproven. It is likely that these patients 

have an increased risk of initial acquisition or enable chronic persistence within the 

lung environment, or perhaps both (Lund-Palau et al. 2016). Evidence does suggest 

that the hypoxic and highly viscous environment within CF mucus facilitates mucoidy 

phenotypes and biofilm formation, and impairs soluble host defence factors (Lund-

Palau et al. 2016).  
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1.12 Adaptation of P. aeruginosa to the CF lung environment 

 

Chronic infection occurs with expansion of the P. aeruginosa population within the CF 

airways. There is increasing diversity within the population and strains with differing 

traits from the primary coloniser occur, allowing them to develop and thrive (D'Argenio 

et al. 2007). Such traits seem to consistently occur within different CF patients, 

suggesting a conserved pattern of evolution is enabling adaptation (D'Argenio et al. 

2007). However, studies have shown significant versatility in the pathoadaptive genes 

mutated within the CF lung, with resulting extensive genotypic and phenotypic 

diversity in these bacterial populations (Winstanley et al. 2016a; Klockgether and 

Tümmler 2017).  

 

Populations are seen to differ across regions within the respiratory tract, related to 

variability in environmental factors such as oxygen and nutrient availability and 

antibiotic concentrations. Genetic compartmentalisation describes the process by 

which populations become geographically isolated by differing selective pressure and 

evolve independently (Jorth et al. 2015). This regional isolation of P. aeruginosa 

populations leads to divergent evolution of separate clonal lineages and maintenance 

of phenotypic diversity within different areas of the lung, with minimal mixing between 

geographical populations (Markussen et al. 2014; Jorth et al. 2015; Winstanley et al. 

2016a). 

 

Numerous mechanisms, including transcription factors, quorum-sensing (QS) 

networks, two-component systems and non-coding RNAs, enable P. aeruginosa to 

modulate virulence (Klockgether and Tümmler 2017). Evidence suggests the second 

messenger cyclic di-GMP has a key role in controlling complex signalling pathways 

and coordinating the “lifestyle transition” from motile to sessile and back again (Ha 

and O'Toole 2015; Valentini and Filloux 2016).  Planktonic (or motile) cells change to 

sessile cells on attaching to a surface under certain conditions and then undergo 

significant physiological, metabolic and phenotypic changes (Valentini and Filloux 

2016). Whereas planktonic cells are associated with acute infections, P. aeruginosa 

chronic infections occur following biofilm formation, which enables antimicrobial 

resistance and protection from the host immune response (Valentini and Filloux 

2016).  
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1.12.1 Genetic adaptation 

Phenotypic variability is well documented across P. aeruginosa strains from varying 

clinical and environmental sources, and not just within the CF population (Cullen et 

al. 2015). In response to environmental demands, P. aeruginosa can adapt its 

phenotype as necessary through reversible regulation of gene expression. In chronic 

infection, this reversibility is lost and mutants develop which are genetically and 

phenotypically different from the original strain (Bragonzi et al. 2009). Studies have 

shown a variety of mechanisms utilised by P. aeruginosa in chronic CF infections, 

including “loss-of-function mutations, acquisition or loss of genomic islets/islands, 

genome rearrangements, recombination, or point mutations” (Smith et al. 2006a; 

Bragonzi et al. 2009). Most pathoadaptive gene mutations are associated with loss of 

gene function, as demonstrated by the high frequency of frameshift mutations (Marvig 

et al. 2015). Horizontal gene transfer provides an additional mechanism whereby 

adaptation can occur (Cullen and McClean 2015).  

 

Whole-genome sequencing technologies have enabled scientists to define the 

genetic basis for adaptations seen within CF lung infections (Winstanley et al. 2016a). 

Functional categories of mutated genes most commonly affected encode for virulence 

factors and regulators, small-molecule transportation (multidrug-efflux-pump genes) 

and antibiotic resistance (Smith et al. 2006a). However alterations in genes encoding 

iron acquisition, cell reproduction, quorum sensing, fatty-acid metabolism, DNA 

mismatch repair and anaerobic metabolism have all been demonstrated (Smith et al. 

2006a). These have been termed ‘pathoadaptive’ traits. Mutations in multidrug efflux 

pumps are most commonly seen, particularly in the gene mexZ, which is associated 

with increased resistance to aminoglycosides (Smith et al. 2006a).  

 

Infections most commonly become ‘clonal’, whereby a clone of cells survive and thrive 

through accumulation of genetic variants, enabling clonal expansion and long-term 

persistence/survival (Smith et al. 2006a; Bragonzi et al. 2009). The CF lung habitat 

appears to select for rare clones that are able to survive to become dominant 

members, despite regular antimicrobial exposure and the host immune system 

response (Klockgether and Tümmler 2017). Persistence of bacterial strains from a 

common lineage enables sub-populations to develop, with inevitable population 

diversity thereafter (Cullen and McClean 2015).  

 

Hypermutable strains have defects in the DNA repair system or proof reading systems 

and therefore show an increased spontaneous mutation rate (Cullen and McClean 
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2015). Host environment and environmental stressors, such as antibiotics, will select 

for these mutator strains, as the increased mutation rates allow greater adaptation 

and survival in challenging conditions and acceleration of the lung adaptation process 

(Hoboth et al. 2009; Cullen et al. 2015). These strains are more commonly found in 

chronic P. aeruginosa infection, supporting the need for genetic and phenotypic 

diversity to enable long-term survival within the CF lung (Cullen and McClean 2015).  

 

1.12.2 Virulence Factors 

Although virulence factors are required for acute infection, alterations in, and 

downregulation of, virulence factors confer benefit to bacterial populations in chronic 

infection. The host’s immune system will typically select those cells with recognised 

virulence factors, enabling survival of those with mutations. In turn, lower virulence 

enables populations to thrive and establish chronic infections by reducing host 

detection (Cullen et al. 2015).  Bragonzi et al. (2009) tested clinical isolates compared 

to environmental and laboratory strains using murine models. They demonstrated 

significantly reduced virulence in CF strains compared to the laboratory strain PA14 

and environmental strains, but similar to PAO1. This supports the use of PAO1 as an 

appropriate laboratory strain and its use in this project’s laboratory model. Authors 

showed that strains from chronic infections caused reduced mortality in mice 

compared to those from early infections, supporting the loss of virulence factors in 

established CF infections (Bragonzi et al. 2009). However, they argue that the 

microevolution of these clones results in altered rather than reduced virulence 

following infection, leading to decreased abilities to cause acute infection but 

optimising persistence in the host (Bragonzi et al. 2009). Cullen et al. (2015) studied 

acute virulence of strains within their reference panel in the Galleria mellonella model. 

They showed significantly less virulence in those of CF origin, with a reduction in 

virulence seen in sequential CF strains taken over time of chronic infection (Cullen et 

al. 2015). This provides further evidence to support the adaptation of P. aeruginosa 

to the CF lung environment.  

 

Pyocyanin is a major virulence factor in P. aeruginosa and production is thought to 

be downregulated with development of chronic infection (Cullen et al. 2015). This 

compound is a blue, redox-active phenazine, giving the typical blue/green 

appearance to colonies on agar plates or within solution in the laboratory, and 

discolouration to patient sputum samples. Pyocyanin has multiple effects within the 

CF lung. These include reducing cilia beat frequency and thus mucus clearance, 
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direct impact on CFTR chloride channel gates through pyocyanin-mediated ATP 

depletion and reduced defence against oxidative stress, and multiple actions on the 

host immune response (Winstanley and Fothergill 2009). Cullen et al. (2015) found 

variable production of pyocyanin across their reference panel, though CF strains in 

chronic infection typically produced lower levels than early strains.  

 

Mowat et al. (2010) studied a widely disseminated strain of P. aeruginosa, the 

Liverpool Epidemic Strain, in sputum from ten patients with chronic CF lung infections. 

After characterising 15 traits, such as colony morphology, auxotrophy and pyocyanin 

overproduction, and defining each combination as a different haplotype, they 

identified 398 haplotypes from a total of 1720 isolates (Mowat et al. 2011). They 

demonstrated extensive diversity particularly within patients, with more composition 

variation seen over time than during exacerbation periods (Mowat et al. 2011).  

 

Such diversity was also seen by Bragonzi et al. (2009) who demonstrated changes in 

genetic mutations between early, intermediate and late isolates when following six 

patients with CF over a period of 16.3 years (Bragonzi et al. 2009). Interestingly, they 

reported a relatively high proportion of isolates with pyocyanin overproduction during 

exacerbations compared to stable samples. However, this finding was not consistent 

throughout all samples. The authors hypothesise this could be due to either the 

contribution of pyocyanin to pulmonary symptoms during an exacerbation or that the 

CF lung environment at such times enables pyocyanin-overproducing isolates.  

 

1.12.3 Quorum Sensing 

P. aeruginosa has extremely complex quorum-sensing (QS) circuits, where 

“multicomponent communication and regulatory network interactions operate” 

(Winstanley and Fothergill 2009). QS systems are directly involved in the production 

and regulation of virulence factors, particularly during acute infection, but mutations 

in QS-related genes are commonly recognised in chronic infection (Winstanley and 

Fothergill 2009).  

 

Generally, communication occurs by secretion of signalling molecules called 

homoserine lactones, which are secreted and prompt responses by bacteria after 

reaching a critical concentration within the external environment (Winstanley and 

Fothergill 2009). P. aeruginosa has a complex QS network, comprised of two 

independent LuxIR-type QS systems, LasIR and RhIIR, which interact with a 
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quinolone signal, multiple regulators and sigma factors (Winstanley and Fothergill 

2009). Important QS-regulated exoproducts include pyocyanin, elastase, LasA, 

alkaline protease and rhamnolipids. These contribute to local tissue damage, 

degradation and destruction of lung structure, and inhibition of components of the 

immune system (Winstanley and Fothergill 2009).  

 

The most notable virulence-related gene mutation is in lasR, which is a key 

transcriptional regulator of QS (Smith et al. 2006a). Evidence suggests that there is 

a strong selection pressure for loss of lasR function, given the high prevalence of P. 

aeruginosa lasR mutants within the CF population (Smith et al. 2006a; D'Argenio et 

al. 2007). Mutation is typically seen in chronic infection and leads to defective QS and 

loss of virulence. This suggests that the QS network may have a reducing impact on 

pathogenicity over time and may in fact have a negative impact on the long-term 

fitness. Therefore, QS mutations likely confer benefit to survival and persistence 

(Winstanley and Fothergill 2009).  

 

1.12.4 Adaptations in surface structures 

1.12.4.1 Lipopolysaccharides  

Lipopolysaccharides (LPS) are major virulence factors in P. aeruginosa through 

induction of host platelet aggregation, pyrogenicity and induction of cytokines (Cullen 

and McClean 2015). These large molecules are embedded in the outer cell leaflet 

and consist of lipid A, core oligosaccharide and the highly variable long-chain O-

polysaccharide (Kocincova and Lam 2011). Studies have shown loss of the O-antigen 

portion during CF chronic infections (Smith et al. 2006a; Winstanley and Fothergill 

2009). Cullen et al. (2015) showed a variety of structural changes with regards to the 

A- and B- bands of the O-antigen across their reference panel, with no consistent 

pattern across CF vs. non-CF strains. Changes in  LPS composition is associated 

with increased innate antibiotic resistance, and alteration of structure in chronic 

infection is linked to reduced host stimulation and increased survival for those cells 

(Cullen and McClean 2015). 

 

1.12.4.2 Outer membrane proteins  

Outer membrane proteins have an essential role in the within-host adaptative 

mechanisms displayed by Gram-negative bacteria. They are regulated by 

environmental factors and contribute to survival and virulence, for example by 

siderophore production to enable iron-uptake, providing pathways for haemoglobin 
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utilisation and physical protection from host complement-mediated killing (Cullen and 

McClean 2015).  

  

1.12.5 Colony morphology 

Airway-specific adaptations due to environmental pressures enable alteration in 

phenotype and genotype and will often result in changes to colony morphology and 

morphotype (Kirisits et al. 2005). Such changes will be visible on routine sputum 

culture (Clark et al. 2015). Alteration in morphology is often seen during colonisation 

and may be facilitated by hypermutable strains of P. aeruginosa (Oliver et al. 2000).  

Isolates can have varying morphotypes, including alterations in colony size, colour 

and texture, as well as visible autolysis and autoaggregative appearances (Hogardt 

and Heesemann 2010).  

 

1.12.5.1 Colony size 

Small colony variants (SCVs) are commonly seen in chronic lung infections. These 

variants are also described as “rough small colony variants (RSCVs), wrinkled 

variants, autoaggregating cells and rugose colonies” within the literature (Kirisits et 

al. 2005). For clarity, due to the varied phenotypic and genotypic traits of SCVs 

described in the literature, they have been defined as a pin point colony formed within 

72 h (<1 mm in diameter) in this study (Johns et al. 2015). Slow growing colonies may 

be missed by standard clinical lab incubation periods (Workentine et al. 2013). 

 

SCVs are often selected following prolonged antibiotic exposure and show a slower 

growth rate, smaller colony morphology, hyper-adherence, hyperpiliation, reduced 

motility and autoaggregative growth behaviour (Kirisits et al. 2005; Gellatly and 

Hancock 2013; Cullen and McClean 2015). These features can enhance biofilm 

formation and persistence within the CF lung (Cullen and McClean 2015). However, 

perhaps unsurprisingly, SCV isolates also show significant diversity in phenotype 

testing, and morphology cannot be used to fully predict phenotypic behaviours (von 

Götz et al. 2004; Kirisits et al. 2005). Literature suggests that biofilm growth results in 

two prevalent colony size morphologies; the wild-type (PAO1) colony morphology and 

the SCV colony morphology, with the former being relatively medium/large in size 

(Kirisits et al. 2005) 
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1.12.5.2 Colony surface texture 

Poltak and Cooper (2011) demonstrated colony surface texture diversification 

following sub-culturing on beads. They described a predictable emergence of 

common heritable colony morphologies across the replicate populations. These 

morphotypes were described as smooth or studded (S) (at 150 generations) ruffled 

spreader (R) (at 300 generations) and wrinkly (W) (between 300 and 450 generations) 

(Poltak and Cooper 2011a). Though prolonged transfers led to a decrease in the 

ruffled spreader and wrinkly phenotypes, smooth phenotypes are hypothesised to 

persist and are likely to be essential for the overall stability of the biofilm structure 

(Poltak and Cooper 2011a).  Boles et al (2004) hypothesised that surface texture may 

be related to biofilm function and, therefore, studied small smooth (termed ‘mini’) 

versus rough (termed ‘wrinkly’) colonies with the wild type phenotype as control. The 

wrinkly variant showed an accelerated biofilm formation with greater numbers of 

bacteria within its biofilms compared to the mini and wild-type variants (Boles et al. 

2004). In addition, the wrinkly variant also demonstrated increased antibiotic and 

hypochlorite resistance (Boles et al. 2004). 

 

1.12.5.3 Colony pigmentation and opacity 

Mayer-Hamblett et al. (2014) considered colony sheen, pigmentation and autolysis 

as part of their phenotypic characterisation of in vitro samples. In cultures obtained 

from newly infected patients, 67% of samples showed a tan colony colour. Overall, 

there were low numbers of green, clear and yellow coloured colonies across all 

patient samples, with no obvious differences between new onset, intermittent and 

chronic infection groups (Mayer-Hamblett et al. 2014). Similarly, there was no 

significant differences in colony lysis or sheen between patient groups.  

 

A distinct colony appearance whereby a metallic iridescent sheen is seen on the 

colony surface is strongly associated with lasR mutation (D'Argenio et al. 2007; 

Mayer-Hamblett et al. 2014). There is also cell autolysis, resulting in colony flattening 

(Hoffman et al. 2009). Inactivation of the transcriptional regulator LasR provides 

growth advantage within the amino acid-rich CF airways and increased β-lactamase 

activity, providing a degree of antibiotic resistance (D'Argenio et al. 2007; Hoffman et 

al. 2009).  
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1.12.5.4 Colony margins 

Clark et al. (2015) described the ‘halo’ seen in mucoid colonies as a transparent 

extracellular polymeric substance (EPS) layer present around the central opaque 

colony. Non-mucoid colonies also had an equivalent ‘halo’, which they described as 

a ‘non-concentric outer ring’. No clear patterns were identified using colony margin 

appearances alone (Clark et al. 2015). Sousa et al. (2013) describe the colony form 

as circular or irregular and the margin to be entire/irregular. This study highlighted the 

importance of conditions such as growth media, incubation period and number of 

plated colonies when assessing morphological features (Sousa et al. 2013).  

 

1.12.6 Mucoidy 

The development of the mucoid phenotype, secondary to the overexpression of 

alginate, is typically considered a hallmark of chronic CF infection. Mucoid isolates 

are rarely seen in non-CF environments and therefore are most likely related to 

specific CF-selective pressure (Folkesson et al. 2012; Sousa and Pereira 2014).   

Alginate is a major exopolysaccharide in P. aeruginosa biofilms. This polymer of 

mannuronic and guluronic acid is typically produced under microaerophilic or 

anaerobic conditions, as in the CF lungs (Klockgether and Tümmler 2017). Alginate 

biosynthesis is promoted by the protein Alg44 following binding of two c-di-GMP 

molecules (Whitney et al. 2015; Klockgether and Tümmler 2017). It is affected by 

growth conditions and mucoid strains may revert to non-mucoid phenotype on sub-

culturing (Cullen et al. 2015). Alginate is secreted alongside two other 

exopolysaccharides, Pel and Psl, which have an important role in providing stability 

to the biofilm matrix, and protecting against antibiotics and host responses 

(Winstanley et al. 2016a). Mayer-Hamblett et al. (2014) showed the presence of 

mucoidy colonies had the strongest association with pulmonary exacerbation over a 

1-year follow-up, suggesting this phenotypic feature may be useful as a clinical 

predictor.  

 

1.12.7 Motility 

P. aeruginosa is able to move by swimming, swarming and twitching, with motility 

determined predominantly by the environment (Overhage et al. 2008). Swimming is 

seen in aqueous environments, swarming on semi-solid, viscous media and twitching 

on solid surfaces (Overhage et al. 2008). Acute infection by P. aeruginosa requires 

pilin-mediated adherence, enabling initial cell injury and colonisation (Hogardt and 

Heesemann 2010).  Swimming motility is enabled by the rotation of a single polar, 
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monotrichous flagellum (Toutain et al. 2005). A number of structures make up the 

flagellum structure, including the cap, filament, hook and basal body (Ha et al. 2014). 

The basal body contains stator and motor parts and is required to keep the flagellum 

in place, with the hook and filament providing both clockwise and anti-clockwise 

movements to enable propulsion (Ha et al. 2014). Movement is fuelled by 

conductance of cations (Ha et al. 2014). Functional loss of flagellum-mediated 

swimming motility can enable bacteria to evade the host response by providing 

resistance to phagocytosis (Amiel et al. 2010).  

 

Swarming requires flagella and type IV pili for movement, and rhamnolipids to enable 

motion through the semi-solid media (Overhage et al. 2008). In addition to allowing 

bacterial movement, swarming may also contribute to early biofilm formation, and 

antibiotic resistance when compared to planktonic bacteria (Overhage et al. 2008). 

Upregulation of gene expression in swarming cells has been demonstrated, encoding 

for production of virulence factors such as pyoverdine, multi-drug efflux pumps which 

aid antibiotic resistance, and the redox-active compound phenazine, which 

contributes to the pulmonary tissue damage associated with P. aeruginosa 

(Overhage et al. 2008). Swarming cells exhibit upregulation of genes associated with 

nitrite reduction, providing fitness advantages within the nitrite-rich CF lung (Soberón-

Chávez et al. 2005; Overhage et al. 2008) 

 

Twitching motility is enabled by type 4 pili, which are the most important adhesins of 

P. aeruginosa and pull the bacterial cell along solid surfaces (Gellatly and Hancock 

2013). Loss of twitching motility has been associated with infection stage and 

increased risk of pulmonary exacerbation when studying CF patient cultures (Mayer-

Hamblett et al. 2014). The authors demonstrated persistence of both reduced 

twitching and swimming over time and advocated the use of defective motility as a 

good screening tool and potential biomarker (Mayer-Hamblett et al. 2014). Exposure 

to antimicrobials, including those at sub-MIC concentrations, can directly affect the 

surface assembly of pili and therefore inhibit the flagella-independent motility seen in 

P. aeruginosa (Wozniak and Keyser 2004). P. aeruginosa can switch between motile 

and sessile phenotypes via a variety of mechanisms. Elevation of c-di-GMP levels 

leads to repression of flagellum-driven swarming motility in chronic infections, with 

reduced levels (as seen in acute infections) upregulating the transcription of flagellar 

genes and promoting the motile lifestyle (Klockgether and Tümmler 2017). P. 

aeruginosa isolates from chronic CF infection lack swimming and twitching motility 

due to loss of flagellum and non-piliation respectively (Jain et al. 2004; Hogardt and 
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Heesemann 2010). Downregulation of flagella motility enables P. aeruginosa to avoid 

inducing neutrophilic extracellular traps release and subsequent phagocytosis (Floyd 

et al. 2016), and therefore promotes survival. Previous studies have suggested loss 

of motility in chronic infection, and hypothesised that non-motility may help 

persistence through avoidance of host immune defence systems, such as alveolar 

macrophages and polymorphonuclear leucocytes (Mahenthiralingam et al. 1994; 

Bragonzi et al. 2009; Hogardt and Heesemann 2010). 

 

1.12.8 Biofilm Formation 

A biofilm is a “structured community of bacterial cells enclosed in a self-produced 

polymeric matrix and adherent to inert or living surfaces” (Ha and O'Toole 2015).  

Biofilm formation typically occurs in chronic infections, whereby bacteria switch from 

the planktonic growth state to a sessile lifestyle. This is promoted by elevated levels 

of c-di-GMP through multiple influencers, causing upregulation of genes involved in 

biofilm formation, including the exopolysaccharides Psl and Pel and the adhesin 

CdrAB (Klockgether and Tümmler 2017). These exopolysaccharides, as well as 

alginate, are critical in the formation of a mature biofilm within the CF habitat (Ha and 

O'Toole 2015). 

 

Biofilm communities benefit from increased horizontal gene transfer, protection from 

environmental stressors, such as antimicrobials, and promotion of useful metabolic 

interactions (Kirisits et al. 2005). However, potential disadvantages also exist, 

including the development of dynamic gradients of nutrient delivery and toxic 

metabolic product removal as a result of high cell densities (Kirisits et al. 2005). P. 

aeruginosa predominantly grows in biofilms, achieving up to 1000-fold higher 

tolerance to antimicrobial agents, when compared to planktonic bacteria (Häussler 

2010). Biofilms require a multitude of coordinated pathways and cellular factors for 

development, including flagellar and twitching motility and exopolysaccharide 

production (Ha and O'Toole 2015).  

 

Analysis of panel strains including CF and non-CF laboratory and environmental P. 

aeruginosa strains, Cullen et al. (2015) showed that all strains formed biofilms to 

some degree. However, there was diversity in terms of density of biofilm produced 

across the strains and time played an important role in production: strains producing 

rapid biofilm formation typically detached over time, whereas slower biofilm formers 

demonstrated increasing biofilm biomass over the duration of the assay (Cullen et al. 
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2015).  Clark et al. (2015) used colony morphology of 235 isolates, taken from a single 

patient with CF over one year, to predict phenotypes such as antimicrobial 

susceptibilities. They found 15 distinct colony morphotypes across the sample and 

interestingly individual morphotypes were not useful predictors for antimicrobial 

susceptibility (Clark et al. 2015). The authors recommended caution with using colony 

morphology alone as a screening tool for guiding antibiotic susceptibility testing in CF 

patients (Clark et al. 2015). 

 

1.13 Analysing biofilms 

 

Confocal laser scanning microscopy (CLSM) and scanning electron microscopy 

(SEM) are imaging techniques available for biofilm analysis. In CLSM, a laser light 

beam is passed through the head of the microscope, down and out of the objective, 

and onto the microscope slide. Specimens must be prepared with fluorescent dye-

staining and this enables a fluorescent image to be captured by the objective when 

exposed to the laser light beam. The resultant image is transferred from a module 

sitting in the top of the head of the microscope to a computer screen (Rowland and 

Nickless 2000). Software can achieve 3-dimensional images by stacking serial 

sections (“Z” stack), thus providing a full thickness image of the specimen (Sharp 

2014). Data can be used for quantitative analysis of biofilm thickness, area and 

volume (Rowland and Nickless 2000). The use of LIVE/DEAD staining can enhance 

images by quantifying the numbers of nonviable bacteria, reflecting cell death, within 

the biofilm (Wimpenny et al. 2000; Khan et al. 2012c).  

 

Images in the SEM are created by scanning a focused high-energy beam of electrons 

across the specimen. Interaction between the beam electrons and sample atoms 

produces signals that demonstrate the specimen’s surface topography (Schatten 

2012). The use of SEM for biofilm imaging of P. aeruginosa has been extensively 

described in the literature, with a variety of dehydration and fixation described 

(Jesaitis et al. 2003; Khan et al. 2012c). SEM images can provide detail regarding 

biofilm surface structure, including branching and porosity (Pritchard et al. 2016b), 

plus individual colony’s structure and size (Pritchard et al. 2017a). For both imaging 

techniques, sample preparation is key to maintaining the structural integrity of the 

specimen and enabling reliable information to be obtained. Poor preparation risks 

causing artefacts and incorrect conclusions to be drawn. (Schatten 2012). 
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1.14 Experimental evolution 

 

Experimental evolution studies the molecular basis of adaptation, enabling a greater 

understanding of evolutionary change within a selected population as a consequence 

of conditions imposed (Lang and Desai 2014; Steenackers et al. 2016). Using 

laboratory models, it is possible to establish multiple replicate populations with a 

common ‘starting point’ and identical conditions, and then follow the development of 

mutations across these populations.  

 

By studying the parallelism in phenotypic and genotypic responses to selection, 

scientists can gain a much greater understanding of adaptive evolution within 

predetermined conditions, such as those reflecting the CF lung environment (Huse et 

al. 2010; Lang and Desai 2014). Such models allow for collection of samples at 

agreed timepoints for phenotypic and genotypic analysis and for these results to be 

compared to other timepoints within the evolutionary model (Lang and Desai 2014). 

Frozen cells taken from different time points remain viable and available for analysis 

at a later date (Lang and Desai 2014; Lenski 2017). Biofilm models are well suited to 

study the CF lung ecosystem. Conditions can be set up to enable biofilm formation, 

exposure to a number of antibiotics/environmental stressors, and in turn facilitate slow 

bacterial growth and horizontal gene transfer between multi-drug resistant (MDR) 

organisms (Høiby et al. 2010).  
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1.15 The human microbiome 

  

The term ‘microbiota’ defines the microbes in or on a host, and includes bacteria, 

archaea, viruses, protists and fungi (Bordenstein and Theis 2015). The microbiome 

encompasses the genetic content of this microbiota (Bordenstein and Theis 2015). 

Though well defined, these terms are often used interchangeably. The human 

microbiome consists of the “ecological community of commensal, symbiotic, and 

pathogenic microorganisms that share our body” (Thomas et al. 2017).  The 

combination of the host organism and its microbiota is known as the ‘holobiont’ with 

its resultant genome being the ‘hologenome’ (Bordenstein and Theis 2015). The 

impact of disruption of the carefully balanced holobiont can lead to alterations in 

hologenome expression and resultant disease (Thomas et al. 2017). 

 

Though microbiomes include species across all major kingdoms, bacteria represent 

the most extensively studied phylogenetic group (Thomas et al. 2017). Prokaryotes 

are subdivided into two domains: Bacteria and Archaea. Many of the vast number of 

known genera and species are detailed in publicly-available databases, such as 

CORE and the Human Microbiome Project (Micah et al. 2007; Griffen et al. 2011). 

Databases were initially developed based on phenotypic classification of reference 

strains. However, with the advent of culture-independent methods, many have 16S 

ribosomal RNA (rRNA) gene sequences available for additional phylogenetic 

classification (Thomas et al. 2017).  

 

Within the human, host cells and the microbiota present almost equal numbers within 

an individual (Sender et al. 2016). The gut, skin and oral cavity environments 

represent regions of greater microbial concentration. Humans and microbial 

communities have co-evolved over millions of years, enabling an effective symbiotic 

relationship. The immune system tolerates the microbiota well and humans benefit 

from the microbial contribution to host metabolism. Specifically, the microbiome 

enriches the metabolism of amino acids, glycans and xenobiotics, as well as 

synthesis of vitamins and other nutrients (Micah et al. 2007; Thomas et al. 2017). The 

microbiome is constantly evolving and will change in response to age, culture, 

environment, diet and health status (Thomas et al. 2017).  

 

The adaptive ecosystems created by the microbiota inhabiting the human body are 

finely balanced and generally able to cope with constantly changing human 

physiology (Lloyd-Price et al. 2016). However, disturbance of this carefully-balanced 
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ecology can be associated with human diseases, such as type 1 and 2 diabetes, 

inflammatory bowel disease, asthma and cancer (Lloyd-Price et al. 2016). Identifying 

features to distinguish between ‘healthy’ and ‘unhealthy’ microbiomes may help with 

disease prevention, diagnostics and management. Though clear patterns of microbial 

colonisation have been associated with certain diseases when compared to healthy 

controls, determining features of a healthy microbiome has been somewhat more 

difficult (Bäckhed et al. 2012). Certainly, sufficient evidence shows that defining a 

healthy microbiome based on a ‘core’ set of microbial taxa or ‘healthy microbes’ is 

not possible (Bäckhed et al. 2012; Shafquat et al. 2014; Lloyd-Price et al. 2016). 

 

Features of a healthy microbiome may include prevalent organisms or molecular 

pathways and certain levels of ecological diversity or stability (Lloyd-Price et al. 2016). 

Stability refers to the microbial community’s resistance (ability to resist change 

following ecologic stress) and resilience (ability to return to equilibrium state following 

a stressor) (Bäckhed et al. 2012). Though stability is generally maintained in the 

absence of perturbations, extrinsic stressors such as diet and antibiotic exposure can 

disrupt the microbiota, particularly within the gut (Bäckhed et al. 2012; Consortium 

2012). Lack of diversity or evenness appears to be linked with reduced ability to 

tolerate perturbation, resulting in greater susceptibility to developing disease (Virgin 

and Todd 2011; Bäckhed et al. 2012).  

 

It is important to consider the structure and function of the microbial community when 

assessing microbiome health. Structure describes the number and types of microbes 

present, and function refers to the metabolic activity and resultant end-products from 

microbial activity (Bäckhed et al. 2012). Evidence suggests that despite often varying 

compositions between subjects, microbial function is fairly consistent in similar 

ecosystems (Consortium 2012). Community composition is most comparable within 

habitats, for example similarities between oral communities are greater between 

individuals than multiple habitats within the same subject (Lloyd-Price et al. 2016). 

However, intra-individual variability over time is less than inter-individual changes 

within the same habitats (Lloyd-Price et al. 2016). Microbial function can be fully 

interrogated by applying metatranscriptomics and metaproteomics, as the 

microbiome is also transcriptionally regulated (Bäckhed et al. 2012).  

 

Microbiome exposure to antibiotics can be both helpful and deleterious. Though 

typically the impact of antibiotics is short-lived, there is evidence that some impacts 

can be longer-lasting (Blaser and Falkow 2009). Antibiotics cause ecological 
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disturbances to the microbiota, namely as a result of effects on susceptible bacteria 

and the potential persistence of resistant strains (Bäckhed et al. 2012). It is proposed 

that these imbalances can contribute to the individual’s risk of infection and disease, 

and may explain the rising trends of obesity, allergies and asthma (Blaser and Falkow 

2009). Antibiotics, however, can also help to manage dysbiosis and improve clinical 

outcome, such as in the treatment of Clostridium difficile-associated diarrhoea 

(Bäckhed et al. 2012).  

 

Recent advances in next-generation sequencing have significantly increased our 

understanding of the human microbiome and the possible functions and contributions 

of our resident microbiota (Man et al. 2017). Although the majority of studies have 

focused on gut microbiome and microbiota-derived metabolites, interest has 

expanded to other surfaces of the human body, including the respiratory tract mucosa 

(Man et al. 2017). 

 

1.16 Experimental tools for studying the human microbiome 

 

Culture-independent analytical techniques have revolutionised our understanding of 

the human microbiome and its interaction with the host. They have confirmed that 

cultured microorganisms represent only a small proportion of the true microbial 

communities present on earth, and previous estimates of microbial diversity, species 

richness and species abundance have been significantly underestimated (v. 

Wintzingerode et al. 1997).  

 

Ribosomal genes are present in all organisms and are required for protein synthesis. 

They are ideal for the study of microbial taxonomy, as they have been present since 

the beginning of evolution, demonstrate variability between different species, and 

enable consistent taxonomic differentiation (Peix et al. 2009). However, though some 

authors suggest differentiation can be as precise as genus and species (Peix et al. 

2009), others argue that species-level resolution may not be feasible (Kuczynski et 

al. 2012). An example of taxonomic classification of the bacterial species P. 

aeruginosa is shown below (Table 1.1) (Todar 2006).  
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Table 1.1. Taxonomic classification of Pseudomonas aeruginosa 

 

Taxonomic Rank Classification 

Kingdom Bacteria 

Phylum Proteobacteria 

Class Gamma Proteobacteria 

Order Pseudomonadales 

Family Pseudomonadaceae 

Genus Pseudomonas 

Species Pseudomonas aeruginosa 
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The ribosome is 70S and comprises of a large 50S subunit and small 30S subunit. 

The ‘S’ stands for the Svedberg unit. This is a non-SI unit measuring sedimentation 

rate and measures “particle size based on its rate of travel in a tube subjected to high 

g force” (Marchesi and Ravel 2015). Ribosomes typically contain 50-60% RNA in the 

form of three ribosomal RNA (rRNA) molecules: 5S, 16S and 23S rRNA (Noller 1984). 

16S rRNA is part of the structure of the small subunit of bacterial ribosomes, 

containing approximately 1500 nucleotides, bound to 21 proteins (Marchesi and 

Ravel 2015). The 16s rRNA gene is comprised of nine variable regions (V1 – V9) 

interspersed throughout the highly conserved 16S sequence (Johnson et al. 2019). 

The 16S rRNA gene was selected as the most useful for the study of prokaryote 

classification, as the 5S rRNA gene is too small and the 23S rRNA gene too 

conserved to allow for useful differentiation between genus and species (Peix et al. 

2009).  

 

Analysis of the 16S rRNA genes from biological samples is possible using an ever-

increasing range of molecular methods (McGinn and Gut 2013; Muzzey et al. 2015). 

Amplification and sequencing of the 16S rRNA genes within a sample, followed by 

taxonomic assignment to each sequence, allows differentiation of the microbiota to 

the taxonomic level ranging from phylum to species (Marchesi and Ravel 2015). 

Though the entire gene can be sequenced, originally done using Sanger sequencing 

(McGinn and Gut 2013), this process is highly intensive and expensive. Therefore, 

most studies focus on a specific region of the gene to save cost and effort and enable 

higher throughput (Johnson et al. 2019). This has been achieved through the 

development of a range of methodologies known as ‘next generation sequencing’, 

which share many features of Sanger sequencing. However, they incorporate a few 

fundamental differences to technique which have enabled a massive upscale of data 

output (Muzzey et al. 2015).  

 

Using technologies such as the Illumina sequencing platform, short sequences (≤ 300 

bases) can be interrogated. Sub-regions of the gene either use a single variable 

region of 16S rRNA, such as V4, or expand up to three variable regions, such as V1-

V3 or V3-V5 (Johnson et al. 2019).  The Illumina platform compensates for the 

potential limitations associated with shorter read lengths by using a technique called 

‘paired-end sequencing’ on fragments of 100 to 300 bases. This uses specific, short 

read lengths and effectively overlaps the reads, thus providing greater total fragment 

length, sequence accuracy and overall data quality (Kuczynski et al. 2012). 
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1.17 Analytical tools for studying the microbiota 

 

Metataxonomics uses high-throughput techniques to create a metataxonomic tree 

showing the relationships between all sequences obtained from the entire microbiota 

(Marchesi and Ravel 2015). It relies on the amplification and sequencing of taxonomic 

marker genes (16S rRNA amplicons) as a representation of the microbiota’s 

phylogenetic diversity (Kunin et al. 2010; Marchesi and Ravel 2015). 

 

Following DNA extraction from the required sample, the 16S rRNA gene is amplified 

using appropriately-selected amplicon primers. After PCR amplification and 

sequencing, the sequences must be processed to discard erroneous reads and 

maximise data quality. Sequences are then clustered based on similarity to generate 

operational taxonomic units (OTUs). For example, the software package ‘mothur’ is 

a bioinformatics pipeline that can be used to neaten sequences by trimming, 

screening and aligning, and then assigning sequences to OTUs (Schloss et al. 2009). 

OTUs are then compared to existing reference databases to infer likely taxonomic 

classification and identification of the bacterial species (Kim et al. 2017; Johnson et 

al. 2019).  

 

OTUs are based on sequence identity (% ID) and historically thresholds of % ID were 

used to represent taxonomic classification levels; with 97% for species and 95% for 

genera (Goodrich et al. 2014). However, the use of thresholds to guarantee correct 

identification of ‘bacterial species’ using sequencing of the 16S rRNA to represent the 

entire gene is probably unrealistic (Schloss 2010). 

 

Management of the large data output from high-throughput sequencing has led to the 

development of physical and computational infrastructures. These enable 

microbiology bioinformaticians to produce, analyse and share data from large 

datasets (Connor et al. 2016). The Cloud Infrastructure for Microbial Bioinformatics 

(CLIMB) facility is an example of such a computing resource, allowing training, 

expertise and data processing within a single computational resource (Connor et al. 

2016).  

 

1.17.1 Diversity measures 

Output from sequencing, in the form of OTUs, requires further statistical analysis to 

provide meaningful data and enable assessment of the bacterial communities within 
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the sample. The study of bacterial community diversity uses measures including 

community richness and evenness. Community richness describes the number of 

different species present within a defined niche; evenness demonstrates the relative 

abundance of these species within the community (Caverly et al. 2015; Kim et al. 

2017). As species richness and evenness increase, so does the diversity (Kim et al. 

2017). Ecosystems with increased richness and evenness are typically longer 

established and more stable, with greater ability to resist environmental perturbations 

such as antibiotic use (Relman 2012).  

 

Shannon-Weaver and Simpson diversity indices are commonly-used methods for 

measuring bacterial diversity based on OTUs. These provide mathematical measures 

for species diversity within a community, inferring community composition (Kim et al. 

2017). Though both measure species richness and evenness, the Shannon diversity 

index places more weight on species richness (Lemos et al. 2011), whilst the Simpson 

diversity index more heavily biases towards species evenness (Simpson 1949). 

Shannon diversity values increase “as the number of species increases and as 

distribution of individuals among species becomes more even” (Ludwig et al. 1988; 

Lemos et al. 2011). Simpson’s diversity index indicates species dominance and is 

expressed from 0 to 1, with an increasing index with decreasing diversity (Simpson 

1949; Lemos et al. 2011).  Haegeman et al. (2013) used a set of in silico communities 

and demonstrated robust estimation of community diversity using Shannon and 

Simpson diversity indices. To optimise accuracy, it is necessary to ensure 

standardised sample size and sequence reads, normalisation and overall quality 

control.    

 

It is possible to use diversity measures within a single sample (alpha diversity) and 

between different samples (beta diversity). Beta diversity compares microbiome 

communities across populations using pairwise distance measures (Maziarz et al. 

2018). A number of tools exist to assess the dissimilarity between two community 

populations, including the Bray-Curtis dissimilarity index (Bray and Curtis 1957). 

Bray-Curtis is a quantitative tool to measure beta diversity and uses sequence 

abundance (Goodrich et al. 2014). Bray-Curtis dissimilarity uses the species-wise 

differences between samples relative to the total abundance of species between two 

communities (Ricotta and Podani 2017). The index describes the “proportion of the 

total species abundances in which the two plots differ” (Ricotta and Podani 2017). An 

index score of zero would indicate completely identical communities, with a score of 

1 suggesting no commonality.  
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1.17.2 Technical considerations 

Deep sequencing has a number of clear technical benefits. It requires only small 

sample volumes for analysis, which can be extremely useful when studying areas 

with lower microbial biomass such as the lungs. Also, the ability for PCR to amplify 

small amounts of DNA within a sample means that organisms occurring in very small 

numbers can still be detected and identified, allowing for a greater understanding of 

true species diversity (v. Wintzingerode et al. 1997).  Limitations to sampling the lung 

microbiome include the aforementioned difficulties with low biomass, accessibility and 

potential contamination from multiple sources. Sampling the lung microbiome is 

challenging due to physical difficulties accessing the lower respiratory tract. Primarily, 

sampling occurs by bronchoscopy, which is an invasive procedure requiring general 

anaesthesia. The process requires passage of the bronchoscope through the upper 

respiratory tract, with a high potential risk for contamination by residing microbiota 

(Charlson et al. 2011). There is also a risk of contamination from sampling fluid, dust, 

cleaning reagents and instruments that may confound the data, given the relatively 

low biomass from lower respiratory tract samples (Charlson et al. 2011; Salter et al. 

2014).  

 

Technical limitations of deep sequence surveying may alter the reported taxonomic 

distributions and frequencies within a dataset (Salter et al. 2014). Potential issues 

relate to collection and appropriate storage of the sample, DNA extraction, choice of 

appropriate amplifying primers, read length and depth, and sequencing and 

bioinformatics analysis technology (v. Wintzingerode et al. 1997; Kunin et al. 2010; 

Salter et al. 2014). In addition, there is a risk of contamination by introducing microbial 

DNA during sample preparation, by ‘sterile’ water, PCR reagents and the DNA 

extraction kits. This is a particular problem when sampling from low biomass 

environments such as the lung, where contaminating DNA can generate misleading 

results (Salter et al. 2014). These risks can be controlled for, but not completely ruled 

out, by ensuring negative control samples are checked at each stage of the process 

(Salter et al. 2014).  

 

When reporting results, it is important to quantify DNA on the initial clinical samples, 

ensure concomitant sequencing of negative controls and to describe identification 

and removal of contaminants (Salter et al. 2014). This should allow accurate and 

clinically appropriate conclusions to be drawn from the data thereafter. Another 

significant limitation of culture-independent analysis is that it cannot distinguish 
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between recently killed bacteria and live bacteria, making it impossible to confirm 

active infection or colonisation (Bassis et al. 2015).  

 

1.18 The lung microbiome 

1.18.1 The lung microbiome in health 

Throughout the respiratory tract, specialised bacterial communities exist within 

specific sites. These have key roles in maintaining and protecting human health (Man 

et al. 2017). Adult human airways have a surface area 40 times larger than that of 

skin, with niche-specific bacterial communities present throughout the airway surface 

(Man et al. 2017). The upper respiratory tract (URT) represents the most densely 

populated site. The URT is also the site of primary colonisation by potential respiratory 

bacterial pathogens before they progress to causing infection within the upper or 

lower respiratory tract (Bogaert et al. 2004). The established respiratory microbiota 

plays an important role in preventing colonisation by ‘colonisation resistance’. If 

colonisation is successful, the resident microbiota can then prevent “pathogen 

overgrowth, inflammation and subsequent local or systemic spread” by repressing 

growth and also enhancing interactions with the host immune system (Man et al. 

2017).  

 

It is likely that the respiratory microbiota is required for the structural maturation of the 

respiratory tract, as well as the development of effective local immunity (Gollwitzer et 

al. 2014; Yun et al. 2014). Murine models have demonstrated smaller lungs and a 

reduced number of mature alveoli in germ-free rodents (Wostmann 1981; Yun et al. 

2014; Man et al. 2017). 

 

In healthy individuals, the lung has a particularly low microbial biomass, which makes 

the microbiome more difficult to study than other environments such as the gut (Lloyd-

Price et al. 2016). Traditionally, the lower airways of healthy individuals were 

considered sterile, but more recently both murine and human samples have 

challenged this concept and demonstrated clear presence of microbial communities 

through 16S rRNA sequencing techniques (Goulding et al. 2007; Charlson et al. 

2011). Charlson et al. demonstrated that the healthy lung had the same microbial 

composition as the upper respiratory tract, but with 2 to 4 logs lower biomass 

(Charlson et al. 2011). The authors concluded that the lower amounts of bacterial 

sequences within the lower respiratory tract were mostly due to micro-aspiration of 

URT microbiota and bronchoscopy carryover from the procedure.  
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In healthy individuals, the lung microbiota forms as a result of bacteria entering the 

lungs by direct mucosal dispersion and micro-aspiration from the URT. It is proposed 

that the lung microbiome composition is determined by three key processes: 

immigration, elimination and the relative growth rates of the microbial community 

members (Bassis et al. 2015). Host defences must clear or prevent significant growth 

of microbes to prevent infection (Dickson et al. 2014; Marsh et al. 2016). Bassis et al. 

(2015) demonstrated that though adult lungs shared bacterial communities with those 

identified in the mouth, the similarity between the two communities’ composition was 

variable. The lung did not share common features with the nasal microbiome (Bassis 

et al. 2015). In contrast, Marsh et al. (2016) showed that the combination of nasal and 

oral microbiota samples more effectively represented the microbiota seen on 

paediatric BAL lavage samples than oral samples alone. They found that paired BAL 

and upper airway (oropharyngeal (OP) and nasopharyngeal (NP) combined) were 

>50% similar in 69% of their paediatric samples (Marsh et al. 2016). Though the 

authors claim this is an “imperfect, but reliable, representation” of the BAL microbiota, 

it could be argued that even collecting OP and NP samples would still miss substantial 

numbers of microbiota compared to BAL. Contributions from gastric microbiota via 

gastro-oesophageal reflux or microbiota in inspired ambient air have been identified 

as other potential bacteria sources for the lungs, but evidence is negligible (Man et 

al. 2017).  

 

Evidence suggests that the healthy lung microbiota is being formed in utero. This is 

predominantly through transfer of maternal antibodies and microbial molecules via 

the placenta and will contribute to the development of the immune system postnatally 

(de Agüero et al. 2016; Man et al. 2017). After birth, neonates are rapidly colonised, 

with niche differentiation in the URT within the first week of life and population 

composition predicting microbiota stability during the first 2 years of life (Bosch et al. 

2016). However, it is unclear when a stable respiratory microbiota is fully established 

and it likely occurs during the first few years (Man et al. 2017).  

 

Early colonisation is altered by the mode of delivery, with babies born by Caesarean 

section showing a delay in development of ‘healthy’ respiratory microbiota profiles 

containing protective commensals (Bosch et al. 2016). This may impact the infant’s 

respiratory health in the long term. Similarly, breastfed infants also transition towards 

a ‘healthy’ microbiota more quickly, with potential benefits including reduced 

respiratory infections and wheezing in the first year of life (Biesbroek et al. 2014).  
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It is hypothesised that community composition in healthy lungs represents transiently 

present microorganisms derived from the URT, in direct comparison to the resident 

communities seen in individuals with chronic respiratory diseases (Man et al. 2017).  

Limited studies in preterm neonates have shown that the lower respiratory tract (LRT) 

microbiota is fairly simple and dominated by Staphylococcus spp., Ureaplasma spp. 

and Acinetobacter spp. (Man et al. 2017). In older infants, children and adults, the 

LRT microbiota was typically dominated by species seen in the URT, including 

“Moraxella spp., Haemophilus spp., Staphylococcus spp. and Streptococcus spp., but 

lacked other typical URT species, such as Corynebacterium spp. and Dolosigranulum 

spp.” (Marsh et al. 2016; Man et al. 2017) 

 

Once established, a number of factors can act as perturbations to the respiratory 

microbiota equilibrium. These include antibiotic treatment (at any time) and smoking, 

with the latter affecting the URT rather than LRT microbiota (Jakobsson et al. 2010; 

Lim et al. 2016). In contrast, exposure to beneficial bacteria can have a positive effect 

on development of a healthy microbiome composition, though the order and timing of 

exposure is critical (Man et al. 2017). A number of keystone species may have 

particularly significant benefits on the function and well-being of the URT ecosystem; 

for example, Dolosigranulum spp. and Corynebacterium spp. are associated with 

exclusion of potential respiratory pathogens such as Streptococcus pneumoniae, and 

maintenance of respiratory health (Pettigrew et al. 2012; Biesbroek et al. 2014; Man 

et al. 2017).  

 

1.18.2 The lung microbiome in cystic fibrosis 

Long-established culture-dependent sampling methods have provided clear evidence 

of pathogens, such as Pseudomonas aeruginosa, Staphylococcus aureus, 

Haemophilus influenzae and Burkholderia cepacia complex (BCC), within the CF 

airways (Acosta et al. 2017). These were often considered ‘mono-species’ infections, 

but data obtained by culture-independent microbial detection methods now suggests 

this is over-simplistic (Coburn et al. 2015; Cuthbertson et al. 2020). Methods such as 

16S rRNA gene sequencing have demonstrated that the CF microbiome is highly 

diverse, and evolves over time, most likely in relation to patient demographics, clinical 

status and treatment exposure (Coburn et al. 2015; Acosta et al. 2017; Cuthbertson 

et al. 2020). However, when compared to healthy controls, it is clear that the CF 

microbiome is less diverse. There is less variation between the  microbiomes of 
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patients with CF (inter-CF sample distance within clusters) than between healthy 

controls (inter-control sample distance) (Blainey et al. 2012).  

 

Studies have shown that it is not simply the presence/absence of pathogens such as 

Pseudomonas that determines lung disease, but perhaps more importantly the 

pathogens’ relative abundance, dominance over other species and stability (despite 

perturbation) that is more important to patient outcomes (Carmody et al. 2013; Coburn 

et al. 2015).   

 

The conceptual framework of the island model has been used to describe the origin 

of infective pathogens within the lower airway. The upper airways, represented as the 

mainland, are microbiota-rich. These represent the source of ‘migrants’ to the 

microbiota-poor lower airways, with the latter described as the ‘islands’. There is likely 

variable penetration of the lower airways, represented as different regions or ‘islands’ 

(Boutin and Dalpke 2017). Healthy individuals are able to clear pathogens and 

maintain neutrality within the lower airways. However, for patients with CF, such 

migration may enable the entry of opportunistic CF pathogens such as S. aureus as 

early as the first year of life. As CF mucus appears to facilitate colonisation by S. 

aureus, this may explain such early-life infections (Boutin and Dalpke 2017).  

 

Evidence is clear that the nose, throat, oral cavity and lower airways are distinct 

ecological niches, with differing patterns of evolution. There are common patterns of 

species diversity, abundance and interaction, with changes seen with increasing age 

in both healthy individuals and people with CF (Boutin and Dalpke 2017). It is 

therefore of paramount importance to ensure that lower airway samples are obtained 

to study the lung microbiome, as community composition cannot be inferred by 

looking at upper airway samples exclusively.  

 

The lung microbiome in less severe disease appears to be dominated by the same 

genera in the oropharynx and the lower airways (Boutin and Dalpke 2017). Spatial 

heterogeneity is apparent in CF lungs whereas healthy patients appear to have 

homogeneity across the lobes (Brown et al. 2014; Jorth et al. 2015; Winstanley et al. 

2016a).  The neutral model, whereby the lung microbiota resembles those of the 

throat, is seen in younger children with CF. However, aging leads to an imbalance in 

migration and elimination of bacteria within the lungs. The CF lung environment 

favours establishment of pathogens and independent, regional growth within the 

lower airways (Boutin and Dalpke 2017). 
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1.19 Analysing sputum 

1.19.1 Culture-dependent and culture-independent methods 

A key mainstay of CF management focuses on early identification and treatment of 

respiratory infections. Traditionally, this has been achieved through airway sampling 

and use of microscopy, culture and antibiotic sensitivity testing. Using this approach 

has enabled clinicians to provide targeted antibiotic therapy whenever possible 

(Caverly et al. 2015).  

 

However, it is likely that culture-dependent methods are not sufficient to fully 

understand the CF lung environment. Data using culture-independent methods 

provides far greater detail about the CF lung microbiome (Blainey et al. 2012). To 

optimise study design and data output, obtaining airway samples needs to be 

sustainable, tolerable and repeatable.   

 

1.19.2 Airway sampling 

For older children and adults with CF, respiratory samples are easily obtained as 

expectorated sputum. However, most young children are unable to expectorate 

sputum and will typically swallow secretions (Forton 2015). Therefore, alternative 

airway sampling methods are commonly used, including cough swabs and 

oropharyngeal swabs. However, these are likely to capture upper airway organisms 

as well as the sought-after lower airway organisms. To optimise lower airway 

sampling, bronchoscopy with BAL should be used. Though considered the gold 

standard sampling method, this procedure requires an anaesthetic and hospital 

admission.  

 

1.19.3 The CF-Sputum Induction Trial (CF-SpIT) 

More recently, studies have explored the use of induced sputum as a non-invasive 

lower airway sampling method. CF-SpIT is a prospective, internally-controlled 

interventional trial. Patients were recruited from those attending the CF service, 

Children’s Hospital for Wales (Cardiff, UK). The trial explored lower airway pathogen 

detection in sputum induction vs. cough swab, and sputum induction vs. single-lobe, 

two-lobe and six-lobe bronchoalveolar lavage (Ronchetti et al. 2018b). This work 

supported the use of induced sputum (IS) as a standard of care in combination with 

BAL to sample the lower airway using conventional microbiology. To further develop 

the work of the CF-Sputum Induction Trial, a study was undertaken using thirty within-

patient, time-matched samples from four lower airway niches (IS and 3 BAL samples) 
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using molecular detection techniques (Weiser et al. 2022). Comparing BAL samples 

from different lobes, authors showed that lower airway microbiota were non-uniform 

across multiple compartments within the lung in a significant proportion of children.  

 

The study then compared patterns of bacterial diversity between IS and BAL samples. 

80% of IS samples captured a meaningful representation of the lower airway 

microbiota identified amongst the BAL samples (Weiser et al. 2022). The degree of 

concordance varied between full capture of the pattern seen in the BAL profiles, 

typically amongst those patients with no evidence of compartmentalisation, to 

identifying the dominant taxon and overall taxa picture but at different relative 

abundances. 20% of matched samples demonstrated dissimilarity between IS and 

all-matched BAL samples (Weiser et al. 2022). To reflect the greater diversity within 

IS samples, pathogens were considered present at a relative abundance of >0%, with 

a pragmatic cut off of >5% relative abundance for BAL pathogens. At these defined 

detection thresholds, IS identified one or more pathogens in 96% of samples. 

Specifically, IS detected the CF pathogens Haemophilus, Pseudomonas and 

Staphylococcus on BAL in 100%, 64% and 43% of samples respectively (Weiser et 

al. 2022). Overall, this study validated the use of IS to study lower airway microbiota 

using molecular detection methods.  

 

1.20 Novel techniques for analysing sputum 

1.20.1 Fourier transform infrared spectroscopy 

Fourier transform infrared spectroscopy (FTIR) is a method of determining the 

structure of small molecules, including their chemical composition and even 

potentially their architectural formation (Barth 2007). It can be used on a wide range 

of materials and offers a non-invasive, rapid, high-throughput and low-cost method, 

requiring very small samples (Barth 2007). Though previously utilised for chemical 

compounds, there is increasing use of FTIR as a tool for analysis of biological 

specimens (Su and Lee 2020). Infrared spectroscopy studies the interaction of a 

sample’s chemical bonds with the radiation of a light source. Each molecule produces 

a unique spectrum based on the wavelength and quantity of infrared radiation 

absorbed, with a resultant signature spectral fingerprint of absorbance peaks seen 

(Balan et al. 2019; Su and Lee 2020). This represents the stretching and bending 

vibrations between bonds within the molecule. Infrared spectroscopy uses infrared 

light to cause a molecule to enter a higher vibrational state at the point of the light-

matter interaction. A transfer of energy occurs at certain wavelengths, depending on 
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the composition of the material being studied, and these energy level transitions result 

in a spectrum (Baker et al. 2016). The spectrum is made up of peaks and bands that 

can be interpreted both qualitatively (peak position) and quantitively (peak intensity 

and relative intensity) (Baker et al. 2016). 

 

1.20.2 FTIR and analysis of biological materials 

Biological materials absorb energy in the mid infrared region (4000 to 400 cm-1) of the 

electromagnetic spectrum. This region is the most frequently analysed. The FTIR 

spectrum can be divided into five regions according to the main macromolecules  

(Table 1.2) (Baker et al. 2016). 

 

Studies typically focus on the following spectral regions: the fingerprint region (1450-

600 cm-1), and the Amide I and II regions (1700 to 1500 cm-1) (Su and Lee 2020). 

Development of spectral libraries has provided a reference for comparison of 

spectrum curves and identification of functional groups present and even the overall 

chemical composition (Balan et al. 2019).  This technology is often used to detect a 

change of functional group in molecules from tissues or cells, enabling comparison 

between ‘healthy and disease’ or ‘treated and control’  (Lewis et al. 2010). 

Biochemical or morphological changes at the molecular level can be identified, 

compared to established biomarkers and known morphological alterations seen in 

disease, and used as a screening and diagnostic tool (Su and Lee 2020).  
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Table 1.2. Key macromolecules and associated wavenumbers 

 

Macromolecule and proposed vibrational mode Wavenumber 

cm−1 

-CH2 and -CH3 groups of fatty acids and proteins 3050–2800 

C=O stretching vibrations from lipid esters 1800–1700 

C=O, N–H, and C–N modes from Amide I and II protein bands 1700–1500 

Phosphate vibrations from nucleic acids 1225 and 1080 

Carbohydrate absorption 1200–900 
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1.20.3 FTIR and analysis of sputum  

FTIR can be performed on a variety of biological materials, including blood, tissues, 

urine, extracellular vesicles, bile and sputum (Su and Lee 2020). FTIR is able to 

detect biochemical compositions within biological material, including nucleic acids, 

proteins, lipids and carbohydrates. It identifies the molecular conformation of the 

structure, including functional groups, bonding types and intermolecular interactions 

(Su and Lee 2020). Other potential uses of FTIR analysis of sputum include the 

identification of bacterial infection. Bosch et al. (2008) formulated a protocol for 

identification of gram-negative rod species, such as Burkholderia cenocepacia 

species, which they reported was reliable and enabled rapid testing. Based on the 

changes to sputum seen with exposure to bacteria, it is possible that alterations in 

sputum related to therapeutics may also be identifiable using FTIR. 

 

1.21 Antibiotic use within the CF population 

 

Children with CF typically commence prophylactic antibiotics from the point of 

diagnosis, though the CF START study is currently underway to consider whether this 

is the best approach to prevent infections (Southern 2020). Exacerbations are 

characterised by signs of pulmonary infection, such as increased cough, increased 

sputum production or discolouration and temperature, and associated with reduction 

in lung function from baseline. Exacerbations are typically managed with antibiotics. 

Most patients are commenced on oral antibiotics initially, with intravenous antibiotics 

used for exacerbations unresponsive to oral antibiotics, or for more unwell patients. 

It is standard treatment to use two broad-spectrum antibiotics intravenously, for 

example an aminoglycoside and a beta-lactam antibiotic in combination (Daniels et 

al. 2013).  

 

During acute respiratory exacerbations, there is evidence of oxidative damage in the 

CF lung, which increases P. aeruginosa diversity and promotes the emergence of 

antibiotic-resistant bacteria (Boles and Singh 2008). Hypermutable isolates are also 

associated with accelerated resistance to antimicrobials, particularly with antibiotic 

exposure (Oliver 2004). Prevalence ranges between populations, but is thought to 

increase in chronic infections compared to acute infections (Fothergill et al. 2010).  

Fothergill et al. (2010) studied 40 isolates from CF patients with the P. aeruginosa 

Liverpool Epidemic Strain (LES) before, during and after antibiotics. They 

demonstrated a shift in colony morphology from smooth, pigmented morphotype to 
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an increase in white mucoid isolates, with overall general increase in morphology 

diversity (Fothergill et al. 2010). There was no increase in hypermutable isolates, but 

variation in antibiotic susceptibility profiles and virulence factor production was 

demonstrated (Fothergill et al. 2010). 

 

With use of broad spectrum antibiotics, it is also important to consider the effects of 

antibiotic treatment of CF lung infections on the lungs’ microflora and co-colonising 

microorganisms (Cullen and McClean 2015). Daniels et al. (2013) demonstrated 

significantly increased abundance of P. aeruginosa compared to other bacterial 

species during antibiotic therapy, whilst non-pseudomonal species were shown to fall. 

There is evidence that these wider species may alter the virulence of P. aeruginosa, 

thus contributing to treatment outcomes (Daniels et al. 2013). The authors also 

demonstrated a reduction in the mean bacterial taxa richness after antibiotic initiation. 

The environmental stress caused by antibiotic treatment also drives adaptation of 

bacterial populations, with facilitated survival of those with innate or acquired 

antibiotic resistance mechanisms (Wozniak and Keyser 2004; Cullen and McClean 

2015). 

 

1.22 Antimicrobial resistance 

 

Antimicrobial resistance (AMR) occurs when the infection-causing micro-organism is 

able to survive exposure to a medicine that would have previously stopped growth 

and/or caused death (O’Neill 2016). This enables resistant strains to increase and 

has led to the emergence of ‘superbugs’ such as Methicillin-resistant Staphylococcus 

aureus (MRSA) and multi-drug resistant (MDR) tuberculosis. Such infections have 

become so widespread that there are now implications for prevention and treatment 

of infections ranging from ‘simple’ pneumonias to those infections associated with 

chemotherapy and life-saving surgical operations (O’Neill 2016). 

 

1.22.1 Implication of antimicrobial resistance 

The cost of AMR to patients, clinicians and economies is an increasing problem 

worldwide. It is estimated that 25,000 patients die from a serious resistant bacterial 

infection acquired in hospitals every year in the European Union alone (Organisation 

2014). Predictions suggest that by 2050, 10 million lives a year will be at risk from 

drug-resistant infections (O’Neill 2016). The economic burden of AMR for the world’s 

population is difficult to accurately measure, though it has been estimated to cost the 
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US healthcare system $21 to $34 billion, accompanied by more than 8 million 

additional days in hospital (Organisation 2014). This is anticipated to rise to a 

cumulative 100 trillion US dollars of economic output by 2050 (O’Neill 2016).  

 

Despite providing life-saving treatments for severe infections, antibiotics are 

commonly inappropriately prescribed for even minor illnesses (Fleming-Dutra et al. 

2016), in addition to widespread use by the farming industry for food animal therapy, 

disease prevention and growth promotion (Van Boeckel et al. 2015; WHO 2017). 

Though AMR is a naturally-occurring adaptive mechanism, the misuse and overuse 

of antimicrobials in humans, animals and the environment means this process is 

facilitated, with transmission of resistance occurring between humans, animals and 

the environment (WHO 2017). As a result, previously treatable infections are 

becoming impossible to control.  

 

1.22.2 AMR and cystic fibrosis 

For patients with CF, AMR has far-reaching consequences for the successful 

treatment of both acute and chronic infections. Antibiotic insensitivity and frank 

resistance of P. aeruginosa within CF lungs is high and has increased over the past 

twenty years.  Pitt et al. (2003) demonstrated resistance to at least two antibiotics in 

approximately 40% of isolated strains (Pitt et al. 2003). This was supported by a 

nationwide survey in 2001, which indicated 98 of the most resistant isolates being P. 

aeruginosa from CF patients (Henwood et al. 2001).  More recently, the prevalence 

of multi-drug resistant or extensively-drug resistant strains are rising worldwide, 

compromising appropriate available treatments and resulting in significant morbidity 

and mortality (Oliver et al. 2015).  P. aeruginosa has remarkable intrinsic antimicrobial 

resistance, but its ability to further develop resistance also stands it apart from most 

other bacteria. In response to the environmental stress induced by antibiotics, P. 

aeruginosa undergoes a significant change in gene expression; the algU (also known 

as algT) regulon leads to downregulation of genes affecting bacterial motility, 

virulence and overall metabolism, whilst upregulating those related to membrane 

permeability and drug efflux (Folkesson et al. 2012). 

 

Current intensive use of antibiotics in CF patients is thought to have enabled P. 

aeruginosa colonisation within the lung as, prior to such treatments, children would 

have succumbed to severe S. aureus infections in early childhood (Folkesson et al. 

2012). According to the Cystic Fibrosis Foundation’s most recent report, of those 
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patients positive for P. aeruginosa in 2017, 17.9% were reported to carry MDR strains 

(Registry 2018). Therapeutic options are limited by the ongoing emergence of 

antimicrobial-resistant strains, making the need for alternative treatments an urgent 

priority (Gellatly and Hancock 2013).  Antibiotic resistance is seen to affect all classes 

of antibiotics, most commonly through chromosomally-encoded mechanisms. 

Resistance to beta-lactams and aminoglycosides in particular is linked to imported 

genes encoding for drug-inactivating enzymes through horizontal gene transfer 

(Folkesson et al. 2012; Oliver et al. 2015). Genetic mutations in antibiotic-resistance 

associated genes are amongst the most common seen in the adaptation process 

enabling P. aeruginosa survival. These typically reflect the individual’s exposure to 

particular antibiotic regimes and often occur as de novo mutations with clonal 

expansion thereafter.  

 

The fitness cost of antibiotic resistance should be considered, as this may affect 

bacterial virulence (positive or negative effect) and virulence traits (Oliver et al. 2015). 

Fitness cost can be defined as a “detrimental impact on the ability of an organism to 

survive and propagate in a particular environment” (Clark et al. 2015). Rapid changes 

in antimicrobial susceptibility profiles have been reported within 7 days after antibiotic 

administration (Clark et al. 2015). However, the fitness cost of maintaining such 

resistance after removal of the specific antimicrobial agent means selection of this 

phenotypic trait may not continue. 

 

Chronic infection with P. aeruginosa provides an additional challenge, as it often 

appears that the infection is susceptible to antibiotics in vitro but cannot be eradicated 

within the lungs. It has been proposed that this phenomenon is created by persister 

cells. These are dormant phenotypic variants, which make up a small proportion of 

the population (Mulcahy et al. 2010). These specialised survivors are naturally 

present, rather than appearing through mutations. They have intrinsically increased 

tolerance of antimicrobial treatment due to their innate inactivity, and may represent 

a key cause of persistent infection despite use of treatment that appeared effective in 

vitro (Mulcahy et al. 2010).  

 

Antimicrobial susceptibility testing is notoriously difficult with such significant 

phenotypic diversity occurring within the same host. Limitations occur as testing will 

be undertaken on single isolates deemed to be representative of the overall 

population, whereas in fact there exists a variety of isolates with varying degrees of 

antibiotic resistance (Kidd et al. 2018). This limits the use of antimicrobial tests on 
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predicting clinical outcome and optimising patient therapy (Winstanley et al. 2016a). 

Understanding adaptive mechanisms for survival within the CF lung is essential to 

developing effective antimicrobial treatments. 

 

1.22.3 Future challenges 

Recommended interventions to tackle AMR have included a global public awareness 

campaign, improvements in clinical diagnostic technology to avoid incorrect usage, 

reduction of antibiotic use within the agricultural sector and, finally, improving the 

antibiotic development pipeline (O’Neill 2016). With rapidly emerging drug resistance 

and few novel antibiotics in the development pipeline, there is an urgent need for 

alternative antimicrobial therapies. Development of novel therapies is required, 

particularly directed to combat biofilm growth and tackle multi-drug resistant strains, 

such as those seen in P. aeruginosa CF lung infections (Lopez-Causape et al. 2015). 

This will provide the opportunity to optimise treatments for people with CF, in whom 

the emergence of AMR is an increasing concern.   

 

1.23 Novel therapies 

 

Despite significant advances in the treatment of CF, including CFTR modulator 

therapies, there is still a need for new therapeutics for chronic infection and 

inflammation and airway clearance (van Koningsbruggen-Rietschel et al. 2020). The 

low-molecular weight alginate oligosaccharide OligoG CF-5/20 is a novel therapeutic 

currently being developed. It offers a potential alternative means to improving 

mucociliary clearance in CF, with additional abilities to reduce bacterial lung 

infections.  

 

1.23.1 Structure of alginates 

Alginate is a natural polysaccharide which is widely used in the pharmaceutical, food, 

printing and textile industries (Qin 2008). The commercial process of alginates from 

farmed brown seaweed has been in place since the early 20th Century (Hay et al. 

2013a). A number of brown seaweeds contain alginate, with the most commercially-

relevant being laminaria, macrocystis and ascophyllum (Qin 2008). Laminaria 

hyperborean, for example, contains 17-33% and 25-30% alginate content on a dry 

weight basis for the fronds and stems respectively (Qin 2008). The chemical structure 

of alginate is a linear polymeric acid composed of 1,4-linked β-D-mannuronic acid (M) 

and α-L-guluronic acid (G) residues (Qin 2008). These residues alter stereo-
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chemically due to their differing structures at C-5. Alginate is a block copolymer of β-

D-mannuronic acid and α-L-guluronic acid, with three different blocks possible: GG 

blocks contain only units derived from L-guluronic acid; MM blocks contain only units 

of D-mannuronic acid; and MG blocks consist of alternating units from D-mannuronic 

acid and L-guluronic acid (Qin 2008). MM block segments produce a linear, ribbon-

like, flexible polymer as a result of the β (1→4) linkages formed by mannuronic acid 

(Qin 2008; Yang et al. 2011a). GG block segments form α (1→4) linkages by 

guluronic acid, resulting in a much stiffer molecular chain and a folded, rigid structural 

conformation (Qin 2008; Yang et al. 2011a). The physical properties of different 

alginates will vary according to both the G and M content, as well as the relative ratio 

of the three blocks within the structure (Qin 2008). It is important to quantify the 

relative uronic acid content within the alginate to fully predict its physical properties 

and therefore its value within industry.  

 

1.23.2 Bacterial biosynthesis of alginates 

Alginates are produced by two genera of bacteria: Pseudomonas and Azotobacter 

(Hay et al. 2013a). Alginate biosynthesis can be divided into a four-step process, 

including precursor synthesis, polymerisation, periplasmic modification/transit and 

secretion, and is controlled by 13 core genes (Hay et al. 2013a; Hay et al. 2014). The 

mucoid strain of P. aeruginosa, typically seen in respiratory samples from older CF 

patients with chronic infection, demonstrates hypersecretion of alginate to aid thick, 

highly-structured biofilm formation (Nivens et al. 2001; Hay et al. 2009a; Hay et al. 

2009b; Hay et al. 2013b). The alginate produced is an O-acetylated linear polymer of 

D-mannuronate and L-guluronate residues (DeVries 1994). The complex mechanism 

of alginate overexpression within CF isolates is predominantly controlled by the 

master regulator alternate sigma factor AlgU (previously called AlgT or σ22) (Nivens 

et al. 2001; Hay et al. 2014). AlgU is encoded in an operon containing four other 

genes: mucA, mucB, mucC and mucD, all of which modulate its activity. Mutations in 

mucA are most commonly seen in P. aeruginosa CF strains, and have been directly 

linked to the overproduction of alginate within these strains (Hay et al. 2014). This 

occurs as a result of mutations inactivating the anti-sigma factor mucA and switching 

the regulatory system into a permanent ‘on’ state (Hay et al. 2014). Interestingly, the 

action of suppressor mutations at the algT locus cause mucoid CF strains to rapidly 

switch to the non-mucoid phenotype when grown in laboratory medium rather than 

within CF respiratory epithelium (Nivens et al. 2001).  
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Both the respiratory condition of the CF lung and the host’s inflammatory response to 

the presence of Pseudomonas increase alginate synthesis and lead to conversion to 

the mucoid phenotype (Kipnis et al. 2006). Conditions of environmental stress, such 

as the presence of antimicrobials, oxidising agents, elevated temperatures and 

osmotic imbalances, many of which are commonly seen in CF patients, will all activate 

AlgU with subsequent loss of the regulatory cascade and overproduction of alginate 

(Hay et al. 2014).  This process aids anchorage of P. aeruginosa to the colonised 

respiratory epithelium, protects it against phagocytosis and antibiotics, and can also 

attenuate the host response (Kipnis et al. 2006). Though it is not crucial to biofilm 

development, the presence of alginate has been shown to aid maturation of the 

biofilm and enable the formation of thick and highly structured biofilms with 

differentiated microcolonies (Nivens et al. 2001; Kipnis et al. 2006; Hay et al. 2014). 

Alginate also maintains hydration of the cells in desiccated conditions, which may be 

particularly helpful within the CF lung where there is recognised ASL dehydration 

(Hay et al. 2014).  

 

1.23.3 Industrial production of alginate 

Alginate has a number of significant properties which have enabled its widespread 

use in a variety of industries. It is considered non-toxic, non-immunogenic, 

biodegradable and biocompatible (Qin 2008; Rehm 2010; Yang et al. 2011a; Khan et 

al. 2012b). Sodium alginate is considered a safe product by the U.S Food and Drug 

Administration. As a natural polymer, alginate also represents a renewable resource 

with a potentially unlimited supply within the natural environment (Qin 2008; Rehm 

2010). Alginates with a G content of >50% do not create an immune response within 

the body, whereas a high M content will stimulate the immune system. This is of 

relevance when producing a commercially-viable product which needs to be non-

immunogenic (Christensen 2011).  

 

As naturally-occurring alginate has a variable G/M composition and molecular weight 

with associated variation in material properties, it has been necessary to develop 

methods of generating polymers of defined weight and composition (Rehm 2010; 

Khan et al. 2012b). This has enabled products that can be used as stabilisers, 

viscosifiers and gelling agents in the food, drink, pharmaceutical and printing 

industries (Hay et al. 2013b). Within medicine, alginates have been developed for use 

in advanced wound management (Qin 2008). Production of alginate requires 

treatment of raw seaweed by an aqueous alkali solution, such as sodium hydroxide, 
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enabling conversion of the various salt forms into a water-soluble sodium alginate 

(Qin 2008). Following filtration, the sodium alginate can be precipitated by the addition 

of calcium chloride and a water-soluble sodium alginate is produced following 

purification and conversion (Qin 2008).  

 

1.23.4 OligoG CF-5/20 

OligoG CF-5/20 is a novel pharmaceutical preparation derived from linear alginate 

polysaccharides extracted from the brown seaweed Laminaria hyperborea. The initial 

polysaccharides produced are arranged in blocks of homopolymeric guluronic (G) or 

mannuronic (M) acid and heteropolymeric blocks of alternating G and M (Ermund et 

al. 2017). Through a process of selective hydrolysis and fractionation, a low-

molecular-weight polydisperse oligosaccharide (mean Mn 3200 gmol−1) enriched 

from sodium alginate polysaccharide is produced (Hengzhuang et al. 2016). This 

contains a mixture of G-rich polysaccharides, composed of more than 85% guluronic 

acid blocks with 1-30 guluronic units (G1-G30) (Ermund et al. 2017). Through further 

fractionation to remove the short polymers, the pharmaceutical preparation of Oligo-

G CF-5/20 is produced. It has a mean degree of polymerisation (DPn) of 16. The 

process is completed by purification through charcoal filters and spray-drying (Khan 

et al. 2012b). The majority of material contains molecules between 5 and 20 G units, 

with most polysaccharides containing 12 to 14 G units (Ermund et al. 2017). OligoG 

CF-5/20 also contains M blocks (1,4-linked β-D-mannuronic acid), though these 

represent <15% of the oligomer composition (Hengzhuang et al. 2016). OligoG CF-

5/20 is produced by AlgiPharma AS (Sandvika, Norway), who supplied the product 

for use in this research project.  

 

1.23.5 Established effects of OligoG CF-5/20 

Prior studies have demonstrated that OligoG CF-5/20 alters the visco-elastic 

properties of mucin/alginate gels and mucin/DNA gels (Nordgård and Draget 2011; 

Pritchard et al. 2016a). In addition to direct effects on mucin, OligoG CF-5/20 has also 

been shown to chelate calcium, enabling it to detach CF mucus and facilitate the 

process of normal mucin unfolding (Ermund et al. 2017). A CF mouse model 

demonstrated that OligoG CF-5/20 treatment reduced the accumulation of mucin, 

normalising the mucus phenotype and improving long-term survival (Vitko et al. 

2016). In vitro studies have shown that OligoG CF-5/20 disrupts bacterial biofilm 

formation and growth (Pritchard et al. 2017a; Powell et al. 2018). It also reduces 

pseudomonal growth and microcolony formation (Pritchard et al. 2017a). This is 
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thought to explain its ability to potentiate the effect of antibiotics (Khan et al. 2012a; 

Pritchard et al. 2017a). Its antimicrobial effects are not related to interactions with 

lipopolysaccharide (LPS) or cell permeability (Pritchard et al. 2017b). However, there 

is evidence that it reduces the expression of the las and rhl components of P. 

aeruginosa quorum sensing, with likely influences on virulence and biofilm 

development (Powell et al. 2014b; Jack et al. 2018). 

 

Clinical trials are underway, with initial results showing repeated inhalation of OligoG 

CF-5/20 dry powder (DPI) was safe in adults. However, the study was unable to show 

significant treatment benefit with OligoG CF-5/20 compared to placebo (van 

Koningsbruggen-Rietschel et al. 2020). Recommendations were made to reduce the 

dose of OligoG CF-5/20 DPI in future phase 2B clinical studies, which are currently 

being performed under the framework of HORIZON2020.  
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1.24 Aims and objectives 

 

1.24.1 Aims 

Use of culture-independent methods have demonstrated the complexity of the CF 

lung microbiome. Current methods for studying the paediatric CF lung microbiome 

are invasive and time-consuming, limiting their role in regular surveillance. The value 

of induced sputum for culture-dependent sampling has already been demonstrated. 

IS has also been shown to be representative of broncho-alveolar lavage in a small 

dataset. This thesis will use a large sample set of paediatric IS samples to establish 

microbial diversity and consider the effects of clinical treatment on diversity measures.  

 

OligoG CF-5/20 is a novel therapy currently undergoing clinical trials. To understand 

its mechanism of action and potential clinical effects, further data is required. This 

thesis will use a FTIR to analyse CF sputum that has been treated with OligoG CF-

5/20 to explore potential antimicrobial interactions with ex vivo samples.  

 

Clinical use of OligoG CF-5/20 will likely entail repeated treatment courses or 

prolonged patient use over weeks to months. It is paramount to understand the effects 

of OligoG CF-5/20 treatment on relevant CF bacteria such as P. aeruginosa, 

particularly with regards to pathogenicity. This thesis will use a novel culture-

dependent method to study the effects of prolonged OligoG CF-5/20 by assessing 

the phenotypic and genotypic characterisation of P. aeruginosa. 

 

 1.24.2 Objectives 

1. Analyse paediatric IS samples from the CF SpIT trial using culture-

independent methods to establish microbial diversity within the CF lung using 

a new sampling method. A clinical database will be constructed from patients’ 

records and correlations between microbiota diversity and clinical parameters 

will be evaluated and assessed.  

 

2. Identify possible structural interactions between OligoG CF-5/20 and ex-vivo 

CF sputum using FTIR. Samples from the CF SpIT trial, provided by patients 

with CF, will be used to analyse this novel therapy’s mechanism of action on 

sputum. 
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3. Explore the effects of prolonged exposure to OligoG CF-5/20 on P. aeruginosa 

using a novel culture-dependent model to represent the CF lung environment. 

A range of assays will be utilised to characterise any phenotypic or genotypic 

alterations that may arise in P. aeruginosa colonies.  
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Chapter Two 

Induced sputum samples can be used to investigate 

microbial diversity in children with cystic fibrosis  
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2.1 Introduction  

 

Development of cystic fibrosis lung disease starts in the first year of life. Disease 

stems from early infection, inflammation and resultant functional and structural lung 

disease. Identification and timely treatment of infection is critical to reduce lung 

damage and disease progression.  

 

2.1.1 Traditional airway sampling methods 

 

Traditional methods of culturing viable organisms from respiratory samples have 

aided decision-making regarding the commencement of appropriate antibiotics during 

pulmonary exacerbations (Caverly et al. 2015). However, paradox responses to 

antibiotic therapy, whereby there may be clinical improvement despite evidence of 

antibiotic-resistant organisms on laboratory testing, suggest that culture-dependent 

methods may not sufficiently explain airway microbial ecology within the CF lung 

(Blainey et al. 2012).  

 

Frequent and timely microbial surveillance represents one of the key cornerstones of 

effective CF care. Lower airway sampling within the paediatric population is 

notoriously difficult as young children are generally well, cough-free and do not 

expectorate sputum, even during a pulmonary exacerbation (Forton 2015). Therefore, 

sampling has been traditionally limited to non-invasive cough swabs or oropharyngeal 

swabs, in which diagnostic accuracy is questionable and many true positives are likely 

to be missed (Rosenfeld et al. 1999). Rosenfeld et al. (1999) demonstrated a 

sensitivity of 44% for identification of Pseudomonas aeruginosa on oropharyngeal 

cultures compared to BAL culture.  

 

The alternative method of BAL represents an invasive procedure commonly requiring 

a general anaesthetic, skilled personnel and increased costs (Zampoli et al. 2016). 

However, this remains the gold-standard method for airway sampling (De Blic et al. 

2000) and is considered the best sampling technique for infants and young children 

with CF (Brennan et al. 2008).    
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2.1.2 Induced sputum 

 

Numerous studies have explored and demonstrated the benefits of using Is samples 

as a non-invasive lower airway sampling method. Authors have described the 

procedure as safe, well-tolerated, feasible and repeatable, making it a useful tool for 

both one-off and longitudinal monitoring (Blau et al. 2014; Forton 2015; Ronchetti et 

al. 2018b).  

 

Sensitivity and specificity of IS when compared directly to other sampling methods 

have been variable. There is clear evidence that IS roll superior to upper airway 

sampling for children with CF (Zampoli et al. 2016; Ronchetti et al. 2018b). 

Comparisons have also been made between culture-based bacterial and pathogen 

yields of IS with the gold standard invasive technique of BAL (Blau et al. 2014; D'Sylva 

et al. 2017; Ronchetti et al. 2018b). Microbiological sensitivity for pathogen detection 

using IS compared to BAL ranges from 27.3% (D'Sylva et al. 2017) to 69% (Ronchetti 

et al. 2018b). In part, such differing results reflect variations in study design. However, 

it is also likely that IS, similar to expectorated sputum in older children, may be 

representing a different compartment of the CF lung from BAL, and therefore the 

samples will not necessarily completely align (Forton 2015). 

 

2.1.3 Defining the airway microbiota  

 

Through significant technological developments, it is now possible to study the lung 

microbiome in much greater depth by analysis of 16S rRNA gene sequences obtained 

via high-throughput, next-generation sequencing approaches (Blainey et al. 2012). 

These technologies have facilitated the study of evolutional ecology of the CF lung 

microbiota, which has the potential to be used as a biomarker for host phenotype, 

predicting outcomes such as disease prognosis and response to treatment 

(Kuczynski et al. 2012). 

 

Whilst most studies of lower airway microbiota in children with CF have been 

performed on BAL or expectorated sputum samples, there have been some small 

studies using IS. Weiser et al. (2022) used matched sets of thirty IS and BAL samples 

for within-patient comparison of lower airway microbiota. In addition to demonstrating 

clear evidence of compartmentalisation in children with CF, they also validated the 

use of IS as a key tool in lower airway sampling. The authors reported that 50% of IS 
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samples closely resembled at least one of the matched BAL compartments, and a 

further 30% were related in composition (Weiser et al. 2022). IS detected 86.2% of 

the top 5 genera identified on matched BAL samples based on relative abundance. 

When identifying specific CF pathogens, IS demonstrated variable performance 

depending on the pathogen, with 43-100% sensitivity and 73-100% negative 

predictive values (Weiser et al. 2022). 

 

The current study will use the complete IS sample set (136 samples) available from 

the CF-SpIT cohort to explore the clinical application of microbiota profiling in the 

paediatric CF population. 

 

2.2 Aims 

 

The hypothesis of this study was that culture-independent methods could be used on 

paediatric IS samples to identify correlations between patients’ clinical features and 

patterns of microbial diversity. Specific aims were: 

 

• To perform culture-independent microbiota analysis on IS samples from 

children with CF. 

• To describe the respiratory microbiota in the CF lung within the paediatric 

population using non-invasive IS sampling. 

• To compose a clinical database for all patients within the dataset and to 

explore clinical correlations with diversity measures. 
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2.3 Materials and methods 

 

2.3.1 Study design and participants 

 

CF-SpIT is a prospective, internally-controlled interventional trial performed at the 

Noah’s Ark Children’s Hospital for Wales, Cardiff, United Kingdom. Eligible study 

participants were children with CF aged between 6 months and 18 years. All children 

attending the Children’s Hospital for annual review in the outpatient clinic, treatment 

of an acute chest exacerbation, clinically-indicated bronchoscopy and/or any routine 

surgery under general anaesthetic were eligible for inclusion (Ronchetti et al. 2018b).  

 

Though the full CF-SpIT trial included samples obtained through cough swab, IS and 

BAL, this study focuses on IS samples only. The procedure for sputum induction has 

been described previously (Ronchetti et al. 2018b). Briefly, this requires nebulised 

delivery of 7% hypertonic saline (sodium chloride), physiotherapy performed by a 

specialist physiotherapist and collection of a sputum sample, either by expectoration 

or using oropharyngeal suction in children unable to spontaneously expectorate.   

 

The CF-SpIT study has been subject to Institutional Review by the Cardiff and Vale 

Research Review Service (CaRRS; Project-ID-11-RPM-5216). Ethical approval was 

obtained from the South Wales Research Ethics Committee (11/WA/0334). The study 

has been registered with the UK Clinical Research Network (14615) and the 

International Standard Randomised Controlled Trial Network Registry (12473810).  

 

Results from CF-SpIT using conventional microbiology (Ronchetti et al. 2018b) and 

30 paired IS and six-lobe BAL samples (Weiser et al. 2022) have been published 

previously. The focus of this project was to analyse the complete set of IS samples 

using culture-independent methods.  

 

2.3.2 Clinical database data collection 

 

Patient data was obtained from two clinical digital workspaces available for routine 

patient care within the Cardiff and Vale University Health Board. Clinical data focused 

on clinical status at the time of sampling, clinically-relevant parameters, such as 

growth and lung function, and current and historical treatment regimens. When 

calculating duration of treatments, including mucolytics and antibiotics, patient letters 
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were used. The database only holds electronic letters from 2007 onwards. If duration 

of treatment was less than a year, this was labelled as 0.5 years. If it was not possible 

to measure the exact start date due to lack of documentation or presumed 

documentation prior to electronic notes availability, the following age of initiation was 

presumed: 

 

1. Hypertonic saline - 6 years old  

2. DNase - 6 years old  

3. Colomycin - 6 years old 

4. Flucloxacillin – 0 years old (following positive screening result in neonatal 

period). 

 

These ages were chosen based on the CF pulmonary medication guidelines 

(Mogayzel Jr et al. 2013). Duration of treatment also reflects the child’s age when 

commenced pre-2007 records. Historically, flucloxacillin was commenced following a 

positive screening test, typically during the first 1-2 months of life. However, for many 

patients, treatment has been intermittent during childhood. For children in whom 

flucloxacillin use was unclear, or they had previously received treatment but were not 

on it at the time of testing, it was recorded that they were not on treatment.  

 

Predicted lung function for age, ethnicity and height, plus Z-scores, were calculated 

using the European Respiratory Society Global Lung Initiative (GLI) Spirometry Task 

Force online calculator (Quanjer et al. 2012). The World Health Organisation (WHO) 

AnthroPlus anthropometric calculator (Blössner et al. 2009) was used for weight, 

height and BMI Z-score calculations. Lung function was performed on all children 

aged 5 years and above. 

 

Any patients on continuous oral antibiotic treatment for any period of time, for example 

children receiving treatment for non-tuberculous mycobacteria, had ‘number of 

courses’ calculated as total days of treatment divided by 14 days, as a 14-day course 

is considered ‘standard’ oral treatment. 
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2.3.3 Sample collection and storage 

 

IS samples were collected between 3rd April 2012 and 25th April 2018. Each sample 

was divided to allow for analysis within different arms of the CF-SpIT trial, including 

the culture-dependent and culture-independent analyses. One aliquot was frozen at 

-80°C within 30 minutes of collection to be used subsequently for DNA extraction. 

The DNA extraction protocol was adapted from previous CF studies (Ronchetti et al. 

2018b; Weiser et al. 2021), allowing for variable sample volume and viscosity.  

 

As described in (Weiser et al. 2022), the protocol set up varied by volume as follows: 

(a) if the sample volume was >800 μl, 800 μl was used; (b) if the sample volume was 

between 400-800 μl, all the sample was extracted; (c) if the sample volume was <400 

μl, the volume was increased to 400 μl using sterile water and all the sample used. 

Sample mixtures were added into sterile 2 ml non-stick tubes and centrifuged at 

21100 x g for 5 mins. Supernatant was removed to reduce total volume to 400 μl, and 

pelleted material was resuspended by pipetting. The 400 μl resuspension was added 

directly into Maxwell® 16 Tissue DNA purification kit cartridges, and extracted using 

the automated Maxwell® 16 instrument (Promega, Southampton, UK). Blank controls 

for the DNA extraction kits were included. Eluted DNA was stored at -20°C. DNA 

extraction was also completed by Dr Julian Forton, Dr Cerith Jones and Dr Rebecca 

Weiser.   

 

2.3.4 16S rRNA gene sequencing and bacterial diversity analysis 

2.3.4.1 16S rRNA gene sequencing 

Sample library preparation and 16S rRNA gene sequencing was performed at the 

Cardiff University Genomics Research Hub. The V4-region of the 16S rRNA gene 

was amplified and sequenced as previously described (Kozich et al. 2013), 

generating 250 bp paired-end reads on the Illumina MiSeq platform.  

 

Bioinformatic analysis was carried out using a virtual machine hosted by the Cloud 

Infrastructure for Microbial Bioinformatics (CLIMB) consortium (Connor et al. 2016). 

Quality control and Illumina adapter trimming of the raw sequencing reads was 

performed using FastQC (Andrews 2010) v0.11.5 and Trim Galore! (Krueger) v0.4.3 

for paired end reads. Trimmed reads were analysed with mothur (Schloss et al. 2009) 

139 v1.39.5 using the MiSeq SOP pipeline. OTUs were defined using a cut off value 

of 97% and sequence reads were subsampled to 1000 reads per sample. After 
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subsampling, sequence coverage was calculated in mothur as >97.4%. OTUs with 

<10 reads across the entire dataset were excluded. 

 

Taxonomic classification was obtained using SILVA reference files (release 132). 

OTUs were consolidated to genus level for downstream analysis and OTUs that could 

not be classified to genus level were left at family level. Raw sequence data have 

been submitted to the European Nucleotide Archive under project number 

PRJEB34389. Thanks to Dr Rebecca Weiser who performed the bioinformatic and 

bacterial diversity analysis. 

 

2.3.4.2 Sequencing controls 

Samples were sequenced across two MiSeq runs, each containing a mock 

community control (HM-783D Microbial Community B; BEI resources).  Analysis of 

the mock communities confirmed consistent and accurate microbiota profiling (Weiser 

et al. 2022). 

 

Blank DNA extraction controls were included for three different batches of Maxwell® 

16 Tissue DNA purification kits. One DNA extraction control was included in the first 

sequencing run, and two were included in the second. After sequencing of the 16S 

rRNA gene reads within these blanks, the taxa present and their abundance was 

evaluated using R statistical software. A consistent contamination signature was 

identified, with sequence reads from the family Enterobacteriaceae being the 

dominant contaminants in all three controls (>84% relative abundance). No other 

contaminants were found >1% relative abundance in more than one blank. Weiser et 

al. (2022) developed a decontamination procedure based on sequence read numbers 

and 16S rRNA gene copies (determined via qPCR) to selectively remove 

Enterobacteriaceae (and other contaminant) reads from low biomass BAL (n=48/90) 

and IS (n=6/30) samples most at risk of contamination (<6000 sequencing reads 

and/or gene copies). Full details of the decontamination procedure are given in 

Weiser et al. (2022). 

 

As qPCR data were not available for the full set of IS samples (n=136), determination 

of ‘low biomass’ status and decontamination using the method of Weiser et al. (2022) 

was not possible. Removing Enterobacteriaceae completely was not an option as IS 

samples have previously been identified as culture-positive for Enterobacteriaceae.  

Therefore, to avoid introducing bias in the datasets, the samples were analysed 
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without modification in relation to the controls, and the limitation of this approach is 

acknowledged. 

 

2.3.5 Statistical analysis 

 

Statistical analysis was carried out in Microsoft Excel, SPSS and R statistical software 

(R-Core-Team 2013).  

 

Alpha diversity indices for IS samples were calculated using the vegan package in R. 

This data analysis was performed by Dr Rebecca Weiser. Shannon index measures 

were utilised as the principal diversity measure for clinical correlation analysis.  

 

The clinical database was completed on Microsoft Excel and analysed using IBM 

SPSS Statistics Version 27 and Excel. Statistical correlations were tested using 

clinical parameters and diversity measures. The diversity data were normally 

distributed, calculated by the distribution of the sum of the residuals using the Q-Q 

plot in SPSS. Transformation of the diversity data was not required. Clinical data, 

such as patient age or lung function, was assessed to establish whether it was 

normally distributed using the Q-Q plot in SPSS. Correlation or comparison of mean 

values was performed for IS diversity measures and clinical data using Pearson 

correlation and Spearman rank or Independent samples t-test (all 2-tailed) 

respectively.  

 

Where patients had provided multiple samples, their contribution to the overall data 

output was controlled using Generalised Estimating Equations (GEE) in SPSS. 

Multiple samples were controlled for using the patient’s case number. The working 

correlation matrix structure was either ‘Independent’ or ‘Unstructured’. The choice of 

which structure to use was based on the Goodness of Fit ‘Quasi Likelihood under 

Independence Model Criterion (QIC)’. Each clinical correlation test was considered 

separately. The structure giving the lowest QIC value was considered the better 

correlation structure. A linear model was used, with Wald Chi-square statistics 

reported. Statistical significance was determined by the conventional p-value 

threshold of <0.05 for all tests. To decrease the false discovery rate when testing 

multiple samples, the Benjamini-Hochberg procedure was applied to p-values 

generated from GEE calculations.   
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2.4 Results 

 

2.4.1 Clinical data 

 

There were 136 induced sputum samples from 86 individual patients. Patients 

provided between one and six samples over the six-year study period. Patient age at 

time of collection ranged between 6 months and 17.7 years, with a mean age of 8.2 

years. 97.8% were Caucasian, with the remaining population (2.2%) of South East 

Asian ethnicity. 63.2% were defined as unwell or had a wet cough at the time of 

sampling.  

 

The CF SpIT trial originally performed 200 paired cough swab and sputum-induction 

procedures in 124 patients, with 33 sputum-induction procedures being unsuccessful. 

Further samples, including bronchoalveolar lavage and throat swabs, were obtained 

from some patients. These samples were not included within this work. There were 

176 patients who were eligible for inclusion, as patients within Cardiff and Vale 

University Health Board’s paediatric CF service. 136 of 200 sputum samples had 

sufficient quantity available for diversity analysis (Figure 2.1).  

 

Table 2.1. describes the patients’ clinical demographics, including current clinical 

status, traditional markers of disease state such as lung function and growth, and 

treatments prescribed. 
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Figure 2.1 Participant Flow Diagram 

Samples provided by study participants, including numbers of induced sputum (IS) 

samples provided by individual patients and available for specific analysis (lung 

function/body mass index (BMI) and treatment exposure).  

 

   131 patients enrolled from the Paediatric Cystic Fibrosis service, 

Cardiff and Vale University Health Board 

Lung function (58 patients, 

89 IS samples) 

1 sample (39 patients) 

2 samples (12 patients) 

3 samples (4 patients) 

4 samples (2 patients) 

6 samples (1 patient) 

Patients <5 years excluded 

 

Induced sputum samples (86 

patients, 136 IS samples) 

1 sample (56 patients) 

2 samples (17 patients) 

3 samples (8 patients) 

4 samples (4 patients) 

6 samples (1 patient) 

Samples provided: 

136 induced sputum (86 patients) 

176 bronchoalveolar lavage samples (70 patients; up to 4 

samples per procedure) 

22 cough swabs (20 patients) 

17 throat swabs (17 patients) 

Data from cough swabs, throat swabs and 

BAL excluded from this analysis.  

BMI (75 patients, (115 IS 

samples 

1 sample (51 patients) 

2 samples (14 patients) 

3 samples (6 patients) 

4 samples (3 patients) 

6 samples (1 patient) 

Patients <2 years excluded 

 

Treatment exposure 

(including mucolytic and 

antimicrobial therapies)  

Contributing patients and 

sample numbers detailed within 

individual results sections.  
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Table 2.1. Clinical demographics. 

 

 

Clinical demographics  

Age, years (min, max) 8.3 (0.47, 17.7) 

Male  55.9 % 

Genotype Homozygote delta F508 47.8 % 

Heterozygote delta F508 41.9 % 

Other 10.3 % 

Mean BMI for age (Z-score) 0.31  

Mean FEV1 for age (Z-score), at time of sampling -1.71  

Mean FEV1 % predicted, at time of sampling (min, max) 79% (32, 116) 

Mean FEV % predicted, best of year (min, max) 95.4% (69, 127) 

Hypertonic saline use (% of study participants) 73.5 % 

DNase use (% of study participants) 75.7 % 

Flucloxacillin prophylaxis (% of study participants) 69.1 % 

Azithromycin prophylaxis (% of study participants) 55.1 % 

Nebulised colomycin (% of study participants) 44.1 % 

Nebulised tobramycin (% of study participants) 14.7 % 

Previous Pseudomonas aeruginosa isolation (% of study 

participants) 

72.1 % 

Intravenous antibiotics received in last 2 years (% of study 

participants) 

63.2 % 

Mean number of intravenous antibiotic courses within last 2 years 

(min, max) 

1.4 (0, 7) 

Mean number of days of intravenous antibiotic use in last 2 years 

(min, max) 

17.7 (0, 98) 

Acute oral antibiotics in last 2 years (% of study participants) 99.3 % 

Mean number of oral antibiotic courses within last 2 years (min, 

max) 

8 (0, 21) 

Mean number of oral antibiotic courses within last 2 years (min, 

max)   

8.8 (0, 52) 

Mean number of days of oral antibiotic use in last 2 years (min, 

max) 

143 (0, 730) 

Unwell or wet cough at time of sample (% of study participants) 63.2 % 

Inpatient at time of sample (% of study participants) 41.2 % 
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2.4.2 Markers of disease severity  

 

Across the patient population, there was a statistically significant negative correlation 

between lung function, using FEV1 Z-score, and increasing age (Pearson correlation: 

-2.85, 2-tailed significance: 0.007; GEE (n=89) <0.001) (Figure 2.2.).  

 

Figure 2.3. also demonstrates a statistically significant negative correlation between 

BMI Z-score for over 2-year-olds and increasing age (Pearson correlation: -0.288, 2-

tailed significance: 0.002; GEE (n=115) <0.001). BMI Z-scores are not included for 

children below two years, as this measure is not validated for younger children. 

 

Mucociliary clearance nebulised therapies, DNase and hypertonic saline, were used 

by 75.7% and 73.5% of the population respectively (Table 2.1.). Samples were 

provided by patients receiving prophylactic oral antibiotics (flucloxacillin and 

azithromycin) and nebulised antibiotics (colomycin and tobramycin). Nebulised 

therapy is generally commenced as an anti-pseudomonal treatment in response to 

repeated positive respiratory cultures, recurrent exacerbations, and potentially 

declining clinical status with positive P. aeruginosa cultures. This is likely reflected by 

the number of patients in whom P. aeruginosa has previously been isolated on culture 

(72.1%).  

 

Use of acute courses of oral antibiotics was seen in almost all patients (99.3%), with 

a mean of eight courses over two years (range 0-21) (Table 2.1.). In a small number 

of patients, continuous antibiotics were required for the full two years prior to sampling 

as treatment for non-tuberculous mycobacteria. Intravenous antibiotics were received 

by 63.2% of the patient group, with a mean of 1.4 courses (range 0-7) delivered in 

the past two years.  

 

 

 

 

 
 

 

  



70 
 

 

 

 

 

 

Figure 2.2. Scatterplot of FEV1 Z-score by age.  

Negative correlation between lung function and age, with declining FEV1 Z-score with 

increasing patient age. Pearson correlation: -2.85, 2-tailed significance: 0.007; GEE 

(n=89) <0.001. 
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Figure 2.3. Scatterplot of BMI Z score for over 2-year-olds by age.  

Negative correlation between body mass index (BMI) Z-scores and age, with fall in 

BMI with increasing patient age. Pearson correlation: -0.288, 2-tailed significance: 

0.002; GEE (n=115) <0.001. 
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2.4.3 16S rRNA gene sequencing statistics and data analysis 

 

Successful sequencing and data analysis were completed on 136 induced sputum 

samples out of 141 samples processed. Initial sequencing failed for the five excluded 

samples and further attempts to re-sequence were not possible due to insufficient 

sample volumes. A total of 2649426 sequence reads were obtained across the 

dataset of 136 IS samples; the average number of sequence reads per sample was 

19481 (range: 1159-188190). 

 

After normalising to 1000 reads, and excluding any OTUs below 10 reads across the 

whole group, each sample had a mean of 997 reads (range 955-1000). From 136 IS 

samples, 272 bacterial operational taxonomic units (OTUs) were identified, which 

represented 120 genus/family groups.  

 

The top 25 genera were calculated based on the number of reads across the whole 

dataset for each genus (Table 2.2.). Of note, Prevotella_6, Prevotella_7 and 

Selenomonas_3 are not subgroups of Prevotella and Selenomonas respectively. 

They have been identified as separate genera by the bioinformatics pipeline and 

databases used.  

 

Samples contained an average (mean) of 14.5 of the top 25 genera (range 5-21). The 

top five genera identified were Veillonella, Prevotella_7, Haemophilus, Streptococcus 

and Neisseria. All five were found in two-thirds of the induced sputum samples, with 

97.7% of samples containing at least three of these genera (Table 2.3). The 

proportion of the top ten genera identified is also shown in Table 2.3, with 23% of 

samples containing all ten genera at varying relative abundance. 
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Table 2.2. Top 25 genera from the induced sputum samples.  

Genera with the highest frequency of reads across the induced sputum samples, with 

% of samples containing each genus. *Enterobacteriaceae: it was not possible to 

further classify this family.  

 

Number of reads Genera %Samples containing genera 

41514 Veillonella 98.53 

19302 Prevotella_7 96.32 

16061 Haemophilus 78.68 

12437 Streptococcus 99.26 

7775 Neisseria 74.26 

6328 Pseudomonas 59.56 

5935 Enterobacteriaceae* 68.38 

5137 Prevotella 80.15 

2079 Granulicatella 83.09 

1474 Actinomyces 77.94 

1386 Leptotrichia 51.47 

1175 

Burkholderia-

Caballeronia-

Paraburkholderia 5.88 

1156 Porphyromonas 66.18 

1137 Moraxella 14.71 

1048 Capnocytophaga 58.09 

1028 Alloprevotella 61.76 

1014 Staphylococcus 24.26 

917 Gemella 66.18 

877 Fusobacterium 61.03 

865 Selenomonas_3 46.32 

854 Prevotella_6 53.68 

547 Megasphaera 36.03 

524 Rothia 50 

416 Enterococcus 2.21 

392 Lautropia 36.76 
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Table 2.3. Presence of top 5 genera and top 10 genera across induced sputum 

samples.  

Percentage of IS samples containing the top 5 and top 10 genera, based on those 

listed in Table 4.2. 

 

Number of top 5 genera present in sample % Samples containing top 5 genera 

5 of 5 66.91 

4 of 5 15.44 

3 of 5 15.44 

2 of 5 2.21 

1 of 5 0 

Number of top 10 genera present in sample % Samples containing top 10 genera 

10 of 10 22.79 

9 of 10 20.59 

8 of 10 25.74 

7 of 10 16.17 

6 of 10 4.41 

5 of 10 4.41 

4 of 10 3.68 

3 of 10 0 

2 of 10 0 

1 of 10 0 
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2.4.4 Cystic fibrosis pathogens  

 

Reflecting previous literature, the following organisms were considered cystic fibrosis 

airway pathogens: Haemophilus influenzae, Staphylococcus aureus, methicillin-

resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, Burkholderia 

cepacia complex species, non-tuberculous Mycobacterium species, Achromobacter 

xylosoxidans, Stenotrophomonas maltophilia, and Klebsiella pneumoniae (Ronchetti 

et al. 2018b).  

 

Species-level classification is challenging using 16S rRNA gene sequencing analysis, 

but genera containing the aforementioned CF pathogens were identified. Certain 

bacterial groups, such as Enterobacteriaceae, which includes the pathogen Klebsiella 

pneumoniae, are difficult to distinguish below family level using this approach (Jovel 

et al. 2016). These genera and the family Enterobacteriaceae were considered 

pathogens for this study. 

 

Pathogen detection threshold was set at >0% relative abundance, and considered 

clinically relevant at this level. Samples containing pathogens at threshold >0% 

relative abundance were labelled ‘pathogen positive’ as previously described in 

(Weiser et al. 2022). Using the presence of a pathogen at any relative abundance 

reflected the greater diversity seen in IS samples compared to BAL samples and 

ensured that no pathogens were missed due to the high diversity.  

 

Table 2.4. shows the average relative abundance of each pathogen across all 

samples. At least one of the eight pathogens was detected at >0% relative abundance 

in 129/136 (94.9%) samples. No pathogen was present in all samples.  

 

Haemophilus is the most commonly identified genera, with a mean relative 

abundance of 11.8%. Haemophilus, Pseudomonas, Burkholderia and the family 

Enterobacteriaceae had the highest relative abundance within individual samples at 

86.4%, 97.6%, 96.2% and 71.4% respectively. This suggests species dominance 

within these patient samples.  

 

This sample set includes data for 13 infants, with children aged 6 months to 1 year. 

Amongst this group, 15% had evidence of Haemophilus dominance (2 children) and 

23% had Veillonella dominance (3 children), with the remaining 62% having a diverse 
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community containing a varying relative abundance of pathogens and other relevant 

genera (Table 2.5).   
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Table 2.4. Percentage (%) relative abundance for seven key cystic fibrosis 

pathogens and their representative genera.  

*Enterobacteriaceae: it was not possible to further classify this family. 

 

Relative 
abundance 
(%) Haemophilus Stenotrophomonas Pseudomonas Staphylococcus 

Mean 11.84 0.04 4.67 0.75 

Mode 0 0 0 0 

Minimum 0 0 0 0 

Maximum 86.40 2.00 97.60 39.10 

 

Relative 
abundance 
(%) Burkholderia Achromobacter Mycobacteria Enterobacteriaceae* 

Mean 0.87 0.001 0.01 0.44 

Mode 0 0 0 0 

Minimum 0 0 0 0 

Maximum 96.20 0.10 1.13 71.37 
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Table 2.5. Exploration of pathogen dominance in infants with cystic fibrosis  

Data from 13 infants (aged 6-12 months). Five children demonstrated pathogen 

dominance with either Haemophilus  or Veillonella, with the remaining infants having 

a diverse pathogen community. 

 

Sample 
code 

Pathogen 
dominant/diverse % Relative abundance of pathogens  

CF48  Diverse  

48.6% Veillonella, 10.6% Haemophilus, 33% 
Streptococcus  

CF130  Haemophilus dominant  85.9% Haemophilus  

CF132  Diverse  34.7% Haemophilus, 22.6% Streptococcus  

CF74  Veillonella dominant  57% Veillonella, 19.3% Streptococcus  
CF108 
 

Diverse 
 

41% Veillonella, 30.8% Haemophilus 
 

CF140 
 

Haemophilus dominant 
 

33.5% Haemophilus, 15.4% Veillonella 
 

CF200 
 

Diverse 
 

40% Veillonella, 26.4% Haemophilus 
 

C201 
 

Diverse 
 

35.5% Veillonella, 26.7% Haemophilus 
 

CF135 
 

Veillonella dominant 
 

60.3% Veillonella 
 

CF172 
 

Veillonella dominant 
 

56.3% Veillonella, 13.2% Streptococcus 
 

CF202 
 
 

Diverse 
 
 

47% Moraxella, 19.2% Veillonella, 9% 
Haemophilus 
 

CF121 
 
 

Diverse 
 
 

41.4% Veillonella, 26.6% Haemophilus, 9% 
Streptococcus 
 

CF127 
 
 

Diverse 
 
 

22.6% Veillonella, 14.1% Haemophilus, 13% 
Streptococcus 
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Percent relative abundance for each cystic fibrosis pathogen is shown in Figure 2.4. 

Haemophilus is present at varying levels of relative abundance across 78.7% of 

samples. Staphylococcus was similarly spread across levels of relative abundance, 

though it was only identified in 24.2% of samples. Pseudomonas and 

Enterobacteriaceae are similarly present across 59.6% and 68.4% of samples 

respectively. However, in contrast to Haemophilus, these genera appear most 

commonly present at lower levels of percent relative abundance (>0-1 and >1-2.5%), 

with a small number of samples with high relative abundance indicating pathogen 

dominance in these patients.   

 

Achromobacter and mycobacteria were present in low levels, being identified in only 

1.5 and 1.4% of samples respectively, both at low levels of relative abundance 

(<2.5%). Similarly, Stenotrophomonas was present in 7.3% of samples, again at low 

relative abundance of 2.5%. Burkholderia was identified in 5.8% of samples, but likely 

presented the dominant pathogen in two of these samples, being present at >10-25% 

and >50-100% respectively.   
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Figure 2.4.  Relative abundance (%) of each cystic fibrosis pathogen by genera/family.  

Presence of all CF pathogens at >0% relative abundance, with frequency of occurrence across all samples. 
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2.4.5 Diversity analysis 

 

The Shannon diversity index was calculated for all samples. This provides a measure 

for species richness and evenness, weighting towards species richness. The Q-Q 

plot, calculated by the distribution of the sum of the residuals, demonstrates normal 

distribution of diversity data (Figure 2.5.).  

 

The mean diversity index value for induced sputum samples was 1.85 (min. 0.13, max 

2.88, SD 0.59), with higher values indicating increasing numbers of species and 

greater evenness of species among individuals.  
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Figure 2.5. Q-Q plot of Shannon diversity demonstrating normal distribution of 

diversity data. 
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2.4.6 Effects of clinical features on diversity 

 

Correlations between key clinical features and Shannon diversity measures were 

explored. Pearson correlations, both 1- and 2-tailed, were undertaken for clinical data 

which was normally distributed. For clinical data with non-normal distribution, 

Spearman rank was used. Independent-samples t-test was used for data with binary 

outcomes, such as treatments received; ‘yes’ or ‘no’. Table 2.6a shows the statistical 

test used for each clinical correlation.  

 

Table 2.6b details the correlation values using Pearson correlation and Spearman 

rank., with statistically significant values (p-value <0.05) highlighted. All samples were 

included without control for multiple samples from the same patient at this stage. 

 

Results demonstrate significant negative Pearson correlation between Shannon 

diversity index and the following clinical measures: age; duration of use of DNase and 

azithromycin; number of P. aeruginosa isolates over the past 3 years and acute 

intravenous antibiotic therapy measures. The Spearman rank test showed 

significance negative correlation between Shannon diversity and duration of use of 

tobramycin. This suggests that diversity reduces as these measures increase; for 

example, increasing age is associated with reducing Shannon diversity.  

 

Table 2.6c shows comparison of clinical factors with categorical groups (‘yes’ or ‘no’) 

using the Independent samples t-test. This demonstrates significant differences in 

mean values for those patients with DNase, tobramycin and azithromycin use, as well 

as those who had received acute intravenous antibiotics within the last 2 years. There 

were also significant differences for those patients with a history of P. aeruginosa 

isolation. This suggests that exposure to these treatments and P. aeruginosa infection 

was associated with significantly lower mean diversity values than those without 

exposure.  
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Table 2.6a. Statistical tests used to establish relationships between clinical 

features and Shannon Diversity.  

Data was assessed on SPSS using visualisation of the Q-Q plot to establish normal 

distribution. Relationships between the clinical feature and Shannon diversity were 

tested using either Pearson Correlation, Independent samples T-test or Spearman 

rank. 

 

  Statistical testing method 

 Normal 

distribution 

on Q-Q plot 

Pearson 

Correlation  

Independent 

Samples T-test 

Spearman 

rank 

Age Yes Yes   

BMI Z score Yes Yes   

BMI Z score for over 2 years Yes Yes   

FEV1 for age Z score Yes Yes   

FEV1 % predicted Yes Yes   

FVC Z score Yes Yes   

FEV1/FVC Z score Yes Yes   

Hypertonic Saline use (Y/N) No  Yes  

Hypertonic saline duration of 

use 

Yes Yes   

DNase use No  Yes  

DNase duration of use Yes Yes   

Colomycin use No  Yes  

Colomycin duration of use Yes Yes   

Tobramycin use No  Yes  

Tobramycin duration of use No   Yes 

Azithromycin use No  Yes  

Azithromycin duration of use Yes Yes   

Flucloxacillin use No  Yes  

Flucloxacillin duration of use Yes Yes   

P. aeruginosa ever isolated  No  Yes  

P. aeruginosa No. of isolates in 

3 years 

No    

P. aeruginosa No. of years 

since first isolated 

Yes Yes   
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Age at first isolation of P. 

aeruginosa 

No   Yes 

Acute IV antibiotics in last 2 

years 

No  Yes  

Acute IV antibiotics, no. of 

courses 

Yes Yes   

Acute IV antibiotics, no. of days Yes Yes   

Acute oral antibiotics in last 2 

years 

No  Yes  

Acute oral antibiotics, no. of 

courses 

Yes Yes   

Acute oral antibiotics, no. of 

courses (including continuous) 

Yes Yes   

Acute oral antibiotics, no. of 

days 

Yes Yes   

Unwell/wet cough No  Yes  

Inpatient at time of sample No  Yes  
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Table 2.6b. Correlations between clinical features and Shannon Diversity 

using Pearson correlation and Spearman rank.  

Statistically significant values (p-value <0.05) highlighted. 

 

 Number 

of 

samples 

Pearson 

Correlation  

Spearman 

rank 

Significance 

(2 tailed) 

Age 136 -0.207  0.015 

BMI Z score 136 -0.036  0.675 

BMI Z score for over 2 years 115 -0.131  0.163 

FEV1 for age Z score 89 0.146  0.172 

FEV1 % predicted 89 0.166  0.120 

FVC Z score 89 0.132  0.217 

FEV1/FVC Z score 89 0.028  0.794 

Hypertonic saline duration of use 100 -0.082  0.419 

DNase duration of use 103 -0.251  0.011 

Colomycin duration of use 60 -0.207  0.112 

Tobramycin duration of use 20 -0.358 -0.452 0.045 

Azithromycin duration of use 74 -0.229  0.050 

Flucloxacillin duration of use 136 -0.44  0.614 

P. aeruginosa No. of isolates in 3 years 136 -0.352  0.000 

P. aeruginosa No. of years since first 

isolated 

96 -0.165  0.109 

Age at first isolation of P. aeruginosa 98  -0.136 0.182 

Acute IV antibiotics, no. of courses 136 -0.210  0.014 

Acute IV antibiotics, no. of days 136 -0.242  0.005 

Acute oral antibiotics, no. of courses 133 0.080  0.363 

Acute oral antibiotics, no. of courses 

(including continuous) 

 0.014  0.870 

Acute oral antibiotics, no. of days 136 0.054  0.529 
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Table 2.6c. Comparison of mean values for relevant clinical features and 

Shannon Diversity using the Independent samples t-test.  

Statistically significant values (p-value <0.05) highlighted. 

 

 

 Number 

of 

samples 

Mean 

(Yes) 

Mean 

(No) 

Independent 

sample  

t-test 

Significance 

(2 tailed) 

Hypertonic Saline 

use (Y/N) 

136 1.863 1.805 -0.503 0.616 

DNase use 136 1.786 2.041 2.193 0.03 

Colomycin use 136 1.758 1.919 1.586 0.115 

Tobramycin use 136 1.428 1.920 3.587 <0.001 

Azithromycin use 136 1.731 1.991 2.604 0.010 

Flucloxacillin use 136 1.910 1.709 -1.852 0.066 

P. aeruginosa ever 

isolated  

136 1.780 2.024 2.197 0.03 

Acute IV 

antibiotics in last 2 

years 

136 1.730 2.053 3.190 0.002 

Acute oral 

antibiotics in last 2 

years 

136 1.844 2.350 0.854 0.395 

Unwell/wet cough 136 1.760 1.972 1.893 0.061 

Inpatient at time of 

sample 

136 1.871 1.832 -0.376 0.707 

 

  



88 
 

2.4.6.1 Controlling for multiple samples from individual patients 

To control for multiple samples from individual patients, Generalised Estimating 

Equations (GEE) were calculated for each clinical correlation. Table 2.7. 

demonstrates the number of subjects and samples provided per subject based on the 

patient’s case number. Selection of the working correlation matrix (WCM) structure 

with the lowest QIC value, either ‘Independent’ or ‘Unstructured’, is detailed for each 

clinical correlation. Using the lowest QIC value to inform the selected WCM structure 

within the GEE model aims to appropriately select the best working covariance 

structure and optimise estimations made about the relationship between covariates 

and response (diversity measures).    

 

The correlation between clinical data and Shannon diversity index was studied using 

GEE to control for the effects of multiple samples from the same patient (Table 2.8.). 

Significant results using the Wald Chi Square test are highlighted. A p-value <0.05 

was considered significant. 

 

There was a negative correlation between Shannon diversity and the following: age; 

use of DNase, colomycin, tobramycin and azithromycin; duration of use of DNase, 

colomycin and tobramycin; P. aeruginosa ever isolated and number of isolates within 

3 years; acute intravenous and oral antibiotic use in the last two years; number of 

days treated with acute intravenous antibiotics; being unwell or presence of wet cough 

at the time of sampling. This suggests reduced diversity index as each of these clinical 

features is present or increases. There was a positive correlation between Shannon 

diversity and the following: FEV1 Z-score and FEV1 percent (%) predicted. This 

suggests increasing diversity with higher FEV1 scores, representative of better lung 

function.  

 

2.4.6.2 Benjamini-Hochberg procedure for multiple tests 

Using the Benjamini-Hochberg procedure for multiple tests, a corrected significance 

level was calculated at 0.02031. P-values obtained from GEE performed on clinical 

correlations were adjusted accordingly (q-values). Table 2.8 highlights all p-values 

which reached the corrected significance level after the Benjamini and Hochberg 

procedure. Age, DNase duration of use and number of days treated with acute 

intravenous antibiotics were no longer statistically significant when the Benjamini-

Hochberg correction was applied. For completion, the more conservative Bonferroni 

corrected significance level was 0.00156.   
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Table 2.7. Selection of Working Correlation Matrix structure.  

Calculation of the ‘Goodness of Fit’ QIC value for each clinical parameter is listed, with the most appropriate WCM structure selected on the basis 

of the lowest QIC value. (QIC: Quasi-likelihood under Independence Model Criterion; WCM: Working Correlation Matrix) 

 

     Working correlation matrix 

 Number of 

samples 

Number of 

subjects 

Number of 

measurements 

per subject 

Minimum, 

Maximum 

Correlation 

matrix 

dimension 

Independent 

Structure 

Goodness of Fit 

QIC value 

Unstructured 

Structure 

Goodness of 

Fit QIC value 

Selected 

WCM 

Structure 

Age 136 86 1, 6 6 50.012 50.668 Independent 

BMI Z score 136 86 1, 6 6 51.368 51.991 Independent 

BMI Z score for over 2 years 115 75 1, 6 6 44.653 46.450 Independent 

FEV1 Z score 89 58 1, 6 6 37.789 36.616 Unstructured 

FEV1 % predicted 89 58 1, 6 6 37.757 36.932 Unstructured 

FVC Z score 89 58 1, 6 6 38.279 38.449 Independent 

FEV1/FVC Z score 89 58 1, 6 6 38.331 38.869 Independent 

Hypertonic Saline use (Y/N) 136 86 1, 6 6 51.907 53.408 Independent 

Hypertonic saline duration of 

use 

100 60 1, 5 5 39.052 53.486 Independent 

DNase use 136 86 1, 6 6 49.534 49.838 Independent 
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DNase duration of use (Y/N) 103 64 1, 6 6 40.091 39.687 Unstructured 

Colomycin use(Y/N) 136 86 1, 6 6 50.666 49.217 Unstructured 

Colomycin duration of use 60 38 1, 6 6 29.382 27.046 Unstructured 

Tobramycin use (Y/N) 136 86 1, 6 6 48.226 47.041 Unstructured 

Tobramycin duration of use 20 12 1, 4 4 10.099 15.976 Independent 

Azithromycin use (Y/N) 136 86 1, 6 6 49.689 47.818 Unstructured 

Azithromycin duration of use 74 50 1, 6 6 32.084 30.129 Unstructured 

Flucloxacillin use (Y/N) 136 86 1, 6 6 51.496 54.353 Independent 

Flucloxacillin duration of use 131 86 1, 6 6 52.440 53.817 Independent 

P. aeruginosa ever isolated 

(Y/N)  

136 86 1, 6 6 49.699 49.926 Independent 

P. aeruginosa No. of isolates 

in 3 years 

136 86 1, 6 6 43.529 55.610 Independent 

P. aeruginosa No. of yrs. 

since first isolated 

96 59 1, 6 6 40.680 40.072 Unstructured 

Age at first isolation of P. 

aeruginosa 

98 59 1, 6 6 40.457 39.709 Unstructured 

Acute IV antibiotics in last 2 

years (Y/N) 

136 136 1, 6 6 48.224 47.335 Unstructured 

Acute IV antibiotics, no. of 

courses 

136 86 1, 6 6 50.863 55.482 Independent 
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Acute IV antibiotics, no. of 

days 

136 86 1, 6 6 50.159 55.065 Independent 

Acute oral antibiotics in last 2 

years 

136 86 1, 6 6 49.333 51.452 Independent 

Acute oral antibiotics, no. of 

courses 

133 84 1, 6 6 50.359 50.454 Independent 

Acute oral antibiotics, no. of 

courses (incl. continuous) 

136 86 1, 6 6 50.861 52.593 Independent 

Acute oral antibiotics, no. of 

days 

136 86 1, 6 6 51.095 52.514 Independent 

Unwell/wet cough 136 86 1, 6 6 49.944 49.551 Unstructured 

Inpatient at time of sample 136 86 1, 6 6 51.352 53.470 Independent 
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Table 2.8. Clinical correlations with Shannon diversity, controlling for multiple samples from individual patients with generalising 

estimating equations.  

* For binary responses where comparison made to ‘yes/no treatment’ (1) versus ‘no/not treated’ (0). 

Statistically significant values (p-value <0.05) highlighted. ** p-value remains significant with corrected significance level following Benjamini-

Hochberg procedure for multiple samples.  

 

 

    

95% Wald 

Confidence 

Interval 

Hypothesis Test 

 

No. of 

samples 

No. of 

subjects 

Beta 

coefficient 

Std. 

Error 
Lower Upper 

Wald 

Chi-

Square 

df Significance 

Age 
136 86 

 

-0.025 

 

0.0112 

 

-0.047 

 

-0.003 

 

4.932 

1 0.026 

BMI Z score 136 86 -0.019 0.0441 -0.106 0.067 0.193 1 0.66 

BMI Z score for over 2 

years 115 75 -0.078 0.0456 -0.167 0.012 2.895 1 0.089 

FEV1 Z score 89 58 0.137 0.0254 0.087 0.187 29.154 1 <0.001 ** 

FEV1 % predicted 89 58 0.013 0.0023 0.008 0.017 32.207 1 <0.001 ** 

FVC Z score 89 58 0.061 0.0508 -0.038 0.161 1.463 1 0.226 
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FEV1/FVC Z score 89 58 0.016 0.0565 -0.095 0.127 0.08 1 0.777 

Hypertonic Saline use* 136 86 0.058 0.1252 -0.187 0.303 0.214 1 0.644 

Hypertonic saline 

duration of use 100 60 -0.021 0.0244 -0.069 0.027 0.763 1 0.382 

DNase use* 136 86 -0.256 0.1066 -0.465 -0.047 5.757 1 0.016 **  

DNase duration of use 103 64 -0.042 0.0207 -0.082 -0.001 4.094 1 0.043  

Colomycin use* 136 86 -0.269 0.077 -0.42 -0.118 12.215 1 <0.001 ** 

Colomycin duration of 

use 60 38 -0.034 0.0088 -0.051 -0.017 15.107 1 <0.001 ** 

Tobramycin use* 136 86 -0.723 0.0924 -0.904 -0.542 61.145 1 <0.001 ** 

Tobramycin duration of 

use 20 12 -0.113 0.0315 -0.175 -0.052 12.967 1 <0.001 ** 

Azithromycin use* 136 86 -0.328 0.0798 -0.485 -0.172 16.905 1 <0.001 ** 

Azithromycin duration of 

use 74 50 -0.026 0.0203 -0.066 0.013 1.707 1 0.191 

Flucloxacillin use* 136 86 0.201 0.134 -0.061 0.464 2.258 1 0.133 

Flucloxacillin duration of 

use 131 86 -0.006 0.0148 -0.035 0.023 0.176 1 0.675 

P. aeruginosa ever 

isolated*  136 86 -0.245 0.105 -0.45 -0.039 5.43 1 0.02 ** 
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P. aeruginosa No. of 

isolates in 3 years 136 86 -0.048 0.0046 -0.057 -0.039 109.498 1 <0.001 ** 

P. aeruginosa No. of yrs. 

since first isolated 96 59 -0.018 0.0155 -0.048 0.012 1.334 1 0.248 

Age at first isolation of P. 

aeruginosa 98 59 0.011 0.0197 -0.028 0.049 0.3 1 0.584 

Acute IV antibiotics in last 

2 years* 136 86 -0.423 0.0906 -0.6 -0.245 21.783 1 <0.001 ** 

Acute IV antibiotics, no. 

of courses 136 86 -0.074 0.0396 -0.152 0.003 3.525 1 0.06 

Acute IV antibiotics, no. 

of days 136 86 -0.007 0.003 -0.012 -0.001 4.751 1 0.029 

Acute oral antibiotics in 

last 2 years* 136 136 -0.507 0.0559 -0.616 -0.397 82.174 1 <0.001 ** 

Acute oral antibiotics, no. 

of courses 133 84 0.012 0.0119 -0.011 0.035 1.007 1 0.316 

Acute oral antibiotics, no. 

of courses including 

continuous 136 86 0.001 0.0063 -0.011 0.014 0.042 1 0.838 
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Acute oral antibiotics, no. 

of days 136 86 0 0.0005 -0.001 0.001 0.485 1 0.486 

Unwell/wet cough 136 86 -0.264 0.0819 -0.425 -0.104 10.401 1 0.001 ** 

Inpatient at time of 

sample 136 86 0.039 0.0974 -0.152 0.23 0.159 1 0.69 
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2.4.6.3 Age, lung function and clinical status at time of sampling 

The following graphs show the relationship between Shannon diversity and the 

clinical features for those factors deemed to have significant correlation through GEE. 

 

Figure 2.6a. shows significant negative correlation between age and diversity, with 

reduction in diversity index as patient age increases (Pearson correlation (2-tailed) 

0.015; GEE (n=86) 0.026).  

 

Figures 2.6b. and c. both show significant positive correlation between FEV1 

parameters, with increasing diversity with better lung function (FEV1 Z-score: 

Pearson correlation (2-tailed) 0.172; GEE (n=58) <0.001; FEV1 % predicted: Pearson 

correlation (2-tailed) 0.120; GEE (n=58) <0.001). However, Figure 2.6c. 

demonstrates that patients with the lowest Shannon diversity (<0.5), suggestive of 

species dominance, can have variable lung function, from low (32.1%) to within 

normal range (86.8%). Therefore, lung function as a single clinical marker may be 

insufficient to identify those children with species dominance.  

 

Lung function parameters have an age-independent association with Shannon 

diversity. Using the co-variates of age and FEV1 % predicted, FEV1 % predicted 

continues to show a positive correlation with diversity (GEE (n=58) Age 0.584, FEV1 

% predicted <0.001). Similarly, using co-variates of age and FEV1 Z-score, the 

positive correlation between FEV1 Z-score and diversity is seen independent of age 

(GEE (n=58) Age 0.599, FEV1 % predicted <0.001). These results show an age-

independent association between lung function and Shannon diversity. 
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Figure 2.6a. Shannon diversity by age, with best line fit.  

136 samples from 86 patients; samples from the same patient are joined by a grey 

line. Line of best fit for all samples in black:  R2 linear = 0.043. Significant negative 

correlation between age and diversity, with reduction in diversity index as patient age 

increases. Pearson correlation (2-tailed) 0.015; GEE (n=86) 0.026.  
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Figure 2.6b. Shannon diversity by FEV1 Z-score, with best line fit.  

89 samples from 58 patients; samples from the same patient are joined by a grey line. 

Line of best fit for all samples in black: R2 linear = 0.021. Significant positive 

correlation between FEV1 Zscore, with increasing diversity with better lung function. 

Pearson correlation (2-tailed) 0.172; GEE (n=58) <0.001.  
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Figure 2.6c. Shannon diversity by FEV1 percent (%) predicted, with best line 

fit.  

89 samples from 58 patients; samples from the same patient are joined by a grey line. 

Line of best fit for all samples in black: R2 linear = 0.027. Significant positive 

correlation between FEV1 % predicted, with increasing diversity with better lung 

function. Pearson correlation (2-tailed) 0.120; GEE (n=58) <0.001. 
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2.4.6.4 Pseudomonas status 

For patients with a positive isolation of P. aeruginosa at least once before (72.1% of 

samples (98 samples; 59 patients), Shannon diversity is significantly lower than for 

those patients without positive culture (Independent samples t-test (2-tailed) 0.03; 

GEE (n=86) 0.02). 

 

Figure 2.7a. shows that with increasing numbers of positive isolates, diversity 

reduces significantly (Pearson correlation (2-tailed) <0.001; GEE (n=86) <0.001). 

Twenty-two of 86 patients (25.5%) have had three of more isolates of P. aeruginosa 

within the last three years. Amongst those children that have ever isolated P. 

aeruginosa, three or more positive PSA cultures within the last 3 years was 

associated with significantly lower Shannon diversity (Independent samples t-test (2-

tailed) 0.005; GEE (n=59) <0.001) (Figure 2.7b).  

 

Patients were considered to have chronic pseudomonas infection if they had isolated 

mucoid P. aeruginosa or had three or more samples within a year showing P. 

aeruginosa positivity. Patients with chronic infection have significantly lower Shannon 

diversity (Pearson correlation (2-tailed) <0.001; GEE (n=86) <0.001) compared to 

those who with no history of PSA positivity or acute/intermittent PSA infection only. 

Chronic PSA infection in those children that had ever isolated P. aeruginosa, was 

also associated with significantly lower Shannon diversity compared to those with 

acute/intermittent infection only (Independent samples t-test (2-tailed) <0.001; GEE 

(n=59) <0.001).  
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Figure 2.7a. Scatterplot of Shannon Diversity by number of Pseudomonas 

aeruginosa isolates in the last three years.  

136 samples from 86 patients; Pearson correlation (2-tailed) <0.001; GEE (n=86) 

<0.001. Increasing numbers of positive isolates of P. aeruginosa is associated with 

significant reduction in Shannon diversity. 
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Figure 2.7b. Mean Shannon Diversity by number of isolates in the last three 

years, amongst children that had isolated P. aeruginosa at least once before 

(+/- 2 SD).  

98 samples from 59 patients; Independent samples t-test (2 tailed) 0.005; GEE (n=59) 

0.016. Significant reduction in mean diversity seen in those with >3 isolates of P. 

aeruginosa in the last 3 years compared to those with <3 isolates. 
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2.4.6.5 Oral therapies 

All patients received oral antibiotics, either as acute oral courses or as prophylactic 

therapy. There were statistically significant correlations between oral antimicrobial 

therapies and Shannon diversity. Diversity was significantly lower in the 55.1% of 

patients receiving azithromycin prophylaxis (Independent samples t-test (2-tailed) 

0.01; GEE (n=86) <0.001).  

 

Diversity is significantly lower in those receiving oral antibiotics within the last two 

years. However, this result is of limited value as there was only patient that did not 

receive oral antibiotics (0.7% of the sample group).  

 

2.4.6.6 Nebulised therapies 

 

Correlation between Shannon diversity and the use of DNase, colomycin and 

tobramycin respectively showed significantly lower diversity index measures for 

patients on these nebulised therapies following analysis with GEE (Table 2.8).   

 

Figures 2.8a, b and c. are scatterplots demonstrating the significant negative 

correlation between duration of nebulised therapy use for DNase, colomycin and 

tobramycin respectively. For all therapies, increased duration of use is associated 

with a reduction in the Shannon diversity index.  

 

  



104 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8a. Scatterplot of Shannon Diversity by duration of use of the 

nebulised mucolytic therapy, DNase, with best line fit.  

103 samples from 64 patients; samples from the same patient are joined by a grey 

line. Line of best fit for all samples in black: R2 linear = 0.063. Pearson correlation (2-

tailed) 0.011; GEE (n=86) 0.043. The box shows the number of samples provided by 

individual patients. Significant negative correlation between duration of DNase use 

and Shannon diversity.  
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Figure 2.8b. Scatterplot of Shannon Diversity by duration of use of the 

nebulised antibiotic therapy, Colomycin in years, with best line fit.  

60 samples from 38 patients; samples from the same patient are joined by a grey line. 

Line of best fit for all samples in black: R2 linear = 0.043. Pearson correlation (2-tailed) 

0.112; GEE (n=86) <0.001. The box shows the number of samples provided by 

individual patients. Significant negative correlation between duration of colomycin use 

and Shannon diversity. 
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Figure 2.8c. Scatterplot of Shannon Diversity by duration of use of the 

nebulised antibiotic therapy, Tobramycin, in years.  

20 samples from 12 patients; samples from the same patient are joined by a grey line. 

Spearman rank (2-tailed) 0.045; GEE (n=86) <0.001. The box shows the number of 

samples provided by individual patients. Significant negative correlation between 

duration of tobramycin use and Shannon diversity. 
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2.4.6.7 Intravenous therapies 

There was a statistically significant correlation between use of intravenous antibiotics 

and Shannon diversity. There was significantly lower diversity seen in the 63.2% of 

patients that received intravenous antibiotics in the two years prior to sampling. The 

scatterplot, Figure 2.9, demonstrates the reducing diversity index with increasing 

days of intravenous therapy over the past two years.  
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Figure 2.9. Scatterplot of Shannon Diversity by number of intravenous 

antibiotic days in the last 2 years, with best line fit. 

136 samples from 86 patients; samples from the same patient are joined by a grey 

line. Pearson correlation (2-tailed) 0.005; GEE (n=86) 0.029. Significant negative 

correlation between duration of intravenous antibiotics received and Shannon 

diversity.
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2.5 Discussion 

 

Chronic pulmonary infection and associated inflammation are the primary cause of 

morbidity and premature death in people with cystic fibrosis. Culture-based 

approaches have historically been the only option available for infection surveillance 

and management, with a focus placed on the testing and identification of a relatively 

small number of bacterial species associated with CF lung infections (Rogers et al. 

2004; Cuthbertson et al. 2020).  

 

More recently, studies using molecular techniques have provided a greater 

understanding of the complexity of the CF lung microbiome (Rogers et al. 2004). 

Culture-independent data has enabled exploration of the polymicrobial bacterial 

community composition within the CF lung. Use of diversity measures, including 

species richness and evenness, and the division into core and satellite species has 

expanded our understanding of the lung metacommunity  (Van Der Gast et al. 2011). 

The value of culture-independent methods is clear, but the implementation of this 

technique is yet to be incorporated into routine clinical practice. In the paediatric 

population, this is in part due to the difficulty of obtaining valid airway samples. 

(Weiser et al. 2022) showed IS adequately reflected the microbiota trends seen in 

BAL samples which are currently considered the gold standard investigation. These 

results validated the use of IS as a non-invasive technique for children of all ages.  

 

This study uses the full dataset of IS samples obtained through the CF-SpIT trial to 

explore trends in microbiota diversity according to the patient’s clinical status. It 

represents the largest study to date using exclusively paediatric IS samples. The 

success of the IS procedure was described by Ronchetti et al. (2018) as 84%, with 

the procedures well-tolerated by almost all children. The current study demonstrates 

the ease of undertaking further in-depth analysis using sequencing, with a success 

rate of 96% of samples. 
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A clinical database was successfully compiled from hospital records and enabled 

correlations between clinical measures and diversity data.  The patient population is 

representative of many other CF centres, with similar patterns of lung function decline 

and falling BMI Z-scores with age (Cystic Fibrosis Trust 2019, 2nd February-a). 

 

Trends in community composition amongst adult patients have been linked to clinical 

status measures, such as lung function (Cuthbertson et al. 2020) and pulmonary 

exacerbations (Zemanick et al. 2013). These studies used expectorated sputum and 

BAL samples respectively to demonstrate these relationships. Microbial diversity 

trends using CF SpIT IS samples correlated well with existing evidence from more 

invasive BAL samples in paediatrics and expectorated sputum in adult studies (Harris 

et al. 2007; Cox et al. 2010; Coburn et al. 2015). This suggests that IS represents a 

valid alternative for microbiome surveillance for children in whom sputum 

expectoration is generally not possible and repeated BALs would be unrealistic and 

otherwise unwarranted.  

 

Results from this study show a clear reduction in diversity with increasing age, 

reflecting previous trends seen in non-induced sputum datasets. Authors have 

previously shown that, as with ‘healthy’ infants, children with CF demonstrate 

respiratory microbiota diversification initially, with diversity evolving to pathogen-

centred communities with increasing age (Cox et al. 2010; de Koff et al. 2016).  

 

The current study reported presence/absence of genera at >0% relative abundance, 

based on the higher diversity seen in IS samples compared to BAL samples (Weiser 

et al. 2022). Commonly seen genera included Veillonella, Prevotella, Streptococcus, 

Haemophilus, Granulicatella, Actinomyces and Neisseria, all of which were present 

in >70% of samples. These results from IS samples reflect similar findings reported 

using expectorated sputum samples (Coburn et al. 2015).  

 

Altered patterns of microbiota development have been reported in CF infants as early 

as the first month of life (Prevaes et al. 2016). The decrease in diversity from 

adolescence through to adulthood occurs alongside the long-recognised decline in 

lung function (Caverly et al. 2015; Linnane et al. 2021). Differences between microbial 

communities in CF infants and healthy controls even before the introduction of 

antibiotics or pulmonary exacerbations might suggest that these are inherent to lung 

disease in CF (de Koff et al. 2016). The current study provides data for 13 children 

with CF aged 6 months to 1 year, and 62% have a diverse community. In the 
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remaining infants, there was evidence of Haemophilus and Veillonella dominance, 

similar to that seen in previous studies (Coburn et al. 2015; Prevaes et al. 2016). With 

increasing age, studies have reported clear evidence of increasing relative 

abundance of ‘typical CF pathogens’ such as Pseudomonas, Staphylococcus and 

Haemophilus in older children (Linnane et al. 2021). Within this study, there was a 

high detection of CF pathogens, with 94.9% of IS samples having at least one 

pathogen present. Similar to the paediatric samples from Coburn et al.’s (2015) study, 

Haemophilus was the most commonly identified genera. Other CF pathogens were 

present at variable degrees of relative abundance, but there were also a number of 

patients with clear pathogen dominance.  

 

Interestingly, this study has shown the high numbers of children with at least one 

previous positive airway culture of P. aeruginosa, with significantly lower diversity in 

these patients compared to those with negative cultures for P. aeruginosa. In 

particular, of those that had isolated P. aeruginosa previously, the presence of chronic 

pseudomonas infection was associated with lower diversity. This suggests that the 

microbiota might alter according to acute versus chronic infection, implying that early 

effective treatment and eradication of Pseudomonas infection may help to preserve 

diversity within the CF lung.  

 

This study showed statistically significant correlations between decreasing FEV1 Z-

score and FEV1 % predicted and a reduction in Shannon diversity index. Given this 

was an exclusively paediatric cohort with most children having normal lung function 

(mean FEV1 of 79% predicted), it is interesting to note that trends in decreasing 

diversity with declining lung function are significant enough to show correlation. 

Numerous studies have found correlations between reducing microbial diversity, 

increasing age and declining lung function (Cox et al. 2010; Acosta et al. 2017). 

Results have demonstrated a reduction in the bacterial community’s taxonomic 

richness, evenness and overall diversity with increasing age (Webb et al. 2008; Cox 

et al. 2010). Coburn et al. (2015) showed similar trends in adult patients, with lower 

microbiota diversity in advancing lung disease. However, unlike the current study, 

they did not demonstrate this trend in their paediatric cohort and proposed this was 

most likely due to the less severe lung disease typically seen in children (Coburn et 

al. 2015).  

 

The well-described relationship between lung function and diversity has led to the 

proposal that diversity may be a useful biomarker for disease prognostication. Acosta 
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et al. (2018) reported that CF microbial diversity in 104 young adults was predictive 

of disproportionate lung function decline and progression to end-stage lung disease 

(defined as death/transplantation <25 years) over the ensuing 5 years. The current 

data showed an age-independent association between lung function and diversity 

using IS samples. Decline in lung function is associated with a fall in diversity 

measures, regardless of age. This was an exciting result as it suggests that, even in 

a paediatric population where lung function is generally well-maintained, there is 

sufficient association between diversity and this well-established marker of disease 

severity demonstrated using this sampling technique.  

 

There have been significant advances in CF management and patient outcomes, 

predominantly due to pulmonary and nutritional therapies (West and Flume 2018). 

However, disease-modifying therapies may not only improve disease prognosis, but 

may also support the evolution of an altered microbiome. The precise impact of these 

therapies on the microbiota in still under investigation and many aspects remain 

unanswered.  

 

Antibiotics are key treatments used to prevent and treat recurrent pulmonary 

exacerbations. It is thought that many exacerbations occur following disturbance of a 

previously stable chronic bacterial infection, though it is likely that viruses and newly-

acquired bacterial infections also play a role (Stokell et al. 2015). Within our patient 

group, almost two thirds of children were unwell or had a wet cough at the time of 

sampling, suggestive of a pulmonary exacerbation. There was a significant reduction 

in diversity in the ‘unwell’ group compared to those that were well or cough-free. 

Almost all patients within the current study had received acute courses of oral 

antibiotics within the preceding two years and therefore it is difficult to draw 

conclusions regarding the direct effect of these courses on diversity. However, 

considering the effect of acute intravenous antibiotic courses, there was clear 

evidence of a reduction in diversity for children that had received at least one course 

in the last 2 years. Shannon diversity was also negatively correlated with increasing 

numbers of IV antibiotics days, suggesting that perhaps increasing numbers of 

antibiotic courses have a cumulative effect on diversity. However, this may simply 

reflect the severity of the child’s overall clinical status in terms of increasing age, 

reducing lung function and/or increasing pulmonary exacerbations.   

 

Repeated antibiotic courses may alter the healthy commensals within the respiratory 

microbiome, with evidence showing clear alteration in the abundance of upper 
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respiratory tract commensals following perturbation by antibiotics. Prevaes et al. 

(2016) demonstrated the effect of first antibiotic treatment in their infant group causing 

increased potential pathogens and reduced ‘healthy commensals’ for a number of 

months after therapy. Linnane et al. (2021) showed no significant correlations 

between recent oral or intravenous antibiotic use and alpha diversity measures. 

Acosta et al. (2017) performed a retrospective analysis to explore the impact of 

chronic therapies on the CF microbiota when compared to those samples without 

exposure (Acosta et al. 2017). They showed significant differences for patients 

treated with inhaled colistin and tobramycin and oral ciprofloxacin, but no significant 

changes in community composition for those exposed to inhaled DNase, inhaled 

aztreonam and oral azithromycin (Acosta et al. 2017; Acosta et al. 2018). Linnane et 

al. (2021) showed no association between prophylactic flucloxacillin or long-term 

azithromycin treatment and alpha diversity measures.  

 

The current study shows clear negative correlations between nebulised DNase, 

colomycin and tobramycin and diversity, but no evidence of correlation with 

hypertonic saline or oral fluxcloxacillin use. In contrast to Acosta et al.’s (2017) study, 

there was also a negative correlation between azithromycin use and diversity 

measures. Considering the use of nebulised antibiotics is typically considered for 

children with recurrent positive cultures, most commonly for P. aeruginosa, it is 

possible that the lower diversity within these groups is a reflection of chronic P. 

aeruginosa infection and evolving pathogen dominance. Alternatively, it may be that 

these treatments are also affecting other members of the airway community. It is 

difficult to infer causality from this data, and further longitudinal studies would help 

address these questions.   

 

Though many of the findings are similar to previously published studies, direct 

comparison with this dataset may not be appropriate, as these used alternative airway 

sampling methods such as BAL and nasopharyngeal swabs. However, data 

comparing matched IS and BAL samples from the CF SpIT trial showed a capture 

rate of 50-80% by IS samples, supporting the alignment of these sampling methods 

(Weiser et al. 2022). The technique employed for IS Spit clearly different from other 

lower airway sampling methods and it is likely that sputum induction captures a 

different niche of the lower airway microbiome from BAL (Forton 2015). Blau et al. 

(2014) recognised the higher prevalence and bacterial load of upper respiratory tract 

flora in IS compared to BAL. The authors suggest this is because sputum induction 

is more likely to be contaminated by upper airway secretions during the procedure. It 
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is certainly possible that this may be reflected in the diverse genera seen in many of 

the current study’s samples, but the similarities in trends seen in previous studies 

using alternative airway sampling methods make this potentially less relevant. 

 

As with all microbiota studies, it is important to recognise that culture-independent 

technologies can detect bacterial DNA at extremely low concentrations and DNA from 

known CF pathogens may be present when the culture is negative (ven Belkum et al. 

2000; Flight et al. 2015). This study had a high prevalence of CF pathogens, with at 

least one pathogen identified at >0% relative abundance in 94.9% of samples. 

Though detection of low concentrations of DNA may represent early infection or a 

low-level bystander, this concept raises the question of how we should best define a 

clinically-relevant infection using such sensitive technologies (Weiser et al. 2022). 

Given the relatively low biomass obtained from respiratory samples and the 

associated difficulties with reliable molecular detection, it is important to consider the 

risk of low biomass contamination leading to inaccurate conclusions regarding the 

presence/absence of pathogens (Davis et al. 2018). Mock communities were utilised 

for both 16S rRNA gene bacterial diversity sequencing runs and demonstrated good 

correlation with the relative abundances of taxa within the test samples. This provided 

reassurance that the study results offered accurate microbiota profiling (Weiser et al. 

2022). Comprehensive determination of ‘low biomass’ status was not possible for the 

136 IS samples analysed in this study, as qPCR data were not available. However, 

data comparing IS and BAL samples, incorporating 30 IS samples included within this 

study, showed that patterns were replicated in multiple samples from the same 

individual, supporting a true biological signal (Weiser et al. 2022). Further studies are 

required to understand the relevance of low-level pathogen detection and provide 

guidance to clinicians regarding the level at which treatment should be considered.   

 

This study included a mixture of stable and potentially exacerbating patients. This 

reflects the original CF-SpIT study design, which included BAL sampling. From an 

ethical perspective, performing a bronchoscopy would only be appropriate if there 

was a clinical need for this invasive procedure. Therefore, for most children in whom 

a bronchoscopy (and the concurrent IS sample) is performed, there will have been 

prior clinical concerns, such as recurrent exacerbations or current significant illness 

not responding to standard therapies. It is important to recognise this as previous 

studies have shown differing results in terms of correlation between antibiotic use and 

diversity depending on the clinical status of their patient population at the time of 

sampling (Zemanick et al. 2017; Linnane et al. 2021). 
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There were a number of patients that provided multiple IS samples during the study 

period. Statistical methods (GEE) were used to control for their individual 

contributions to the study. Linnane et al. (2021) had a small sub-set of sequential 

annual BAL samples. Interestingly, they demonstrated variable diversity results at 

different time points for a single patient. Therefore, it would have been useful to further 

explore the data for our patients providing multiple samples and consider whether 

similar patterns could also be seen within this study. Further longitudinal studies 

would be helpful (Goodrich et al. 2014) to expand this dataset further.  

 

Controlling for multiple testing using the Benjamini and Hochberg procedure was 

undertaken as part of the statistical analysis. This was important in recognition that 

performing multiple correlation tests may result in false positive correlations being 

identified. However, most of the existing significant correlations remained statistically 

significant using this method, despite reducing the corrected significance level to a p-

value of 0.02031. The Benjamini and Hochberg procedure decreases the false 

discovery rate and therefore reduces type I errors. It is considered less conservative 

than the Bonferroni correction, which was also provided, but preferable as it is less 

likely to increase type II errors.  

 

Despite the limitations reported above, this study also has many clear strengths. It 

provides a large dataset of IS samples for microbiota analysis. The sequencing 

success rate was excellent and significantly better than many previous studies 

(Zemanick et al. 2017; An et al. 2018). The clinical database was collated using 

multiple patient sources to ensure complete data collection. The approach to 

sampling, DNA extraction and microbiota analysis was in line with previously 

published, robust microbiome studies (Zemanick et al. 2017; Linnane et al. 2021).  

 

The CF-SpIT study validated sputum induction as a non-invasive, well-tolerated 

reliable tool for assessing the conventional microbiology of the lower airway 

(Ronchetti et al. 2018b). As a result, many centres in the UK are now performing 

sputum induction routinely, with centres in Europe, the USA and Australia also 

incorporating this technique into routine practice. The benefit for children has been 

well-described, but there is also increasing interest amongst adult physicians whose 

patients are no longer spontaneously expectorating due to effective modulator 

therapy. A follow-on study by (Weiser et al. 2022) demonstrated that IS could also 

provide adequate sampling for culture-independent microbiota analysis. The current 

work has built on these studies, providing the largest dataset of induced sputum 
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samples in children with CF. Data has clearly demonstrated that diversity output from 

IS samples aligns well with published literature, with similar trends in clinical 

correlations seen in BAL and expectorated sputum samples. 

 

As a non-invasive and effective method, IS provides the potential for frequent serial 

sampling from children of all ages. Monitoring changes in diversity over time may 

represent a new tool for disease monitoring, like FEV1 in current practice, and 

eventually could be considered part of routine assessment for all children. This 

technique is ideally placed for use in longitudinal studies of the lower airway 

microbiota. Its use could be wide-reaching, including studying microbiota evolution in 

large paediatric datasets, introduction of microbiota profiling and prognosticating for 

children with CF, and potentially incorporation into new clinical trial protocols as a 

mechanism for monitoring responses to novel therapies.  

 

This study has demonstrated clear correlations between patient’s clinical features and 

Shannon diversity. The existing dataset could be used to explore other diversity 

measures, including inter-patient variability. In particular, it would be beneficial to 

consider the genera present using hierarchical clustering and whether patients can 

be allocated to clearly-defined clades. Using these clades, it would be interesting to 

compare diversity measures and clinical features to see if these are affected. This 

could be undertaken using simply pathogen-diverse versus pathogen-dominant 

clades, or potentially using CF pathogen-specific clades for comparison. 

Furthermore, previous studies have explored the relationship between inflammatory 

markers and diversity in BAL samples (Linnane et al. 2021) and it would be useful to 

review this using the current IS samples.  

 

Longitudinal studies using this patient group, plus ideally additional patients from 

other CF centres, would be useful to expand on trends seen in this study. Key 

questions include what level of relative abundance should be considered indicative of 

infection and is a pathogen presence/absence precise enough to inform clinical 

decisions? Should we have different thresholds for samples obtained from BAL 

versus IS? Considering sputum induction likely represents a different lower airway 

niche from BAL, should it be used as an additional investigation rather than a 

replacement of BAL sampling? What effects are patient therapies, such as CF 

modulators and novel treatments like OligoG CF-5/20, having on the lung microbiome 

and do these effects matter? Given the differences between the paediatric and adult 

CF microbiome, do we have a window of opportunity to intervene (de Koff et al. 2016) 
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and could we use the microbiota to guide us? Answering these questions might also 

improve our understanding of patterns of infection, enable earlier disease 

intervention, and improve outcomes for children in later life.  
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2.6 Conclusion  

 

It is likely that establishing the lung microbiota is just one piece of a complicated 

puzzle in understanding cystic fibrosis. This research demonstrates the use of a non-

invasive airway sampling method, with excellent sequencing success and trends in 

diversity and clinical correlations which match those of previously published studies 

performed using invasive techniques. The opportunities that IS microbiota analysis 

may provide for improving the knowledge-base, treatment options and overall health 

for children with CF are exciting and warrant further research. 

  

If, as a scientific and medical community, we agree that microbiota analysis has a 

significant part to play in the clinical care of our patients, we need a less invasive 

method to obtain this data. Induced sputum sampling should be considered a strong 

contender.  
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Chapter Three  

Mucin structural interactions with OligoG CF-5/20 in 

cystic fibrosis sputum 
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3.1 Introduction  

 

Cystic fibrosis is associated with increased airway secretions and poor mucus 

clearance. There appear to be multiple factors within CF sputum and the CF airways 

which contribute to the overall disease phenotype.  

 

The physical properties of CF sputum are affected by the polymeric mucins, as well 

as the cell surface-bound mucins, host DNA and actin, inflammatory cells, bacteria 

and viruses (Voynow and Rubin 2009; Ehre et al. 2014). Alterations in mucin terminal 

carbohydrate moieties are associated with respiratory disease. CF mucins have been 

shown to possess increased levels of fucose, galactose, GlcNAc (Bhat et al. 1996), 

sialic acid and sulphate (Davril et al. 1999; King and Rubin 2002). Increases in 

glycosylation and branching in CF mucins result in a higher tendency to ‘gel’ and 

obstruct mucociliary transport in vivo (Bhat et al. 1996).   

 

3.1.1 Mucins and therapeutics 

 

Mucins play an important role in the innate immune system, providing a physical 

barrier to chemical, enzymatic and mechanical insults (Linden et al. 2008). Though 

key in defence, mucins may actually hinder drug delivery by binding to inhaled agents 

and removing them through mucociliary clearance (Widdicombe 1997; Taherali et al. 

2018). Methods to disrupt these muco-adhesive interactions, allowing crossing of the 

mucin-protective layer of the lung, would greatly improve drug delivery (Bansil and 

Turner 2006). Muco-adhesive systems aim to prolong contact of the required drug at 

the target site. Mechanisms to enable this require interaction with the mucin 

glycoprotein through disulphide bonding, hydrogen bonding, and electrostatic and/or 

hydrophobic interactions (Taherali et al. 2018). 

 

The choice of the mucin experimental system used to test therapeutics is important. 

Numerous authors have demonstrated the limitations of commercially-produced 

mucins (Wagner et al. 2018), which are typically reconstituted mucin gels. Studies 

have shown that such gels have significant structural differences compared to native 

mucin, and though they often have less heterogeneity, the pattern of diffusion and 

interactions with key ions such as calcium do not reflect naturally-occurring mucus 

(Wagner et al. 2018). Due to these limitations, this study incorporated the use of 



121 
 

human sputum, which it is hoped will more closely represent the mucus seen in vitro 

within the CF lung environment.  

 

3.1.2 Alginate oligomers 

 

Previous in vitro studies of OligoG CF-5/20 have demonstrated its ability to alter the 

viscoelastic properties of mucin/alginate gels, mucin/DNA gels and CF sputum 

(Nordgård and Draget 2011; Pritchard et al. 2016b).  OligoG CF-5/20 interacts with 

respiratory mucins, inducing alterations in mucin surface charge and porosity 

(Pritchard et al. 2016b). High MW alginates, as secreted by virulent CF respiratory 

bacteria such as a mucoid P. aeruginosa, increase the elasticity and viscosity of 

mucus, whilst conversely, low Mw alginates have been shown to reduce the bulk 

elasticity and viscosity of mucus (Sletmoen et al. 2012).  Further studies are indicated 

to better understand how OligoG CF5/20 is able to alter CF sputum viscoelasticity.   

 

3.1.3 Fourier transform infrared spectroscopy (FTIR)  

3.1.3.1 Using FTIR for sputum analysis 

Sputum is a complex biological material containing numerous biochemical 

substances. FTIR should in theory be able to create a distinct infrared ‘fingerprint’ and 

enable visualisation of the chemical bonds present within sputum (Whiteman et al. 

2008). Mucus, and its associated glycans and glycosylated structures, predominate 

the sputum spectrum, facilitating effective analysis using FTIR. By accessing spectral 

libraries, the associated biological components can then be identified and 

comparisons made between different sputum samples. 

 

Results suggest FTIR has high sensitivity and specificity in diagnosing disease using 

bronchoalveolar lavage and induced sputum samples (Lewis et al. 2010). Whiteman 

et al. (2008) used FTIR to compare the spectral profiles of induced sputum samples 

between patients with chronic obstructive pulmonary disease (COPD) and healthy 

volunteers. They demonstrated clear differences, with shifts in peak position and 

altered intensity, particularly in the amide and glycogen rich regions (Whiteman et al. 

2008). Such differences were hypothesised to be related to airway inflammation, 

bacterial presence and pharmacological treatments for COPD (Whiteman et al. 

2008).  
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Lewis et al. (2010) demonstrated significant changes in wavenumber in sputum 

samples which enabled discrimination between lung cancer sputum and healthy 

control sputum. In particular, increased absorbance was noted again in the glycogen 

rich region, amide I and II regions and with bonds associated with nucleic acids (Lewis 

et al. 2010). The authors proposed these changes may be directly related to structural 

changes caused by lung cancer, and could enable use of FTIR as a diagnostic tool 

for lung cancer. 

 

Lewis et al. (2013) also explored the secondary structure of mucin using Attenuated 

total reflectance (ATR)-FTIR analysis of bovine salivary mucin. Results showed the 

combination of secondary structures in the protein backbone of mucins, including β-

sheet, β-turns and random coil, and their associated wavenumbers (Lewis et al. 

2013b). The spectral library created described a range of mucin sugars, with different 

glycosylation patterns, as well as Lewis antigens (Lewis et al. 2013a). These studies 

support the use of FTIR as a useful tool for characterising alterations in mucin 

structures following exposure to respiratory therapeutics. 

 

3.2 Aims 

 

This study uses Attenuated Total Reflectance Fourier-transform infrared 

spectroscopy (ATR-FTIR) to examine direct physicochemical interactions of OligoG 

CF-5/20 with the mucin component of CF sputum, in order to better understand how 

it is able to alter CF sputum viscoelasticity.   

 

Using mucin infrared (IR) profiles from a published spectral library (Lewis et al. 

2013a), this study aims to identify key IR wavelengths and use these to describe the 

structural changes and electrostatic interactions that occur within mucin glycan 

moieties and peptide backbone following ex vivo OligoG CF-5/20 treatment of CF 

sputum samples.  
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3.3 Materials and methods 

 

3.3.1 Patient samples 

 

Induced sputum samples were collected from paediatric patients with CF taking part 

in the CF SpIT trial. As previously described, informed written consent was obtained 

(CF Sputum Induction Trial [CF-SpIT] UKCRN: 14615) and study approval from the 

Cardiff and Vale Research Ethics Committee was established. Samples were 

collected by expectoration, after which they were stored by freezing at -80°C.  Prior 

to subsequent use, sputum samples were defrosted overnight at 4°C.  

 

3.3.2 Alginate oligosaccharide (OligoG CF-5/20)  

 

OligoG CF-5/20 was produced from the stem of brown seaweed Laminaria 

hyperborea and provided by AlgiPharma AS (Sandvika, Norway). OligoG CF-5/20 

has a high guluronate content (>85%) and a mean degree of polymerisation (Dpn) of 

16. The synthesis of OligoG CF-5/20 is described in detail elsewhere (Khan et al. 

2012c), but in short requires a process of purification and fractionation, further 

purification using charcoal filters then spray drying. Phase 1 studies have confirmed 

safe working concentrations of 2% to 10% (Khan et al. 2012c). The concentration of 

0.2% OligoG CF-5/20 (v/v) was utilised for FTIR analysis reflecting the previous pilot 

study (Pritchard et al. 2016b). 

 

3.3.3 FTIR of CF sputum 

 

FTIR analysis was performed on CF patient sputum samples (n=13) treated with 0.2% 

OligoG CF-5/20 (v/v) or dH2O (v/v). CF sputum samples were divided in half and 

treated with 0.2% (v/v) OligoG CF-5/20 or dH2O (control) prior to centrifugation at 

4000 rpm for 5 mins prior to incubating statically at 37°C for 60 mins  (Pritchard et al. 

2016a). Reference spectra of 0.2% OligoG CF-5/20 in dH2O were also generated.  

 

Following incubation, 3 µl of each sample was pipetted in triplicate onto a 96-well 

silicon plate (Bruker Optics Inc., Coventry, UK). Following drying at room temperature 

(1 hour), high-throughput FTIR analysis was performed using a Bruker Vertex 70 in 

transmission mode with a KBr beamsplitter, DTGS detector and HTS-XT attachment. 
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Spectra were acquired within the range of 4000-400cm-1, at a resolution of 4cm-1 with 

each spectrum being the averaged result of 32 scans. Each silicon plate was scanned 

in triplicate to ensure technical reproducibility of individual sample spectra. With 

thanks to Dr Manon Pritchard and Dr Charles Bright who helped with sample 

processing. 

 

3.3.4 FTIR data processing and analysis  

 

All data processing, analysis and visualisations were performed using Bruker OPUS 

7.5 software with data subsequently analysed in Microsoft Excel. The whole infrared 

spectra were pre-processed prior to further analysis by baseline correction using the 

automatic ‘rubberband’ correction and vector normalisation. Absorbance spectra 

were smoothed using a nine-point Savitzky-Golay algorithm and second derivative 

spectra were calculated using a 9-point window (Lewis et al. 2010; Baker et al. 2016).  

 

Based on the previously-published mucin glycosylation IR spectral library (Lewis et 

al. 2013a), the ‘fingerprint’ spectral region (absorbance values between 

wavenumbers 1800 and 900 cm-1) was assessed. The peak picking algorithm 

provided by the OPUS 7.5 was used to identify predominant peaks within samples. 

Statistically significant differences between peak positions or absorbance intensity at 

key wavenumbers in treated and control CF sputum samples were determined using 

the Mann-Whitney U Test. The R-statistical computing environment was utilised for 

this statistical analysis, using in-built algorithms and code developed previously. All 

data processed using the R-statistical package was undertaken by Dr Charles 

Brilliant. 
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3.4 Results 

 

3.4.1 Analysis of clinical samples 

 

FTIR samples were collected from 13 patients (mean age 13.1 years; range 7-17 

years; male to female ratio, 9:4 respectively). Mean FEV1 % predicted was 71.9% 

(range 47 to 99%) and FEV1 Z-score for age ranged from -0.1 to -4.5. All patients 

had previously isolated Pseudomonas aeruginosa, with 5/13 positive with the current 

sample (Table 3.1). All patients were using the nebulised therapy DNase to aid 

mucociliary clearance.  

 

All patients (except one) who provided induced sputum samples were taking 

antibiotics (Table 3.1). No correlation was found between the wavenumber changes 

reported here and antibiotic use, sex, age, use of DNase or FEV1. 
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Table 3.1. Patient data for sputum samples at time of sampling   

 

 

Patient 
Age 

(Years) 
Sex Antibiotics 

Cultured Pathological Bacteria  

(Isolated in past 12 months) 

FEV1 % predicted  

(Z score) 

BMI centile 

(Z score)  

1 16 M AZM, FLC H. influenzae, S. aureus, S. maltophilia,  62 (-3.2) 25 (-1.2) 

2 17 M 
AZM, CST

IV
, FLC, DOX, MEM

IV
, 

TOB
neb

 

H. influenza, S. aureus, S. maltophilia,  * 9 (-1.93) 

3 14 F AZM, CLR, ETB, RIF S. maltophilia 64 (-3.0) 9 (-1.7) 

4 15 F AZM, CLM
neb

 FLC P. aeruginosa 87 (-1.1) 50 (0.42) 

5 15 M AZM, CLM
neb

 FLC P. aeruginosa, S. aureus 75 (-2.0) 25 (-0.99) 

6 9 M AZM, FLC, CLM
neb

/TOB
neb

 S. marcescens, S. aureus 84 (-1.3) 91 (1.23) 

7 16 F AZM, CLM
neb

 H. parainfluenzae 64 (-2.9) 25 (-0.53) 

8 14 M CLR, MIN, MEM
neb

, MXF  M. abscessus 57 (-3.5) 50 (0.2) 

9 14 M AZM H. influenzae, MRSA, S. aureus 64 (-2.9) 91 (1.23) 

10 11 M AZM, CLM
neb

 P. aeruginosa, MRSA 47 (-4.5) 50 (-0.49) 

11 11 F  B. cenocepacia 99 (-0.1) 98 (1.96) 

12 12 M AZM P. aeruginosa (mucoid) 78 (-1.8) 50 (0.34) 

13 7 M AZM, FLC, CLM
neb

/TOB
neb

 
B. cenocepacia, P. aeruginosa, S. maltophilia, 

S. aureus 
81 (-1.5) 

 

91 (1.85) 



127 
 

Table 3.1 

Clinical data from 13 patient samples. Details include age, gender, antibiotic use, 

culture positivity over the last 12 months, lung function and growth. There were no 

correlations identified between wavenumber and clinical features listed.  

 

Abbreviations:  

M, male; F, Female; BMI centile, body mass index (kg/m2) centile; FEV1, forced 

expiratory volume in one second; IV, intravenous antibiotic; Neb, nebulised 

antibiotic. 

Antibiotics: AZM, azithromycin; CLR, clarithromycin; CST, colistin; CLM, colomycin; 

DOX, doxycycline; ETB, ethambutol; FLC, flucloxacillin; MEM, meropenem; MIN, 

minocycline; MXF, moxifloxacin; RIF, rifampicin; TOB, tobramycin. 

Bacteria: B. cenocepacia, Burkholderia cenocepacia; H. influenzae, Haemophilus 

influenzae; H. parainfluenzae, Haemophilus parainfluenzae; M. abscessus, 

Mycobacterium abscessus; M. avium-intracellulare, Mycobacterium avium-

intracellulare, P. aeruginosa, Pseudomonas aeruginosa; S. aureus, Staphylococcus 

aureus; S. maltophilia, Stenotrophomonas maltophilia; S. marcescens, Serratia 

marcescens; MRSA, methicillin resistant S. aureus.  

 

* Missing data 
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3.4.2 Sputum and OligoG CF-5/20 spectra 

 

FTIR was used to generate absorbance spectra between wavenumbers 4000 to 400 

cm-1 to establish biochemical changes following 0.2% (v/v) OligoG CF-5/20 incubation 

with CF sputum samples. Analysis was then performed on infrared (IR) wavenumbers 

within the 1800 to 900 cm-1 ‘fingerprint’ region to focus on key structural changes in 

mucin proteins and associated glycosylation.   

 

Figure 3.1a shows the mean absorbance spectra for both untreated and treated CF 

sputum samples, highlighting the wavenumber regions where IR absorbance patterns 

were altered post-treatment, as indicated by a shift up or down in wavenumber. The 

spectra were aligned with a representative OligoG CF-5/20 IR spectrum to easily 

identify regions of absorbance change that occurred due to OligoG CF-5/20 being 

present in the samples.  

 

Raw absorbance IR spectra are a series of many peaks merged into broad peaks and 

used to determine the exact position of peak changes between untreated and OligoG 

CF-5/20 treated sputum spectra. Meanwhile, second derivative spectra are used to 

enhance the separation of any overlapping peaks and study these areas in closer 

detail. Comparisons were made of treated and untreated CF sputum second 

derivative spectra with a second derivative spectrum of 0.2% (v/v) OligoG CF-5/20 

alone (Figure 3.1b). This allowed determination of potential structural changes or 

interactions at key mucin peaks following OligoG CF-5/20 incubation of CF-patient 

sputum.  
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Figures 3.1a and b. Raw absorbance and second derivative infrared spectra for untreated and OligoG CF-5/20 treated sputum.  

 

Figure 3.1a. Mean infrared (IR) spectra from the 1800 cm-1 to 900 cm-1 IR wavenumber region of: untreated CF sputa; treated CF 

sputa; and OligoG CF-5/20 in water.  

Baseline-corrected, vector-normalised absorbance spectra. Treated sputum (n=13, 3 replicates), solid grey line; untreated sputum (n=13, 3 

replicates), black dashed line; OligoG CF-5/20 (n=3), solid black line. This shows the mean absorbance spectra for both untreated and treated 

CF sputum samples, highlighting the wavenumber regions where IR absorbance patterns were altered post-treatment. The spectra were aligned 

with a representative OligoG CF-5/20 IR spectrum. 
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Figure 3.1b. Mean second derivative spectra for untreated and OligoG CF-5/20- treated sputum. 

Baseline-corrected, vector-normalised absorbance spectra. The peaks are negative and point down in second derivative IR spectra.  

Treated sputum (n=13, 3 replicates), solid grey line; untreated sputum (n=13, 3 replicates), black dashed line; OligoG CF-5/20 (n=3), solid black 

line. Comparisons were made of treated and untreated CF sputum second derivative spectra with a second derivative spectrum of 0.2% (v/v) 

OligoG CF-5/20 alone. This allowed determination of potential structural changes or interactions at key mucin peaks following OligoG CF-5/20 

incubation of CF-patient sputum.  
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3.4.3 Mucin glycan changes in the presence of OligoG CF-5/20 

 

The untreated sputum spectrum demonstrated a major glycan-associated peak at 

1078 cm-1 (Figure 3.2a). This peak shifted to 1070 cm-1 in the OligoG CF-5/20 treated 

sputum spectrum, and no peak was evident in the OligoG CF-5/20 only spectrum at 

the same wavenumbers. Figure 3.2b shows that the distributions of major glycan-

associated peak apex positions for all samples in the OligoG CF-5/20 treated sputum 

spectrum were significantly different from the untreated control samples (Table 3.2, 

p-value <0.05).  

 

A peak at 1053 cm-1 was completely lost following sputum treatment with OligoG CF-

5/20, although comparison with the OligoG CF-5/20 only reference spectrum shows 

the clear presence of a peak maxima. This suggests that the second derivative peak 

loss at 1053cm-1 may not be indicative of interaction between OligoG CF-5/20 and the 

sputum mucins, rather it could purely be indicative of OligoG CF-5/20 being present 

in the sample masking the presence of 1053cm-1. 
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Figure 3.2a. Mean second derivative spectra for OligoG CF-5/20 treated and untreated sputum within the 1040 cm-1 to 1090 cm-1 

wavenumber range indicating IR absorbance from mucin glycans and OligoG CF-5/20.  

Baseline-corrected, vector-normalised absorbance spectra. The peaks are negative and point down in second derivative IR spectra. Treated 

sputum (n=13, 3 replicates), solid grey line; untreated sputum (n=13, 3 replicates), black dashed line; OligoG CF-5/20 (n=3), solid black line.  

The OligoG CF-5/20 spectrum has been scaled by a factor of 5 to facilitate visualisation of all spectra in the plot. Spectra show IR peak at 1078 

cm-1 shifted to 1070 cm-1 following OligoG CF-5/20 incubation and the peak at 1053 cm-1 in the untreated spectrum was completely lost.  
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Figure 3.2b. Boxplots of second derivative peak apex positions between 1080 

cm
-1

 and 1060 cm
-1. 

Baseline-corrected, vector-normalised absorbance spectra. Boxplots show the 

distributions of second derivative peak apex positions centred around 1078 cm
-1
 and 

1070 cm
-1
 in untreated (light grey box) and treated (dark grey box) samples 

respectively.  *P <0.008, mean of n=13 sputum samples for treated and untreated 

groups; 3 replicates.  

Statistically significant differences between peak positions in treated and untreated 

CF sputum samples were determined using the Mann-Whitney U Test. 
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Table 3.2. Results of Paired Mann-Whitney U tests for differences of means in absorbance intensity at the specified wavenumbers 

and peak position around the wavenumbers.  Mean of n=13 treated and untreated groups; 3 replicates, * p-value =<0.05.  

 

 

 

 

  

 

Structural Interaction 
Wavenumbers (cm

-1
) Peak Shift or Absorbance Change p-value 

 

 

Random coil 

1652 

Second Derivative Peak Shift 0.3591 

Second Derivative Absorbance Change 0.1793 

 

 

β-sheet 

1637 

Second Derivative Peak Shift 0.1070 

Second Derivative Absorbance Change 0.01876* 

 

 

Sulphated-Lewis x 

1240 

Peak Shift 0.4973 

Absorbance Decrease in Treated Group 0.0078* 

 

 

Sulphated-Lewis x 

 

1116 

Peak Loss in Treated CF Sputum 3.436e-11* 

Second Derivative Absorbance Change 7.105e-15* 

 

 

Mucin glycans 

1080 

Peak Shift 0.0002* 

Absorbance Change 0.1055 
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3.4.4 OligoG CF-5/20 interactions with the Lewis x antigen 

 

The absorbance at 1116 cm-1 was lost following OligoG CF-5/20 treatment (Figure 

3.3a), suggesting an interaction of OligoG CF-5/20 with the sulphated-Lewis x antigen 

(Lewis et al. 2013a).  This trend was seen across all samples (Figure 3.3b), with a 

statistically significant change in absorbance (Table 3.2).  

 

The absorbance at, and peak positions around, 1240 cm-1, was also examined as this 

wavenumber is also indicative of absorbance by the sulphated-Lewis x antigen (Lewis 

et al. 2013a) (Figure 3.4a). A small shift in peak position towards lower wavenumbers 

in the OligoG CF-5/20 incubated sputum spectra, relative to untreated control sputum 

spectra was observed (Figure 3.4b). Additionally, a statistically significant decrease 

in absorbance was observed at 1240cm-1 in the incubated sputum spectra (Figure 

3.4c, Table 3.2).   
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Figure 3.3a.  Mean second derivative spectra for OligoG CF-5/20 treated and untreated sputum surrounding 1116 cm-1 indicating IR 

absorbance from sulphated-Lewis antigen.  

Baseline-corrected, vector-normalised absorbance spectra. The peaks are negative and point down in second derivative IR spectra. Treated 

sputum (n=13, 3 replicates), solid grey line; untreated sputum (n=13, 3 replicates), black dashed line; OligoG CF-5/20 (n=3), solid black line.  

The IR peak at 1116 cm-1 was lost following OligoG CF-5/20 incubation.  The new peak occurring at 1096 cm-1 in the treated spectrum is 

suggestive of interaction between OligoG CF-5/20 and sulphated-Lewis antigen.  
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Figure 3.3b. Boxplots of second derivative negative peak height distributions 

centred around 1116 cm-1 in untreated and treated samples respectively.  

* p-value <0.05, mean of n=3 replicates  

Baseline-corrected, vector-normalised absorbance spectra. Statistically significant 

differences between peak height distributions in treated (dark grey box) and untreated 

(light grey box) CF sputum samples were determined using the Mann-Whitney U Test.  

P <0.008, mean of n=13 sputum samples for each group; 3 replicates.  
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Figure 3.4a. Mean raw absorbance at 1240 cm-1 of untreated and treated samples showing lower absorbance in the treated sputum 

spectrum.  

Baseline-corrected, vector-normalised absorbance spectra. Treated sputum (n=13, 3 replicates), solid grey line; untreated sputum (n=13, 3 

replicates), black dashed line; OligoG CF-5/20 (n=3), solid black line.  
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Figure 3.4b. Boxplots showing the distribution of wavenumbers in untreated 

and treated samples centred around 1240 cm-1.  

Baseline-corrected, vector-normalised absorbance spectra. Boxplots show the 

distributions of wavenumber in untreated (light grey box) and treated (dark grey box) 

sputum samples respectively.  Mean of n=13 sputum samples for treated and 

untreated groups; 3 replicates. Statistically significant differences between 

wavenumber distribution were determined using the Mann-Whitney U Test. 

A small shift in peak position towards lower wavenumbers in the OligoG CF-5/20 

incubated sputum spectra, relative to untreated control sputum spectra was observed 
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Figure 3.4c. Boxplots showing the relative absorbance in untreated and 

treated samples centred around 1240 cm-1.   

Baseline-corrected, vector-normalised absorbance spectra. Boxplots show the 

distributions of wavenumber in untreated (light grey box) and treated (dark grey box) 

sputum samples respectively.  Mean of n=13 sputum samples for treated and 

untreated groups; 3 replicates. Statistically significant differences between 

wavenumber distribution were determined using the Mann-Whitney U Test; * p-value 

<0.008. A statistically significant decrease in absorbance was observed at 1240cm-1 

in the incubated sputum spectra 
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3.4.5 Mucin protein backbone changes in the presence of OligoG CF-5/20 

 

The Amide I region between wavenumbers 1628 cm-1 and 1664 cm-1 was examined 

for potential interactions between OligoG CF-5/20 and the mucin peptide backbone, 

including areas representative of the protein secondary structures. This range was 

selected to include those peaks related to the random coil (1652 cm-1) and β-sheet 

(1637cm-1) secondary structures that predominate in sputum mucins and to avoid 

amino sugar absorbance at 1626 cm-1 (Figure 3.5a) (Lewis et al. 2013b).  

 

No statistically significant (p-value >0.05) shifts in peak position around 1652cm-1 

were observed (Figure 3.5b i). However, there was a significant decrease in second 

derivative peak height at 1637 cm-1 (p-value <0.05) in the OligoG CF-5/20 treated 

samples, suggesting potential interaction between the β-sheet structures of the mucin 

protein backbone (Figure 3.5c ii, Table 3.2). 
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Figure 3.5a. Mean second derivative spectra for OligoG CF-5/20 treated and untreated sputum within the Amide 1 region between 

1628 cm−1 and 1664 cm-1.  

Baseline-corrected, vector-normalised absorbance spectra. The peaks are negative and point down in second derivative IR spectra. Treated 

sputum (n=13, 3 replicates), solid grey line; untreated sputum (n=13, 3 replicates), black dashed line; OligoG CF-5/20 (n=3), solid black line.  

A wavenumber shift at 1652 cm-1 related to random coil secondary structure and absorbance change at 1637 cm-1 related to β-sheet structure 

were observed.  
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Figure 3.5b. Boxplots showing the distribution of peak positions in untreated 

and treated samples centred around i)1652 cm-1 and ii) 1637 cm-1.  

 

Baseline-corrected, vector-normalised absorbance spectra. Boxplots show the 

distributions of peak positions in untreated (light grey box) and treated (dark grey box) 

sputum samples respectively.  Mean of n=13 sputum samples for treated and 

untreated groups; 3 replicates. Statistically significant differences between peak 

positions were determined using the Mann-Whitney U Test. No statistically significant 

(p-value >0.05) shifts in peak position around 1652cm-1 were observed. See overleaf. 

 

 

Figure 3.5c. Boxplots showing the distribution of second derivative 

absorbance in untreated and treated samples centred around i)1652 cm-1 and 

ii) 1637 cm-1.  

 

Baseline-corrected, vector-normalised second derivative absorbance spectra. 

Boxplots show the distribution of second derivative absorbance in untreated (light 

grey box) and treated (dark grey box) sputum samples respectively.  Mean of n=13 

sputum samples for treated and untreated groups; 3 replicates. Statistically significant 

differences between absorbance were determined using the Mann-Whitney U Test. 

There was a significant decrease in second derivative peak height at 1637 cm-1 (p-

value <0.05) in the OligoG CF-5/20 treated samples, suggesting potential interaction 

between the β-sheet structures of the mucin protein backbone. See overleaf. 
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Figure 3.5b. Boxplots showing the distribution of peak positions in untreated 

and treated samples centred around i)1652 cm-1 and ii) 1637 cm-1.  

 

Figure 3.5c. Boxplots showing the distribution of second derivative 

absorbance in untreated and treated samples centred around i)1652 cm-1 and 

ii) 1637 cm-1.  
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3.5 Discussion 

 

Mucus provides a vital barrier for the human airways, preventing water loss and 

removing unwanted substances, such as microbes, foreign particles and 

inflammatory cells (Ma et al. 2018). Mucus stasis, as seen in CF, results in plugging 

of the smaller airways, chronic bacterial infection and airway inflammation leading to 

bronchiectasis (Ehre et al. 2014; Taherali et al. 2018). The combination of inadequate 

airway hydration and defective HCO3- -mediated post-secretory mucin expansion is 

likely to be the cause of airway obstruction seen in CF (Ehre et al. 2014). 

 

A wide range of ‘mucoactive’ therapies are being developed and approved for use in 

CF. These agents are compounds which alter the biophysical properties of mucus, 

but may not act specifically on mucin (Morrison et al. 2019). Mucus represents a key 

pharmacological target, regardless of the patient’s genotype or inflammatory status, 

therefore making these pharmacotherapies potentially universally useful within the 

CF population (Morrison et al. 2019). By focusing on altering, and potentially 

normalising, the properties of CF mucus, it may be possible to reduce the chronic 

bacterial infections typically seen in this disease, and reduce the need for 

antimicrobial therapies.  

 

Interaction between alginate and gel-forming mucins has been shown to be 

electrostatic in nature and can result in weak viscoelastic gels which are thermostable 

and rheologically reversible (Taylor et al. 2005). Such gels likely contain mucin-mucin 

and mucin-alginate interactions, with the latter being electrostatic (Taylor et al. 2005). 

Two potential mechanisms for these interactions and the resultant reduction in 

network cross-linking are proposed: either direct competitive inhibition of cross links 

between polymers; or through altering the intramolecular interactions within polymer 

chains so that interpolymer cross-links are less likely, potentially through 

conformational changes (Nordgård and Draget 2011). The authors proposed that the 

introduction of low molecular weight alginate oligomers, such as OligoG CF-5/20, 

would disrupt these gels by effectively competing for the binding sites on mucins 

previously occupied by high molecular weight alginates, including those produced by 

P. aeruginosa (Nordgård and Draget 2011). This would modify sputum rheology and 

potentially improve mucociliary clearance in CF patients (Nordgård and Draget 2011; 

Sletmoen et al. 2012). It also raises the potential for OligoG CF-5/20 to aid drug 
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delivery via the respiratory mucosa, using the described mechanisms (Nordgård et 

al. 2014).          

 

In vitro studies by Pritchard et al. (2016) used a range of techniques to interrogate 

the ability of OligoG CF-5/20 to disrupt the mucosal barrier. The authors 

demonstrated modification in mucin surface charge using electrophoretic light 

scattering (zeta potential), and increased pore size within the mucin network using 

atomic force microscopy and scanning electron microscopy imaging (Pritchard et al. 

2016b). In silico Molecular Dynamic (MD) computer simulations were performed to 

try and predict the interactions between the structure of MUC5AC and a 12 DPn 

length G-rich alginate oligosaccharide. Results hypothesised that the alginate would 

bind to both glycan structures and the MUC5AC peptide backbone (Pritchard et al. 

2016b). The study demonstrated bonding between the G-alginate oligosaccharide 

and the mucin’s peptide backbone (N- or O-atoms) and between the N-atoms from 

the amide group in the GalNAc structure. There was also evidence of bonding with 

hydroxyl groups in the sugar rings of the glycan chains (Pritchard et al. 2016b). This 

study sought to provide a greater understanding of the exact structural sites at which 

OligoG CF5/20 may be acting within the sputum samples in order to effect such 

conformational changes to the mucin structure. 

  

Altered mucin glycosylation patterns in CF patients enables formation of epitopes, 

which are recognised by bacteria as potential high-affinity binding sites, and 

theoretically may contribute to pathogenicity and chronic infection (Shori et al. 2001). 

There is an increased capacity for adhesion, cell-cell/cell-protein interactions, and 

potentially colonisation by bacteria, such as P. aeruginosa (Venkatakrishnan et al. 

2015). In addition to bacteria, the host’s inflammatory leucocytes may also recognise 

these sulphated ligands, leading to an inflammatory response and increased 

pathogenesis of P. aeruginosa respectively (Ramphal and Arora 2001; Xia et al. 

2005).  

 

The most prevalent epitope in CF sputum is sialyl Lewis x. There is evidence of 

interaction between this epitope and bacteria and viruses, as well as a correlation 

with disease severity (Davril et al. 1999; Degroote et al. 1999). The addition of fucose, 

a key structural component of the Lewis x epitope, alters mucin solubility and 

mucociliary clearance (Lewis et al. 2013a). This study demonstrated a statistically 

significant change in the sulphation peak in OligoG CF-5/20 treated sputum samples. 

Results suggest that OligoG CF-5/20 was able to bind to the sulphate moieties on the 



148 
 

glycans, including the sulphated Lewis x antigen. Clinically, this supports the use of 

OligoG CF-5/20 to counteract the effects of pathogen recognition and binding, and 

therefore potentially reducing both acute and chronic infections  (Robinson et al. 

2012).   

 

Pritchard et al. (2016) also piloted the use of FTIR to further characterise mucin-

OligoG interactions. Results suggested there was interaction with the mucin peptide 

backbone at the site of the carbonyl group within the peptide link. This was 

demonstrated in the alteration of peak position in the Amide I region of the second 

derivative spectra (Pritchard et al. 2016b). This provided evidence of changes in the 

protein’s secondary structures, with absorbance shifts at wavenumbers associated 

with random coil (1652 cm-1 to 1650 cm-1) and  β-sheets (1637 cm-1 to 1634 cm-1) 

(Pritchard et al. 2016b). FTIR suggested widespread H+ -bonding between OligoG 

CF-5/20 and the peptide backbone leading to reduced flexibility of the mucin molecule 

(Pritchard et al. 2016b).    

 

This study did not show a statistically significant shift in peak position at wavenumbers 

representative of random coil secondary structures (1652cm-1). This may be due to 

steric hindrance between OligoG CF-5/20 treated sputum and control sputum spectra 

at this location. However, a significant decrease in second derivative peak height at 

1637 cm-1 in the OligoG CF-5/20 treated sputum samples was demonstrated. This is 

hypothesized to be as a result of hydrogen bonding between OligoG CF-5/20 and the 

peptide backbone, as seen in the previous study, causing a conformational change 

in the β-sheet secondary structure. The aforementioned study by Pritchard et al. 

(2016) prepared the sputum specifically to enrich the MUC5AC and MUC5B 

component, in contrast to this study which used sputum in its entirety (Pritchard et al. 

2016b). This may explain the differences in interactions seen between OligoG CF-

5/20 and the mucin structures.  

 

Using a previously piloted method (Pritchard et al. 2016b), this study provides further 

evidence of structural interaction between OligoG CF-5/20 and mucin. An FTIR 

reference library for monosaccharides and relevant oligosaccharides has been 

developed to help identify the underlying structures and their interactions (Lewis et 

al. 2013a). The monosaccharide library spectra indicate potential peaks in glycan 

structures which may be shifted along or totally absent. The 3D structure of a glycan 

dictates strongly absorbance and position of some of these wavenumbers due to 

electrostatic interactions between neighbouring atoms within the structure.  
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It is important to recognise the limitations of FTIR analysis, even with support from 

spectral libraries. Structures such as OligoG CF-5/20 can interfere with analysis by 

absorbing strongly at the same regions as other key structures. For example, glycan-

associated structures, such as the C-O bonds in the pentose and hexose rings, 

absorb strongly between 1280 and 900 cm-1, with numerous second derivative peaks 

being evident. OligoG CF-5/20 also absorbs strongly within the same region as these 

mucin glycans, with a number of key peaks identified at the same positions. This study 

was designed to determine sputum mucin-OligoG CF-5/20 interaction, and not just 

OligoG CF-5/20 presence in CF sputum. It was therefore necessary to focus the 

analysis on wavenumbers that showed a difference in absorbance, or the presence 

of peaks which were not associated with OligoG CF-5/20 peaks, as being indicators 

of OligoG CF-5/20 interaction.  

 

FTIR cannot determine the exact molecular structure of compounds, and some 

vibrations detected by FTIR are attributable to multiple chemical groups. There is also 

a risk with FTIR, as with other high throughput technologies, of false positive findings 

due to the large amount of data generated (Baker et al. 2016). This risk can be 

reduced by ensuring careful standardisation of the experimental conditions for 

specimen preparation, spectral acquisition, data processing and analysis (Baker et 

al. 2016). This is particularly important when results are being used for clinical 

decision-making. A recognised limitation of infrared spectroscopy of liquid solutions 

is the interference of water on the spectrum seen.  Strong absorbance of water is 

seen in the mid-infrared region (near 1645 cm-1), which is also the region of the Amide 

I band and some side chain bands (Barth 2007). This study included careful visual 

assessment of all spectra prior to formal analysis to ensure there was no sign of water 

interference.  

 

It is well-recognised that mucus composition is highly variable, both in terms of mucin 

concentration, mucin structure and also the other non-mucin components present, 

such as extracellular DNA (eDNA), which is seen in higher volumes in CF sputum 

samples (Nordgård and Draget 2011). As a key player in sputum viscoelasticity, it 

would have been helpful to study interactions with eDNA. However, a previous study 

using both FTIR spectral analysis and isothermal titration calorimetry showed no 

interactions between OligoG CF-5/20 and DNA, in terms of changes in peak positions 

and molar heat effects respectively (Powell et al. 2018). This was in part contributed 

to by the overlap of OligoG CF-5/20 peaks with the phosphate region. Therefore, this 

study focused specifically on interactions with mucin. The heterogeneity of CF sputum 
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means it is particularly important to ensure experiments are undertaken with sufficient 

replication to identify potential outliers (Bhat et al. 1996). This study showed 

remarkable intra-sample reproducibility, despite anticipated heterogeneity. Given the 

relatively small patient sample size, it was not possible to identify any patterns from 

our clinical data. This included any potential relationship between previously identified 

bacterial infections or mucolytic therapies and OligoG CF-5/20 interaction with mucin. 

Results would be enhanced by a larger sample size and a control group, but this was 

outside the limits of this study. 

 

Many studies have demonstrated the potential use of FTIR as a sensitive diagnostic 

tool in a range of human cancers (Lewis et al. 2010). Other authors have proposed 

the use of FTIR as a rapid tool for bacteria identification, including in patients with CF. 

They have used the infrared spectra provided by intact bacteria and compared these 

patterns to existing spectral reference libraries (Bosch et al. 2008). This work 

contributes to the limited number of existing studies on the use of FTIR to analyse 

sputum. Previously, this technology has been employed to accurately characterise 

alterations in mucin expression, secretion and glycosylation in respiratory disease 

(Lewis et al. 2010; Lewis et al. 2013a; Lewis et al. 2013b). This study added additional 

complexity by using FTIR to analyse interactions of a pharmacotherapy with human 

mucin. There is limited data regarding the use of FTIR as a tool for identifying drug-

biological specimen interactions. However, this simple FTIR-based protocol confirms 

that the technique can be utilised to detect interaction between OligoG CF-5/20 and 

sputum mucins.  

 

It is feasible that FTIR analysis could be employed to monitor patient adherence to 

therapy through simple detection of OligoG CF-5/20 in expectorated sputum. A study 

assessing such use is underway (patent application number: PCT/EP2018/053347). 

Using FTIR for such monitoring could be useful in clinical trials for studying washout 

time. Patients with CF often have sub-optimal adherence to long-term inhaled 

therapies, but this can be improved through the use of electronic monitoring of 

compliance (Narayanan et al. 2017). If available as a bedside tool in hospital clinics, 

it could also enable healthcare providers to give additional support to patients who 

show poor compliance with essential treatments.  

 

Of relevance to the study of CF sputum, FTIR is particularly useful as it does not place 

limits on the molecular weight of components found within the sample, such as DNA, 

which can be present in much higher concentrations in CF sputum compared to 
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healthy control (Balan et al. 2019). Alterations in glycosylation, including sialylation 

and sulphation of the Lewis x antigen, are seen in respiratory disease, particularly 

during infective exacerbations (Lewis et al. 2013a). Spectral patterns representing 

these structures were easily identifiable within our patient samples, though with the 

small sample size it was not possible to compare groups. With more samples, the 

FTIR protocol could be further developed to identify changes in CF sputum by 

studying ‘stable’ and ‘exacerbating’ samples. This could aid CF patient management, 

including early recognition of pulmonary exacerbations and therefore prompt 

treatment with antimicrobials including OligoG CF-5/20.  
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3.6 Conclusion 

 

This work demonstrates the use of FTIR analysis with human CF sputum to study the 

interaction of OligoG CF-5/20 with respiratory mucin. There is clear evidence of 

significant structural interactions between the glycan moieties and peptide backbone 

of mucin molecules. These results support existing literature and provide further 

evidence for the therapeutic effects of OligoG CF-5/20 on modifying the viscoelastic 

properties of CF sputum through alginate-mucin interactions.   
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Chapter Four 

Phenotypic and genotypic adaptations in 

Pseudomonas aeruginosa biofilms following long-

term exposure to an alginate oligomer inhalation 

therapy 
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4.1 Introduction 

 

Cystic fibrosis lung disease is characterised by airway inflammation, viscid mucus 

with impaired muco-ciliary clearance and abnormal mucosal defence. These features 

provide an ideal host environment for repeated bacterial colonisation and infection, 

cycles of inflammation and resultant tissue damage, with eventual respiratory failure 

and death (Ratjen et al. 2015).  

 

4.1.1 Bacterial evolution in the cystic fibrosis lung environment 

 

Alterations in the CF lung milieu are exploited by CF pathogens, including 

Pseudomonas aeruginosa, which colonise and chronically infect the CF lung (Cullen 

and McClean 2015). P. aeruginosa typically colonises the lungs of CF patients at 8.8 

years old (Marvig et al. 2015), where it then faces considerable selective pressures 

from a range of environmental factors. These include the host immune system, 

oxidative stress within the CF lung biofilm and the use of chronic antibiotics (Goss 

and Burns 2007).  

 

The effects of these environmental stressors within the CF lung environment are 

reflected in the extensive phenotypic and genotypic adaptations observed in CF P. 

aeruginosa (Folkesson et al. 2012). With chronic colonisation, later-stage bacterial 

isolates are distinctly different from pioneer colonisers, displaying well-defined 

characteristics such as loss of motility, mucoidy, reduced growth rates, increased 

antibiotic resistance, and defective quorum sensing (QS) signalling (Goss and Burns 

2007). Furthermore, mutations in P. aeruginosa to the alginate-producing mucoid 

phenotype or highly adherent small colony variants (SCVs) occur with increased 

resistance to host defences (Malone 2015). Eventually, de novo mutations lead to 

evolution of antibiotic resistance in individual patients (Smith et al. 2006a; Yang et al. 

2011b), enabling the CF lung to become colonised by multidrug-resistant (MDR) 

pathogens, particularly P. aeruginosa (Folkesson et al. 2012).  

 

4.1.2 Using experimental evolution to evaluate antimicrobial therapies  

 

Antimicrobial discovery has previously been based on laboratory cultures of 

planktonically-growing bacteria, reflecting effectiveness in acute infections. However, 

as P. aeruginosa is predominantly in sessile form within the CF lung, such models 
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are unrealistic and likely contribute to the difficulties in finding effective therapies. In 

contrast, evolutionary biofilm models can recreate, and control for, many of the 

features seen in the CF lung, such as slow bacterial growth and repeated 

antimicrobial dosing (Martin et al. 2016). Far fewer evolutionary studies have been 

completed using populations in biofilms, though a variety of models have been 

described in the literature (Steenackers et al. 2016).  

 

Chronic infections by P. aeruginosa represent a useful opportunity to study persistent 

bacterial infection and evolution. Authors have explored the genotypic and phenotypic 

diversity that occurs during long-term CF infections through use of whole genome 

sequencing and a variety of phenotype profiling on patient samples taken over a 

period of time, often representing chronic colonisation (Smith et al. 2006a; Yang et 

al. 2008; Folkesson et al. 2012; Markussen et al. 2014). Such methods have aided 

the understanding of bacterial evolution in vivo, but are less helpful when testing 

therapeutics to treat such infections.   

 

Poltak and Cooper (2011) described their pioneering study using a novel bead-biofilm 

model, with cycles of surface colonisation, biofilm formation and dispersal. Their 

model studied experimental evolution of an initial single clone of Burkholderia 

cenocepacia through changes in colony morphology and growth across six replicate 

populations. This showed parallelism with three variants developing in the same order 

across these populations (Poltak and Cooper 2011a). They demonstrated greater 

diversification in the biofilm environment compared to planktonic culture.  

 

4.1.3 Evolution in the presence of a novel antimicrobial 

 

In previous studies exploring its effect on P. aeruginosa, OligoG CF-5/20 has 

demonstrated anti-biofilm properties (Pritchard et al. 2017a; Powell et al. 2018), and 

antibiotic potentiation (Khan et al. 2012a; Pritchard et al. 2017a). This novel therapy 

appears to exert its properties via alteration of bacterial surface charge and motility 

(Khan et al. 2012a; Powell et al. 2014a), disruption of extracellular polymeric 

substance (Powell et al. 2018) and inhibition of QS signalling (Jack et al. 2018). 

Previous work has shown that planktonic subculture of P. aeruginosa (PAO1) for 21 

days in escalating concentrations of OligoG CF-5/20 did not result in loss of 

antimicrobial activity (Khan et al. 2012c). 
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OligoG CF-5/20 has been designed for inhalation as part of regular daily cystic fibrosis 

therapy. As an anti-biofilm therapy, it is difficult to fully understand its long-term effects 

in vivo without the use of in vitro biofilm evolutionary models, such as the 

aforementioned bead biofilm model (Poltak and Cooper 2011a). It is essential to 

understand whether treatment with OligoG CF-5/20, either as short- or long-term 

therapy, will alter bacterial morphotype and genotype. Of particular interest is its 

impact on the evolution of bacterial phenotypes which are associated with 

antimicrobial resistance, such as SCVs and mucoid phenotypes, as this would be 

considered a negative outcome of therapy.  

 

This study will help define the potential implications of long-term treatment with 

OligoG CF-5/20 for patients with CF. Clinically-relevant benefits of treatment would 

include a reduction in development of SCVs and mucoid phenotypes. Clearly, a 

positive impact of selective pressure on biofilm growth, resulting in a negative impact 

for the host, would be increased numbers of difficult to eradicate pseudomonal 

phenotypes. These effects would inevitably worsen disease outcomes if translated in 

vivo. As CF patients will typically continue prophylactic antibiotics, as well as 

intermittent antibiotic treatment courses for acute pulmonary exacerbations, it was 

deemed useful to also study the effects of OligoG CF-5/20 in the presence of a key 

CF antibiotic, azithromycin, on P. aeruginosa adaptive behaviours.  

 

4.2 Aims 

 

This study aims to experimentally model the effect of long-term exposure of P. 

aeruginosa to OligoG CF-5/20. A bead biofilm model will be used to incorporate 

regular cycles of surface colonisation, biofilm assembly and dispersal. 

 

The aims of the study will be to determine: 

- the phenotypic and genotypic characteristics of the morphotypes isolated in the 

presence of OligoG CF-5/20 using a range of experimental assays to determine 

the impact of bacterial evolution; 

 

- the changes in acquisition of resistance to azithromycin (an antibiotic commonly 

used in the treatment of CF) in the presence and absence of sublethal 

concentrations of OligoG CF-5/20.  
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4.3 Materials and methods 

 

4.3.1 Bacterial strains and media 

 

Pseudomonas aeruginosa (PAO1, ATCC 15692) was employed throughout the 

study. Media included tryptone soy broth (TSB; LabM, Heywood, Lancashire) for 

overnight cultures and cation-adjusted Mueller-Hinton (MH) broth (LabM) for biofilm 

growth. Luria-Bertani (LB) agar plates (1% NaCl, 1% tryptone, 0.5% yeast extract, 

1.5% agar in high salt agar) were used for the loss of resistance assay. PAO1 was 

grown overnight (O/N) on blood agar plates (BA; Blood agar base no. 2; LabM; 

supplemented with 5% horse blood). Fresh O/N cultures (n=4) were prepared in TSB 

(37°C) and placed on a ‘roller mixer’ for 16-20 hours.  

 

4.3.2 Alginate oligosaccharide (OligoG CF-5/20) 

 

The process of OligoG CF-5/20 production was described in Chapter Three. For this 

chapter, 2% OligoG CF-5/20 was used. This concentration value was based on a 

model previously described, which showed effective release of tethered mucin by 

OligoG CF-5/20 at this concentration (Ermund et al. 2017).  

 

4.3.3 Study design 

 

Figure 4.1 shows a schematic for the experimental design. There were two principal 

arms to the study. The first arm involved morphotype characterisation using 

morphotypes from the bead biofilm model grown in MH broth ± 2% OligoG CF-5/20 

A range of morphotypic and genotypic assays were performed. The second arm used 

morphotypes grown in azithromycin ± 2% OligoG CF-5/20 for a cross-resistance 

study involving antimicrobial susceptibility testing against ten different antibiotics. 
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Figure 4.1. Experimental design flowchart. 

Bead biofilm model flowchart describing assays according to laboratory conditions. Blue boxes show assays completed using morphotypes grown 

in control (MH broth) ± 2% OligoG CF-5/20. Green boxes show assays completed using bacteria grown in control (MHB) and 2% OligoG and 

control (MHB) ± azithromycin (AZM) (8ug/ml).   

Antimicrobial 
susceptibility: 
MICs against 

(n=10) antibiotics 
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4.3.4 Bead biofilm evolution model in the presence of OligoG CF-5/20 

 

The bead model used here was adapted from a previous study (Poltak and Cooper 

2011a). Biofilms were grown on sterile 7 mm borosilicate glass beads without holes 

(John F. Allen & Son, Warwick, Rhode Island). Yellow and blue beads were used for 

alternate transfer days (Figure 4.2). Beads were placed in each well of a 24-well 

microtiter plate containing 1 ml MH broth ± 2% OligoG CF-5/20 (Sigma® cell culture 

plate, Sigma-Aldrich, Gillingham, United Kingdom). Four biological repeats were 

conducted in parallel; each repeat also had a sterile control well. Plates were 

incubated continuously at 37°C (20 rpm) for the duration of the experiment. 

 

On passage days, the biofilm-covered beads were transferred into the corresponding 

wells of a fresh 24-well plate 3 times/week, which contained fresh medium (± 2% 

OligoG CF-5/20) alongside a single new sterile bead (in each well). The bacteria from 

the mature biofilm community would then colonise the new sterile bead, to repeat the 

transfer sequence again (Oakley et al. 2021). The old beads were then discarded or 

used for sampling on transfer days 21 and 45, where they were used to inoculate 

10ml sterile TSB for overnight growth at 37°C.  

 

At time zero, all wells (except sterile MH broth control wells) were inoculated with 5 

µl of overnight growth of Wild type (WT) PAO1 from four independent cultures, 

standardised to an OD600 of 0.05 (107 CFU/ml); final cell concentration 5 x 104 CFU/ml. 

It was assumed that planktonic cells within the biofilm wells would decline over time 

by up to 33% (Poltak and Cooper 2011b) due to the increasing numbers of bacterial 

cells attaching to the bead. Therefore, the number of generations within the biofilm 

wells was estimated at 16 x log2(dilution), giving an estimate for generations over the 

course of the experiment between 240 to 250. Purity plates were performed weekly 

on each test well on BA plates. On days 21 and 45, purified morphotypes were frozen 

at -80°C on microbank beads. These ‘monoculture’ samples were then used in 

subsequent morpho- and genotyping experiments.  

 

Fresh overnight cultures from stock PAO1 were used as the control sample, for all 

experiments, hereafter referred to as Wild Type (WT) PAO1. WT PAO1 represents 

day 0 in the evolutionary model.  

 

With thanks to Dr Manon Pritchard who helped to maintain bead transfers. 
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Figure 4.2. Schematic showing the bead biofilm model experimental strategy modelling of prolonged exposure to OligoG CF-5/20 ± 

azithromycin exposure. 



161 
 

4.3.5 Morphotype characterisation  

 

The old bead was removed, vortexed in fresh TSB and grown overnight. Samples 

were then plated out onto blood agar plates and incubated for 24-72 hours before 

purifying individual colonies on fresh BA plates and freezing them for later use. The 

colony morphotypes isolated (MH ± 2% OligoG CF-5/20) were characterised 

independently by three researchers (Dr Juliette Oakley/Dr Manon Pritchard/Dr Katja 

Hill) at both day 21 and day 45 to ensure consistency of morphological identifications. 

Maintenance of morphotype after freezing was demonstrated by performing further 

overnight cultures from the freezer stock in TSB (37°C; 120 rpm) and plating cultures 

onto a fresh BA plate. Any samples demonstrating mixed colonies or contamination 

after freezing were removed from further analysis. 

 

4.3.6 Phenotypic characterisation 

4.3.6.1 Scanning electron microscopy (SEM) 

A selection of different morphotypes from the day 21 control biofilm well samples were 

chosen based on size and surface texture (small ruffled, small studded medium 

smooth [mucoid], medium studded, and large smooth) plus a WT PAO1 control (n=3) 

(Table 4.2). When multiple samples were available, samples with the best biofilm-

producing ability (described below) were selected. Overnight cultures of individual 

morphotypes were adjusted to 106 CFU/ml in MH broth and grown for 24 hours in a 

12-well plate (Greiner Bio-One) containing Thermanox glass slides (Agar scientific; 

37°C; 20 rpm).  Following incubation, the supernatant was removed and each well 

was immersed in 2.5% (v/v) glutaraldehyde for two hours prior to being washed four 

times with dH2O and freeze dried. Samples were gold-coated and imaged using a 

Tescan Vega conventional scanning electron microscope (SEM; 6 kV). With thanks 

to Dr Manon Pritchard and Dr Lydia Powell for their analysis of the imaging output. 

 

4.3.6.2 Biofilm formation assay 

All morphotype samples isolated from day 21 and day 45 were tested for biofilm-

forming ability in 96-well polystyrene plates and compared to the WT PAO1 control. 

Biofilms were grown in a flat-bottomed 96-well plate (5 x 105 CFU/ml in MH broth) for 

24 h statically (n=3 biological, n=5 technical repeats). An adapted crystal violet (CV) 

methodology was used to quantify biofilm-formation (O'Toole 2011; Santiago et al. 

2016). The supernatant was removed from each well and the plates gently washed in 

dH2O (x2 for 10 seconds) to remove planktonically-growing cells. 0.1% CV (125 µl) 
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was then added into each well to stain the attached cells. Following incubation for 15 

mins at room temperature, plates were rinsed four times in dH2O and allowed to dry 

for ≥1 h prior to solubilising the dye in 95% ethanol (200 µl for 30 mins). A 125 µl 

sample from each well was transferred to a fresh 96-well plate and the absorbance 

(optical density at 550 nm [OD550]) was measured with a spectrophotometer. 

 

4.3.6.3 Confocal scanning laser microscopy (CLSM) imaging of SCVs 

Individual isolates representing smooth and ruffled SVC were chosen from the biofilm 

monocultures obtained on day 21 and day 45 (control and 2% OligoG CF-5/20 plates), 

including WT PAO1 control (n=3) (Table 4.2). As with the SEM protocol, when 

multiple samples of the same appearance were available, isolates with the best 

biofilm production were selected. Overnight cultures from freezer stock microbank 

beads were prepared in TSB (37°C; 120 rpm). CLSM was performed on biofilms 

grown in Greiner glass-bottomed optical 96-well plates in MH broth using a starting 

inoculum of 106 CFU/ml (37ºC; 24 hours; rocking). The supernatant was removed 

before staining the cells with 6% (v/v) LIVE/DEAD® stain (BacLightTM Bacterial viability 

kit, Invitrogen) in phosphate-buffered saline (PBS).  The plate was wrapped in foil and 

incubated at room temperature for 10 mins, prior to imaging with a Leica SP5 confocal 

microscope with x 63 magnification under oil. With thanks to Dr Manon Pritchard and 

Dr Lydia Powell for their analysis of the imaging output. 

  



163 
 

Table 4.1. Samples used for SEM  

All morphotypes were taken from day 21, using control plate samples only. When 

multiple samples were available for the morphotype category, the colony with the best 

biofilm production compared to WT PAO1 was selected (n=3), using data from the 

biofilm formation crystal violet assay described above.  

Key: S; Small, M; Medium, L; large, Ru; Ruffled, St; Studded, Sm; Smooth; Mucoid. 

 

 

Transfer Sample well Morphotype  

Biofilm 
production (% 
difference from 
WT PAO1) 

Day 21 CB18 S, Ru 63.16 

 CC18 S, St 282.37 

 CD18 M, Sm, Muc -5.18 

 CD18 M, St 221.56 

 CB18 L, Sm 14.58 

 WT PAO1   

 

 

Table 4.2. Samples used for CLSM  

Morphotypes were taken from day 21 and day 45, control and 2% OligoG CF-5/20 

plates. When multiple samples were available for the morphotype category, the 

colony with the best biofilm production compared to WT PAO1 was selected (n=3) 

using data from the biofilm formation crystal violet assay described above. 

Key: S; Small, M; Medium, L; large, Ru; Ruffled, St; Studded, Sm; Smooth. 

 

 

Transfer Sample well Morphotype  

Biofilm 
production (% 
difference from 
WT PAO1) 

Day 21 CB18 S, Ru 63.16 

 CC18 S, St 282.37 

 OB18 S, Sm -47.40 

 OB18 S, Ru 220.45 

Day 45 CB116 S, Sm 135.84 

 OC116 S, Sm -75.17 

 WT PAO1   
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4.3.6.4 Motility assays 

All morphotypes from days 21 and 45 were tested for swimming, swarming, and 

twitching ability compared to the WT PAO1 control. Agar plate-based assays were 

prepared, poured and used immediately once set, as previously described (Deziel et 

al. 2001). O/N cultures were prepared from freezer stocks in TSB and cells were point 

inoculated with a sterile toothpick onto the surface of the agar prior to being incubated 

for 48 hours at 25°C (swimming) or 30°C (swarming) and 72 hours at 30°C (twitching). 

The widest diameter of bacterial migration (millimetres) was used to measure motility. 

 

4.3.7 Genotypic characterisation of colony morphotypes 

 

Whole-genome sequencing and the subsequent bioinformatic analysis were 

undertaken entirely by Dr Rebecca Weiser. The methodology and subsequent results 

have been included in this thesis to detail the complete morphotype characterisation 

undertaken by this research group. The methods used for whole genome 

sequencing and bioinformatic analysis are listed in the Appendix. 

 

4.3.8 Cross resistance  

4.3.8.1 Acquisition of resistance of Pseudomonas aeruginosa in the presence 

of azithromycin 

The rate of acquisition of resistance to azithromycin (AZM) at a sublethal 

concentration 2-fold lower than the MIC level (AZM; 8 µg/ml) was conducted in the 

presence and absence of 2% OligoG CF-5/20 using the biofilm bead model (Figure 

4.1). The AZM concentration used was determined based on pilot studies (data not 

shown) and established literature MICs (Testing 2020), ensuring bacterial growth and 

potential development of resistance. Borosilicate beads were placed in 1 ml AZM (8 

µg/ml) with or without 2% OligoG CF-5/20 in 24-well plates prior to inoculation with 

PAO1 cultures (5x 104 CFU/ml; n = 4) and incubated (80 rpm; 37°C). Beads were 

transferred into the corresponding wells in a fresh plate 3 times/week (Figure 4.1) for 

45 days. Purity plates were performed weekly on each test well on BA plates. At days 

21 and 45, samples were taken from all wells and frozen at -80°C on microbank beads 

to be used for cross-resistance studies. 
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4.3.8.2 Cross resistance to a range of antibiotics 

The enriched mixed populations grown in the presence and absence of 2% OligoG 

CF-5/20 (± AZM) were tested for cross-resistance against a range of antibiotics 

commonly used (ceftazidime (CEF), ciprofloxacin (CIP), azithromycin (AZM), oxy-

tetracycline (Oxy-TET), levofloxacin (LEV), colistin (COL), aztreonam (ATM), 

meropenem (MER), rifampicin (RIF) and tobramycin (TOB)). These antibiotics were 

selected to represent a range of mechanisms of action. The day 21 biofilm bead 

cultures were vortexed in fresh medium and grown overnight (37°C; shaken). Cross-

resistance was tested using an MIC assay. MIC assays were performed using a broth 

microdilution method in MH broth as previously described (Khan et al. 2012c) in 

accordance with standard guidelines (Jorgensen and Turnidge 2015). In brief, 

overnight cultures (n=3) were grown in TSB (LabM) and diluted in MHB to McFarland 

standard 0.5 (approximately 108 CFU/ml). Antibiotics included in each assay were 

added to MHB and serially diluted across the 96-well plate. Bacterial cultures were 

further diluted 10-fold in MHB and inoculated into the antibiotic serial dilutions (final 

concentration 5 x 105 CFU/ml). Plates were incubated statically (37°C; 16-20 h) and 

MICs read as the lowest concentration with no visible growth. These were conducted 

for the 4 biological repeats with WT PAO1 as control. 

 

4.3.8.3 Loss of resistance 

Following day 45 of transfer for the AZM study, the stability of AZM resistance was 

analysed by transferring beads into MH broth or MH broth with 2% OligoG CF-5/20 

for a further six transfers. Biofilm growths from each transfer were sub-cultured onto 

LB agar plates with or without AZM (32 µg/ml), and resistance to AZM was recorded 

if there was growth on the plates after 24 h. 
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4.3.9 Statistical analysis 

 

The significance of the crystal violet biofilm assay data was assessed using one-way 

analysis of variance (ANOVA) followed by Dunnett’s multiple-comparison post hoc 

test using Graph Pad Prism 8. The motility assay data were analysed using a 

nonparametric Kruskal-Wallis test performed on IBM SPSS, followed by a post hoc 

adjustment by the Bonferroni correction. Statistical analyses for the genotypic 

characterisation were performed using R statistical software (Team 2013) to 

determine differences between the numbers of mutations in coding regions observed 

in each population (Control day 21, Control day 45, 2% OligoG CF-5/20-exposed day 

21 and 2% OligoG CF-5/20-exposed day 45). As the numbers of mutations in all 

populations were found to be nonnormally distributed (Shapiro-Wilk test) with equal 

variances (Levene’s test), a nonparametric Kruskal-Wallis test with post hoc pairwise 

comparisons using the Wilcoxon rank sum test and Benjamini-Hochberg adjustment 

was used to determine differences between the population medians. Genotypic 

characterisation statistics were analysed by Dr Rebecca Weiser. Differences were 

considered significant for p-value ≤ 0.05.  
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4.4 Results 

 

 

4.4.1 Morphotype characterisation 

4.4.1.1 Morphotype characterisation of biofilm-evolved isolates 

Individual bacterial colony morphotypes were characterised according to size ([a] 

small [pin point] <1 mm; [b] medium 1 to 3 mm; and [c] large >3 mm) and surface 

texture (Figure 4.3). Further characterisation of the morphotypes included loss of 

pigmentation, mucoidy, opacity, halo and margin (Table 4.3). As a defined core set 

of SCV genes has yet to be documented (and with commonality between phenotypic 

and genotypic changes within different SCV populations not always apparent), for the 

purposes of this study SCVs were defined as pinpoint colonies formed within 72 h 

(<1mm in diameter) (Johns et al. 2015; Oakley et al. 2021). The number of colonies 

with different morphotypes within each well was also determined.    

 

Morphotypic characterisation of the biofilm-evolved monoculture isolates (identified 

within the agar plates) revealed that 40 different morphotypes were evident across 

the study. From 4 biological repeats, the morphotypes included: Control day 21: 13 

isolates; 2% OligoG CF-5/20 day 21: 12 isolates; Control day 45: 10 isolates; 2% 

OligoG CF-5/20 day 45: 5 isolates (Table 4.3). 
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Figure 4.3. Appearance of representative morphologies on blood agar plates from control and 2% OligoG plates, shown to scale.  

Morphotypes are described according to size (Small <1 mm, medium 1 to 3 mm, large >3 mm) and texture (Studded/ruffled/wrinkled/smooth). 

WT PAO1 is wild type PAO1, used as control.   
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Table 4.3. Morphotypes isolated from the bead biofilm model.  

Colony morphology for biofilm colony morphotypes isolated from the wells in the presence and absence of 2% OligoG CF-5/20 at days 21 and 

45. Genome sequencing code listed; full sequencing information detailed in Table I. i. in the Appendix. 

Key: S; Small, M; Medium, L; large, Y; Yes, N; No, Ru; Ruffled, St; Studded, Sm; Smooth, W; Wrinkled; R, Round margin, NM; No margin. 

 

Transfer Sample  Size  
Loss of 

pigmentation  
Mucoid Opacity 

Surface 
texture                   

Halo Margin                        
Genome 

seq. 
code 

Day 21 Control S N N Y Ru N R C1a 
  S N N Y Ru Y R C2a 
  S N N Y St Y R C3a 
  S N N Y St Y R C4a 
  S N N N St Y R C5a 
  M N Y N Sm Y R C6a 
  M N Y N Sm N R C7a 
  M N Y N Sm N R C8a 
  M N N N Sm N R C9a 
  M N N Y Sm N R C10a 
  M N N Y St Y R C11a 
  M N N N St N R C12a 
  L N N N Sm Y R C13a 

 2% OligoG 
CF-5/20 

S N N Y Sm Y R O1a 

  S N N Y Ru Y R O2a 
  S N N Y Ru Y R O3a 
  S N N Y Ru N R O4a 
  M N N Y St Y R O5a 
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  M N Y N Sm Y R O6a 
  M N N N St Y R O7a 
  M N N N St Y R O8a 
  L N N N Sm Y R O9a 
  L N N Y Sm Y R O10a 
  L N N Y Sm Y R O11a 
  L N N N St N R O12a 

Day 45 Control S N N Y Sm Y R C1b 
  S N N Y Sm Y R C2b 
  M N N Y Sm Y R C3b 
  M N N Y Sm Y R C4b 
  M N N Y St Y R C5b 
  M N N Y Ru N R C6b 
  M N N Y Ru N R C7b 
  L N Y N Sm Y NM C8b 
  L N Y N Sm Y NM C9b 
  L N Y N Sm Y NM C10b 

 2% OligoG 
CF-5/20 

S N N Y Sm Y R O1b 

  M N N Y St Y R O2b 
  M N N Y St Y R O3b 
  M N N Y W Y R O4b 
  M N N N Ru N R O5b 
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4.4.1.2 Morphotype diversity following prolonged exposure to 2% OligoG CF-

5/20 

Morphotype diversity decreased between day 21 and day 45. At day 21, the 2% 

OligoG CF-5/20 samples were divided into three equal groups of small, medium and 

large colonies. The control group demonstrated 38% SCV (‘pin-prick sized’ colonies 

(Johns et al. 2015) and 54% medium colonies. By day 45, SCV represented 20% of 

both control and 2% OligoG CF-5/20 colonies; medium colonies made up 50% of 

control samples and there were no longer any large colonies in the 2% OligoG CF-

5/20 samples (Figure 4.4a). Overall, a decrease in morphotype diversity was evident 

in both the control and 2% OligoG CF-5/20-treated group by day 45.  

 

4.4.1.3 Characterisation of SCVs 

A total of 12 different small colony variant (SCV) morphotypes were isolated from the 

samples. SCVs were evident across the study, with fewer morphotypes seen from 

days 21 to 45 in both control and treated groups. One of the original biological repeats 

did not develop any SCV in either the control or 2% OligoG CF-5/20 wells. The 

remaining three biological repeats demonstrated a reduction in SCV within the 2% 

OligoG CF-5/20 treated wells, with only one small smooth colony identified at day 45. 

The colony morphotype for small colonies was more variable at day 21 compared to 

day 45 (Figure 4.4a.). Small colonies demonstrated ruffled and studded 

morphologies in the control samples and smooth and ruffled in the 2% OligoG CF-

5/20 treated samples at day 21. However, this was lost by day 45 with all clones 

showing smooth colony morphologies. In contrast, the medium sized colonies 

demonstrated both smooth and studded textures at day 21 and became more diverse 

by day 45 for control samples (smooth, ruffled and studded) and 2% OligoG CF-5/20 

samples (ruffled, studded and wrinkled). The vast majority of the large colony 

morphotypes (87%) were smooth at both timepoints (Figure 4.4b.). 

 

4.4.1.4 Characterisation of mucoidy morphotypes 

There was only one mucoid colony within the 2% OligoG CF-5/20 samples (medium-

sized, smooth, day 21), whereas the control samples had six mucoid colonies over 

all, affecting equal numbers of medium smooth colonies at day 21 and large smooth 

colonies at day 45 (Table 4.3). 
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Figure 4.4. Comparison of biofilm beads exposed to 0% and 2% OligoG CF-5/20 over 21 and 45 days. A) Categorising numbers of 

morphotypes (small, medium and large colonies) isolated from each growth condition.  B) Subcategorising surface textures of small, 

medium and large colonies (n =4).   

A) Size of morphotypes: Untreated (Control) samples, blue; Treated (2% OligoG CF-5/20), red. B) Texture of morphotypes: smooth, blue; 

ruffled, red; studded, yellow; wrinkled, green. 

A. 

B.  
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4.4.2 Phenotypic characterisation of the biofilm well colonies 

 

Phenotypic characterisation of different morphotypes evolving during the bead biofilm 

model was investigated using scanning electron microscopy (SEM), crystal violet 

(CV) biofilm assays, confocal laser scanning microscopy (CLSM), and motility 

studies. 

 

4.4.2.1 Scanning electron microscopy 

Untreated control samples were visualised under SEM according to their 

subclassification (at 21 days) (Table 4.1). Small, ruffled and studded clones 

demonstrated formation of medium to large biofilm microcolonies, with the former 

subtype also forming EPS-encased biofilms bound to the glass surface (Figure 4.5). 

Medium-sized clones formed small clusters of microcolonies, inter-linked with 

branching cells. The smooth mucoidal subtype attached less firmly to the glass slide, 

whilst the studded subtype produced a combination of spherical microcolonies and 

more flat homogenous biofilms attached to the glass surface. Large-sized clones had 

a similar appearance to the monolayer biofilm produced by the wild-type WT PAO1, 

although the cells appeared more rounded in shape (Figure 4.5).  

 

4.4.2.2 Biofilm formation assay  

Results from the crystal violet assay (O'Toole 2011; Santiago et al. 2016) highlighted 

the inherent variability between the biofilm-forming abilities of the different 

morphotypes when compared to WT PAO1 (Figure 4.6). The majority of SCV (Control 

and 2% OligoG CF-5/20) had an increased biofilm-forming ability compared to WT 

PAO1. However, the only SCV found in the day 45 2% OligoG CF-5/20 treated 

samples actually demonstrated a statistically significant reduction in its biofilm 

forming ability (p <0.05). The biofilm-forming abilities of medium-sized colonies in the 

control samples was greater than those from 2% OligoG CF-5/20 treated samples, 

both at day 21 and day 45. There was no significant different in the biofilms formed 

by large colonies when compared to WT PAO1 (p>0.05) (Figure 4.6). 

 

4.4.2.3 Confocal Laser scanning microscopy 

Confocal laser scanning microscopy (CLSM) was performed on 24-hour biofilms 

grown using a selection of SCVs from the biofilm wells (MHB ± 2% OligoG CF-5/20) 

(Table 4.2). Using LIVE/ DEAD© stain, CLSM demonstrated a variability between the 

biofilm-forming abilities of different SCVs (Figure 4.6). Imaging supported the findings 
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of the CV assay, with small smooth morphotypes at day 45 showing less dense and 

more sparse biofilms in 2% OligoG CF-5/20-treated samples compared to the 

untreated control.  
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Figure 4.5. Biofilm formation ability of selected sample of morphotypes from control samples using scanning electron microscopy 

Day 21; scale bar: 10 µm. Small ruffled and studded clones demonstrated formation of medium to large biofilm microcolonies. Medium-sized 

clones formed small clusters of microcolonies. Large-sized clones had a similar appearance to the monolayer biofilm produced by the wild-type 

WT PAO1. 

Small rough Small studded Medium smooth (mucoid) 

Medium studded Large smooth WT PAO1 
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Figure 4.6. Crystal violet quantification of biofilm-forming ability of all morphotypes from control and 2% OligoG CF-5/20 biofilm wells 

(24 h) with example confocal laser microscopy of small colony variants biofilms. 

* Significant differences compared to WT PAO1; p-value <0.05; n=3.  CLSM: LIVE/DEAD® stained; scale bar: 20 µm. Live cells (with an intact 

cell membrane) are green/yellow in colour due to staining with the intensely fluorescent calcein provided by the LIVE/DEAD staining. Dying and 

dead cells within the biofilm are red due to taking up the bright red fluorescent component of the LIVE/DEAD staining kit.  

   

 

 

Small 
Medium 
Large 

WT PAO1 

Control Day 21 Control Day 45 OligoG CF-5/20 Day 21 OligoG CF-5/20 Day 45 

Small ruffled Small smooth 

* 

* 

* 
* 

* 

* 

* 
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* 
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* 

* 
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4.4.2.3 Altered motility profiles following exposure to 2% OligoG CF-5/20 

Motility of all morphotypes isolated was measured using twitching, swarming and 

swimming assays, and compared to the WT PAO1. Radar charts provide an overview 

of the median twitching, swarming and swimming motility (millimetres) compared to 

WT control for day 21 (Figure 4.7a) and day 45 (Figure 4.7b).  
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A. 

 

B. 

 

Figure 4.7. Radar charts demonstrating median twitching, swimming, and 

swarming motility (millimetres) compared to WT control. A. At day 21; B. at 

day 45. Charts demonstrate maximal motility in WT control at both time points.  
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4.4.2.3.1 Twitching 

Figure 4.8 shows the mean diameter for all morphotypes (millimetres) as measured 

on agar plates. Comparisons are made to WT PAO1. All SCV morphotypes had less 

twitching motility than WT PAO1 in both control samples (range: -10% to -80% of WT 

PAO1) and 2% OligoG CF-5/20-treated samples (range: -27% to -66% of WT PAO1) 

at day 21 and day 45. Medium and large colonies also demonstrated a decreased 

twitching ability compared to WT PAO1, with the large colonies demonstrating the 

greatest twitching ability (range +3% to -20%) when compared to WT PAO1. 

Examples of PAO1 (wild type and mutants) motility on twitching assay agar plates are 

shown in Figure 4.9.  
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Figure 4.8. Twitching assay in all morphotypes from biofilm wells, plus WT PAO1 (Control and 2% OligoG; days 21 and 45).  

Mean diameter (mm) (n=3) with standard deviation. 
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Figure 4.9. Examples representing average pattern of twitching according to size of colony for Control and 2% OligoG biofilm wells, 

plus WT PAO1 (wild type PAO1 representing day 0). 

Images represent the average diameter (mm) of each morphotype according to size (small, medium and large); Scale bar as shown.
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4.4.2.3.2 Swarming 

Figure 4.10 shows the mean diameter for all morphotypes (millimetres) as measured 

on agar plates. Comparisons are made to WT PAO1. Similar trends were 

demonstrated for swarming as seen in the twitching assay, with the small colonies 

having the least ability to swarm, and the larger colonies swarming the most (Figures 

4.10 and Figure 4.11). Notably, of the 5 samples with a greater swarming ability than 

WT PAO1, 80% were mucoid and only 20% were from 2% OligoG CF-5/20 treated 

wells (day 21). Examples of WT PAO1 and biofilm well morphotypes’ motility on 

swarming assay agar plates are shown in Figure 4.11.  
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Figure 4.10. Swarming assay in all morphotypes from biofilm wells (Control and 2% OligoG CF-5/20; days 21 and 45), plus WT PAO1 

Mean diameter (mm) (n=3) with standard deviation. 
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Figure 4.11. Examples of swarming assay plates for Control and 2% OligoG CF-5/20 biofilm wells shown according to size, plus WT 

PAO1 (wild type PAO1 representing day 0).  

Images represent the average diameter (mm) of each morphotype according to size (small, medium, large).   

 

 

  

           Small              Medium            WT PAO1            Small                  Medium                    Large 

           Small               Medium                   Large            Small               Medium              Large 

Control 2% OligoG CF-5/20 

D

ay 

21 

D

ay 

45 

D
a

y
 2

1
 

D
a

y
 4

5
 



185 
 

4.4.2.3.2 Swimming 

Figure 4.12 shows the mean diameter for all morphotypes (millimetres) as measured 

on agar plates. Comparisons are made with WT PAO1. For all colony sizes, 2% 

OligoG CF-5/20-treated mutants were less able to swim at day 21 compared to the 

control (Figure 4.12). Notably, the large colony control sample demonstrated a similar 

swimming ability to WT PAO1. This trend was lost by day 45, with control samples of 

all sizes becoming less motile. By day 45, the 2% OligoG CF-5/20-treated small 

colony morphotype showed a swimming ability similar to that of WT PAO1, whilst the 

medium colonies’ ability remained similar between days 21 and 45. Examples of 

PAO1 (WT PAO1 and biofilm well morphotypes) motility on swimming assay agar 

plates are shown in Figure 4.13.  
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Figure 4.12.  Swimming assay in all morphotypes from biofilm wells (Control and 2% OligoG CF-5/20; days 21 and 45), plus WT 

PAO1 

Mean diameter (mm) (n=3) with standard deviation. 
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Figure 4.13. Examples representing average pattern of swimming according to size of colony for Control and 2% OligoG CF-5/20 

biofilm wells, plus WT PAO1 (wild type PAO1 representing day 0). 

Images represent the average diameter (mm) of each morphotype according to size (small, medium, large). 
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4.4.3 Genetic diversity of PAO1 isolates evolved in 2% OligoG CF-5/20  

 

The full details of whole genome sequencing and genetic diversity resulting from 

PAO1 bacterial evolution in the presence or absence of 2% OligoG CF-5/20 are 

described in Appendix I. This data was analysed by Dr Rebecca Weiser.  

 

Genome resequencing was performed to determine genetic changes associated with 

the evolution of PAO1 biofilm populations, with or without exposure to 2% OligoG CF-

5/20. To summarise, there was a significantly higher number of mutations in the day 

45 transfer isolates than the day 21 transfer isolates. However, there was no 

difference seen in the number of mutations occurring between control and 2% OligoG 

CF-5/20-exposed isolates. There was no evidence of adverse selective pressure to 

PAO1 isolates evolved in 2% OligoG CF-5/20.  
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4.4.4 Chronic exposure to 2% OligoG CF-5/20 and azithromycin  

 

In the second arm of the study, the effect of the antibiotic azithromycin (AZM) (in the 

presence and absence of 2% OligoG CF-5/20) was examined in the bead biofilm 

model over 45 days (Figure 4.1 and Figure 4.2). Azithromycin is a macrolide 

antibiotic commonly prescribed for prolonged use in patients colonised with chronic 

P. aeruginosa due to its anti-inflammatory and antibacterial effects (Nichols et al. 

2020).  

 

The enriched mixed populations (using the day 21 biofilm beads cultured for 24 hours 

in fresh medium) were tested for cross-resistance against a range of antibiotics 

commonly used in CF or representatives of different classes of antibiotics with 

different mechanisms of action (n=10). Antibiotics targeting key CF pathogens 

(including P. aeruginosa) used within cross-resistance study were comprised of 

azithromycin (macrolide), ciprofloxacin and levofloxacin (quinolones), colistin 

(polymyxin E), and aztreonam (monobactam) and tobramycin (aminoglycoside). As 

cephalosporins, carbapenem, rifamycin, and tetracyclines are also routinely used for 

CF treatment, ceftazidime, meropenem, rifampicin, and oxytetracycline, respectively, 

were also employed in the cross-resistance studies (Döring et al. 2012).  

 

Prolonged exposure of PAO1 (grown in the presence and absence of 2% OligoG CF-

5/20) demonstrated no change in resistance to azithromycin, both values being 32 

µg/ml. However, subculturing at sub-MIC levels of AZM (8 µg/ml) in both the presence 

and absence of 2% OligoG CF-5/20 resulted in an increase in MIC values from 32 

µg/ml to 256 µg/ml at day 21 (Table 4.4). This resistance to AZM (± 2% OligoG CF-

5/20) was retained for up to 6 subsequent transfers (with no antibiotics) following 

completion of the 45-day experiment. Samples grown in MH broth only or 2% OligoG 

CF-5/20 demonstrated no change in resistance to other classes of antibiotics (Table 

4.5). Biofilms grown in AZM with 2% OligoG CF-5/20 demonstrated a decrease (up 

to 3-fold) in resistance (MIC) to antibiotics such as aztreonam and oxytetracycline 

compared to biofilms growth in AZM alone (Table 4.4). 
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Table 4.4. The effect of OligoG CF-5/20 on the acquisition of resistance to 

azithromycin (AZM) on the whole bacterial population at day 21 

MIC values (µg/ml) of cross resistance to other classes of antibiotics. Day 0 and day 

21 MIC values listed for control and 2% OligoG for comparison. Antibiotics used: CAZ, 

ceftazidime; CIP, ciprofloxacin; AZM, Azithromycin; Oxy-TET, Oxy-tetracycline; LEV, 

levofloxacin; COL, colistin; ATM, aztreonam; MER, meropenem; RIF, rifampicin; 

TOB, tobramycin. Decrease in antimicrobial activity (MIC) is indicated by blue shaded 

areas, with a reduction of 2-fold considered clinically relevant.  

 

  AZM CAZ CIP 
Oxy-

TET 
LEV COL ATM MER RIF TOB 

Control (Day 0) 32 16 0.125 4 0.25 1 4 0.5 32 1 

2%OligoG (Day 0) 32 16 0.0625 4 0.25 1 4 0.5 32 1 

Control (Day 21) 32 16 0.0625 8 0.5 0.5 4 1 64 1 

2%OligoG (Day 

21) 
64 32 0.125 8 0.5 1 4 1 64 1 

AZM (Day 21) 256 512 8 128 8 1 8 2 64 0.5 

AZM and  

2% OligoG (Day 

21) 

256 128 4 16 4 0.25 1 0.5 64 1 
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Table 4.5. Cross-resistance of P. aeruginosa in the presence and absence of OligoG CF-5/20 in the bead biofilm model.  

Whole-population samples at days 21 and 45 tested against a range of antibiotics (CAZ, ceftazidime; CIP, ciprofloxacin; AZM, azithromycin; oxy-

TET, oxytetracycline; LEV, levofloxacin; COL, colistin; ATM, aztreonam; MER, meropenem; RIF, rifampicin; TOB, tobramycin). Samples grown 

in MH broth only or 2% OligoG CF-5/20 demonstrated no change in resistance to other classes of antibiotics. 

 

 

MIC µg/ml 
Transfer 

(day) 
CAZ CIP AZM 

Oxy-

TET 
LEV COL ATM MER RIF TOB 

Control 0 16 0.125 32 4 0.25 1 4 0.5 32 1 

  21 16 0.0625 32 8 0.5 0.5 4 1 64 1 

  45 32 0.5 64 8 0.5 0.5 4 2 32 0.5 

2% OligoG CF-

5/20 
0 16 0.0625 32 4 0.25 1 4 0.5 32 1 

  21 32 0.125 64 8 0.5 1 4 1 64 1 

  45 16 0.125 32 8 0.5 0.25 4 2 32 0.25 
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4.5 Discussion  

 

Experimental evolution enables the study of a select population and the changes that 

occur as a result of specific laboratory conditions (Steenackers et al. 2016). Such an 

approach is well suited to bacteria as they have short generation times and resultant 

isolates can be frozen and stored for later experiments, as used in this study 

(Steenackers et al. 2016). Previous large-scale evolutionary studies have clearly 

demonstrated that P. aeruginosa undergoes a transition from opportunistic pathogen 

to primary pathogen within the CF lung (Yang et al. 2011b). Colonising clonal 

populations show phenotypic and genetic adaptation over time enabling persistence, 

predominantly through biofilm formation (Boles et al. 2004; Goss and Burns 2007; 

Bjarnsholt et al. 2013).  

 

Studies suggest that the development of diversity within bacterial communities is of 

paramount importance, as it enables survival despite environmental stressors (Boles 

et al. 2004). Incorporating specialised subpopulations with features such as differing 

motility, increased biofilm formation, being able to detach from biofilms more easily 

(hyper-detachment) and auxotrophy may be useful to communities where the 

environmental conditions fluctuate or are subject to change (Boles et al. 2004). 

 

This study aimed to determine the effect of novel and existing antimicrobial therapies, 

including 2% OligoG CF-5/20 and the commonly-used antibiotic azithromycin, on 

experimentally-evolved biofilms, to analyse ecological succession.  A study design 

adapted from Poltak and Cooper (2011) was successfully employed, using the well-

characterised reference strain P. aeruginosa PAO1, which was originally isolated 

from a wound and is the most frequently used strain in laboratory studies of 

Pseudomonas genetics and phenotyping analyses (Klockgether et al. 2010). This 

model incorporated features such as regular cycles of surface colonisation, biofilm 

assembly and dispersal in the presence of the different treatment strategies, to mimic 

the long-term adaptive process in vitro (Poltak and Cooper 2010).   

 

Bacterial adaptation as a result of evolution in the bead biofilm model was expected, 

but the exact effect of differing conditions, such as the presence of 2% OligoG CF-

5/20, on the evolutionary patterns of this strain were to be determined. Analysis 

considered whether 2% OligoG CF-5/20 placed any selective pressure on biofilm 

growth. The bead biofilm model effectively demonstrated evolution of phenotypic and 
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genotypic characteristics of the monocultures and the constituent morphotypes 

(Steenackers et al. 2016).  

 

Previous in vitro biofilm models have shown extensive diversification from a single 

progenitor within a week (Boles et al. 2004). Our study demonstrated morphotype 

diversification within the bead biofilm model at day 21, followed by decreased 

morphotype diversity by day 45, suggesting diversification was not evident over the 

longer term. Lack of sustained diversity more closely reflects patterns seen in in vivo 

studies of the evolving P. aeruginosa lineage (Yang et al. 2011b). It has been 

hypothesised that bacteria within biofilm communities have less exposure to 

environmental stressors, such as antimicrobials, than bacteria growing planktonically, 

which may reduce mutation rates (Ahmed et al. 2018). It is possible that, by enabling 

formation of an effective surface biofilm on the bead, our model reduced the need for 

ongoing diversity and therefore more closely reflected the in vivo environment seen 

in the CF lung. 

 

Small colony variants (SCVs), sometimes called ‘pin-prick-sized colonies’ or ‘minis’, 

have been shown to emerge rapidly from P. aeruginosa biofilms (Boles et al. 2004; 

Johns et al. 2015). SCVs have been associated with poor clinical outcome in CF 

patients (Häußler et al. 1999) and the persistence of infection in animal models 

(Malone et al. 2010). SCVs are characterised by slow growth, often requiring longer 

incubation periods, antibiotic resistance and formation of visible aggregates in liquid 

culture (Drenkard and Ausubel 2002), as well as the aforementioned hyper-

detachment phenotype (Boles et al. 2004). They can also have a lack of pigmentation, 

low virulence potential, reduced haemolytic and coagulase activity and reduced 

utilisation of carbohydrate (Johns et al. 2015). Boles et al. (2004) showed emergence 

of SCVs within a 5-day biofilm grown in a drip flow reactor, and described a 

subpopulation with hyper-detachment. They showed SCV’s biofilms detached at a 

four-fold higher rate than that of wild-type PAO1, and suggested this may allow such 

colonies to relocate complex biofilm communities to newly colonised sites at times of 

stress (Boles et al. 2004). We demonstrated SCVs within 21 days, though 

monocultures containing SCVs had reduced by day 45. Within our population, most 

SCVs from control wells (days 21 and 45) demonstrated greater biofilm forming 

abilities than the wild-type progenitor, but 2/3 of those from 2% OligoG CF-5/20 wells 

grew less dense biofilms.  
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Authors previously suggested that the phenotypic changes seen in SCVs may be 

transient and bacteria may revert back to wild type when the environmental stressor, 

such as an antibiotic, has been removed (Drenkard and Ausubel 2002). However, it 

appears the process is more complicated, with some SCVs undergoing permanent 

genetic changes, some reverting to the WT phenotype and a third group, known as 

the revertant phenotype, developing a phenotype distinct from the progenitor and 

SCV on sub-culturing (Johns et al. 2015).  

 

SCVs are often present in CF sputum samples. They are considered significant 

contributors to the overall population’s antibiotic resistance, and therefore associated 

with difficult-to-treat P. aeruginosa infections (Drenkard and Ausubel 2002). Due to 

the slow growth rate, SCVs are often missed in standard culturing techniques, 

resulting in cessation of antibiotic treatment before the infection has completely 

cleared and persistence of chronic infection (Johns et al. 2015). Given the increased 

severity of infections associated with SCVs, it was reassuring to see that colonies 

grown in the presence of 2% OligoG CF-5/20 had fewer SCVs compared to the 

control at both time points. Though sample numbers are small, this reduction may 

have significant clinical advantages for the CF population if results are translated in 

vivo. 

 

Within this study, SCVs demonstrated a similar trend in surface texture between day 

21 and day 45 timepoints, both in control and 2% OligoG CF-5/20 treated biofilm 

samples. Interestingly, many medium and large colonies developed altered textures 

by day 45, which may be reflective of the emergence of the ruffled and wrinkled 

variants which also appeared later in the Poltak and Cooper (2011) experiment.  

 

Biofilm drip-flow reactor model studies, using different wild-type variants such as 

PA14 and clinical CF isolates, demonstrated similar colony variant emergence. 

Authors hypothesised that this was related to cell-cell signalling within the biofilm 

system (Boles et al. 2004). Previous studies have demonstrated that OligoG CF-5/20 

can modify the lasI-lasR and rhlI-rhlR QS system, perhaps providing an explanation 

for the different morphotypes formed in treatment wells compared to MH broth alone 

(Jack et al. 2018). 

 

A number of studies have demonstrated changes in colony motility within biofilm 

models (Deziel et al. 2001; Boles et al. 2004). In particular, Boles et al. (2004) showed 

variability in swimming motility between different morphotypes compared to the wild 
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type. The authors hypothesised that such variation must be caused by multiple 

genetic changes induced as early as 5 days into biofilm growth (Boles et al. 2004). 

Similarly, Workentine et al. (2013) also found similar numbers of motile and nonmotile 

isolates with a large collection of patient samples in a chronically infected individual 

with CF (Workentine et al. 2013). Bragonzi et al. (2009) demonstrated loss of 

twitching and swimming motility in isolates from chronic infection. Using a strain 

reference panel, Cullen et al. (2015) showed a higher proportion of CF strains were 

non-motile when compared to non-CF strains, using twitching, swarming and 

swimming motility assays. They also demonstrated loss of motility over time of 

colonisation in CF strains and only two of the 42 strains demonstrated ‘true’ swarming 

abilities at all (Cullen et al. 2015).  

 

A study using 1,030 P. aeruginosa isolates taken from 20 patients with CF over 10 

years found that isolates from early colonisation were highly motile, and expressed 

flagellin and pilin. However, those from chronically infected patients were non-motile 

and did not express flagellin (Mahenthiralingam et al. 1994). When compared to 

environmental isolates, CF isolates were much more likely to be non-motile (1.4% vs. 

39%) (Mahenthiralingam et al. 1994). Authors have hypothesised that the non-motile 

phenotype may persist due to its ability to resist phagocytosis, reduce energy 

expenditure and evade the host immune system (Mahenthiralingam et al. 1994; Amiel 

et al. 2010).  

 

This study showed reduced motility in all pseudomonal SCVs at both day 21 and day 

45, when compared to WT PAO1. This is reflective of results seen by Wang et al. 

(2015), which demonstrated that Pseudomonas chlororaphis SCVs had almost 

completely defective motility when compared to the WT (Wang et al. 2015)  However, 

interestingly, the 2% OligoG CF-5/20 treated SCVs in this study maintained a 

swimming ability close to that of WT PAO1 at day 45, suggesting this colony was not 

behaving like a ‘typical’ SCV. It appears that prolonged growth in this biofilm model 

led to reduced motility in most colonies, regardless of growth in 2% OligoG CF-5/20 

or MH broth alone.  

 

Switching to the mucoidy phenotype is considered one of the hallmarks of P. 

aeruginosa adaptation to the lower airway environment (Workentine et al. 2013). The 

production of exopolysaccharide/alginate causes mucoidy and is associated with 

antibiotic resistance and resistance to host defences by phagocytosis (Li et al. 2005). 

Evidence supports initial colonisation with the non-mucoid phenotype, followed often 
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years later by demonstrable conversion to mucoid P. aeruginosa (Li et al. 2005). Li et 

al. (2005) showed 92% of their paediatric cohort grew the mucoidy phenotype by the 

age of 16 years old, with the median age of development being 13 years old, 

compared to the median age of 1 year for acquisition of non-mucoid P. aeruginosa 

(Li et al. 2005).  

 

This study showed only 1 mucoidy isolate of 17 isolates arising from the 2% OligoG 

CF-5/20 biofilm wells over whole study (day 21 and day 45), compared to 26% (6 of 

23) of the control biofilm well isolates (day 21 and day 45). Control well mucoidy 

samples had variable motility, but generally results were more similar to the motility 

seen in WT PAO1 than for non-mucoid samples. The 2% OligoG CF-5/20 mucoid 

morphotype demonstrated better swarming than WT PAO1 (64% greater movement), 

but similar twitching and swimming abilities. Interestingly, previous studies have 

shown that mucoidy does not necessarily correlate with loss of motility (Workentine 

et al. 2013). Biofilm forming ability was worse in all mucoid phenotypes, from both 

control and 2% OligoG CF-5/20 wells. This study clearly demonstrated a lower 

incidence of mucoid development in PAO1 when exposed to 2% OligoG CF-5/20. 

Unfortunately, it is not possible to draw any firm conclusions with such small numbers. 

However, the clinical implications for patients with CF are significant, with potential 

for lower rates of mucoid P. aeruginosa infection and resulting improved lung function 

and overall life expectancy if the results of this in vitro experiment were to be 

demonstrated in vivo (Li et al. 2005; Workentine et al. 2013).  

 

Workentine et al. (2013) identified 169 clonal isolates from 34 sputum samples taken 

from a single patient over one year, at timepoints including clinical stability and 

exacerbations. Even when considering isolates with the same colony morphotype 

from one clinical sample, they showed a large degree of phenotypic variation 

(Workentine et al. 2013). This included variable antibiotic sensitivity, motility and 

protease activity, and similar results were seen across a further three patients whose 

sputum samples were subsequently analysed (Workentine et al. 2013). Similarly, 

Clark et al. (2015) showed that in vivo CF-evolved morphotypes were unreliable 

predictors of phenotype, with significant variability seen in features such as 

antimicrobial susceptibility. Therefore, phenotypic and genotypic experiments are 

essential to fully grasp the composition of the evolved population, as simply observing 

morphotype is apparently insufficient.  
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Using biofilm well-evolved isolates for whole genome sequencing demonstrated a 

spectrum of mutations consistent with those previously described in P. aeruginosa. 

Mutations involved biofilm formation, motility, chemotaxis and quorum sensing 

pathways. As a result of adaptation to the biofilm lifestyle, all but one of the observed 

mutations were nonsynonymous (Traverse et al. 2013; McElroy et al. 2014). Similar 

nonsynonymous mutations have been noted in vivo in Burkholderia dolosa where 

adaptive evolution in parallel was also demonstrated in multiple individuals 

(Lieberman et al. 2011). 

 

The majority of acquired signal transduction gene mutations (bifA, yfiR, wspA, wspF 

and morA) are linked to intracellular cyclic-di-GMP levels. These are associated with 

the transition from a motile (planktonic) to sessile (biofilm) lifestyle (Kim and Harshey 

2016). The genes wspF and morA have been previously implicated in P. aeruginosa 

biofilm adaptation and colony morphology changes, including development of 

wrinkled colonies and SCVs (Wong et al. 2012). Gene mutations directly related to 

motility were only seen in day 45 isolates. These included mutations in type IV pili 

(pilY1, pilM and pilT), which have been described previously in P. aeruginosa PAO1 

biofilm models (McElroy et al. 2014; Ahmed et al. 2018). Overall, the mutations 

identified as a result of this bead-biofilm model reassuringly reflect those of previous 

biofilm model and CF clinical sample studies (Smith et al. 2006b; Winstanley et al. 

2016b). 

 

Ahmed et al. (2018) used an experimental evolutionary model including biofilm and 

planktonic P. aeruginosa cultures to observe development of antibiotic resistance to 

sub-inhibitory levels of ciprofloxacin. They reported a number of genomic mutations 

across their population, with ciprofloxacin-evolved biofilm cultures showing greater 

reduction in type IV-pilus-dependent motility (twitching), as seen in our study (Ahmed 

et al. 2018). Wong et al. (2012) investigated populations modelled in synthetic CF 

sputum medium and described parallel evolution of antibiotic resistance genes. 

Though there were a number of common genes affected, additional mutations were 

identified which were specific to individual experimental isolates (Wong et al. 2012). 

These studies found mutations in genes specifically linked to ciprofloxacin exposure 

(Mex efflux systems, DNA gyrases), and genes associated with adaptation to a CF-

like environment (QS, motility, cyclic-di-GMP signalling) (Wong et al. 2012). This 

study demonstrated mutations in the mexT gene, a multidrug efflux transcriptional 

regulator (Tian et al. 2009) across all populations regardless of 2% OligoG CF-5/20 

exposure.  
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Perhaps unsurprisingly, there was a significant increase in the number of mutations 

observed between day 21 and day 45 transfer populations. However, numbers were 

similar in control and 2% OligoG CF-5/20-treated isolates. Furthermore, there were 

no mutated genes in functional gene categories exclusive to 2% OligoG CF-5/20-

exposed isolates alone, with the same categories being affected in both control and 

2% OligoG CF-5/20-exposed populations. Therefore, this evolutionary model has 

demonstrated that 2% OligoG CF-5/20 did not drive mutations in specific genes, 

during the adaption of P. aeruginosa PAO1 to biofilm growth. 

 

Antibiotics are grouped in classes according to the basis of their chemical structure. 

Members of the same class typically share the same target in a cell, such as protein 

synthesis for aminoglycosides, and also the same mechanisms of resistance 

(Périchon et al. 2019). It would be expected that resistance may be seen across 

multiple antibiotics within the same class. As such, antibiotics selected for this 

experimental model represent all major antibiotic classes. Antibiotic resistance can 

be intrinsic or acquired. P. aeruginosa demonstrates high innate resistance to 

antibiotics due to its low permeability of its outer membrane due to multidrug efflux 

systems and chromosomally-encoded β-lactamase. Acquired resistance can occur 

through various mechanisms, such as alteration of antimicrobial targets and 

upregulation of efflux pumps (Périchon et al. 2019). Genetic alterations can be seen 

following a mutation or horizontal transfer of genetic information.  

 

Antibiotic resistance is common when bacteria are chronically exposed to antibiotics. 

The effect of prolonged exposure to commonly utilized antibiotics at sub-MIC levels 

positively selects for resistant bacteria (Gullberg et al. 2011) and is a common 

adaptive mechanism seen in Pseudomonas aeruginosa populations within the CF 

lung. Survival in an environment with prolonged, and often intensive, exposure to 

antimicrobials is achieved by a variety of phenotypic changes and genetic mutations. 

This experiment confirmed biofilm growth in 2% OligoG CF-5/20 alone did not alter 

the acquisition of resistance to a range of ten different antibiotics. Though there was 

evidence of genetic mutations associated with antimicrobial resistance in both control 

and 2% OligoG CF-5/20 mixed colonies, it is important to recognise that cross 

resistance may not be entirely predictable, with variables such as the antimicrobial 

generation/level of activity and susceptibility of individual host bacteria playing an 

important role in resistance (Périchon et al. 2019). In-depth cross-resistance studies 

using all individual colony samples with cross reference to genetic mutations would 

be an interesting area to explore for future work.  
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Azithromycin is a macrolide antibiotic with the ability to inhibit bacterial protein 

synthesis, quorum-sensing and reduce biofilm formation (Parnham et al. 2014). It has 

been shown to have such efficacy against P. aeruginosa virulence factor production 

and biofilm formation (Parnham et al. 2014). Interestingly, macrolides have also been 

shown to augment the in vitro activity of other anti-pseudomonal microbials, 

supporting their use as part of combined therapies in cystic fibrosis (Lutz et al. 2012).  

Mutants formed in the presence of azithromycin and 2% OligoG CF-5/20 actually 

improved P. aeruginosa susceptibility to antibiotics from other classes, including 

aztreonam and oxytetracycline. This reflects results from planktonic models which 

have demonstrated antibiotic potentiation in the presence of 2% OligoG CF-5/20 

(Khan et al. 2012a; Pritchard et al. 2017a). The mutations incurred can also 

compensate for fitness cost associated with acquisition of resistance. The altered 

susceptibility to other classes of antibiotics for mutants formed in the presence of 

azithromycin and 2% OligoG CF-5/20 highlights a possible alternative mode of action 

for mutations arising in the presence of 2% OligoG CF-5/20.  

 

Azithromycin resistance can occur when bacteria change the target/binding site, 

either by mutation of some ribosomal components or methylation of key rRNA 

nucleotides; or alternatively by efflux pump activity which reduces intra-bacterial 

accumulation (Parnham et al. 2014). Mutations in the multi-drug resistance regulatory 

gene, mexT, have been shown to enable antimicrobial resistance in clinical isolates 

of P. aeruginosa (Horna et al. 2018). Such mutations affect the MexEF-OprN system 

as well as the regulation of QS-associated factors (Liu et al. 2022). This study 

demonstrated genetic mutations affecting mexT occurring in bacteria from control and 

2% OligoG CF-5/20 conditions. However, there was no difference seen in resistance 

patterns to azithromycin on day 21 or day 45. This may be a reflection of the 

experimental design, which did not test antimicrobial resistance patterns for individual 

bacterial colonies and rather reflects the overall response of colonies with differing 

genotypes. This would be useful progression of the data for future studies.  

 

Previous studies have shown variation in antibiotic susceptibility profiles and 

virulence factor production following antibiotic exposure (Fothergill et al. 2010; Cullen 

et al. 2015). Clark et al. (2015) reported similar cross-resistance between antibiotic 

classes. Exposure to aztreonam therapy led to increased resistance to aztreonam 

and ceftazidime; whilst discontinuation of treatment increased susceptibility to both 

antibiotics plus ciprofloxacin in a selection of isolates (Clark et al. 2015). A parallel 

study of laboratory adaptation of Escherichia coli to various antibiotics over 90 days 
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demonstrated that acquisition of resistance to a single antibiotic can alter 

susceptibility to a range of other antibiotics (Suzuki et al. 2014). Whilst cross-

resistance Given the likelihood of 2% OligoG CF-5/20 use as part of a patient’s 

polypharmacy, it is critical to minimise negative drug interactions. In particular, 

demonstrating no antibiotic potentiation, and increased antibiotic susceptibility with a 

number of antibiotic classes, would be extremely beneficial clinically. 

 

It is important to recognise that this in vitro experiment lacked the highly selective and 

heterogenous local environmental conditions seen in the CF lung, such as oxidative 

and osmotic-stress (Pestrak et al. 2018). Such stressors are key determinants of the 

bacterial adaptive behaviour following P. aeruginosa colonisation of the lower 

respiratory tract (Folkesson et al. 2012) and therefore results from this study may not 

fully reflect how bacteria would truly behave within the human host. This study used 

a laboratory isolate, PAO1, rather than a clinical isolate as the ancestral clone as it is 

a well-characterised bacterial strain. Interestingly, other authors have suggested that 

diversity may be limited when laboratory isolates are used, due to a higher level of 

preadaptation to the laboratory environment (McElroy et al. 2014; Steenackers et al. 

2016). However, Cullen et al. (2015) demonstrated a similar degree of phenotypic 

diversity across their P. aeruginosa strain panel, which included clinical and 

environmental strains. There were some differences seen, with transmissible CF 

strains showing less virulence and pyocyanin production, and lack of O antigen, 

particularly in isolates obtained later in infection (Cullen et al. 2015). The advantage 

of laboratory models such as the bead biofilm model used here is therefore apparent, 

being able to produce reproducible biofilms under controlled conditions. 

 

Future studies could consider using clinical specimens for a more representative 

sample. However, analysis of clinical samples is notoriously challenging due to 

sampling variability and microbial diversity within the CF lung compartmentalisation 

(Ronchetti et al. 2018b). Though in vivo experiments clearly provide the most 

‘realistic’ results, Steenackers et al. eloquently describe the numerous limitations 

associated with using clinical samples. These include difficulties in reproducing data, 

lack of control on heterogenous conditions and being unable to impose and follow 

evolutionary dynamics (Steenackers et al. 2016). 

 

In future experiments it would be interesting to investigate the overall population 

structure and the potential interaction between different morphotypes (Workentine et 

al. 2013).  Also, due to practical constraints, it was not possible to undertake all of the 
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phenotypic tests described in the literature, including tests for auxotrophy, quorum 

sensing, virulence factor production and antibiotic susceptibility for each morphotype. 

However, to extend the study further, it would be useful perform these assays on both 

the individual morphotypes and the biofilm wells’ monoculture samples.  

 

This controlled in vitro study confirmed no negative selective pressure was placed on 

the phenotypic and genotypic diversification during prolonged exposure to 2% OligoG 

CF-5/20. As 2% OligoG CF-5/20 is currently undergoing phase IIb clinical trials, it 

would be useful to study its phenotypic and genotypic effects on patient samples in 

the future. This would hopefully improve understanding of this novel therapy’s impact 

on in vivo bacterial adaptation, and the potential interplay between resultant isolates 

and the host and other bacteria within the CF lung environment.  
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4.6 Conclusion 

 

This study effectively utilised an in vitro bead biofilm model to explore P. aeruginosa 

evolution in the presence of 2% OligoG CF-5/20. It demonstrated that growth in the 

presence of 2% OligoG CF-5/20 did not alter the acquisition of resistance to 

azithromycin within these biofilms when assessed at day 21. However, mutants 

formed in the presence of azithromycin and 2% OligoG CF-5/20 demonstrated 

increased susceptibility to other classes of antibiotics. Findings also demonstrated 

that bacteria growing in vitro in the presence of 2% OligoG CF-5/20 have fewer 

colonies with MDR-associated phenotypes and improved antibiotic susceptibilities, 

which may afford significant clinical benefits in patients treated with this novel anti-

biofilm therapy. 
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5.1 General Discussion 

 

5.1 The evolving climate in cystic fibrosis 

 

People with CF can now expect to live longer lives with better quality of health than 

ever before (Registry 2018). Burgel et al. (2015) used European registry data to 

predict that the number of adults with CF would increase by up to 78% by 2021, while 

the number of children with CF would only increase by 20%, demonstrating increasing 

survival into adulthood (Burgel et al. 2015).  

 

Since beginning this research in 2016, there have been significant changes in the 

treatment options available to many people with CF. Prior to the development of 

CFTR modulator therapies, CF management focused on targeted symptom 

management, with mucolytics, antibiotics, physiotherapy and nutritional support being 

the principal treatments available. There are now four single or combination CFTR 

modulators available on the market, with clear evidence to support their use in 

patients as highly effective treatments for people with the most common genetic 

mutation, F508 del, as well as numerous other mutations (Paterson et al. 2020; 

Dagenais et al. 2021; Middleton and Taylor-Cousar 2021). These treatments have 

shown improvements in lung function (FEV1), reduction in pulmonary exacerbations 

and improved nutritional status, with the realistic potential to significantly change the 

landscape of this chronic disease for  the better (Ramos et al. 2021). Even in patients 

with advanced lung disease, there is clear evidence of benefit from CFTR modulator 

therapy. Burgel et al. (2021) showed rapid clinical improvement in patients aged >12 

years with advanced lung disease, with a number of patients no longer requiring lung 

transplantation after starting the modulator combination of elexacaftor-tezacaftor-

ivacaftor (Burgel et al. 2021).  

 

Monitoring of CF pulmonary disease is now more advanced, with complex lung 

function testing available to children of all ages, in addition to improved imaging 

techniques (Dournes et al. 2021). Monitoring of lung clearance index (LCI) is a 

sensitive marker for small airway disease in CF and is often incorporated into clinical 

trials as a standard surveillance technique (Frauchiger et al. 2021; Stanojevic et al. 

2021).  
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Despite new therapies and improved disease monitoring, there will be many patients 

with existing infection and severe lung disease in whom antimicrobials will continue 

to be a life-saving aspect of their treatment. There is also a sub-group of people with 

CF whose genotypes are not compatible with existing CFTR modulator therapy. 

These patients will also continue to require proactive treatment with both prophylactic 

and treatment antibiotics, as well as mucolytic therapies. For most patients with CF, 

the treatment burden is considerable (Herbert et al. 2021). Many patients will spend 

up to 2 hours a day on treatment, therefore it is important to ensure that prescribed 

medications are optimised and rationalised as much as possible and new therapies 

are only introduced if they offer clear benefit to a patient’s health and well-being 

(Davies et al. 2020). Reducing the treatment burden in the new era of CFTR 

modulators is the main research question in the CF STORM trial (Trial reference 

number: 138613).  

 

5.2 Airway sampling and infection 

 

The management of respiratory health in CF is based on two key interventions: early 

identification and effective treatment of infection; and management of respiratory 

secretions. Infections represent a major contributor to CF lung disease and use of 

targeted antibiotic therapy offers to eradicate bacterial pathogens and prevent long-

term lung damage and eventual respiratory failure (Forton 2019). The difficulties of 

sampling the airway in young children and non-expectorating adults have been 

discussed at length in this work. The introduction of sputum induction has been 

supported by numerous studies (Al-Saleh et al. 2010; Blau et al. 2014; Forton 2015; 

D'Sylva et al. 2017; Ronchetti et al. 2018b). The CF-SpIT study demonstrated the use 

of sputum induction as an infection-diagnostic in children aged 6 months to 18 years, 

with greater sensitivity in pathogen yield for IS compared to the gold-standard two-

lobe BAL. The greatest yield was seen when six-lobe BAL and IS were combined, 

suggesting compartmentalisation of pulmonary infections even in younger children 

with CF (Ronchetti et al. 2018b).  

 

Through the use of culture-independent approaches to microbiology, it is clear that 

culture-dependent methods only provide limited information regarding the bacterial 

environment within the CF lung. There is clear evidence of alterations in the 

respiratory microbiota between states of health and disease. In CF, the evolution from 

a balanced community to a pathogen-dominated community within the first two 
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decades of life has been well-described (Zemanick et al. 2017; Zhao et al. 2020). 

Weiser et al. (2022) explored the use of sputum induction for microbiota analysis, 

building on the success of IS as a comparable sampling method for culture-dependent 

pathogen yield demonstrated by the CF-SpIT trial (Ronchetti et al. 2018b). The study 

demonstrated adequate yield of IS when compared to the gold-standard of 

bronchoalveolar lavage. The aim of Chapter 2 was to undertake an in-depth study of 

the whole CF-SpIT IS dataset, representing the largest IS microbiota analysis for 

children with CF. The work successfully characterised signatures of disease, 

including clinical parameters and treatment received and demonstrated clear 

correlations with microbial diversity. These patterns reflected those previously 

described using expectorated sputum and BAL samples, therefore supporting the use 

of IS as a valid tool for sampling of the CF respiratory microbiota.  

 

Further work is required to understand the causative nature of the correlations 

between clinical features and microbial diversity described in Chapter 2. In particular, 

it remains unclear whether evolution of the microbiota is the principal driver of disease 

or whether disease progression leads to changes in the respiratory microbiota 

through alterations in the ecological niche and changes in selective pressure (Forton 

2019). Linnane et al. (2021) used paediatric BAL samples from CF and non-CF 

patients to study diversity over 5 years, supporting reducing diversity in CF patients 

but ongoing increasing diversity in non-CF children (Linnane et al. 2021). A 

longitudinal study using IS samples from our patient cohort, ideally from infancy to 

early adulthood, would provide an opportunity to track microbiota evolution within 

patients. This would require a large dataset, with multiple sampling points. Sputum 

induction offers the best sampling method for such a study, as it could be performed 

at routine outpatient visits regularly throughout the year.  

 

The data in Chapter 2 showed evidence of pathogen dominance in some children 

and CF-related pathogens present in almost all samples. The loss of diversity and 

development of a pathogen-dominated microbiota is associated with worsening 

clinical parameters, as seen in previous studies (Blainey et al. 2012; Boutin and 

Dalpke 2017). Gaining a better understanding of the effects of pathogen-dominance 

versus microbial diversity may also inform clinicians about timings of transition to the 

‘disease-state microbiota’. There may be an optimal time for the introduction of 

focused treatment interventions, which will likely vary according to the individual 

(Forton 2019). Microbiota analysis may represent a potential biomarker for disease, 
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but further studies are required before this can be incorporated into routine clinical 

practice. 

 

5.3 The COVID-19 pandemic  

 

This thesis was written during the COVID-19 pandemic. The effects of this global 

pandemic have been wide-reaching. Children with CF were considered ‘clinically 

extremely vulnerable’ in the early months of the pandemic and therefore advised to 

shield at home. Traditional hospital-based CF care, whereby patients attended 

outpatient clinics for spirometry, cough swabs or sputum for microbiological culture, 

growth measurements and clinical reviews by multi-disciplinary team (MDT) 

members, were no longer possible (Dixon et al. 2021). This prompted rapid 

introduction of telemedicine into many CF clinics.  

 

Telemedicine and remote care delivery models for CF have become a significant 

focus of interest over the past 2 years. Reported benefits have included similar access 

to the full MDT, improved personalised approach, enhanced convenience for the 

patient and their family, gains for the environment with less travel, and reduced 

infection risk (Dixon et al. 2021). Potential difficulties related to remote care delivery 

included lack of ability to perform physical examinations, reliance on home 

spirometers for lung function measurements, lack of access to more complex 

investigations and imaging, and barriers to effective communication (Dixon et al. 

2021). 

 

Of particular relevance to this work, the ability to ensure adequate airway sampling 

was a clear challenge for patients and their teams. Prior to the pandemic, integration 

of IS as a valid and reliable sampling method was increasingly commonplace in 

clinical practice (Weiser et al. 2022). However, sputum-induction traditionally requires 

a standard process involving nebuliser therapy and a physiotherapist (Ronchetti et al. 

2018b). As a natural development of the CF-SpIT study (Ronchetti et al. 2018b), 

Dafydd et al. (2020) systematically evaluated home sputum-induction testing 

(HomeSpIT) within their paediatric CF clinic. The study showed that home sputum-

induction was successful in children >5 years, with comparable outcomes to clinic 

sputum-induction procedures (Dafydd et al. 2020). Whilst particularly useful within the 

context of fewer face-to-face clinical appointments during the pandemic, this study 

also supports the transitioning to sputum-induction as the primary routine sampling 
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method over cough swabs. For many patients, it should be possible to produce their 

samples prior to clinic visits, thus reducing aerosol-generating procedures in clinic 

and enabling physiotherapists to focus their expertise on younger children who will 

require greater support to obtain an adequate IS sample (Dafydd et al. 2020).  

 

The results of Chapter 2 demonstrated the use of IS for microbiota diversity and the 

HomeSpIT study (Dafydd et al. 2020) further supports the incorporation of IS for 

routine culture-dependent and culture-independent airway microbiological 

surveillance. The ability to produce IS samples at home may enable more frequent 

sampling whilst minimising the negative impact on the patient. Future studies could 

use home sputum-induction for regular microbiota sampling, perhaps for 

understanding microbiome alterations around the time of pulmonary exacerbations.  

 

The technique could also be incorporated into monitoring of response to both 

standard treatments but also new clinical therapies within clinical research trial 

settings. The incorporation of microbiota analysis into the OligoG phase 2b clinical 

trials has been reported by Weiser et al. (2021). The study demonstrated highly 

concordant microbiota profiles for paired sputum samples taken 2 hours apart, 

suggesting that a single collection is sufficient to capture microbiota diversity at 

relevant trial time-points. The samples also showed stable microbiota profiles for 

individual patients over time, though there was significant inter-patient sample 

heterogeneity and variations in pathogen dominance (Weiser et al. 2021). The 

authors suggested that understanding patient’s microbiota profiles may be beneficial 

when designing future trials. Perhaps trials should consider pre-trial microbiota 

profiling to be of equal, if not greater, importance to understanding patients’ culture-

dependent microbiology status, and this should be incorporated into the trial protocol. 

This would be of particular relevance for anti-infective clinical trials. Weiser et al. 

(2021) used expectorated sputum samples from adult patients for their analysis. 

However, given the concordance of microbiota analysis between BAL and IS samples 

in (Weiser et al. 2022), plus the data shown in Chapter 2, there is clear evidence that 

IS could be incorporated into study designs as an alternative method. This may make 

it easier to include children in future clinical trials, which would clearly be very 

beneficial for providing data for this patient group.  
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5.4 Antimicrobial resistance 

 

Antimicrobial resistance (AMR) is a major healthcare challenge across the globe. 

Infection-control processes must be stringent for patients with CF, with strict rules in 

place to minimise patient contact and potential cross-infection (Brown et al. 2021). A 

key risk factor for selecting antimicrobial resistance is repeated bacterial exposure to 

suboptimal antibiotic concentrations (Castagnola et al. 2021). The efficacy of 

antibiotics can be significantly affected in CF as a result of patients’ 

pathophysiological conditions, such as changes in lean body mass and glomerular 

hyperfiltration for example. These conditions can influence drug pharmacokinetic and 

pharmacodynamic parameters and increase the likelihood of suboptimal antibiotic 

concentrations being reached at the target organ (Castagnola et al. 2021). Therefore, 

cystic fibrosis represents a ‘perfect storm’ of recurrent infections, increased need for 

regular and long-term antibiotics, and poor achievement of therapeutic drug delivery, 

leading to increasing rates of AMR. To tackle the problem of evolving AMR, novel 

antimicrobial therapies are needed. 

 

5.5 Development of novel therapies 

 

Numerous potential therapeutic drugs are in clinical trial stages and thereafter being 

approved for patients with CF (Kotnala et al. 2021). The Cystic Fibrosis Drug 

Development Pipeline lists drugs in development according to their role. These 

categories include restoration or correction of CFTR protein function (modulator 

therapies), therapies to improve mucociliary clearance, anti-inflammatory, anti-

infective and nutritional formulations (Kotnala et al. 2021).  

 

CFTR mutations are associated with depletion of airway surface liquid, retention of 

thick and viscous mucus, increased infection and inflammation (Lopes-Pacheco 

2016). The viscoelastic properties of mucus are predominantly affected by mucins. 

As a result of CFTR dysfunction, mucin production is abnormal, with clear 

upregulation of certain respiratory mucins particularly seen during pulmonary 

exacerbations (Ostedgaard et al. 2017; Kotnala et al. 2021). Interactions between 

mucins and CF therapies is an obvious area of interest. OligoG CF-5/20 is a novel 

therapy targeting improved mucociliary clearance. Chapter 3 aimed to identify 

possible structural interactions between OligoG CF-5/20 and ex-vivo CF sputum 

using Fourier Transform Infrared Spectroscopy (FTIR). Samples from the CF SpIT 
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trial were used to analyse the mechanism of action of OligoG CF-5/20 on the sputum 

of patients with CF. Results showed clear evidence of interaction between OligoG 

CF-5/20 and the respiratory mucins within CF sputum samples, particularly with 

glycan moieties and the peptide backbone of mucin. This data has made an important 

contribution to our understanding of the mechanism of action of OligoG CF-5/20 and 

provides a potential mechanism whereby this novel therapy can modify the 

viscoelastic properties of CF sputum. 

 

The ultimate goal for OligoG CF-5/20 is to incorporate this novel therapy into routine 

patient use. As with all new therapeutics, there are strict processes which must be 

followed to demonstrate safety and efficacy from laboratory to clinical use. OligoG 

CF-5/20 is currently at the stage of Phase 2b trials, with a number of trials completed 

and others due to start over the next year. It now has Orphan Drug designation from 

both the European Medicines Agency and the United States Food and Drug 

Administration (Algipharma.com). Chapter 4 aimed to use a novel in vitro bead biofilm 

model to represent the CF lung environment and study the effects of prolonged 

exposure to 2% OligoG CF-5/20 on P. aeruginosa. A range of assays were utilised to 

characterise potential phenotypic and genotypic alterations that may arise in P. 

aeruginosa colonies. This was an important study as clinical use of OligoG CF-5/20 

will be delivered as either repeated treatment courses or for prolonged patient use 

over weeks to months and understanding the possible effects on bacterial 

pathogenicity is essential for clinical use. The data from Chapter 4 demonstrated a 

reduction in colonies with multi-drug resistant-associated phenotypes, such as SCVs. 

Also, 2% OligoG CF-5/20 did not drive mutations in specific genes during the adaption 

of P. aeruginosa to biofilm growth. Interestingly, the study showed that isolates grown 

in the presence of 2% OligoG CF-5/20 and azithromycin had altered susceptibility to 

other classes of antibiotics, with greater susceptibility to antibiotics such as aztreonam 

and oxytetracycline. Overall, extrapolation of these findings to clinical use would 

suggest significant clinical benefits to patients. However, clearly further clinical trials 

are required to see whether such changes within an in vitro model are experienced in 

CF patients.  

 

Since commencing this research, the body of evidence supporting the use of OligoG 

CF-5/20 in patients with CF has expanded significantly. Peer-reviewed publications 

have demonstrated the ability of OligoG CF-5/20 to alter the visco-elastic properties 

of mucus through both direct and indirect effects on mucin (Nordgård and Draget 

2011; Pritchard et al. 2016a; Vitko et al. 2016; Ermund et al. 2017). There have also 
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been numerous studies, particularly focusing on P. aeruginosa, demonstrating its 

ability to disrupt bacterial biofilm formation and growth (Powell et al. 2013; Powell et 

al. 2014b; Pritchard et al. 2017a; Jack et al. 2018; Powell et al. 2018) and potentiate 

the effect of antibiotics (Khan et al. 2012a; Pritchard et al. 2017a). Data has also 

shown the potential to combine OligoG CF-5/20 with colistin as a conjugate to 

improve treatment of MDR gram-negative bacterial infections (Stokniene et al. 2020). 

This raises the possibility of using this novel therapy in combination with existing 

antimicrobials to maximise efficacy in difficult-to-treat infections.  

 

Clinical trial data has confirmed that repeated inhalation of OligoG CF-5/20 dry 

powder (DPI) was safe in adults, but the study was unable to show significant 

treatment benefit with OligoG CF-5/20 compared to placebo (van Koningsbruggen-

Rietschel et al. 2020). Future phase 2B clinical studies, which are currently being 

performed under the framework of HORIZON2020, are exploring the use of OligoG 

CF-5/20 DPI at a lower dose. A number of other clinical trials are ongoing, aiming to 

provide further safety and efficacy data supporting the use of OligoG CF-5/20 in 

patients with CF. 
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5.6 Conclusion 

 

Significant developments in CF management over the past decade should be 

celebrated. However, as a scientific and medical community, we must not become 

complacent and should continue to seek new therapies to optimise the health of 

children and adults with CF. The maintenance and progression of the CF antimicrobial 

development pipeline is essential and novel therapies such as OligoG CF-5/20 

require ongoing investment of expertise and finances to ensure that the data required 

to enable safe and effective clinical use is produced and shared with patients, 

clinicians and the wider research community. This research has demonstrated the 

use of induced sputum sampling for microbiota analysis within the paediatric 

population. Future use for both routine clinical surveillance and integration into clinical 

trial methodology seems a natural progression, but further studies will be needed to 

really understand the role of sputum induction in disease monitoring, prediction of 

outcomes and use in targeting appropriate therapies for patients. 
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Appendix I:  

 

Chapter Two: Induced sputum samples can be used 

to investigate microbial diversity in children with 

cystic fibrosis  
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I.I Parent information sheet and consent form 
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Chapter Four 

Phenotypic and genotypic adaptations in 

Pseudomonas aeruginosa biofilms following long-

term exposure to an alginate oligomer inhalation 

therapy 
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II.I Materials and methods for genotypic characterisation 

II.I.I Genotypic characterisation of colony morphotypes 

Whole-genome sequencing was performed following genomic DNA extraction from 

wild-type P. aeruginosa PAO1 and evolved PAO1 isolates using the Maxwell 

instrument and Maxwell 16 tissue DNA purification kits (Promega) according to the 

manufacturer’s instructions. Briefly, 3ml of fresh overnight culture was pelleted by 

centrifugation, and the pellet was resuspended in 300ml 4 M UltraPure guanidine 

isothiocyanate (ThermoFisher Scientific) and added directly into the DNA purification 

kits. Eluted DNA was stored at 220°C. Whole-genome sequencing was performed at 

the Cardiff School of Biosciences Genomics Research Hub. DNA was prepared for 

sequencing using the NEBNext Ultra II DNA library prep kit for Illumina and NEBNext 

multiplex oligonucleotides for Illumina (New England BioLabs Inc.). Sequencing was 

carried out on an Illumina NextSeq500 using a NextSeq 500/550 Mid Output v2 kit 

(300 cycles), giving, on average, 135-bp paired-end reads. Approximately 2.9 million 

reads (range: 2.5 to 3.4 million) were yielded per sample, corresponding to an 

average coverage depth of approximately 125x (range: 106 to 142x) (Oakley et al. 

2021). 

 

II.I.II Bioinformatic analysis of whole-genome sequencing data 

Bioinformatic analysis was carried out on a virtual machine, hosted by the Cloud 

Infrastructure for Microbial Bioinformatics (CLIMB) consortium (Connor et al. 2016). 

Quality control and Illumina adapter trimming of the raw sequencing reads were 

performed using FastQC v0.11.5 (Andrews 2010) and Trim Galore! v0.4.3 (Krueger) 

for paired-end reads. Genome assembly for the PAO1 WT was achieved using 

Unicycler v0.4.7 (Wick et al. 2017) with SPAdes v3.11.0 (Bankevich et al. 2012) and 

the option for short-read assembly. Assembly quality was visualised with Bandage 

assembly graphs (Wick et al. 2015) and with QUAST v4.6.3 (Gurevich et al. 2013) to 

determine that the PAO1 wild type shared >98.8% genomic DNA with the P. 

aeruginosa PAO1 ATCC 15692 sequence (GenBank accession number 

GCA_001729505.1). Contig ordering to the P. aeruginosa PAO1 ATCC 15692 

sequence was performed using ABACAS v1.3.1 (Assefa et al. 2009). The resulting 

draft genome sequence was annotated with Prokka v1.12 (Seemann 2014). 

Polymorphic sites in the evolved PAO1 isolates were identified using Snippy v3.2 

(Seemann 2015) with the draft genome sequence of the wild-type PAO1 as the 

reference. For variant calling, the default parameters of minimum base quality of 20, 

minimum read coverage of 10x, and 90% read concordance at each locus were used. 
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Only variants in the annotated coding regions were included in the analysis. Variants 

identified in the wild-type PAO1 sequence reads were subtracted from all other 

evolved PAO1 isolates. Correct annotation of coding sequences containing variants 

was confirmed using the BLASTN search tool of the Pseudomonas Genome 

Database (Winsor et al. 2016) against the P. aeruginosa PAO1 reference sequence. 

Functional information for coding sequences was derived from the Pseudomonas 

Genome Database (Oakley et al. 2021). 

 

Sequence data supporting the genomic analysis have been deposited in the 

European Nucleotide Archive with the accession code PRJEB36146 (ERP119298). 

With thanks to Dr Rebecca Weiser who completed the whole-genome sequencing 

and bioinformatic analysis.  

  



223 
 

 

II.II.I Results for genotypic characterisation  

 

This data was analysed and reported by Dr Rebecca Weiser. The results are provided 

to report the complete dataset produced from the bead biofilm model isolates (Oakley 

et al. 2021).  

 

Genome resequencing was performed to determine genetic changes associated with 

the evolution of PAO1 biofilm populations, with or without exposure to 2% OligoG CF-

5/20. Overall, 96 mutations (single nucleotide polymorphisms [SNPs], insertions, 

deletions, duplications) were identified across 38 bead biofilm-evolved isolates, with 

two day 21 transfer isolates (C10a and O6a) having no evidence of genomic mutation. 

Eight mutations were in noncoding regions, while 88 were in coding regions. The 8 

mutations in noncoding regions were all identified in control day 45 transfer isolates 

(C1b, C2b, and C3b) and excluded from the overall “functional” analysis. The 88 

mutations in coding regions represented 39 unique changes, affecting 21 coding 

regions (Table II.i). Only five mutations were synonymous, 1 was found in the tssL1 

gene in the isolate C3b, and two mutations were found in a gene encoding a 

hypothetical bacteriophage-associated protein in two isolates, C1b and C2b. Analysis 

of the distribution of the 88 mutations revealed that there was a significantly higher 

number of mutations in the day 45 transfer isolates than the day 21 transfer isolates 

(control, day 21 versus day 45, P = 0.02; OligoG CF-5/20, day 21 versus day 45, P = 

0.02). There was no difference, however, in the numbers of mutations observed 

between control and OligoG CF-5/20- exposed isolates (control versus OligoG CF-

5/20, day 21, P = 0.28; day 45, P = 0.90) (Oakley et al. 2021).  
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Table II.i Mutation detection by whole-genome resequencing of evolved biofilm isolates  

 

Gene with 
mutation 

Contig in 
reference 

Locus in 
reference 

Mutational effect Mutation class 
Evolved 
isolate 
(condition) 

PGD functional 
classification* 

Pathways* 

Signal transduction 

bifA cyclic-Di-GMP 
phosphodiesterase 

PAO1_108 PAO1_04439 missense_variant c.1796A>T p.Lys599Met 
Non-synonymous; 
missense 

C6a, C9a,  
C3b, C5b 

Cell wall/LPS/capsule; 
Motility and 
attachment 

Biofilm formation 

yfiR protein PAO1_93 PAO1_03876 
missense_variant c.404T>A p.Val135Glu 

Non-synonymous; 
missense 

C12a  
Cell wall/LPS/capsule  

missense_variant c.281T>A p.Val94Glu 
Non-synonymous; 
missense 

C11a  

wspA probable 
chemotaxis 
inducer 

PAO1_30 PAO1_01217 missense_variant c.992C>T p.Ser331Leu 
Non-synonymous; 
missense 

C1a, C2a, C2b 

Motility and 
attachment; 
Adaptation, 
protection; 
chemotaxis 

Two-component system; 
Chemotactic transducer 
(MCP); Chemosensory; 
Biofilm formation 

wspF probable 
methylesterase 

PAO1_30 PAO1_01222 

frameshift_variant c.688delA p.Ile230fs Deletion 
C3a, C4a, C6b, 
C4b, O3a  

Chemotaxis; 
transcriptional 
regulators; motility 
and attachment 

Two-component system; 
Chemotaxis; 
Chemosensory; Biofilm 
formation 

frameshift_variant 
c.880_911delACCATCGCCCAGGACCAGGCCAGTTGCGCAGT 
p.Thr294fs 

Deletion C5a  

frameshift_variant c.445delG p.Ala149fs Deletion C1b, C7b  

missense_variant c.61G>C p.Ala21Pro 
Non-synonymous; 
missense 

O5a, O12a, 
O7a, O2b  

missense_variant c.842C>A p.Ala281Asp 
Non-synonymous; 
missense 

O8a  

stop_gained c.658C>T p.Gln220* 
Non-synonymous; 
stop 

O1a  

conservative_inframe_deletion 
c.37_63delGTCGAGGCGCTGCGCCGCGCGCTGGCC 
p.Val13_Ala21del 

Deletion O2a  

missense_variant c.821C>T p.Thr274Ile 
Non-synonymous; 
missense 

O4a  

stop_gained c.418C>T p.Gln140* 
Non-synonymous; 
stop 

O3b, O1b  

Motility regulator 
morA 

PAO1_108 PAO1_04681 missense_variant c.3464T>A p.Leu1155Gln 
Non-synonymous; 
missense 

O11a, O10a, 
O4b, O5b  

Membrane proteins  



225 
 

Glucose transport 
sensor gtrS 

PAO1_36 PAO1_01743 missense_variant c.1014C>G p.His338Gln 
Non-synonymous; 
missense 

O5b  
Two-component 
regulatory systems 

Two-component system 

Secretion        

tssL1 membrane 
protein 

PAO1_11 PAO1_00042 synonymous_variant c.1137G>A p.Pro379Pro Synonymous C3b  

Hypothetical, 
unclassified, 
unknown; Protein 
secretion/export 
apparatus 

HCP secretion island (HIS-
I) type VI secretion system; 
Bacterial secretion system 

Translation 

Elongation factor G 
fusA1 

PAO1_21 PAO1_00659 missense_variant c.953C>T p.Ser318Leu 
Non-synonymous; 
missense 

C3a  
Translation, post-
translational 
modification, 
degradation 

 

PAO1_21 PAO1_00659 missense_variant c.1546G>A p.Gly516Ser 
Non-synonymous; 
missense 

C8a, C10b  

Transcription 

Transcriptional 
regulator mvfR 

PAO1_93 PAO1_04000 

conservative_inframe_deletion c.109_120delTCGGCGGTCAGC 
p.Ser37_Ser40del 

Deletion 
O11a, O10a, 
O4b, O5b  

Transcriptional 
regulators; 
Biosynthesis of 
cofactors, prosthetic 
groups and carriers 

Quorum sensing; biofilm 
formation 

frameshift_variant c.782_785dupGCGG p.Ile263fs Duplication C3b, C5b  

missense_variant c.101C>T p.Ala34Val 
Non-synonymous; 
missense 

O9a  

missense_variant c.112G>A p.Ala38Thr 
Non-synonymous; 
missense 

O1b  

missense_variant c.440T>C p.Ile147Thr 
Non-synonymous; 
missense 

C4a, C4b  

missense_variant c.527A>C p.His176Pro 
Non-synonymous; 
missense 

C6b  

Transcriptional 
regulator mexT 

PAO1_41 PAO1_02477 
conservative_inframe_insertion c.389_390insCCT 
p.Val130_Leu131insLeu 

Insertion 

C12a, C6a, 
C2a, C13a, 
C7a, C5a, C5b, 
C2b, C9b, C6b, 
C4b, C1b, C7b, 
O5a, O7a, O8a, 
O1a, O2a, 
O11a, O10a, 
O4a, O2b, O3b, 
O1b, O4b  

Transcriptional 
regulators 

 

Glycerol-3-
phosphate regulon 
repressor glpR 

PAO1_30 PAO1_01342 missense_variant c.169G>A p.Ala57Thr 
Non-synonymous; 
missense 

C8b  
Transcriptional 
regulators 

 

Transcriptional 
regulator lasR 

PAO1_93 PAO1_03564 missense_variant c.628T>C p.Phe210Leu 
Non-synonymous; 
missense 

C6b 
Transcriptional 
regulators; 
Adaptation, protection 

Quorum sensing; biofilm 
formation 
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Transcriptional 
regulator vfr 

PAO1_20 PAO1_00624 frameshift_variant c.594dupG p.Leu200fs Duplication O5b 
Transcriptional 
regulators 

Two-component system; 
Quorum sensing; Biofilm 
formation 

Motility 

fimL protein PAO1_88 PAO1_03161 

stop_gained c.1528C>T p.Gln510* 
Non-synonymous; 
stop 

O4b 
Motility and 
attachment 

 
conservative_inframe_insertion c.1340_1341insCCTGGC 
p.Gly447_Leu448insLeuAla 

Insertion C5b  

Type 4 fimbrial 
biogenesis protein 
piLY1 

PAO1_108 PAO1_04632 stop_gained c.2993C>A p.Ser998* 
Non-synonymous; 
stop 

C6b  
Motility and 
attachment 

Pilin biosynthesis 

Type 4 fimbrial 
biogenesis protein 
pilM 

PAO1_122 PAO1_05151 frameshift_variant c.670delG p.Gly224fs Deletion C4b  
Motility and 
attachment 

Pilin biosynthesis 

Twitching motility 
protein pilT 

PAO1_19 PAO1_00365 
conservative_inframe_deletion 
c.970_984delGTCGCCAAGGGCCTG p.Val324_Leu328del 

Deletion O1b  
Cell wall/LPS/capsule; 
Motility and 
attachment 

Pilin biosynthesis 

Unknown 

Hypothetical 
protein 

PAO1_79 PAO1_02747 
conservative_inframe_deletion 
c.868_888delTTTGAGACTGCTATTTCCCAG 
p.Phe290_Gln296del 

Deletion O3b  

  PAO1_88 PAO1_03081 missense_variant c.523T>C p.Phe175Leu 
Non-synonymous; 
missense 

C9b  

PAO1_120 PAO1_04769 
frameshift_variant c.281dupC p.Leu95fs Duplication C2b  

frameshift_variant c.716delC p.Pro239fs Deletion C1b  

Unknown (phage related) 

Hypothetical 
protein from 
bacteriophage Pf1 

PAO1_100 PAO1_04289 
synonymous_variant c.246G>T p.Gly82Gly Synonymous C2b, C1b  

  

synonymous_variant c.198T>C p.Ser66Ser Synonymous C2b, C1b  

 

Footnotes; PDG, Pseudomonas Genome database; * Functional classifications and pathways according to the Pseudomonas Genome 

Database 



227 
 

Genes that had acquired mutations in the evolved isolates were clustered according 

to function (Table II.ii). The majority of mutations occurred in genes associated with 

signal transduction (n = 32) or transcription (n = 39) and genes encoding hypothetical 

or bacteriophage-associated hypothetical proteins (n = 8), with smaller numbers of 

mutations linked to motility (n = 5), secretion (n = 1), and translation (n = 3). Several 

genes in the signal transduction and transcription functional categories were found in 

pathways involved in biofilm formation, chemotaxis, motility, and QS. Apart from the 

mvfR and mexT transcriptional regulators and the wspF methyltransferase involved 

in signal transduction, no other genes were found to have mutations in isolates from 

all four populations. Notably, acquired mutations in motility genes were present only, 

in both control and 2% OligoG CF-5/20-treated isolates, at day 45 (Oakley et al. 

2021).  
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Table II. ii. Distribution of mutations in evolved genotypes  

The heatmap indicates the numbers of mutations in genes belonging to different 

functional groups, as per the Pseudomonas Genome Database. The colour intensity 

reflects the frequency of mutations in each population (actual values also given inside 

the boxes). Populations are indicated at the top of the figure: control and OligoG CF-

5/20 at transfer days 21 and 45. Links to functional pathways are given in parentheses 

next to gene identifications: BF, biofilm; CH, chemotaxis; M, motility; QS, quorum 

sensing; and MDR, multidrug resistance. 
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Table II. ii. (Description overleaf). 

Population  
 Control 

OligoG CF-

5/20 

Transfer day   21 45 21 45 
Number of 

isolates  
 13 10 12 5 

  
     

Signal 

transduction 
 

bifA (BF) 2 2     
  yfiR 2       
  wspA (CH;BF) 2 1     
  wspF (CH;BF) 3 4 8 3 
  morA (M)     2 2 
  gtrS       1 
  

     

Secretion  tssL1   1     
  

     

Translation  fusA1 2 1     
  

     

Transcription  mvfR (QS;BF) 1 4 3 3 
  mexT (MDR) 6 7 8 4 
  glpR   1     
  lasR (QS:BF)   1     
  vfr (QS:BF)       1 
  

     

Motility  fimL   1   1 
  pilY1   1     
  pilM   1     
  pilT       1 
  

     

Unknown     3   1 
  

     
 Unknown (phage related)   4     
 Total mutations in coding regions 18 32 21 17 

 Mean (mutations/isolate) 1.38 3.2 1.75 3.4 

 Median (mutations/isolate)* 1 4 2 4 
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