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Abstract: Source activity was extracted from resting-state magnetoencephalography data of 103 subjects
aged 18–60 years. The directionality of information flow was computed from the regional time courses
using delay symbolic transfer entropy and phase entropy. The analysis yielded a dynamic source
connectivity profile, disentangling the direction, strength, and time delay of the underlying causal
interactions, producing independent time delays for cross-frequency amplitude-to-amplitude and
phase-to-phase coupling. The computation of the dominant intrinsic coupling mode (DoCM) allowed
me to estimate the probability distribution of the DoCM independently of phase and amplitude. The
results support earlier observations of a posterior-to-anterior information flow for phase dynamics
in {α1, α2, β, γ} and an opposite flow (anterior to posterior) in θ. Amplitude dynamics reveal
posterior-to-anterior information flow in {α1, α2, γ}, a sensory-motor β-oriented pattern, and an
anterior-to-posterior pattern in {δ, θ}. The DoCM between intra- and cross-frequency couplings (CFC)
are reported here for the first time and independently for amplitude and phase; in both domains
{δ, θ, α1}, frequencies are the main contributors to DoCM. Finally, a novel brain age index (BAI) is
introduced, defined as the ratio of the probability distribution of inter- over intra-frequency couplings.
This ratio shows a universal age trajectory: a rapid rise from the end of adolescence, reaching a
peak in adulthood, and declining slowly thereafter. The universal pattern is seen in the BAI of each
frequency studied and for both amplitude and phase domains. No such universal age dependence
was previously reported.

Keywords: magnetoencephalography; resting state; information flow; symbolic transfer entropy;
atlas-based source localization; development; intrinsic coupling modes; universal brain age index

1. Introduction

The electrophysiological activity of the brain is dominated by rhythmic activity over
a wide range of frequencies from below 1 Hz to δ (1–4 Hz) [1,2], θ (5–8 Hz), α (9–12 Hz),
σ (12–16 Hz), β (16–35 Hz), γ (35–100 Hz), and even higher frequencies. These frequencies
recur across levels—from the neural membrane [3] to a macroscale of EEG/MEG—and
contribute to cognitive processes [4–6]. Lopes da Silva et al. (1980) suggest that frequency
is used locally and globally for complex multiplexing, organization, and coordination of
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brain activity in time. This is confirmed by analysis using both power spectra [1,2,7,8] and
connectivity measures during different cognitive tasks [7,9–13].

The exchange of information between brain areas, some close and others distant,
poses a complicated multiplexing problem that the brain solves using cross-frequency
in-teractions in multiple simultaneous brain rhythms [14]. Evidence for these has been iden-
tified in different species over a range of brain sizes and anatomical/functional connectiv-
ity complexities [15–17]. In summary, temporal parcellation of function is mediated by
communication between spatially distributed nodes, with oscillations guiding dynamic
integration of local processing and flexibly adjusting to the changing cognitive demands of
successive tasks [18–20].

Brain areas can communicate at zero phases if their output is synchronized to an
os-cillation cycle, whereas inputs arrive within the excitatory phase of the same cycle. A
cycle duration directly linked to a given oscillation frequency can support communication
with a fixed maximum time delay [21], with delays increasing (frequency decreasing) as
the distance between brain areas increases [22,23].

The human brain is a complex system [1–3] consisting of interconnected functional
units at the macroscopic scale [4] with specific information processing capabilities [5].
Cognitive functions can be supported by the coordinated activity of these spatially distinct
units, whereby the oscillatory nature of these interactions can provide the mechanism [6–9].

The brain is an extremely complex system [24–26] containing, at the macroscopic
scale, interconnected functional units [27] with more or less specific information-processing
capabilities [28]. However, cognitive functions require the coordinated activity of these
spatially separated units, whereby the oscillatory nature of the neuronal activity may
provide a possible mechanism [16,29–31]. The activity of these functional units oscillating
on a preferred frequency is coordinated via cross-frequency interactions [5]. The exploration
of these interactions, in terms of frequency content, strength, directionality, and the time
delay is more than necessary for a better understanding of how the brain functions and
dysfunctions under both normal and abnormal conditions, respectively.

Functional interactions may be investigated by statistical dependencies between time
series of brain activity at different regions with a frequency content [10]. These interac-
tions are so-called functional connectivity and effective connectivity for causal dependen-
cies. Such interactions have been explored across large-scale networks in magnetoenceph-
alography (MEG) and electroencephalography (EEG) [9,32,33]. Until now, only one study
has explored the directionality of interactions across large-scale networks in the phase
domain following a within-frequency analysis [33]. The authors of this study adopted a
data-driven estimator, so-called phase transfer entropy (PTE), to explore the directionality
of frequency-dependent, large-scale, MEG source-reconstructed, resting-state activity. At
higher frequencies (8–30 Hz), they showed dominant posterior-to-anterior patterns of
in-formation flow in the parieto-occipital lobe toward frontal areas. In contrast, a pattern of
anterior-to-posterior flow was found in the θ band, whereas the senders of information in
the α2 band were also often receivers of information in the θ band, suggesting a fre-quency-
specific loop of information flow in the human brain. Causal dependencies should be also
explored in the amplitude domain. In our previous study, we designed delay sym-bolic
transfer entropy (dSTE) to explore directionality, strength, and time delay between two
time series from EEG sensor locations functioning at different frequencies [34]. We revealed
effective interactions between frontalθ (Fθ) and POα2 consistently across the diffi-cult levels
of a mental arithmetic task.

The majority of functional neuroimaging studies have explored the effective connec-
tivity patterns between whole-brain parcellated brain areas, focusing on within-frequency
coupling interactions [35]. However, there are numerous studies supporting the existence
of true cross-frequency coupling (CFC) interactions between brain areas that coexist with
between-frequency coupling (BFC) interactions [36,37]. The authors’ studies integrating
both types of interactions assumed that these interactions coexist in every temporal seg-
ment and across every pair of brain areas. They tabulated all these coupling strengths
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in a multilayer network of (size number of frequencies x number of brain areas)[36,37].
The construction of a multilayer network where both BFC and CFC coexist among every
stud-ied frequency and set of brain areas is an overestimation of what really happens in
the human brain in every condition. For that reason, we designed a statistical framework
that detected the so-called dominant coupling mode between every pair of brain areas in a
specific temporal segment. This dominant coupling mode could be either BFC within a
specific frequency band, CFC between a specific frequency pair, or with no interaction [5].

The dominant coupling modes model (DoCM) provides a unifying framework for
capturing the dynamics of intrinsically generated neuronal interactions at multiple spatial
and temporal scales [5]. DoCM can be captured in both amplitude and phase domains, as
well as across both within-frequency and cross-frequency interactions. All these potential
coupling modes between two time series at distinct anatomical sites that coexist in the
resting state are so-called intrinsic coupling modes (ICMs). Using MEG and EEG, it is
pos-sible to study intrinsic coupling modes (ICMs) across a broad range of time scales
and in a spectrally resolved manner [38,39]. ICMs are important features of ongoing brain
activ-ity that show rich spatiotemporal distribution and contain information that influences
cognition [5]. Here, we will focus on two basic CFC types: one that arises from phase
cou-pling of band-limited oscillations and a second that arises from the amplitude coupling
of fluctuations of band-limited oscillations [5,40]. Many studies have demonstrated that
studying ICMs with electrophysiology can contribute complementary information to fMRI
with superior temporal and spectral resolution [41,42]. We showed how DoCM can be
performed in functional neuroimaging modalities in our previous studies [7,12].

It is now accepted that cross-frequency coupling in ongoing activity [43–45] contains
information that cannot be captured by fMRI. Furthermore, patterns of resting-state cross-
frequency coupling extracted from MEG are significantly different compared to controls in
dyslexia [46], mild traumatic brain injury [47], and mild cognitive impairment [48].

In the present study, apart from repeating the same analysis as in [33], we aimed
to explore the directionality, strength, and time delay between large-scale, resting-state,
source-reconstructed networks in both in-phase (PTE) and amplitude domains (dSTE).
In addition, we adopted both estimators to explore the aforementioned features of both
within-frequency and cross-frequency interactions for the first time in the literature. This
procedure can reveal the dominant coupling modes per pair of brain regions and across
epochs with our dominant coupling modes model (DoCM). Our analysis is applied to a
lifespan open MEG cohort with the main goal of identifying possible age-dependent trends.
We analyzed a large number of epochs compared to only one large epoch in [33] in both
within- and between-frequency coupling with two estimators and assessed the repeatability
of the extracted features in a repeat cohort.

In this work, we identify consistent information flow patterns across ages using delay
symbolic transfer entropy (dSTE) [34,49] and phase transfer entropy (PTE) [50]. Four dis-
tinct developmental changes are documented: (1) age-dependent trends in the infor-mation
flow between anterior and posterior parts of the brain at some of the key brain rhythms that
are similar for amplitude and phase dynamics; (2) meantime lags (time de-lays) between
regional brain activity within and between brain rhythms that are similar for amplitude
and phase dynamics through the ages; (3) characterization of the prominent coupling
between every pair of source time series under the notion of DoCM; and (4) a universal
developmental history represented by a ratio of changes of DoCM.

2. Materials and Methods
2.1. Subjects

In this study, we used the main analysis of resting-state MEG data from the Open
Access Omega Project [51]. We selected 103 healthy control subjects based on small head
movements (less than 4 mm) and gender balance (51 females and 52 males), as well as
uniform spread in the age range of 18–65 years (see Table 1).
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Table 1. Distribution of the 103 participants across the four age groups by gender.

Age group (years) 18–27 28–40 41–50 51–60

n 30 25 23 25

Males/females 13/17 11/14 14/9 14/11

We independently analyzed a separate data set of ten healthy young adults (five
women aged 24.4 ± 1.5 years, and five men aged 25.3 ± 1.7 years) recorded with the MEG
CTF 275 sensor system at the CUBRIC Neuroimaging Centre of Cardiff University. In
this experiment, MEG data were obtained twice from each subject, using, in each case, an
eyes-closed resting-state task lasting 5 min. The two recording sessions were held a week
apart from each other. The experiment was performed under ethical approval from the
School of Psychology.

2.2. MEG-MRI Recordings

In this study, we analyzed MEG and MRI data sets from the OMEGA (Open MEG
Archive) repository. Resting-state, eyes-open activity was recorded with a minimum
du-ration of five minutes. MEG data were collected at the BIC and the Université de
Montréal on identical CTF whole-head MEG systems (VSM MedTech Inc., Coquitlam,
BC, Canada) consisting of 275 first-order, axial-gradiometer coils and third-order gradient
correction to subtract background interferences with passive magnetic shielding. Fiducial
and head-shape information obtained through 3D digitization during subject preparation,
as well as head-motion information collected via head-positioning coils, is available for all
participants [51]. We excluded any subject with more than 4 mm head movement.

The data were first whitened and reduced in dimensionality using principal compo-
nent analysis with a threshold set to 95% of the total variance [52]. The statistical values
of kurtosis, Rényi entropy, and skewness of each independent component were used to
eliminate ocular and cardiac artifacts. Specifically, a component was deemed artefactual
if more than 20% of its values after normalization to zero mean and unit variance were
outside the range of (2, +2) [47,53,54]. The artifact-free, multichannel MEG, resting-state
recordings were then entered into the beamforming analysis (see Section 2.3).

2.3. Beamforming

An atlas-based beamformer approach was adopted to project MEG data from the
sensor level to the source space independently for each brain rhythm. The following
brain rhythms were studied: δ (1–4 Hz), θ (4–8 Hz), α1 (8–10 Hz), α2 (10–13 Hz), β
(13–30 Hz), and γ (30–45 Hz). First, the coregistered MRI was spatially normalized to a
template MRI using SPM8 [55]. The automated anatomical labeling (AAL) atlas was used
to anatomi-cally label the cortical voxels in a subject’s normalized, coregistered MRI [56].
After in-verse transformation to the patient’s coregistered MRI [57], neuronal activity in
the atlas-labeled cortical voxels was reconstructed using the LCMV source localization
algorithm as implemented in Fieldtrip and transformed to the MNI template [58].

The beamformer sequentially maps the activity for each voxel in a predefined grid
covering the entire cortex (spacing 6 mm) by weighting the contribution of each MEG
sensor to a voxel’s time series, a procedure routinely used to project the sensor activity to
the cortical activity. Each region of interest (ROI) in the atlas contains many voxels, and
the number of voxels per ROI differs. To obtain a single representative time series for
every ROI, we defined a functional centroid ROI representative of ROI as the functional
interpolated activity from the voxel time series within each ROI. Specifically, we estimated
a functional connectivity map between every pair of source time series within an ROI
(Equation (1)) using correlation (Equation (2)); then, we estimated the strength of each
voxel from the connectivity map within the ROI (Equation (3)). Finally, we normalized each
strength by the sum of strengths (Equation (4)). The procedure produces a weight for each
voxel within each ROI satisfying the condition that their sum is unity. Finally, summing
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the sum of the weighted time series over the voxels affords the representative time series
of each ROI (Equation (5)). This procedure is similar in spirit to the interpola-tion of a
bad channel in an EEG/MEG grid by the activity of the neighboring sensors. The whole
procedure was applied independently to every quasi-stable temporal segment de-rived
from the settings of the temporal window and stepping criterion.

Equations (1)–(5) document the steps for this functional interpolation.

ROImap ∈ Rvoxels x samples, voxels ∈ no o f voxel timeseries within each ROI (1)

SVoxels =
Voxels

∑
k=1

Voxels

∑
t=k+1

∣∣∣corr
(

ROImap
k (t), ROImap

l (t)
)∣∣∣, SVoxels ∈ ROI X ROI (2)

SSk =
Voxels

∑
k=1

corr(k, :), SS ∈ 1 x ROI (3)

Wk =
SSk

∑Voxels
k=1 SSk

(4)

ROIactivity =
Voxels

∑
k=1

ROItime series
k ∗Wk (5)

Figure 1 provides a graphical representation of the preprocessing steps in Equations (1)–(5).

Brain Sci. 2022, 12, 1404 5 of 31 
 

a functional connectivity map between every pair of source time series within an ROI 
(Equation (1)) using correlation (Equation (2)); then, we estimated the strength of each 
voxel from the connectivity map within the ROI (Equation (3)). Finally, we normalized 
each strength by the sum of strengths (Equation (4)). The procedure produces a weight 
for each voxel within each ROI satisfying the condition that their sum is unity. Finally, 
summing the sum of the weighted time series over the voxels affords the representative 
time series of each ROI (Equation (5)). This procedure is similar in spirit to the interpola-
tion of a bad channel in an EEG/MEG grid by the activity of the neighboring sensors. The 
whole procedure was applied independently to every quasi-stable temporal segment de-
rived from the settings of the temporal window and stepping criterion.  

Equations (1)–(5) document the steps for this functional interpolation. 𝑅𝑂𝐼 ∈ 𝑅   , 𝑣𝑜𝑥𝑒𝑙𝑠 ∈ 𝑛𝑜 𝑜𝑓 𝑣𝑜𝑥𝑒𝑙 𝑡𝑖𝑚𝑒𝑠𝑒𝑟𝑖𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑒𝑎𝑐ℎ 𝑅𝑂𝐼 (1) 

𝑆 = |𝑐𝑜𝑟𝑟 𝑅𝑂𝐼 (𝑡), 𝑅𝑂𝐼 (𝑡) | ,  𝑆  ∈ 𝑅𝑂𝐼 𝑋 𝑅𝑂𝐼 (2) 

𝑆𝑆 = 𝑐𝑜𝑟𝑟(𝑘, : ) , 𝑆𝑆 ∈ 1 𝑥 𝑅𝑂𝐼 (3) 

𝑊 = 𝑆𝑆∑ 𝑆𝑆  (4) 

𝑅𝑂𝐼 = 𝑅𝑂𝐼  ∗ 𝑊  (5) 

Figure 1 provides a graphical representation of the preprocessing steps in Equations 
(1)–(5). 

 
Figure 1. Step-by-step construction of the representative virtual sensor time series for each ROI. (A) 
The plot of the 108 voxel time series falls within the left precentral gyrus ROI. (B): Distance correla-
tion matrix 𝑆   derived by the pairwise estimation of the 108 voxel time series. (C) Summation 
of the columns of 𝑆  produced the vector SS. (D) Normalisation of vector SS, which further 
produces Wk, where its sum equals one. (E) Multiplication of every voxel time series by the related 
weight from the Wk. In this example, we demonstrated this multiplication for the first and last voxel 
time series. (F) The estimated time series for left precentral gyrus activation ((ROIactivity) was obtained 
by summing the weighted versions of every voxel time series (as in (E)). 

Figure 1. Step-by-step construction of the representative virtual sensor time series for each ROI.
(A) The plot of the 108 voxel time series falls within the left precentral gyrus ROI. (B): Distance
correlation matrix SVoxels derived by the pairwise estimation of the 108 voxel time series. (C) Summa-
tion of the columns of SVoxels produced the vector SS. (D) Normalisation of vector SS, which further
produces Wk, where its sum equals one. (E) Multiplication of every voxel time series by the related
weight from the Wk. In this example, we demonstrated this multiplication for the first and last voxel
time series. (F) The estimated time series for left precentral gyrus activation ((ROIactivity) was obtained
by summing the weighted versions of every voxel time series (as in (E)).

For dynamic source connectivity analysis, we used a four-second-long window, yield-
ing 15 (epochs per min) × 5 (min) = 75 non-overlapping epochs [33]. The same epoching
approach was used for every frequency band to explore direction and time delays within
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and between frequency bands and in both amplitude/phase domains. The procedure de-
scribed above for extracting a single representative time series for every ROI was adopted
independently per epoch and frequency bands for every subject.

The strength, direction, and time lag of the direction of information flow were esti-
mated between the 78 cortical regions in the automated anatomical labeling (AAL) [33]
atlas using directed phase entropy (dPTE) and directed symbolic transfer entropy (dSTE).

2.4. Overview of the Methodology

In the present study, we adapted two estimators, namely PTE and dSTE, with the main
aim of revealing causal interactions between phase and amplitude frequency-dependent
interactions from every possible pair of virtual sensors. The main goals of this research
study were the following: (a) We adopted a similar analysis using PTE as in a previ-
ous study [45] to reveal possible lifespan trends in terms of causal interactions between
frequency-dependent time series in the phase domain. (b) We adopted the same analysis us-
ing a proper estimator tailored to reveal causal interactions between frequency-dependent
time series in the amplitude domain (dSTE). (c) We aimed to reveal dominant coupling
modes and their probability distributions (PD) by exploring causal relationships between
virtual sensors oscillating in the same (within frequencies) and different frequencies (cross
frequencies). (d) We defined a brain age index based on the ratio of PD of cross-frequency
couplings and within-frequency couplings. (e) We untangled developmental trends of time
delay both in within-frequency couplings and between dominant coupling modes.

In the present study, apart from re-evaluating the findings from a previous study [45]
using a lifespan cohort and a large enough number of epochs, we attempted, for the first
time in the literature, to explore causal interactions in both amplitude and phase domains
both within and between frequencies. Previous studies, for simplicity, independently
ex-plored causal interactions per frequency band, ignoring cross-frequency interactions.
However, brain regions communicate and exchange information with each other with
a preferred coupling mode, which can manifest as either within-frequency coupling or
be-tween-frequency coupling. For that reason, we developed a dominant coupling modes
model (DoCM), which serves as a way to untangle the dominant coupling mode between
every pair of brain regions [7]. Adopting these two estimators, we can also reveal the fre-
quency-dependent time delays both for within- and between-frequency coupling modes.
Time delay is an important feature of spatiotemporal causal interactions that shape the
information flow across anatomical space and time, overcoming any neurophysiological
and anatomical constraints.

Figure 2 exemplifies how our DoCM works. In the present study, following our DoCM,
we computed the causal interactions between every possible pair of virtual sensors using
dPTE (Figure 2A) and dSTE (Figure 2B). Both estimators were employed to quantify the
strength and time delay of causal interactions, both within frequencies and between fre-
quencies (cross-frequency). Then, by adopting a surrogate analysis, we revealed statistically
significant interactions that deviate from chance. Surrogate analysis revealed the preferred
interaction that is accompanied by the strength of the interaction, the dominant coupling
mode, and the time delay. In the example in Figure 2, dPTE and dSTE estimators reveal
that the first ROI drives the second ROI in both phase and amplitude domains, whereas the
time delay is 10 ms and 86 ms, respectively. For further details, see Section 2.6 and Figure 3.
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between two AAL atlas ROIs (left superior frontal gyrus and right superior frontal gyrus) for an
epoch (t1) during a resting-state MEG recording. In this example, the causal interdependence between
band-passed signals from the two virtual sensors was indexed by (A) dPTE and (B) dSTE. In this
manner, both dPTE and dSTE were computed between the activity of the two virtual sensors either for
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coupling (15)) are called potential intrinsic coupling modes (PICMs). PICMs are tabulated in a
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are stored, whereas in the off-diagonal, the cross-frequency couplings are tabulated. To reveal
the dominant coupling modes (DoCM) per pair of virtual sensors at every epoch, we adopted
surrogate data analysis to create a reference and assess whether original dPTE and dSTE values
were statistically different from chance. For this example, we revealed α1-γ and δ-θ as dominant
interactions (DoCM) for dPTE and dSTE, respectively. Following the same procedure across every
pair of sensors, we ultimately estimated the probability distribution (PD) of DoCM for both estimators
across the 90 virtual sensors. dPTE and dSTE revealed that the first ROI drives the second ROI in
both the phase and amplitude domain, whereas the time delay was 10 ms and 86 ms, respectively, as
indicated by ‘*’.
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dSTE/dPTE coupling were averaged separately across the 75 epochs, yielding one matrix 
per subject. These were then averaged across subjects. The average value was subse-
quently computed for each ROI; that is, the average preferred direction of information 
flow for a region was also computed. To establish whether there was a consistent pattern 
of information flow, a posterior–anterior index (PAI) was computed as follows: 

𝑃𝐴𝐼 =  𝛥𝑑𝑆𝑇𝐸 − 𝛥𝑑𝑆𝑇𝐸𝛥𝑑𝑆𝑇𝐸  %    (17) 

𝑃𝐴𝐼 =  𝛥𝑑𝑃𝑇𝐸 − 𝛥𝑑𝑃𝑇𝐸𝛥𝑑𝑃𝑇𝐸  % (18) 

where the ΔdSTE/ΔdPTE was averaged over a set of posterior and anterior regions, re-
spectively. A positive (%) PAI indicates preferential flow from posterior regions toward 
anterior regions, and a negative PAI (%) indicates preferential flow from anterior regions 
toward posterior regions. PAI was ultimately normalized by the maximum observed 
value within each ROI. 

The significance of the PAI was assessed using randomization testing, whereby the 
average values were permuted across the ROIs, after which the PAI was computed. This 
was repeated 1,000 times to build a distribution of surrogate PAI values against which the 
observed PAI was tested (p < 0.01). 

Figure 3. Time-lag estimation between the left precentral gyrus and left superior parietal lobule
time series filtered in the δ-band frequency. The example is from a 20-year-old male subject. The
black time series illustrates the ∆dSTENG values for each ms in the displayed 167 ms range. The
red time series demonstrates the p-values computed for each time lag (ms) after applying surrogate
analysis. The p-values surrounding the maximum ∆dSTENG are significant (p < 0.01). Finally, we
selected the maximum and significant value of ∆dSTENG, which is 1.33 at the time lag of 0.08 s. The
horizontal red line extends over the significant time lags around that with maximum ∆dSTENG value.
The left x-axis corresponds to the strength (∆dSTENG) of the coupling, whereas the right x-axis (red)
corresponds to the p-values.
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2.5. Information Flow with dSTE and dPE
2.5.1. Delay Symbolic Transfer Entropy (dSTE), Delay Phase Transfer Entropy (dPTE), and
Significance Test
Delay Symbolic Transfer Entropy (dSTE)

In principle, asymmetric dependences between coupled systems can be detected with
measures that share some of the properties of mutual information [59] and take into ac-
count the dynamics of information transport. Transfer entropy [60], which is related to
the concept of Granger causality [61], has been proposed to effectively distinguish driving
and responding elements and to detect asymmetry in the interaction between subsystems.
By appropriate conditioning of transition probabilities, this quantity is superior to the
standard time-delayed mutual information, which fails to distinguish information that is
actually exchanged from shared information due to common history and input signals.
Various techniques have been proposed to estimate transfer entropy from observed data.
However, most techniques make considerable demands on the data, require fine-tuning of
parameters, and are highly sensitive to noise contributions, which limits the use of transfer
entropy to field applications [62,63].

Symbolic transfer entropy (STE) was proposed to overcome the limitations of opti-
mized parameters needed for the estimation of transfer entropy [64]. In the present study,
we adopted the Neural Gas algorithm [65] as an appropriate technique to create a com-mon
codebook for a multichannel data set [66].

In the present study, dSTE was applied in the amplitude domain. Information flow
was estimated independently between every pair of ROIs oscillating at the same fre-quency
(BFC interactions) or at different frequencies (CFC interactions) and across all tem-poral
segments. Below, we describe the algorithmic steps of dSTE estimation that were adopted
in the amplitude domain.

Here, we describe the algorithmic steps with which we transcribed the temporal dy-
namics from any pair of virtual sensors into two distinct symbolic time series that share
a common codebook (set of symbols). The size and content of the codebook are data-de-
pendent and estimated every time causal relationships are inferred from a pair of recorded
signals. The associated computational burden is kept low thanks to the unsupervised
al-gorithm employed (i.e., Neural Gas) [34].

Given the signals Axt and Bxt from a pair of channels A and B, time-delay vec-
tors are first reconstructed from each time series. These vectors take the form of xt ={

xt, x(t+τ), . . . , x(t+(m−1)τ)

}
, where the embedding dimension (τ) denotes the time lag,

and t = 1, 2, . . . , T runs over the time points.
Then, the two individual sequences of time-delay vectors are collectively gathered in

data matrices:

AX[Txm] = [AX1 | AX2| . . . | AXT] & BX[Txm] = [BX1 | BX2| . . . | BXT] (6)

Next, the two trajectories are brought to a common reconstructed state space by
forming the overall data matrix:

ABX[2Txm] = [AX | BX] (7)

The partition of all the tabulated m-dimensional vectors into groups of homogenous
patterns is the most direct way to summarize the temporal variations in the activations of
these two subsystems and describe them with a common vocabulary.

In our approach, a codebook of k code vectors is designed by applying the NG
algorithm to the data matrix (ABX), which is of size [~2T × m]. The NG algorithm is an
artificial neural network model that converges efficiently to a small number (k << T) of
codebook vectors ({Mi}i=1:k) using a stochastic gradient descent procedure with a soft-max
adaptation rule that minimizes the average distortion error [65].

In the encoding stage, each of the 2T vectors is assigned to the nearest code vector.
By replacing the original vectors with the assigned code vectors, we can rebuild the two
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vectorial time series with a measurable error. If we denote the reconstructed (i.e., decoded)
version of the vectorial time series as ABXrec (t), we can estimate the fidelity of the overall
encoding procedure with the following index, which is the total distortion error divided by
the total dispersion of the original vectors:

nDistortion =
∑2T

t=1 ‖XAB(t)− XAB
rec (t)‖

2

∑2T
t=1 ‖XAB(t)− X2‖

, X =
1

2T

2T

∑
t=1

XAB(t) (8)

The smaller the nDistortion, the better the encoding. This index gets smaller with
an increase in k, reaching a plateau for a relatively low value of k. In the present study,
we considered encoding to be acceptable if it was produced with the lowest k value that
satisfied the condition that nDistortion should be less than 5%. Hence, we repeatedly quality.
In this way, we defined the optimal ko, which in turn defined the codebook for use in the
subsequent symbolization scheme. At the vector-quantization stage, each vector of AX
and BX is assigned (according to the nearest-prototype rule) to the most similar among
the derived code vectors ({Mi}i=1:ko). This step completes the mapping of the original
time series to two symbolic time series (Ast and Bst), t=1, 2, . . . ,T, which, in mathematical
notation, reads as follows: [

XA
t , XB

t
]
∈ R2

XA
t

VQ→ Mj1 ∈ {Mi}ko
i=1, Mi ∈ Rm , XB

t
VQ→ Mj2 ∈ {Mi}ko

i=1, Mi ∈ Rm

XA
t → SA

t = j1(t), XB
t → SB

t = j2(t), j1, j2 ∈ {1, 2, . . . , ko}

(9)

In the derived symbolic time series, the temporal dynamics of a pair of neural subsys-
tems are encoded as transitions among adaptively defined (i.e., data-dependent) symbols.

We adopted the Ragwitz criterion to optimize the embedding dimension (d) and the
embedding delay (τ) [67]. Optimality of embedding refers to a minimal prediction error
for future samples of the time series. The Ragwitz criterion predicts the future of a signal
based on estimates of the probability densities of future values of its nearest neighbors after
embedding. The adopted method is based on the minimization of mean squared prediction
error [67,68].

The m parameter ranged from 7 to 10, and the τ parameter ranged from 3 to 9 for the
entire set of subjects.

The objective criterion of the best fitting of the algorithm was the distortion error,
which was set as in the amplitude domain (nDistortion should be less than 5%).

Quantifying Effective Connectivity with dSTE

Providing a pair of symbolic sequences (Ast and Bst), the relative frequency of symbols
can be used to estimate joint and conditional probabilities and to define STE as follows:

STEBA = ∑ p
(

SA
t+δ, SA

t , SB
t

)
log

p
(
SA

t+δ/SA
t , SB

t
)

p
(

SA
t+δ/SA

t

) (10)

where the sum runs over all symbols, and δ denotes a time step.
Effective connectivity is defined as ‘the influence one system exerts over another [61,69].

In the context of brain networks, effective connections are directed from one brain area to
another. To account for the time delay between brain activation signals from distant areas,
we modified the previous definition:

dSTEBA = STEBA(d) = ∑ p
(

SA
t+1, SA

t , SB
t+1−d

)
log

p
(

SA
t+1/SA

t , SB
t+1−d

)
p
(
SA

t+1/SA
t
) (11)
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where d is the time delay between the driving and the driven systems. The log is with base 2;
thus, STEBA is given in bits. STEAB is defined in complete analogy. The directionality index
(DdSTEAB = dSTEAB − dSTEBA) quantifies the preferred direction of information flow and
achieves positive values for unidirectional couplings with A as the driver and negative
values for B driving A. For symmetric bidirectional couplings, ∆dSTE is approximately
zero. The formulation of TE with a time delay was first proven to be correct in a recent
study, which presented a robust method for neuronal interaction delays [70].

To detect significant causal interactions between two brain regions (considered subsys-
tems A and B), we adopted a well-known technique described by Chavez et al., 2003 [63],
Verdes, 2005 [62], Lizier et al., 2011 [71], and Vicente et al., 2011 [72]. The original approach
was developed for TE but can easily be applied to its symbolic counterpart. The null
hypothesis (H0) of the test is that the state transitions ( XA

n → XA
n+1 ) of the destination

system (A) have no temporal dependence on the states of the source system (B). We form a
distribution of dSTE measurements

{
dSTEHo

BA

}
r=1:1000

under this condition by repeatedly
applying the following algorithmic steps:

Step_i: Generate a surrogate time series by permuting the elements of the source
symbolic time series, Bst;

Step_ii: Estimate an instantiation of the ‘randomized’ dSTEBA using Ast and the
surrogate Bst in Equation (11).

We can then determine a one-sided p-value that corresponds to the likelihood that
the actual observed value, namely observed dSTEBA, is within the range of values of the
distribution (

{
dSTEHo

BA

}
r=1:1000

). This can be achieved by directly estimating the propor-
tion of ‘randomized’ dSTEBA that are higher than the observed dSTEBA value [66,71]. The
false-discovery rate (FDR) method [73] was employed to control for multiple comparisons
(across all possible pairs of ROIs), with the expected proportion of false positives set to
q ≤ 0.01. Finally, the dSTE mode that characterized a specific pair of ROIs was determined
based on the highest statistically significant (dSTE) value from surrogates. FDR correction
was applied at a brain network level (ROIs × ROIs) independently for each epoch, as well
as within-frequency and cross-frequency pairs and subjects.

Quantifying Effective Connectivity with Delay Phase Transfer Entropy (dPTE)

Transfer entropy can be estimated from the time series of the instantaneous phases
(PTE) at a low computational cost [50]. In the case of the phase domain, phase dynamics
were extracted from the frequency-dependent, ROI-based time series via the Hilbert trans-
form. Similarly, as in the amplitude domain, information flow in the phase domain was
estimated independently based on the Hilbert-transformed, ROI-based time series derived
from brain activity oscillating at the same frequency (BFC interactions) or at different
frequencies (CFC interactions) and across all temporal segments.

If the uncertainty of a target signal Y at a delay δ is expressed in terms of Shannon
Entropy, then the Transfer Entropy (TE) from source signal X to target signal Y can be
expressed as:

TExy = ∑ p(Yt+δ, Yt, Xt)log
p(Yt+δ/Yt, Xt)

p(Yt+δ/Yt)
(12)

where the definition of Shannon entropy is given by H(Yt + δ) = −Σp(Yt + δ)logp(Yt + δ),
was used, and the sum runs over all discrete time steps t. The estimation of probability
is time consuming and for that reason, Staniek and Lehnertz proposed the estimation of
transfer entropy over converted time series into symbols [64]. Under the same framework,
time series can be described in terms of instantaneous phases as of their amplitudes [74].
Transfer entropy can be estimated from the instantaneous phases of two time series at a
low computational cost [50].
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Dropping the subscript t for clarity and using the fact that p(Yδ,Y) = p(Yδ) p(Y), the
PTE becomes:

PTExy = ∑ p(Yδ)p(Y)p(X)log
(

p(Y, X)

p(Y)

)
(13)

where the probabilities are obtained by building histograms of occurrences of single, paired,
or triplet phase estimates in an epoch [50].

The number of bins in the histograms was set as e0.626+0.4ln(Ns−δ−1) [74]. Finally, δPTE
was normalized according to the following formula:

dPTExy =
PTExy

PTExy + PTEyx
(14)

The value of dPTExy ranges between 0 and 1. When information flows preferentially
from time series X to time series Y, 0.5 < dPTExy ≤ 1. When information flows preferentially
toward X from Y, 0 ≤ dPTExy < 0.5. In the case of no preferential direction of information
flow, dPTExy = 0.5.

For dPTE, we randomly shuffled the time index of the epochs of 4 s between every
pair of ROIs to create a surrogate-based dPTE distribution. For example, we estimated
dPTE between ROIs 1 and 2 by employing the 1st epoch of ROI 1 with the 2nd epoch of
ROI 2. Out of 75 × 75 – 75 = 5550 possible combinations of epochs, we employed 1,000
combinations leading to 1000 surrogates, and following the same statistical analysis as
with dSTE.

2.5.2. Common Normalization of dSTE and dPE

In the present study, we adopted dSTE as the proper estimator to explore information
flow between the activity of brain areas in the amplitude domain both for BFC and CFC
interactions [34,49,75]. Because dSTE does not have an upper boundary like the well-known
connectivity estimators, we defined the normalized version of dSTE as follows:

∆dSTEij =
dSTEij − dSTEji

dSTEij + dSTEji
(15)

For the estimation of information flow based on phase dynamics, the Hilbert transform
of the frequency-dependent, representative time series per ROI was used both for BFC and
CFC interactions. Then, we adopted phase entropy (PTE) [50] using the settings described
by Hillebrand et al., 2016 [33] but applying the same normalization as above:

∆dPTEij =
dPTEij − dPTEji

dPTEij + dPTEji
(16)

For both estimators, the value of ∆dSTEij/∆dPTEij ranges between −1 and 1. The
range of values is interpreted as follows:

+1 if information flows exclusively from i → j ;
–1 if information flows exclusively from j → i ; and
0 if information flows equally well between i and j,
where i and j refer to brain areas, such as anterior and posterior.
Both definitions are measures of the proportion of information flow in each direction

in the two ROIs and not the quantity of information flow.

2.6. Time-Lag Estimation

The representative time lag per pair of MEG source epochs and across the cohort was
estimated via surrogate analysis, and the appropriate statistical analysis was followed for
both estimators (see ‘Section 2.5’ and [34,49,50,75]).

The dSTE/dPTE were estimated by shifting one of the time series concerning the
other at lags corresponding to ± 0.5 epoch lengths (where epoch length denotes the length
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of an epoch in seconds). We then identified, for each pair of time series, the maximum
∆dSTE/∆dPTE value among those derived from the set of examined lags. Employing
the precomputed dSTE/dPTE values over each of the examined lags (dSTElags/dPTElags),
we estimated the z-score of maximum ∆dSTE/∆dPTE based on the mean and standard
deviation of dSTElags/dPTElags. Finally, for each pair of MEG ROIs time series and epoch
in the entire set of cohorts, we assigned a time-lag estimation for ∆dSTE/∆dPTE in the
defined dominant coupling mode supported by a surrogate analysis of 1000 surrogates
(p < 0.01).

Figure 3 demonstrates an example of time-lag estimation between two ROI time series
band-pass-filtered in δ brain rhythm using dSTE.

We also estimated the time lag within and between frequencies across every pair of
cortical sources and separately for amplitude and phase domains in four age groups. For a
more detailed description of time-delayed information theoretic measures, an interested
reader can refer to [76].

2.7. Posterior–Anterior Index (PAI) and Posterior–Anterior Time Lag

For each frequency band and subject, the matrices that tabulate the strength of
dSTE/dPTE coupling were averaged separately across the 75 epochs, yielding one matrix
per subject. These were then averaged across subjects. The average value was subsequently
computed for each ROI; that is, the average preferred direction of information flow for a re-
gion was also computed. To establish whether there was a consistent pattern of information
flow, a posterior–anterior index (PAI) was computed as follows:

PAI∆dSTEij =

{
∆dSTEij

}
posterior

−
{

∆dSTEij

}
anterior{

∆dSTEij

}
posterior

% (17)

PAI∆dPTEij =

{
∆dPTEij

}
posterior

−
{

∆dPTEij

}
anterior{

∆dPTEij

}
posterior

% (18)

where the ∆dSTE/∆dPTE was averaged over a set of posterior and anterior regions, respec-
tively. A positive (%) PAI indicates preferential flow from posterior regions toward anterior
regions, and a negative PAI (%) indicates preferential flow from anterior regions toward
posterior regions. PAI was ultimately normalized by the maximum observed value within
each ROI.

The significance of the PAI was assessed using randomization testing, whereby the
average values were permuted across the ROIs, after which the PAI was computed. This
was repeated 1000 times to build a distribution of surrogate PAI values against which the
observed PAI was tested (p < 0.01).

The whole approach was adopted independently for each frequency band and ampli-
tude/phase dynamics.

In the same manner, as for PAI, we estimated the time lag within the studied fre-
quency bands between posterior and anterior brain areas and independently for amplitude
and phase dynamics. Statistical levels of the observations were reached via a similar
randomization testing approach as that described above for PAI.

2.8. Age-Dependent Time Delays within and between Frequencies

We estimated the group-averaged time delays for both within and between frequen-
cies. We first averaged the time delays for every pair of sources across temporal segments
and then across the entire set of possible pairs of sources. This procedure gave us one value
of time delay per subject and per frequency or cross-frequency pair. The whole pro-cedure
was repeated separately for each subject and for amplitude and phase domains. Particularly
for cross-frequency pairs and for each modulator frequency, we averaged the time delays
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across the modulated frequencies. For the δ modulator, we averaged the time delays for its
five modulated frequencies—δ–θ, δ–α1, δ–α2, δ–β, and δ–γ to obtain a representation of
the temporal scale of the functionality of each frequency when it modulates the rest of the
brain rhythms. Finally, we group-averaged the time delays separately for each age group
within and between frequencies, as well as amplitude and phase domains.

For the statistical test, a Wilcoxon rank sum test was adopted to compare age-dependent
time delays between age groups per case (p < 0.01, Bonferroni-corrected; p’ < p/6, where
6 refers to the total number of pairwise comparisons across age groups within each fre-
quency band in both BFC and CFC and in both domains separately). This procedure was
followed independently per frequency band, functional interaction (BFC or CFC), and
domain (amplitude or phase domain). We also adopted the same statistical test to compare
the time delays between BFC and CFC per modulating frequency, per age group, and
per domain (p < 0.01). Our aim in the second analysis was to find significant differences
between BFC and CFC time delays across the modulating frequencies and age groups, as
well as in both domains.

2.9. Dominant Coupling Modes Model (DoCM)

To reveal the DoCM independently for amplitude and phase dynamics, we adopted
the following surrogate analysis to determine: (a) whether a given coupling strength
(dSTE/dPTE) differed from what would be expected by chance alone; and (b) whether
a given non-zero value (dSTE/dPTE) indicated coupling that was, at least statistically,
non-spurious.

Briefly, in our analysis, we used three levels of statistics: surrogate analysis and p-
values for each pair of ROIs in every within-frequency interaction and cross-frequency pair
(previously described), Bonferroni correction to detect the DoCM for each pair of ROIs,
and, finally, FDR to detect the significant interactions across the network.

For every time epoch, source pair, intra-frequency (6 frequencies), and pair of frequen-
cies (15 frequency pairs), we tested the null hypothesis (H0) that the observed dSTE/dPTE
value was derived from the same distribution as the distribution of surrogate dSTE/dPTE
values. A total of 1,000 surrogate time series were generated independently for each of the
6 + 15 = 21 cases. For each data set, the surrogates of dSTE/dPTE, called dSTEs/dPTEs,
were computed. We then determined a one-sided p-value expressing the likelihood that
the observed dSTE/dPTE value could belong to the surrogate distribution and corre-
sponded to the proportion of ‘surrogate’ dSTEs/dPTEs, which was higher than the ob-
served dSTE/dPTE value [77]. dSTE/dPTE values associated with statistically significant
p-values were considered unlikely to reflect signals not entailing dSTE/dPTE coupling.
Then, we applied a Bonferroni correction to detect (p’ < p/21) the DoCM per pair of ROIs at
every epoch in both estimators.

Three different scenarios are possible in the process of identifying prominent dSTE/dPTE
coupling modes associated with a particular pair of source time series and a specific epoch:
(A) where only one DoCM (either intra or inter) met this criterion. (B) In the case of two
DoCMs, both exceeding the statistical threshold, the one with the highest dSTE/dPTE
value was identified as the characteristic dSTE/dPTE coupling mode for this pair of sources
in a particular time window (epoch). (C) If none of the intra- or cross-frequency pairs
exceeded the statistical threshold, a value of zero was assigned to this pair of sources with
no identified characteristic coupling mode.

Then, we applied a false-discovery rate (FDR) method [73] to control for multiple
comparisons within every brain network using the p-values derived as the DoCM across
all pairs of ROIs. The expected proportion of false positives is set to q ≤ 0.01. Finally, the
surviving connections expressed the dSTE/dPTE mode that characterized specific pairs of
ROIs and was determined based on the highest statistically significant (dSTE/dPTE) value
derived from surrogates, Bonferroni correction, and FDR.

For each participant, the resulting time-varying (TV) TVdSTE/TVdPTE profiles con-
stituted a 4D array of size [21 (frequencies + pairs of frequencies) × 75 (time windows—
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epochs) × 78 (sources) × 78 (sources)] that stored the strength and direction of dSTE/dPTE.
The identity of promin-ent intra- or cross-frequency interactions for every pair of sen-
sors at each time window (epoch) was ultimately stored in a second 4D array of size
[21 × 75 × 78 × 78] using integers ranging from 1 to 21, e.g., 1 for δ, 2 for θ, . . . , and 21 for
β–γ. In a third array with the same dimensions, we kept the time-lag estimations.

The aforementioned procedure was applied independently for amplitude and phase
dynamics, leading to the construction of 2 (dSTE/dPTE) × 3 (strength-DoCM time lags)
4D arrays per subject.

Based on the appropriate surrogate analysis and statistical filtering of spurious inter-
actions, we estimated the probability distribution of DoCMs independently for amplitude
and phase dynamics. We enumerated the number of DoCMs for each of the 21 cases (intra-
and inter-frequency couplings) across the 75 epochs and every possible pair of sources.
Afterward, we normalized each of the 21 estimations by their sum to obtain probability
distributions of DoCMs across time and the cortex. The aforementioned procedure was
applied independently for each subject, epoch, and amplitude/phase dynamics across the
interactions of 78 (sources) × 78 (sources).

Probability distributions (PDs) of DoCM can be tabulated in a matrix of 6 × 6 dimen-
sions, where in the in-diagonal, the PDs of the six intra-frequency couplings are inserted,
whereas in the off-diagonal, the 21 PDs of the cross-frequency pairs are kept. This matrix
is called a comodulogram. For each subject, we estimated the epoch-averaged comodulo-
grams representative of both amplitude and phase dynamics.

2.10. Brain Age Index (BAI)

We defined a novel BAI based on the ratio of the sum of PDs of cross-frequency
interactions (off-diagonal cells from comodulograms) versus the sum of PDs of intra-
frequency couplings (in-diagonal cells from comodulograms) based on the DoCM and
estimated over the comodulogram. The proposed frequency-dependent BAI is defined
as follows:

A frequency-dependent brain age index (fBAI) can also be defined as:

f BAI(k) =
PD(k, k)

1
(Nmodulated)

∑Nmodulated
l 6=k PD(k, l)

(19)

where k denotes the modulating frequencies {δ, θ, α1, α2, β}, and Nmodulated is the number
of modulated frequencies per modulating frequency, e.g., for δ modulating frequency,
Nmodulated = {θ, α1, α2, β, γ}; for θ modulating frequency, Nmodulated = {α1, α2, β, γ},...; for β
modulating frequency, Nmodulated = {γ}.

Using linear, quadratic, Gaussian (centered/non-centered, normalized/non-normalized),
exponential, von Bertalanffy with y-intercept, von Bertalanffy, quadratically constrained to
the origin and log models, and the coefficient of determination (R), we computed the best
model for BAI curves versus real age [78].

2.11. Stability of Causal Brain Networks and Time Delay across Time

To assess the similarity of the two functional networks, we estimated the graph
diffusion metrics between the original weighted directed effective brain networks [79].
The graph diffusion distance metric (GDD) returns a value from 0 up to a positive value,
where 0 means that the two functional brain networks are similar. To access the statistical
significance of this similarity between every pair of functional networks, we compared
it with random versions of one of the two functional brain networks. Specifically, we
created 1000 random functional brain networks by shuffling the directed connections
but pre-serving the degree and the strength of each node [80]. From the distribution of
1000 GDD values, we assigned a p-value to the original GDD (p < 0.01). In addition, the
whole proce-dure was repeated between every pair of temporal effective brain networks
across the epochs, resulting in 75 × 74/2 = 2775 combinations. Finally, we applied a
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z-score > 2 across the 2775 GDD values to detect outliers, and we kept only the epochs that
survived this threshold for further analysis, whereas the relevant GDD deviates from the
randomization procedure (p < 0.01). The whole approach was repeated separately for each
subject, amplitude, and phase domain and for every frequency-based dynamic effective
brain net-work, as well as for the effective brain networks based on DoCM.

It is important to mention here that GDD models the alignment in terms of the infor-
mation flow of two effective brain networks by taking into account both the direction and
the strength of coupling between two sources.

To further examine whether connections between sources exhibit consistent latencies
across time-resolved effective brain networks, we considered the coefficient of variation
(CV) as the mean time delay across temporal segments versus the standard deviations
across these blocks. A CV higher than 10 that demonstrates a significant (p < 0.01) difference
from zero using a one-tailed t-test is acceptable.

All our results were based on the summary of our evidence that overcomes both
statistical requirements described previously based on GDD and CV estimates. Finally, we
rejected epochs that did not pass both the whole-brain GDD criterion and the ROI-based CV
criterion for more than 10% of the potential pairs of ROIs (78 × 77/2 = 3003 total number
of pairs).

2.12. Test–Retest Reliability of Estimates in Repeat MEG Scans

We should underline here that the participants in the large cohort were scanned
with the ELEKTA MEG system, whereas the second smallest repeat MEG scan cohort
participants were scanned with the MEG CTF system. The supplementary data sets of
ten healthy young adults (five women aged 24.4 ± 1.5 years) recorded twice were used to
assess the reproducibility of our estimates, as well as to validate brain charts based on BAI.
The subjects were scanned at the CUBRIC Neuroimaging centre [81]. The subjects were
recorded under a resting-state eyes-closed condition compared to the eyes-open condition
of the big cohort. Below, we describe the statistical tests, followed by the repeat-scan cohort.

We first repeated the same statistical analysis as that described for the first large cohort.
We applied a Wilcoxon rank sum test between the two sets of GDD values corresponding
to the first and second sessions (p < 0.01). We repeated this analysis independently per
subject, frequency band, amplitude, and phase domain, as well as for the effective brain
networks based on DoCM.

For the second test, we first estimated the CV of time delay across temporal segments
per pair of sources, as in the original cohort. A CV higher than 10 that also demonstrates
a significant (p < 0.01) difference from zero using a one-tailed t-test is acceptable. We
also computed the p-value between the two sets of CVs from every possible pair of ROIs
(78 × 77/2 = 3003 total number of pairs) linked to the first and second sessions. We applied
this procedure for every subject, frequency, amplitude, and phase domain, as well as for
the effective brain networks based on DoCM. To this end, we used the Wilcoxon rank sum
Test with p < 0.01.

All our results were based on summary of our evidence that overcomes both statisti-cal
requirements described previously based on GDD and CV estimates. Finally, we re-jected
epochs that did not satisfy both the whole-brain GDD criterion and the ROI-based CV
criterion in more than 10% of the potential pairs of ROIs (78 × 77/2 = 3003 total number
of pairs) in both sessions. Additionally, we considered findings only from cases (subjects,
frequencies, amplitude and phase domains, and DoCMs) where there was no statistical
difference between the two sessions.

The third reproducibility test was assessed by comparing how close the BAI for each
new subject was to the fitted curve for the main analysis. To that end, we adapted the
Euclidean distance between the estimated BAI and the fitted curve. The BAI for each
sub-ject in both amplitude and phase domains was averaged between the two scan sessions
only if their Euclidean distance was less than 0.02. Otherwise, these subjects were ex-cluded
from the cohort in terms of BAI.
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2.13. Computational Effort

The computational effort required to obtain these estimations is massive. In total, we
had to obtain the DoCM for every pair of brain regions (3003), estimating the original values
of both BFC and CFC (6 + 15 = 21 in total) and the 10,000 surrogates per type of interaction
across 75 epochs. This procedure was applied in both estimators and for the 103 subjects.
For one subject, the computations are 3003 (pairs of brain regions) × 21 (BFC+CFC) ×
75 (epochs) × 2 (estimators) = 9,459,450 estimations of original dSTE + dPE values using
both estimators and 1,000 surrogates for each one. To reduce the computational effort and
the computational time needed (weeks) to obtain the results in this large database, we
ran the whole analysis in a cluster with 100 cores (CUBRIC) using shell scripts in a Linux
environment.

2.14. Implementation of dSTE and dPTE

The MATLAB implementation of dSTE/dPTE can be found at the following links:
(https://github.com/stdimitr/Symbolic_Transfer_Entropy and https://github.com/stdi-
mitr/Phase_Transfer_Entropy). The Python implementation of both estimators can be
found on the GitHub website of our Dyconnmap module (https://github.com/makism/
dyconnmap [82]).

3. Results
3.1. Report on Stability of Causal Brain Networks and Time Delay across Time

Based on the brain-based GDD criterion and the ROI-based CV criterion, we rejected
9.86 ± 2.14 epochs averaged across subjects, frequencies, amplitude, and phase domains
and 8.17 ± 2.03 epochs in the effective brain networks based on DoCM. Based on these
findings, we did not reject any subject across any case (frequency, amplitude, and phase
domain and in the DoCM approach). In the following sections, we describe our stable
findings in detail.

3.2. Dominant Frequency-Dependent Information Flow

We observed a consistent posterior-to-anterior information flow of the phase dynamics
in {α1, α2, β, γ} across temporal segments and an opposite pattern of anterior-to-posterior
flow in θ, whereas concerning amplitude dynamics, a posterior-to-anterior information
flow in {α1, α2, γ}, a sensory-motor β-oriented pattern, and anterior-to-posterior pattern
in {δ, θ} were revealed. Our results based on dPTE replicated previous findings [33],
whereas results based on the amplitude domain are reported here for the first time. It is
important to underline that in the δ frequency, an opposite information flow was revealed
between amplitude and phase domains. Figure 4 demonstrates the cortical distribution
of dSTE/dPTE in the cortex across frequency bands and for both amplitude and phase
dynamics, respectively.

3.3. Anterior–Posterior Time Lags for Frequency-Dependent Interactions

Time lag within the studied frequency bands was estimated between posterior and
anterior brain areas and independently for amplitude and phase dynamics. Based on
amplitude dynamics, we detected a positive time lag from posterior to anterior in {α1, α2,
β, γ} and a negative time lag from anterior to posterior in {δ, θ}. Based on phase dynamics,
we detected a positive time lag from posterior to anterior in {δ, α1, α2, β, γ} and a negative
time lag from anterior to posterior in θ (Table 2).

https://github.com/stdimitr/Symbolic_Transfer_Entropy
https://github.com/stdi-mitr/Phase_Transfer_Entropy
https://github.com/stdi-mitr/Phase_Transfer_Entropy
https://github.com/makism/dyconnmap
https://github.com/makism/dyconnmap
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Figure 4. The mean dSTE for each ROI is displayed as a color map across the cortical areas for
(A) mean amplitude and (B) mean dPTE for each ROI displayed as a color phase-oriented information
flow. These topographies were stable across temporal segments, revealing a posterior-to-anterior
information flow of the phase dynamics in {α1, α2, β, γ} and an opposite pattern of anterior-to-
posterior information flow in θ. Concerning amplitude dynamics, a posterior-to-anterior information
flow in {α1, α2, γ}, a sensory-motor β-oriented pattern, and an anterior-to-posterior pattern in {δ, θ}
were revealed.

Table 2. Subject-averaged PAItime-lag estimation between posterior–anterior cortical areas based
on dSTE.

Time Lag(ms) δ θ α1 α2 β γ

Phase 76.06 ± 5.61 * −40.74 ± 3.48 * 27.75 ± 2.91 * 23.77 ± 2.95 * 17.23 ± 2.51 * 15.01 ± 1.78 *

Amplitude −76.61 ± 6.17 * −44.48 ± 5.62 * 26.85 ± 3.01 * 25.75 ± 3.12 * 17.86 ± 2.93* 13.75 ± 1.39 *

* p < 0.01; three subjects were excluded as outliers from the whole cohort.

The most remarkable evidence was the opposite sign (positive/negative) for δ fre-
quency between phase and amplitude domains, respectively. We rejected three subjects
from this analysis as outliers from the whole cohort, although these subjects satisfied the
stability of causal brain networks and time delay across time.

3.4. Posterior–Anterior Index (PAI)

PAI within the studied frequency bands was estimated between posterior and ante-rior
brain areas and independently for amplitude and phase dynamics. Based on ampli-tude
dynamics, we detected a positive (%) PAI from posterior to anterior in {α1, α2, β, γ} and a
negative (%) PAI from anterior to posterior in {δ, θ}. Based on phase dynamics, we detected
a positive PAI from posterior to anterior in {δ, α1, α2, β, γ} and a negative PAI from
anterior to posterior in θ (Table 3). The most remarkable evidence was the opposite sign
(positive/negative) for δ frequency between phase and amplitude domains, respec-tively.
We also rejected three subjects from this analysis as outliers from the whole cohort, although
these subjects satisfied the stability of causal brain networks and time delay across time.

Table 3. Posterior–anterior index (PAI) for amplitude and phase dynamics.

PAI δ θ α1 α2 β γ

Phase 15.81 ± 2.34% * −16.01 ± 2.11% * 17.17 ± 2.01% * 14.11± 2.31% * 17.12 ± 2.42% * 14.76 ± 1.93% *

Amplitude −16.34 ± 2.72% * −14.85 ± 1.76% * 15.91 ± 2.12% * 18.69 ± 3.11% * 18.21 ± 2.77% * 16.19 ± 2.41% *

* p < 0.01; three subjects were excluded as outliers from the whole cohort.
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3.5. Mean Time Delays within and between Frequencies in Amplitude and Phase Domains

In Figure 5, we demonstrate the group-averaged time delays within and between
frequency pairs and in both amplitude and phase domains. We clearly detected that in
both amplitude and phase domains across groups, the information flow of a specific brain
rhythm follows a specific rule both within frequency interactions and between frequencies
as a modulator.
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Figure 5. Group-averaged time delays within and between frequencies. (A) Group-averaged time
delays within frequencies in the amplitude domain. (B) Group-averaged time delays between
frequencies in the amplitude domain. (C) Group-averaged time delays within frequencies in the
phase domain. (D) Group-averaged time delays between frequencies in the phase domain. * denotes
that age group 4 is significantly different from all other age groups. (Age group 1: 18–27 years, age
group 2: 28–40 years, age group 3: 41–50 years, and age group 4: 51–60 years). For the statistical test,
a Wilcoxon rank sum test was adapted (‘*’ p < 0.01, Bonferroni-corrected; p’< p/6, where 6 refers to
the total number of pairwise comparisons across age groups within each frequency band in both BFC
and CFC, as well as in both domains separately).

We revealed a significant age group trend for age group 4 (51–60 years), which demon-
strates higher mean time delays in cross-frequency interactions in both amplitude and
phase domains (Figure 5B,D), in θ–θ phase-to-phase interactions (Figure 5C), and no signifi-
cant differences in amplitude domain for the within-amplitude interactions (Figure 5A). We
also revealed that averaged time delays of all the studied frequency modulators {δ, θ, α1,
α2, β} are significantly lower in cross-frequency interactions compared to within-frequency
interactions in both amplitude and phase domains and in the four age groups (comparing
Figure 4A vs. Figures 4B and 4C vs. Figure 4D).

3.6. DoCM for Amplitude and Phase Dynamics

The main contribution of cross-frequency interactions in the DoCM was from {δ,
θ, α1} frequencies in both amplitude and phase dynamics. Figure 6 demonstrates the
group-averaged comodulograms from amplitude and phase-based DoCM. The modulating
frequency is plotted on the horizontal axis, whereas the modulated frequency is plotted on
the y-axis. The total sum of the PD in the comodulogram equals one.
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Figure 6. Group-averaged probability distributions (PD) of dominant intrinsic coupling modes
(DICMs) based on (A) amplitude and (B) phase dynamics. The modulating frequency is plotted on
the horizontal axis, whereas the modulated frequency is plotted on the y-axis. The total sum of the
PD in the comodulogram equals one.

3.7. BAI for Amplitude and Phase Dynamics

Based on comodulograms and the ratio of inter- versus intra-frequency interactions
(Figure 6), we defined a BAI that demonstrated sensitivity across age groups (Figure 7).
Using linear, quadratic, Gaussian (centered/non-centered, normalized/non-normalized),
exponential, von Bertalanffy with y-intercept, von Bertalanffy, quadratic constrained to
the origin and log models, and the coefficient of determination (R), we computed the best
model for BAI curves versus real age [78]. A single function could not fit the data, but a set
of two functions fitting the data separately below and above 30 years of age fitted well.
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Figure 7. The proposed frequency-dependent brain age index (BAI) is plotted versus actual age.
(A–E) Frequency-dependent BAIs are independently plotted versus actual age for each modulating
frequency from δ to β. The first column refers to amplitude-based BAIs, and the second column
refers to phase-based BAIs. For the model selection of BAI curves versus real age, we utilized the
coefficient of determination (R). The Gaussian model fits better to the two age-dependent BAI curves
(blue color: 18–30/black color: 31–60). CTF/ELEKTA MEG systems refer to the original lifespan
cohort and the repeat scan cohort, respectively.

Finally, we detected that a non-centered, non-normalized Gaussian model fits better to
both age-dependent BAI curves in both amplitude and phase domains [83]. The following
equation describes the Gaussian fit model with three free parameters (α, σ, and xo):

y(x) = a× exp(
−(x−xo)2

2 x σ2 ) (20)

Figure 7 illustrates the proposed BAI tailored to each frequency band and ampli-
tude/phase domain with the fitted Gaussian models in both segments of the curve. Table 4
lists the three free parameters for each frequency band, domain, and curve segment for the
whole cohort.

3.8. Reliability of Estimations in the Repeat-Scan Cohort (Talk about GDD)

Based on the brain-based GDD criterion and the ROI-based CV criterion, we rejected
10.64 ± 2.57 epochs from the first scan session and 11.09 ± 2.41 epochs averaged across
the second scan session across subjects, frequencies, amplitudes, and phase domains.
Similarly, we rejected 8.92 ± 1.97 epochs from the first scan session and 10.24 ± 2.49 epochs
from the second scan session in the effective brain networks based on DoCM. Based on
these findings, we did not reject any subject across any case (frequency, amplitude, phase
domain, and in the DoCM approach). In ‘Section 3.9’, we describe, in detail, our stable
findings. No statistical difference was detected between the two scan sessions across any
case (subjects, frequencies, amplitude, phase domain, and DoCM). The repeatability of the
estimates derived from the repeat-scan cohort supported our analytic plan and the reported
information flow across all measurements (strength, direction, time delay, PAI).
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Table 4. Parameters of the non-centred, non-normalised Gaussian fit model to BAI across frequency
bands for the whole cohort for amplitude and phase domain.

4A Amplitude Domain

α (1st–2nd Curve) σ (1st–2nd Curve) xo (1st–2nd Curve) R (1st–2nd Curve)

BAIAmp
δ

1.45–1.45 15.8–67.3 28.5–29.5 0.97–0.95

BAIAmp
θ

1.06–10.5 12.82–54.57 28.35–31.20 0.97–0.95

BAIAmp
α1

3.12–3.13 26.01–114.44 27.87–17.82 0.97–0.97

BAIAmp
α2 3.12–3.11 25.38–101.68 27.57–23.98 0.96–0.97

BAIAmp
β

1.17–1.17 15.37–62.72 27.81–22.93 0.95–0.97

4B Phase Domain

α (1st–2nd Curve) σ (1st–2nd Curve) xo (1st–2nd Curve)

BAIPhase
δ 1.15–1.15 13.23–55.7 28.22–31.7

BAIPhase
θ 1.26–1.25 14.67–56.75 28.77–32.46

BAIPhase
α1 3.02–3.01 25.15–100.31 27.62–24.13

BAIPhase
α2 2.02–2.02 19.98–86.19 27.60–21.20

BAIPhase
β 1.52–1.51 17.77–69.84 27.73–24.05

3.9. Reproducibility of BAI for Amplitude and Phase Dynamics across MEG Systems
(ELEKTA-CTF)

It is important to mention that the whole repeat-scan cohort showed highly repeatable
BAI in both amplitude and phase domains. Moreover, the Euclidean distance of the session-
averaged BAI for every subject was less than 0.02 in both amplitude and phase domains
and across the frequency modulators {δ, θ, α1, α2, β} when it was compared with the brain
charts based on the suggested BAI (Figure 7). These significant findings supported the
repeatability of the proposed BAI and its stability across MEG systems and validated the
brain charts based on BAI.

4. Discussion

Using MEG beamformed source-reconstructed activity and proper neuroinformatic
tools, including connectivity estimators and statistics, we provided, for the first time, evi-
dence in large-scale brain networks that the network topology of effective networks is
repeatable across the experimental day and within a one-week rescan session. The current
study provides further support for claims that human brain communication is realized via
stable pathways that exhibit reliable direction and precise timing [22,23].

Our main results can be summarized as followings:
We confirmed a well-established posterior-to-anterior information flow of the phase

dynamics in {α1, α2, β, γ} and an opposite pattern of anterior-to-posterior information
flow in θ, whereas with respect to amplitude dynamics, we detected a posterior-to-anterior
information flow in {α1, α2, γ}, as well as a sensory-motor β-oriented pattern and anterior-
to-posterior pattern in {δ, θ}.

We detected time delays between neuromagnetic source activity within and between
frequencies and in both amplitude and phase domains, ranging from approximately 90 ms
(δ) to 15 ms (γ). A positive time lag from posterior to anterior in {α1, α2, β, γ} and a negative
time lag from anterior to posterior in {δ, θ} was revealed in the amplitude domain, whereas
a positive time lag from posterior to anterior in {δ, α1, α2, β, γ} and a negative time lag
from anterior to posterior in θ was detected in the phase domain. The most striking pattern
was the opposite flow of information in the δ band for phase and amplitude.
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We revealed a positive (%) PAI from posterior to anterior in {α1, α2, β, γ} and a negative
(%) PAI from anterior to posterior in {δ, θ} based on amplitude dynamics. Based on phase
dynamics, we detected a positive (%) PAI from posterior to anterior in {δ, α1, α2, β, γ} and
a negative (%) PAI from anterior to posterior in θ.

Age group 4 (51–60 years) demonstrated significantly higher mean time delays in cross-
frequency interactions in both amplitude and phase domains and in θ–θ phase-to-phase
interactions compared to the rest of the groups.

Group-averaged time delays in cross-frequency interactions in both amplitude and
phase dynamics were significantly lower for all the studied frequency modulators compared
to the intra-frequency interactions in both amplitude and phase domains.

The main contributors of CFC based on DoCM were {δ, θ, α1} frequencies.
Based on DoCM, we defined a novel frequency-dependent BAI that untangles a clear

age-dependent trend of the suggested index in both amplitude and phase domains. This
BAI can be seen as a maturity index tailored to MEG complementary to the fMRI-based
maturation index [83] and structural MRI [84].

Our results were highly repeatable in a repeat-scan cohort, also supporting the repro-
ducibility of the cross-MEG system.

4.1. Dominant Information Flow between Posterior and Anterior Cortical Areas

With dSTE, posterior regions of the DMN were found to be senders of information in
the high-frequency bands (8−45 Hz) and receivers in the θ band. The DMN is an active
brain area at the resting state and has been directly linked to internal mentation and to
an unconscious awareness of the external world [85,86]. DMN is formed by two spatially
distinct brain systems that interact: the temporal system is involved in memory processes,
and the fronto-parietal system is linked to self-referencing mental activity.

With the support of the dPTE, we revealed a well-established posterior-to-anterior
information flow of the phase dynamics in {α1, α2, β, γ}, an opposite pattern of anterior-to-
posterior information flow in θ, a posterior-to-anterior information flow in {α1, α2, γ}, and
an anterior-to-posterior pattern in {δ, θ}, further supporting the formation of a loop of this
frequency-dependent sender/receiver brain area [33,87].

A dominant posterior-to-anterior pattern of information flow in the high-frequency
bands between parieto-occipital and frontal brain areas and a simultaneous anterior-to-
posterior pattern from frontal regions to temporal and posterior regions in the θ frequency
could support the hypothesis that these subsystems form a loop or an integrated sys-
tem [87,88]. Information circulates through this system. Evidence that the θ band is the key
frequency for memory processes in the frontal and hippocampal areas further supports this
interpretation [21,89].

Brain connectivity in both α and β frequencies is important to attention, where θ

frequency connectivity from the medial frontal cortex to many brain areas plays a key role
in inducing control from the higher association brain areas over the lower-level areas and
perceptual processes, as well as over the DMN [90] Our findings in the θ frequency are
in line with this theory, which explains why we detected distributed θ information flow
from frontal brain areas to many brain areas, including the DMN. Simultaneously, the
anterior-to-posterior α connectivity supports a gating mechanism for attention due to the
top-down modulation by α activity, which inhibits irrelevant activity [90,91]. However, we
observed an opposite posterior-to-anterior dominant pattern of information flow in the α

frequency, although it is possible that the observed enhanced bottom-up signaling in the α

frequency is in itself a consequence of enhanced top-down signaling in the θ frequency [92].
We should underline that our study focused on the analysis of resting-state ongoing

activity and was not task-based. Moreover, different forms of attention are linked to
different spatiotemporal and frequency contents [93].

It is important to note that the δ frequency showed an opposite anterior–posterior pat-
tern between amplitude and phase domains. The δ frequency band has been directly linked
to learning and reward processes [94], as well as to memory encoding and retrieval [95].
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A simultaneous EEG-fMRI study showed that δ source activity is located frontally and
mainly in the anterior cingulate cortex [96], whereas it was linked to internal memory
retrieval from the past, daily internal thoughts [97], and cognition [98]. A visual percep-tion
study revealed that δ activity (2–4 Hz) in the prefrontal cortex tracked task context and
modulated sensory processing in a top-down control. This study concluded, via CFC and
using a phase-to-amplitude (PAC) coupling estimator, that the δ phase mediated top-down
control of posterior α brain amplitude activity for visual perception [99]. Another ECoG
study following a PAC analysis untangled a δ/θ phase modulation of high γ activity in
sub-second facilitations that coordinate the fronto-parietal cortex, whereas this modulation
is guided by attentional demands [100]. The fronto-parietal attention network is a collection
of brain areas located in the frontal and parietal cortices and is crucial for the control of
attentional selection processes [101–103].

An important study in oscillatory phase coupling theory showed clear evidence of
how neuronal oscillations enable selective, target, and dynamic control of anatomically
distributed functional cell assemblies [104]. This observation is supported by phase-cou-
pling rates, even between distant cortical brain areas. The findings of this study complement
the communication through coherence (CTC) hypothesis suggested by Fries [16], whereby
phase differences can modulate the effective connectivity between two cortical areas [105].
The hypothesis described by Canolty et al. [104] postulates that distributed LFP activity
influences spiking activity and incorporates N distinct phase signals simultaneously. This
hypothesis extends CTC theory in N distinct phase signals. Canolty’s theory showed
that spiking activity in single neurons depends on the whole pattern of oscillatory phases
occurring in many brain areas and that these phase-coupling patterns have an impact on
long-range communication.

Oscillations play a key role in cognition, perception, and action, which is supported
by findings that oscillatory activity is entrained by sensory [106], linguistic [107], and
mo-tor events [108]. This entrainment depends on attention [106,108] and provides a link to
internal processes critical for memory and learning processes associated with characteristic
low-frequency brain rhythms [109].

Canolty’s study showed that neurons are sensitive to multiple frequencies [110,111].
The cellular and network origins of distinct brain frequencies are the focus of ongoing
research [112]; however, the period of concatenation hypothesis [113] provides a support-
ive mechanism accounting for the generation of the frequency bands observed in the
ne-ocortex. Each generated distinct brain frequency can be independently controlled
by dif-ferent neuronal ensembles. The fluctuation of patterns of oscillatory coupling
across mul-tiple anatomically dispersed brain areas coordinates distinct neuronal cell
assemblies [104]. Different neuronal assemblies with similar phase-coupling preferences
depend on the functional role of neurons and correlate with behavior, suggesting that
neuronal os-cillations may synchronize anatomically dispersed ensembles actively engaged
in func-tional roles [104].

In our study focusing on the analysis of resting-state recordings, we believed that
the anterior–posterior patterns across frequencies and in both amplitude phase domains
characterized the ongoing activity. The ongoing brain activity can be described by visual
attention demands, internal thinking, and memory retrieval, anatomically involving the
DMN, the visual network, and the fronto-parietal attentional network, as well as higher
association brain areas over the lower-level areas and perceptual processes.

The δ phase in the primary visual cortex is entrained to the rhythm of a stream of
attended stimuli, resulting in increased response rates [106]. The δ amplitude originates
from the prefrontal cortex during context-dependent top-down processing [99]. We can
assume that the opposite anterior–posterior pattern between amplitude and phase causal
patterns detected in the δ frequency could be local and related to distributed functional
demands over frontal (amplitude) and parietal (phase) brain areas related to internal
thoughts, as well as suppression of irrelevant activity [97]. We also assumed that this
interplay exists simultaneously in ongoing activity supported by Canolty’s theory [31].
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Our analysis was applied separately to amplitude and phase domains to reveal their
different roles in basic brain rhythms in the resting state [114,115].

4.2. Spatiotemporal Distribution of Time Delays within and between Frequencies

Brain oscillations have a natural logarithmic relationship with each other to support
the communication of neuronal networks with different sizes and types of connections to
coordinate their activity [116]. It is well known that the temporal window of activation
and the activation phase vary in relation to the length of an oscillation period. This means
that the related time delays are lower compared to slower brain oscillations. The large
repertoire of frequency bands and their logarithmic relationship may serve as a mecha-nism
to overcome any information processing limitations due to synaptic delays [116,117].

Here, we provide the first demonstration of time delays of coordinated activity be-
tween two areas operating within the same and across different frequency bands in each
area. It is well known that cross-frequency coupling of brain oscillations is a key mecha-
nism in spatiotemporal coordination of brain activity (e.g., [31,118]). The time delay
be-tween two or more brain areas that oscillate on a dominant frequency can inform how
time shapes brain function or dysfunction and how it is connected to behavior. We revealed
a mechanism whereby the time delay between the frontalθ-parieto-occipitalα2 cortices
discriminates correctly from wrong calculations in a mental arithmetic task [75].

We demonstrated that the mean time delays of the modulators in cross-frequency
interactions are significantly shorter compared to within-frequency interactions in both
amplitude and phase domains. This further supports the reason why cross-frequency
in-teractions are important for the fast and accurate exchange of information between
remote brain areas.

Brain activity is inherently rhythmic and anatomically distinct and spans several
tem-poral scales. The concept of CFC has been proposed as one solution for information
inte-gration across several spatiotemporal scales [31,99]. These findings suggest that
the brain uses both frequencies- and time-division multiplexity to optimize directional
information transfer.

4.3. Dominant Intrinsic Coupling Modes (DoCMs)

We independently detected DoCMs for intra- and cross-frequency coupling for both
amplitude and phase dynamics using the dSTE and dPTE ([34,49,75]). We revealed a
complementary pattern of the DoCM in both domains with main contributions for cross-
frequency coupling in δ, θ, and α1 frequencies. The main contributors to intra-frequency
bands were δ, α2, and β [87].

4.4. BAI Based on DoCM

The functional role of cross-frequency coupling has been studied across different
tar-geted groups [31,46–48]. To the best of our knowledge, this is the first study to explore
cross-frequency interactions for a range of ages in the source space. A recent study re-
ported inefficient communication of the default mode network brain areas based on cross-
frequency couplings linked to age-related short-term memory decline [119]. Another study
using source-reconstructed MEG resting-state activity and following a static func-tional
brain connectivity approach reported a maturation index based on the global strength of
the coupling, revealing an asymptotic curve for γ frequency until the age of 29 years and a
linear curve for β frequency that did not asymptote, even in adulthood [120]. This study
differed from ours in at least five important ways. First, the analysis did not take into
account directionality and time lag but was based on undirected functional con-nectivity.
Second, the analysis focused only on within-frequency band coupling, ignoring cross-
frequency coupling. Third, the age range of the cohort was < 29 years, an age where our
analysis extended to 60 years, showing a change in the overall pattern. Fourth, we analyzed
amplitude and phase dynamics separately. Finally, our BAI based on DoCM works within
the multiplex patterns of amplitude and phase human brain dynamics.
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Taking the ratio of both intra- (BFC) and inter-frequency coupling modes (CFC), our
BAI definition is independent of linear dependence and of absolute magnitudes. The results
reveal to the best of our knowledge, for the first time—an age trajectory from the end of
adolescence (~18 years of age) to the beginning of old age (~60 years of age) that is similar
across frequencies and similar for the amplitude and phase domains. This trajectory is also
intuitively appealing, as it conforms to our understanding of aging over the range of 18 to
60 years, i.e., a fast climb from adolescence to adulthood, reaching a peak between 20 and
30, followed by a slow decline. An apparent instability around 50 to 60, settling to a slower
decline in the last five years of the range, may be due to mental decline becoming more
obvious in this age range, leading to the exclusion from the sample of people showing
symptoms of decline.

Our results were cross-MEG system reproducible, which further supports the con-
sistency of our results. Additionally, our estimates, including both amplitude and phase
domains, were highly reliable in the repeat MEG scan cohort. No reference normal stand-
ards exist in functional neuroimaging to track the individual differences across ages in a
similar way to growth charts for normal height and weight. In our previous work, we
adopted a dynamic functional connectivity approach to determine DoCM in resting-state
neuromagnetic recordings using complementary undirected connectivity measures [121].
The whole analysis was realized in the sensor space, revealing an inverse U-shaped curve
among healthy participants for a measure called brain flexibility. The importance of the
lifespan brain chart (8–60 years) based on brain flexibility was further evaluated with
re-peat scans in cross-MEG systems, as well as in two cohorts: a dyslexic and a mild trau-
matic brain injury group [121]. Our present and previous studies are the first functional
neuroimaging studies in the literature that attempt to map important attributes of func-
tional/effective connectivity across the lifespan. A recent multi-cohort MRI study pro-vided
a standardized measure of atypical brain structure based on MRIs from tens of cross-
sectional studies, revealing potential deviations from normal neuroanatomical var-iation in
targeted neurological and psychiatric disorders [84].

4.5. Multiplexity of Brain Oscillations under Information Flow and DoCM

Our study underlines the importance of adopting multiple estimators to investigate
the fluctuation of effective connectivity patterns in both BFC and CFC. The coupling of
neuronal assemblies with similar amplitude or phase-coupling preferences, even at long
distances, is modulated by their functional role and correlates with behavior [104]. This
observation suggests that neuronal oscillations via BFC or CFC scenario may synchronize
anatomically and functionally distant neuronal assemblies that are engaged in specific
functional roles. The concept of CFC has been proposed as a means of information inte-
gration across multiple spatiotemporal scales [31]. Neuronal oscillations play a significant
role in coordinating functionally distinct neuronal assemblies that are responsible for
communication in large-scale brain networks [31]. To investigate the multiplex character of
communication between brain areas on the macroscale, we adopted two estimators that
can capture the strength, time delay, and direction between ROI and frequency-dependent
brain activity. Moreover, our DoCM revealed the dominant coupling mode per pair of brain
areas based on the hypothesis that if two brain areas exchange information, this should be
characterized by a specific coupling mode [7,12]. The DoCM model revealed an important
BAI, which could be used complementary to structural MRI and normal brain charts [84].

5. Conclusions

The proposed spatiotemporal investigation of the direction, strength, and time delays
of effective coupling within and between frequencies in both amplitude and phase domains
is suitable for indexing the development, maturation, and slow decay of the human brain
from neonates through adolescence, adulthood, and old age. We reported the first thorough
analysis covering the age range from the end of adolescence to the beginning of old age.
It is important to continue this work in three directions. First, we need to study the
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earlier period from birth through childhood and adolescence, when there are periods of
tremendous change in synaptic density, myelination, and maturation, especially in the
frontal lobes. Second, the aging process should come under scrutiny, especially in a period
of our civilization when the proportion of aged people is increasing. Finally, for each
specific age group, clinical populations should be studied, augmenting our definitions to
include BAI definitions with regional dependence in an effort to elucidate mechanisms
of pathology.
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