
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/154058/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Xu, Zichuan, Zhao, Dapeng, Liang, Weifa, Rana, Omer F. , Zhou, Pan, Li, Mingchu, Xu, Wenzheng, Li, Hao
and Xia, Qiufen 2023. HierFedML: aggregator placement and UE assignment for hierarchical federated

learning in mobile edge computing. IEEE Transactions on Parallel and Distributed Systems 34 (1) , pp. 328-
345. 10.1109/TPDS.2022.3218807

Publishers page: http://dx.doi.org/10.1109/TPDS.2022.3218807

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. XX, NO. X, 2022 1

HierFedML: Aggregator Placement and UE
Assignment for Hierarchical Federated Learning

in Mobile Edge Computing
Zichuan Xu, Member, IEEE, Dapeng Zhao, Weifa Liang, Senior Member, IEEE,

Omer F. Rana, Senior Member, IEEE, Pan Zhou, Senior Member, IEEE, Mingchu Li,
Wenzheng Xu, Member, IEEE, Hao Li, and Qiufen Xia, Member, IEEE.

Abstract—Federated learning (FL) is a distributed machine learning technique that enables model development on user equipments
(UEs) locally, without violating their data privacy requirements. Conventional FL adopts a single parameter server to aggregate local
models from UEs, and can suffer from efficiency and reliability issues – especially when multiple users issue concurrent FL requests.
Hierarchical FL consisting of a master aggregator and multiple worker aggregators to collectively combine trained local models from UEs
is emerging as a solution to efficient and reliable FL. The placement of worker aggregators and assignment of UEs to worker aggregators
plays a vital role in minimizing the cost of implementing FL requests in a Mobile Edge Computing (MEC) network. Cost minimisation
associated with joint worker aggregator placement and UE assignment problem in an MEC network is investigated in this work. An
optimization framework for FL and an approximation algorithm with an approximation ratio for a single FL request is proposed. Online
worker aggregator placements and UE assignments for dynamic FL request admissions with uncertain neural network models, where FL
requests arrive one by one without the knowledge of future arrivals, is also investigated by proposing an online learning algorithm with a
bounded regret. The performance of the proposed algorithms is evaluated using both simulations and experiments in a real testbed with
its hardware consisting of server edge servers and devices and software built upon an open source hierarchical FedML (HierFedML)
environment. Simulation results show that the performance of the proposed algorithms outperform their benchmark counterparts, by
reducing the implementation cost by at least 15% per FL request. Experimental results in the testbed demonstrate the performance gain
using the proposed algorithms using real datasets for image identification and text recognition applications.

Index Terms—Mobile edge computing; Federated learning; Aggregator placement and UE assignment; hierarchical federated learning
framework; approximation algorithms; Online learning algorithms.

✦

1 INTRODUCTION

A I applications continuously generate large volume
of data in mobile edge computing (MEC) networks,

which need be analyzed to obtain valuable patterns for
business advantage and decision making [49], [51], [53], [54].
Federated Learning (FL) is a promising distributed learning
technique to avoid privacy breaches of data generated by user

• Z. Xu, D. Zhao, and M. Li are with the Key Labora-
tory for Ubiquitous Network and Service Software of Liaon-
ing Province, School of Software, Dalian University of Tech-
nology, Dalian, China, 116621. E-mails: z.xu@dlut.edu.cn, zhao-
dapeng97@mail.dlut.edu.cn, mingchul@dlut.edu.cn.

• W. Liang is with the Department of Computer Science, City University of
Hong Kong, Hong Kong. E-mail: weifa.liang@cityu.edu.hk.

• O. Rana is with the Physical Sciences and Engineering College, Cardiff
University, United Kingdom. Email: RanaOF@cardiff.ac.uk.

• P. Zhou is with the School of Cyber Science and Engineering, Huazhong
University of Science and Technology, Wuhan, Hubei, China. E-mail:
panzhou@hust.edu.cn.

• W. Xu is with the Department of Computer Science, Sichuan University,
Chengdu 610065, China. Email: wenzheng.xu@scu.edu.cn.

• H. Li (Corresponding author) is with the Ningxia Research Institute, China
Coal Research Institute, Ning Xia 750004, China. Email: hateif@163.com.

• Q. Xia is with the Key Laboratory for Ubiquitous Network and Service
Software of Liaoning Province, the International School of Information
Science & Engineering, Dalian University of Technology, Dalian, China,
116621. E-mail: qiufenxia@dlut.edu.cn.

Manuscript received XXX; revised XXX.

equipment (UE) – often including sensitive information such
as user face images. FL involves training a local model on a UE
and then aggregating these models to obtain a global machine
learning model. Conventional FL frameworks usually adopt
a single aggregator (referred to as a “parameter server”) that
receives all trained local models of UEs to derive the global
training model. As reported in many existing studies [3],
[26], [37], [59], such a FL framework suffers issues such
as inefficient communications and communication failures.
For instance, the single aggregator becomes a bottleneck
if many UEs send their local models to it; or, if the single
aggregator fails to operate, the local models of UEs will not
be aggregated, thereby significantly reducing the accuracy
of the obtained global model. The above concerns can
become more important in an MEC network that consists of
heterogeneous cloudlets with different computing resource
capacities, spread across a large geographical area. In partic-
ular, assuming that the process of obtaining a global model
is referred to as an FL request, multiple FL requests are
issued by users in an MEC network to train different global
models. Since the computing resource of each cloudlet is
limited, it will incur a performance degradation when a
large number of users request to obtain machine learning
models. Additionally, if a single request needs to aggregate
local models from many UEs, the cloudlet that serves as the
aggregator will not be able to respond to other requests if it

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. XX, NO. X, 2022 2

Single
Aggregator

Users

UEs

Congestion

FL requests

FL models

(a) The conventional FL with a
single aggregator.

UEs

Master
Aggregator

Worker
Aggregators

 Users

FL requests

FL models

(b) The hierarchy-based FL with
master aggregators and worker ag-
gregators.

Fig. 1. The motivation for using hierarchical FL

is depleted of computing resource – as shown in Fig. 1 (a).
A hierarchical FL with a master aggregator and multiple

worker aggregators to combine trained local models from
UEs [4], is adopted to address the afore-mentioned issues
of conventional FL frameworks with a single aggregator.
Specifically, a hierarchical FL has multiple rounds of training
and local model aggregations. In each round, each worker
aggregator collects the local models of its UEs. The master
aggregator obtains the global model by aggregating the local
models collected from all worker aggregators, and returns
the updated global model back to all UEs for the next round
of local training in each UE. Since the worker aggregators
can be distributed to multiple cloudlets of the MEC network,
the congestion level and cost of each worker aggregator can
be alleviated. The comparison between conventional FL and
the hierarchical FL is given in Fig. 1 (b).

1.1 Motivation and Challenges
Under a hierarchical FL framework, the admission cost

of FL requests is dominated by aggregator locations and
the assignment of UEs to different worker aggregators. If
a UE is assigned to a worker aggregator located far from
itself, the cost of transmitting its training data may be very
high. On one hand, from the perspective of users, a UE
is not willing to participate in the FL if its cost is high.
On the other hand, a service provider that operates the
MEC network will not profit from offering FL services for
mobile users. In this paper, we study the problem of joint
worker aggregator placement and UE assignment in an
MEC network to minimize implementation costs of all FL
requests, which poses a number of fundamental challenges,
as discussed below.

First, various machine learning models can be developed
for a single learning task. For example, machine learning
models for object recognition include R-CNN [11], Faster R-
CNN [34], and YOLOv5 [19]. Given a specific FL request, the
models chosen/adopted are not always certain. To enable
learning in UEs, each UE can adaptively prune machine
learning models, referred to as submodels, of a full machine
learning model. Since each UE makes its own decision,
which submodels are selected in UEs cannot be specified
in advance. Due to the heterogeneous capabilities available
on UEs, submodels of a neural network with different hyper-
parameters may be used to adapt to dynamically-changing
computing capabilities of UEs [8]. Applying machine learn-
ing in MEC networks leads to uncertain local training models
at UEs, which are considered as uncertain models. Such model
uncertainty makes the placements of worker aggregators
a difficult optimisation problem. As such, the decision of

placing worker aggregators and UE assignment for an FL
request has to be made under such model uncertainty.

Second, the capacity constraint on each base station re-
quires worker aggregators to be distributed to different base
stations. FL implementation cost may be reduced if a smaller
number of worker aggregators are deployed. However, this
may result in a higher communication cost as UEs may
require longer routing paths to send trained local models
to these worker aggregators. Finding a trade-off between
communication cost and the number of worker aggregators
for each FL request implementation is challenging.

1.2 Novelty and Contributions

Current literature on FL in MEC networks has ignored
the joint aggregator placement and UE assignment, and often
focuses on optimizing communication and energy costs [35],
[55], [58], [64] as well as efficient UE assignment [60]. To
the best of our knowledge, unlike these existing studies that
considered a single FL request admission only, we are the
first to consider the joint worker aggregator placement and
UE assignment. Our approach also considers multiple FL
requests with model uncertainty in an MEC network. The
main contributions of this paper are as follows.

• We propose a hierarchical FL optimization frame-
work for joint worker aggregator placement and
UE assignment for a single FL request admission.
The optimization framework consists of a well-tuned
search process to identify the number of worker
aggregators for a request, and an approximation
algorithm with an approximation ratio for the worker
aggregator placement and UE assignment.

• We consider the online worker aggregator placement
and UE assignment for multiple FL request admis-
sions with model uncertainty, by proposing a novel
online learning algorithm based on the multi-armed
bandits (MAB) method.

• We evaluate the performance of the proposed algo-
rithms by simulation. Results show that the proposed
algorithms outperform their counterparts by reducing
the implementation cost by at least 15% per FL
request.

• We built a testbed for hierarchical FL in an MEC
network and implemented a hierarchical FL software
framework HierFedML, extending an existing FedML
framework [12]. Experiment results of HierFedML
demonstrate that the performance of the proposed
algorithms are promising, based on real data sets for
image identification and text recognition applications.

The remainder of this paper is arranged as follows. Sec-
tion 2 introduces the system model, notations and problem
formulation. Section 3 describes the proposed optimization
framework and proposes an approximation algorithm for
a single FL request implementation. Section 4 describes
mechanisms to support dynamic FL requests, for a sequence
of FL requests with model uncertainty, arriving one by one
without knowledge of their arrivals. Section 6 evaluates the
performance of the proposed algorithms by both simulation
and using a physical testbed. Section 7 includes concluding
comments.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. XX, NO. X, 2022 3

2 RELATED WORK

In this section, we review existing studies and summarize
the differences between our work and existing efforts. We
focus specifically on efficiency achieved within conventional
(distributed) machine learning tasks, optimization for FL and
resource allocation for FL.

2.1 Efficiency in Machine Learning

Although there are studies focusing on efficiency of
machine learning-based tasks [2], [20], such methods cannot
be directly applied to FL in MEC networks, as they mainly
consider inference tasks instead of distributed training
tasks. Specifically, each FL request involves the collaboration
between different edge servers. For example, Acharya et
al. [2] studied the re-identification of persons in a large-scale
video surveillance network, by allocating inference tasks
in an MEC network with both edge servers and a remote
cloud. The objective is to promote the responsiveness of
inference tasks for re-identification. Furthermore, Li et al. [20]
investigated the problem of task offloading from Internet-
of-Things (IoT) devices to edge servers. They assumed each
task to be executed on a single edge server; while the FL
request requires collaboration between different aggregators
in the MEC network. Xu et al. [51] focus on distributed
person re-identification and optimized the network latency
of the distributed model in an MEC network. Recently, FL
is emerging as a key distributed training technique that
guarantees the privacy requirements of users [7], [9], [27],
[28], [42], [63]. However, most of these FL frameworks do
not focus on promoting the cost efficiency of FL in MEC
networks. For example, Mills et al. [28] modified FedAvg
to use distributed Adam optimization called CE-FedAvg,
greatly reducing the number of rounds of convergence via
a novel compression method. Duan et al. [9] made use of
adaptive data expansion and downsampling to solve the
imbalanced training data distribution problem. Since FedAvg
is not ideal for training data with highly skewed distribu-
tion [62]. Wang et al. [42] designed an experience-driven
framework to intelligently choose users to participate in FL.
Liu et al. [25] proposed an adaptive asynchronous federated
learning (AAFL) mechanism to achieve less convergence
time of training under resource constraints.

2.2 Efficiency Optimization for FL

Due to the distributive nature of FL, many existing stud-
ies promote communication efficiency [35], [42], [58], [64],
optimize energy consumption [55], and find non-trivial trade-
offs between the accuracy and convergence speed [46], [40]
of a single FL request admission. However, little attention
has been paid to the worker aggregator placement and
UE assignment for FL request admissions. Wu et al. [47]
conducted a detailed analysis of parameter updates on
non-i.i.d datasets and compared the difference with i.i.d
datasets. They proposed a structure-based communication
reduction algorithm. Liu et al.[24] proposed an efficient-
communication approach, which provides a customized local
training strategy for vehicular clients to achieve convergence
quickly within fewer communication rounds. Wang et al. [44]
designed a federated deep-reinforcement-learning method

for the problem of cooperative edge caching. Yu et al. [57]
developed a mobility-aware edge content caching algorithm
to allow multiple vehicles to collaborate to learn a model.
Yang et al. [58] proposed a novel over-the-air computation
approach to enable a fast global model aggregation in a
wireless multiple-access channel.

2.3 Resource Allocation for FL in MEC Networks
Existing studies on resource allocation for FL in an MEC

network assumed that worker aggregators of an FL request
implementation are consolidated into a single location, and
ignore model uncertainty. They thus cannot be directly
applied to the aggregator and UE assignment problem being
considered in this paper. For example, Wang et al. [43]
analyzed the convergence bound of a distributed gradient
descent algorithm. Luo et al. [26] studied the problem of
joint resource allocation and UE assignment problem to
minimize the implementation cost of FL requests. Shi et
al. [38] investigated the problem of joint UE selection and
resource allocation to maximize model accuracy under a
given training time budget. Though Xia et al. [48] investigated
the uncertainty of wireless channel state information, they
did not consider model uncertainty. Feng et al. [10] explored a
min-max cost-optimal problem to guarantee the convergence
rate of FL in edge networks, to minimize the cost of UEs,
subject to the constraints of delay and computing capacity.
Ko et al. [13] studied the problem of UE selection and
bandwidth allocation in a wireless network, with an objective
to minimize the average time associated with training rounds
while meeting a requirement on the training data type
and volume. The placement of worker aggregators was
not considered, and the computing resource capacity in
the backhaul of the network was ignored in this work.
There are also studies focusing on promoting communication
efficiency for hierarchical FL in an MEC network [21], [22].
Specifically, [21], [22] focused on incentive mechanisms
that could motivate data owners to participate in the FL
process such that communication efficiency is promoted.
In particular, under the hierarchical FL framework, authors
in [22] proposed a hierarchical game, where the lower-level is
an evolutionary game for resource allocation and the upper-
level is a Stackelberg game to determine a reward for players.
In contrast, in this paper we focus on the worker aggregator
placement and UE assignment problem by assuming that
UEs are willing to participate the FL as long as they are
selected. Wang et al. [45] also considered a hierarchical FL
framework by proposing an algorithm to group UEs into
clusters. Each cluster has a single worker aggregator and
a master aggregator that collects and aggregates the model
from each cluster.

3 PRELIMINARIES

In this section, we first introduce the system model,
definitions and notations. We then formally define the
optimization problems being considered in this work.

3.1 System Model
As shown in Fig. 2, we consider an MEC network G =

(BS ∪ CL, E) with a set BS of base stations and a set CL of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. XX, NO. X, 2022 4

cloudlets. Cloudlets are located in the backhaul of the MEC
network G. Let bsi and clj be a base station and a cloudlet in
BS and CL, respectively. The resources of both base stations
and cloudlets have associated capacity constraints. Each
cloudlet clj or base station bsi is a potential location Locq
(∈ {BS ∪ CL}) for implementing FL requests. Let Cq and Bq

be the computing and bandwidth resource capacities at Locq ,
respectively. E is a set of backhaul links interconnecting
base stations and cloudlets. Each base station bsi provides
wireless connection for UEs and wired connection to the
backhaul network. Therefore, base station bsi also has a
capacity B(bsi) of wireless bandwidth. Each UE connects
to the MEC network via one of its close base stations. Let
uek and dsk be a UE and its data, respectively, where k is an
integer with 1 ≤ k ≤ K and K is the number of UEs in the
MEC network. The volume of data dsk is denoted by |dsk|.

Fig. 2. An example of a MEC network

3.2 Federated Learning in MEC Networks
An FL request, denoted by rm, is issued to train on the

datasets that are distributed in UEs of the MEC network. Each
FL request rm requires an FL service for persistent storage
to store its learned machine learning model and efficient
coordination of UEs to guarantee the trained accuracy. An
FL service is usually implemented in a Virtual Machine (VM)
or a container of the MEC network. Denote by Sm an FL
service. Let |wm| be the size of a model that is transmitted
between a UE and its service Sm.

In each round of FL training, the trained local model of
each UE needs to be sent for aggregation. We consider a
hierarchical aggregation framework with a master aggregator
and a set of worker aggregators, where the master aggregator
is co-located with FL service Sm. Due to limited resources
on cloudlets and base stations, the worker aggregators will
be distributed to different nodes (cloudlets) in G. Let Am,o

be the oth worker aggregator of FL request rm. We assume
that each UE has to register itself to one worker to send its
trained local model for aggregation. Let UEm be the set of
UEs for FL request rm.

3.3 Cost Models
The implementation of an FL request incurs communica-

tion, data aggregation and local training costs [16], [50].
The communication cost is incurred due to the downloading

of the global model from service Sm to each UE and upload-
ing the trained local models of UEs. Following existing stud-
ies [41], [15], [56], we assume that the communication cost

is mainly due to the consumption of bandwidth resources,
which is proportional to the amount of data to be transferred.
Let ctk,q,i be the cost of transmitting a unit amount of data
from UE uek to location Locq via base station bsi. If UE uek
is assigned to a worker aggregator Am,o in location Locq , the
communication cost of uek for updating its trained model to
Am,o of service Sm is

ctk,m,o =
∑

Locq∈BS∪CL

∑
bsi∈BS

|wm| · ctk,q,i · xm,o,q · zk,i,

where xm,o,q is a binary variable that shows whether worker
aggregator Am,o is placed at location Locq , and zk,i indicates
whether UE uek accesses the MEC network via base station
bsi. Similarly, each worker aggregator sends its aggregated
model to service Sm. Let ym,q be an indicator variable that
shows whether service Sm is placed at location Locq . The
communication cost due to model updating from a worker
aggregator to the master aggregator in Sm is

ctm,o =
∑

Locq,Locq′∈BS∪CL
|wm| · xm,o,q · ym,q′ · ctq,q′ ,

where ctq,q′ is the cost of transmitting a unit of data from
Locq to Locq′ .

The data aggregation cost is due to local model aggregations
in worker aggregators. Typical implementation of an FL re-
quest takes an average of the gradient on its local parameters
and the current model, and service Sm aggregates the local
models by updating its current model. Data aggregation
cost of each worker aggregator depends on the number of
registered UEs and the location of the aggregation (i.e., with
or without accelerators) [25], [52], [61]. Denote by UEm,o the
number of UEs assigned to worker aggregator Ao,m of FL
request rm. Let cam be the cost of data aggregation for rm, we
have

cam =
∑

Am,o∈Am

∑
Locq∈BS∪CL

xm,o,q · αq · |Am|,

where Am is the set of deployed worker aggregators of FL
request rm and αq is the cost of aggregating a UE’s local
model in Loqq .

The local training cost is due to the model training at each
UE. As the stochastic gradient descent method is adopted
to optimize a global loss function, the local training cost is
proportional to the size of the local dataset. Let cunitk be the
cost of learning a unit data in UE uek. The cost clk of local
learning in UE uek on its dataset dsk is clk = cunitk · |dsk|.

3.4 Resource Consumption Models
Each UE, cloudlet or base station consumes wireless and

wired bandwidth resources for transmitting trained models.
Let ηi be the amount of wireless bandwidth resource that
bsi uses to receive data. The amount of bandwidth resource
required to transfer the amount |wm| of trained local model
for FL request rm is ηi · |wm|. Let ξi be the amount of
wired bandwidth resource assigned to transfer a unit data.
The amount of bandwidth resource demanded by bsi for
transferring wm is ξi · |wm|. The worker aggregator located
at Locq needs bandwidth resource to transfer its aggregated
parameters to the master aggregator. Let ξq be the amount of
bandwidth resource it is assigned to transfer a unit data at
Locq . Hence an amount ξq · |wm| of bandwidth resource is
needed to transfer |wm| of aggregated parameters is needed.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. XX, NO. X, 2022 5

Work aggregators need computing resources to aggregate
the trained models of UEs. Denote by UEm,o the set of UEs
assigned to worker aggregator Am,o, the computing resource
needed is proportional to the size of the parameters for
aggregation, i.e., CRm,o,q = γq · |UEm,o| · |wm|, where γq is
a proportional factor at location Locq . Similarly, the amount
of computing resource allocated to service Sm is CR′

m,q =
γq · |Am| · |wm|, if Sm is placed to location Locq . Although
a single FL service may not consume significant amounts
of computing resources, multiple FL services can run out
of the entire available computing resource in a base station
easily [6], [30].

3.5 Problem Definition

Assuming that the volume of each dataset dsk of UE
uek is given apriori, the joint worker aggregator placement and
UE assignment problem for a single FL request admission in an
MEC network is formulated as describe in this section. The
problem aims to jointly place service Sm to a location, find a
suitable number of worker aggregators and their locations for
an FL request rm, and assign UEs to different base stations
and worker aggregators. The objective of the problem is to
minimize the cost of implementing the FL request, subject to
the resource capacity on each location Locq ∈ BS ∪ CL.

Given a set R of FL requests arriving into the system
dynamically without knowing future FL request arrivals,
assuming that the model of FL request rm is uncertain, the
online worker aggregator placement and UE assignment problem
for multiple FL requests with model uncertainty in an MEC
network is to find a the number of worker aggregators and
their placements for each FL request rm ∈ R, and assign UEs
to base stations and worker aggregators of each rm, such
that the total implementation cost of all FL requests in R is
minimized, subject to the resource capacity at each location
Locq ∈ BS ∪ CL.

For clarity, the symbols used in this paper are summa-
rized in Table 1.

4 ALGORITHMS FOR THE JOINT WORKER PLACE-
MENT AND UE ASSIGNMENT PROBLEM WITH A SIN-
GLE FL REQUEST ADMISSION

In the following we propose an optimization framework
for the problem, assuming that the model of an FL request is
given.

4.1 An Optimization Framework

The number of worker aggregators deployed for each FL
request rm plays a vital role in minimizing its implementa-
tion cost. Specifically, more worker aggregators for FL request
rm imply that these worker aggregators can be distributed
to locations closer to its UEs, thereby reducing the cost of
updating the trained local model. This however may increase
the volume of data transfers from worker aggregators to
service Sm, resulting in a high communication cost.

To identify the number of worker aggregators, we adopt
binary search. That is, the maximum number of worker
aggregators that can be instantiated is determined by the
available computing resource in each location. Let nmin

and nmax denote the minimum and maximum numbers of
worker aggregators of each FL request rm, respectively.

We first determine the value of nmin. Intuitively, the
minimum value of nmin is 1, implying that the trained
models by all UEs are aggregated by a single worker
aggregator. However, the available resource at location Locq
may not be adequate to aggregate the data of all UEs in
UE . This means if locations have the maximum computing
resource max{Cq | ∀Locq} to process the local models of
UEs in UE , we will get the minimum number of worker
aggregators, i.e., ⌈ γq·|wm|·|UEm|

max{Cq | ∀Locq}

⌉
. Similarly, if we consider

the bandwidth resource capacity of each location Locq ,
we get the minimum number of worker aggregators as
⌈ ξq·|wm|·|UEm|
max{Bq | ∀Locq}

⌉}
Overall, we have

nmin = max
{
1,
⌈ γq · |wm| · |UEm|
max{Cq | ∀Locq}

⌉
,
⌈ ξq · |wm| · |UEm|
max{Bq | ∀Locq}

⌉}
.

(1)
We then determine the value of nmax. The maximum

amount of computing resource consumed by worker aggre-
gator Am,o is determined by the number of UEs assigned to
it. In the worst case, a worker aggregator only aggregates the
local model from a maximum number |UEm| of UEs, i.e.,

nmax = |UEm|. (2)

We proceed by describing the binary search process.
Specifically, we follow a binary search procedure to find
an appropriate number nm of worker aggregators for FL
request rm in the range of [nmin, nmax]. Note that instead
of comparing the values of nm, nmin, and nmax in each
round of the binary search. We here compare the cost of
implementing FL request rm when the number of worker
aggregators is selected, which is obtained by invoking
algorithm ApproAG or HeuAG to place worker aggregators
and service for rm. Let cost(nm) be the cost of the solution
delivered by ApproAG.

The detailed steps of the proposed optimization frame-
work are shown in Algorithm 1, which is referred to as
OptFWK.
Algorithm 1 OptFWK
Input: An MEC network G, and an FL request rm.
Output: The cost of implementing an FL request rm in the MEC

network G.
1: Set values for nmin and nmax according to equations (1) and (2);
2: while cost(n′min) < cost(n′max) do
3: nm ← ⌈n

′min+n′max

2
⌉;

4: Invoke algorithm ApproAG to obtain the cost cost(nm) of imple-
menting request rm with a number nm of worker aggregators;

5: Calculate cost(n′min) and cost(n′min) if necessary;
6: if cost(nm) ≤ cost(n′min), n′min ← nm; else, n′max ← nm;
7: end while

4.2 An Approximation Algorithm with A Fixed Number
of Worker Aggregators

The proposed algorithm aims to map the problem to
the minimum-cost multi-commodity flow problem in an
auxiliary graph G′ = (V ′, E′). We treat the trained model
of each UE as a ‘commodity’ to be routed from its source
to destination. However, the commodity may be split into
multiple parts and routed along multiple routing paths as a
splittable flow in the minimum-cost multi-commodity flow

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. XX, NO. X, 2022 6

TABLE 1
Symbols

Symbols Meaning
G = (BS ∪ CL, E) An MEC network with a set BS of base stations and a set CL of Cloudlet.
clj , and bsi a cloudlet in CL, and a base station in BS.
Locq a potential location for implementing FL requests, which can be either a base station or a cloudlet.
Cq and Bq the computing and bandwidth resource capacities at Locq .
E a set of backhaul links interconnecting base stations and cloudlets.
B(bsi) the capacity of wireless bandwidth at bsi.
uek , dsk A UE and its dataset, where k is a constant with 1 ≤ k ≤ K.
|dsk| The volume of dsk .
rm, R , |R| and Sm an FL request, a set of FL requests, the numbers of FL requests and an FL service.
wm and |wm| the parameter of a model and the size of the model parameter that is transmitted between a UE and its service Sm.
Am,o the oth worker aggregator of FL request rm.
UEm the set of UEs for FL request rm.
ctk,q,i the communication cost of uek for updating its trained model to Am,o of service Sm

ym,q , ct
q,q′ and ctm,o an indicator variable that shows whether Sm is placed to Locq , the cost of transmitting a unit amount of data from Locq

to Locq′ and from Am,o to the master aggregator in Sm

Am the set of deployed worker aggregators of rm.
αq and cam the cost of aggregating a UE’s local model in Loqq and the cost of data aggregation for rm.
γq the amount of computing resource demanded by aggregating a unit amount of data at location Locq .
UEm,o the set of UEs assigned to worker aggregator Am,o.
CRm,o,q and CR′

m,q the amount of the computing resource which the set of UEs assigned to worker aggregator Am,o are needed and allocated
to service Sm.

ηi, ξi and ξq the amount of wireless bandwidth resource bsi uses to receive data, wired bandwidth resource assigned to transfer a unit
amount of data and bandwidth resource it is assigned to transfer a unit amount of data at Locq .

nm, nmin and nmax

the number, the min-
imum and maximum
number of worker ag-
gregators of each FL re-
quest rm respectively.
cost(nm) the cost obtained by ApproAG.
dunit a data unit as a smaller volume of data compared with that of |wm| for dividing the trained local model of each UE into.
Wm,o the set of potential locations for worker aggregator Am,o.
c(·, ·) and u(·, ·) the cost and capacity of edge in auxiliary graph.
ctk,i and cti,q the cost of transmitting a unit amount of data from uek to bsi and The cost of transmitting a unit amount of data from bsi

to Locq
fk the flow obtained for UE uek in an auxiliary graph.
pk,i, pk,o, pm,o,q and
pm,q

the probabilities of associating uek to bsi, sending UE uek’s local models to worker aggregator Am,o, placing Am,o to
locq and placing service Sm to location locq .

Yk,q , Y ′, Y ′′, and Zm the events that the local models of UE uek are assigned to a worker aggregator at Locq , uek is assigned to a worker
aggregator Am,o, Am,o is placed to locq , and whether service Sm of FL request rm is placed to location Locq .

Yq the number of UEs whose trained models are sent to Locq for aggregation.
µ(|wm|) the average volume of trained local model of each UE uek .
χ a factor for scale-up the average model size of each FL request in algorithm Online
ζ a fixed length discretize the range of χ intervals with.
VL and VL′ The set of the range of χ discretized and active values for χ.
numa(v) the number of requests before rm that choose v as the value of χ.
µc(v) the average cost obtained by the algorithm in the number numa(v) of selections of v.
radiusv and ballv the confidence radius and the confidence ball of arms in algorithm Online .

problem. In the extreme case, some cloudlets have to initialize
a certain amount of computing resource to process a very
small amount of data, leading to high overhead. On the other
hand, if we consider each local model as a basic routing
unit, the remaining resource of a cloudlet may not be fully
utilized because its remaining resource may not have enough
capacity to aggregate the local model. The MEC network may
have many such small ‘resource slices’ that will not be used
for any model aggregation. To avoid such cases, we consider
a flexible granularity of routing unit of the local models. Let
dunit be the data unit of a split block. The local model of each
UE is divided into |wm|

dunit
split blocks, assuming that |wm| is

divisible by dunit. The size of each split block of each UE is
considered as the demand of a commodity. Notice that the
benefit of introducing dunit allows us to improve resource
utilization. For example, when cloudlets are under-loaded,

we set dunit ← |w|; otherwise, we set dunit to a value smaller
than |wm|. The algorithm proceeds as follows.

Auxiliary graph construction: We jointly place worker
aggregators to different locations, assign UEs to base stations,
and find a location for service Sm. To this end, we partition
nodes in V ′ into different layers, with each layer correspond-
ing to one of the joint decision making processes. Specifically,
the nodes in V ′ of G′ are organized into four layers, namely,
the UE layer, base station layer, worker aggregator layer and
service layer, as shown in Fig. 3.

The UE layer consists of all UE nodes, i.e. we add each
uek ∈ UEm into V ′ via V ′ ← V ′ ∪ {uek | 1 ≤ k ≤ |UEm|}.

The BS layer consists of a set of base stations. For each
base station bsi, we create two virtual base stations and add
them to V ′. Let bs′i and bs′′i be the two virtual base stations
of base station bsi, then V ′ ← V ′ ∪ {bsi, bs′i, bs′′i | 1 ≤

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. XX, NO. X, 2022 7

Fig. 3. An example of the auxiliary graph G′ = (V ′, E′) with two worker
aggregators for an FL request rm.

i ≤ |BS|}. We then connect bsi with bs′i and bs′i with bs′′i ,
by adding directed edges ⟨bsi, bs′i⟩ and ⟨bs′i, bs′′i ⟩ to E′, i.e.,
E′ ← E′∪{⟨bsi, bs′i⟩, ⟨bs′i, bs′′i ⟩ | 1 ≤ i ≤ |BS|}. The capacity
on edge ⟨bsi, bs′i⟩ is the data unit (each unit has an amount
dunit of data) that can be transferred using B(bsi) amounts
of wireless bandwidth of bsi, i.e.,

u(bsi, bs
′
i) = ⌊B(bsi)/(dunit · ηi)⌋. (3)

Similarly, the capacity on edge ⟨bs′i, bs′′i ⟩ is the maximum
number of data units dunit that can be transferred, using
the amount Bi of wired bandwidth, i.e., u(bs′i, bs

′′
i) =

⌊Bi/(dunit · ξi)⌋, where ξi is the amount of wired bandwidth
resource to transfer a unit data to the backhaul of G by base
station bsi. The costs of such edges are set to zeros.

The worker aggregator layer consists of all potential
locations of the MEC network for worker aggregators. We
create nm widgets with each corresponding to the set of
potential locations for each worker aggregator Am,o. Let
Wm,o be such a widget. We then add potential locations
with adequate resources to implement Am,o to its widget
Wm,o. Specifically, for each location Locq with sufficient
computing and bandwidth resources to aggregate and
transfer the size |wm| of trained model, a virtual location
node Loc′q is added to the widget along with Locq . That
is, V ′ = V ′ ∪ {Locq, Loc′q}. We then build widget Wm,o

by adding edges. We add an edge ⟨Locq, Loc′q⟩ for each
Locq into the widget. The cost of ⟨Locq, Loc′q⟩ is the cost of
aggregating dunit data units, i.e., c(Locq, Loc′q) = dunit · αq ,
and the capacity on the edge thus is

u(Locq, Loc
′
q) = min{⌊Cq/dunitγq)⌋, ⌊Bq/(dunitξq)⌋}, (4)

which represents the maximum number of data units that
can be aggregated by the worker aggregators in location
Locq . The cost of edge ⟨Loc′q, d(nm)⟩ is zero, and its capacity
is infinity.

In the service layer, we create two virtual nodes Loc′′q and
Loc′′′q for each location Locq and service Sm. Each pair of
nodes is added into a new widget for service Sm. An edge
⟨Loc′′q , Loc′′′q ⟩ is added to E′ and its cost is set to αq , i.e.,
c(Loc′′q , Loc

′′′
q) = dunit·αq . Its capacity is set to the maximum

number of data units that can be aggregated by Sm, which is
u(Loc′′q , Loc

′′′
q) = min{⌊Cq/(dunit · γq)⌋, ⌊Bq/(dunit · ξq)⌋}.

We finally create a virtual sink, denoted by s.
We proceed by interconnecting between the defined

layers. First, each UE uek in the UE layer is connected
to base station bsi of the BS layer if uek is within the
transmission range of bsi. The cost of edge ⟨uek, bsi⟩ is the
cost of transmitting a unit data from uek to bsi, i.e.,

c(uek, bsi) = dunit · ctk,i, (5)

where ctk,i is the cost of transmitting a unit data from uek
to bsi. The capacity of edge ⟨uek, bsi⟩ is set to infinity.
Second, for each base station bsi, its virtual base station
bs′′i is connected to the source s(nm) of each widget in the
worker aggregation layer. The cost of edge ⟨bs′′i , Locq⟩ is the
cost of transmitting dunit amount of data from bsi to Locq ,
that is,

c(bs′′i , Locq) = dunit · cti,q, (6)

where cti,q is the given cost of transmitting a unit data from
bsi to Locq that is given in advance. Its capacity is set as
the maximum number of data units that can be transferred
by the wired bandwidth capacity of base station bsi if an
amount ξq of wired bandwidth is allocated to transfer a unit
data, i.e.,

u(bsi, Locq) = ⌊Bq/(dunit · ξq)⌋. (7)

Approximation algorithm: We now reduce the joint
worker aggregator placement and UE assignment problem
for a single FL request to the minimum-cost multi-commodity
flow problem in G′. That is, we consider the trained local
model of each UE as a commodity with a source uek, a sink
node s, and a demand of |wm|. The commodity needs to
be routed in G′ from uek to s. To route the commodities
of all UEs to their sink node s, we find a splittable multi-
commodity flow in G′ from each UE to s. Let fk be the flow
obtained for UE uek. Flow fk can be split into different paths
in G′. We then adopt a randomized rounding method that
converts the obtained flow into probabilities of assigning
UEs and placing worker aggregators and service for the FL
request admission.

We calculate the probability of assigning a UE uek to
base station bsi. In the BS layer, we use fk(bsi) to represent
the amount of flow that is routed via edges ⟨bsi, bs′i⟩ and
⟨bs′i, bs′′i ⟩. The probability pk,i of associating uek to bsi is

pk,i = fk(bsi)/(2 · fk). (8)

The data of each UE needs to be sent to a worker aggregator
for aggregation. Let pk,o be the probability of sending UE
uek’s trained local model to worker aggregator Am,o for
aggregation, then,

pk,o = fk(Wm,o)/fk, (9)

where fk(Wm,o) represents the total amount of flow routed
through the edges in widget Wm,o, i.e., fk(Wm,o) =∑

Locq∈Wm,o
fk(Locq, Loc

′
q).

We then calculate the probability of placing a worker
aggregator Am,o to location Locq . The widget of each Am,o

in G′ consists of its potential locations. Denote by Wm,o the
widget for worker aggregator Am,o. Let fk(Locq,Wm,o) be
the amount of flow routed via edge ⟨Locq, Loc′q⟩ of widget
Wm,o. The probability of placing Am,o to Locq is

pm,o,q =

∑
uek∈UE fk(Locq,Wm,o)

2 ·
∑

Locq′∈BS∪CL,uek∈UE fk(Locq′ ,Wm,o)
. (10)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. XX, NO. X, 2022 8

The reason is that the more flow routing via an edge of the
widget, the higher probability it will be selected as a location
for Am,o.

We thirdly calculate the probability of placing service Sm

to location Locq , according to the amount of flows routed
via the service layer of G′. We use fk(Locq, Sm) to denote
the amount of flow that is routed via edge ⟨Loc′′q , Loc′′′q ⟩.
Let pm,q be the probability of placing service Sm to location
Locq , then,

pm,q =

∑
uek∈UE fk(Locq, Sm)

(|wmax|
dunit

·
∑

Locq′∈BS∪CL
uek∈UE

fk(Locq′ , Sm)
. (11)

We finally assign each uek to bsi with probability pk,i, and
place worker aggregator Am,o and service Sm to location
Locq with probabilities pm,o,q and pm,q , respectively. The
detailed steps of the algorithm are given in algorithm
ApproAG.
Algorithm 2 ApproAG
Input: An MEC network G, an FL request rm, and nm worker

aggregators for rm.
Output: An implementation of FL request rm.
1: Construct an auxiliary graph G′ as shown in Fig. 3; and set the costs

and capacities of each edge accordingly;
2: Consider the local model wm of each UE uek as a commodity with

demand |wm|/dunit;
3: Find a splittable flow for each UE from uek to s in the constructed

auxiliary graph G′, and let fk be the flow for the local model wm if
each UE uek ;

4: Calculate the probabilities of assigning UEs to base stations, worker
aggregators and service Sm to locations following Equations (8),
(10), and (11);

5: Randomly assign UE uek to bsi according to probability pk,i;
6: For each worker aggregator, randomly place it in location Locq with

probability pm,o,q ;
7: Randomly place service Sm to location Locq with probability pm,q ;
8: for Each uek do
9: In the UE and BS layers of the auxiliary graph, move each split of

fk to the randomly selected base station;
10: In the worker aggregator layer of G′, move each split of fk to an

placed worker aggregator with the minimum cost;
11: In the service layer, move each split of fk to the location where

its service is placed;
12: end for
13: Transfer the obtained unsplittable flow f ′ into UE assignments and

worker aggregator, service placement decisions;

4.3 Algorithm Analysis
We first give the following properties of the proposed

approximation algorithm.
Property 1: pk,i is lower bounded by dunit

2·|wm| . Recall that
one unit of flow in the auxiliary graph G′ represents an
amount |wmin| of local model. We then have a lower bound
on the probability

fk(bsi)/(2 · fk) ≥ dunit/(2 · |wm|), (12)

since edge ⟨bs′i, bs′′i ⟩ has at least one unit of flow routed via
itself, if its flow is non-negative.

Property 2: The probability pm,o,q of placing worker
aggregator Am,o to location Locq is bounded by
dunit/(|wm| · |UE|), i.e.,

pm,o,q = fk(Locq,Wm,o)/2
∑

Locq′∈BS∪CL
fk(Locq′ ,Wm,o)

(13)
≥ dunit/(2 · |wm| · |UE|),

if the traffic of all UEs is routed via a single widget of G′.
Property 3: pm,q is lower bounded by dunit

|wm|·|UE| . The
minimum size of local model that is routed via an edge
⟨Loc′′q , Loc′′′q ⟩ is dunit while the total amount of data routed
through the service layer of G′ is |wm| · |UE|, then

pm,q ≥ dunit/(2 · |wm| · |UE|). (14)

Lemma 1. Assuming that B(bsmin)/(ηi · |wm|) ≥ |UE|/δ
and min{Bi | 1 ≤ i ≤ |BS|}/(ξi · |wm|) ≥ |UE|/κ, the
wireless and wired bandwidth resource capacities of each
base station may be violated with a low probability of
((2·|wm|)/(dunit)−1)

(1/δ−1)2|UE| and ((2·|wm|)/(dunit)−1)
(1/κ−1)2|UE| , respectively,

where δ and κ are given constants in the range of (0, 1].

Proof: We first show the bound on the violation of
wireless bandwidth of base station bsi. Recall that each
UE uek is associated with a base station bsi with prob-
ability pk,i. Let Xk,i be the event that uek is assigned
to bsi. We have Xk,i = 1 with probability pk,i. Let Xi

be the number of UEs assigned to base station bsi, we
have Xi =

∑
uek∈UE Xk,i, and the expectation E(Xi) of

Xi is E(Xi) =
∑

uek∈UE E(Xk,i) =
∑

uek∈UE pk,i. Its
variance V ar(Xi) then is V ar(Xi) = E((Xi)

2)− (E(Xi))
2.

Since UEs are assigned to base stations randomly, the
wireless bandwidth capacity on each base station may
be violated, and the probability of such a violation is
Pr(Xi ≥ B(bsi)/(ηi · |wm|)), which can be rewritten
as Pr(|Xi − E(Xi)| ≥ B(bsi)/(ηi · |wm|) − E(Xi)). Let
B(bsmin) denote the minimum wireless bandwidth capacity
on base stations, following Chebyshev’s inequality [29], we
have

Pr(Xi ≥
B(bsi)

ηi · |wm|
) ≤ E((Xi)

2)− (E(Xi))
2

(B(bsi)/(ηi · |wm|)−
∑

uek∈UE pk,i)
2

≤
∑

uek∈UE pk,i(1)
2 − (

∑
uek∈UE pk,i)

2

(B(bsi)/(ηi · |wm|)−
∑

uek∈UE pk,i)
2

≤
∑

uek∈UE(
1

pk,i
− 1)

(B(bsmin)
pk,iηi·|wm| − |UE|)2

≤
∑

uek∈UE(
1

pk,i
− 1)

(B(bsmin)
ηi·|wm| − |UE|)2

, since pk,i ≤ 1

≤ (
∑

uek∈UE
(1/pk,i − 1))/((1/δ − 1)2|UE|2), (15)

assuming that B(bsmin)
ηi·|wm| ≥

1
δ

∑
uek∈UE 1 = |UE|

δ with 0 < δ ≤
1, and the rationale of this assumption is that a base station
can host a single UE; it however may not be able to host all
UEs. Since pk,i ≥ dunit/(2 · |wm|), we have

(15) ≤
∑

uek∈UE(
1

pk,i
− 1)

(1δ − 1)2|UE|2
≤
|UE|(2·|wm|

dunit
− 1)

(1δ − 1)2|UE|2

≤
(2·|wm|

dunit
− 1)

(1δ − 1)2|UE|
. (16)

Therefore, the probability of violating the wireless bandwidth
capacity on each base station bsi is ((2·|wm|)/(dunit)−1)

(1/δ−1)2|UE| . This
probability is very small if many UEs participate in FL.

We then analyze the probability of violating the wired
bandwidth resource capacity on each base station bsi. The
derivation is similar as that in Inequalities (15) and (16). We

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. XX, NO. X, 2022 9

only need to replace B(bsi) with Bi, which is omitted for the
sake conciseness. We thus conclude that ((2·|wm|)/(dunit)−1)

(1/κ−1)2|UE| ,

where min{Bi | 1≤i≤|BS|}
ξi·|wm| ≥ |UE|

κ .

Lemma 2. Assuming that Cq

γq·|wm| ≥ |UE|/Ψ, the comput-
ing resource capacity of each location Locq ∈ BS ∪
CL may be violated with a very low probability of

2|UE|2|V ||wmax|2/dunit

(|UE|
Ψ −|UE|2|V | |wmax|

dunit
−|UE∪CL|)2

, where Ψ is a given con-

stant.

Proof: We analyze the probability of violating the
computing resource capacity on each location Locq . Recall
that the total amount of computing resource assigned to
aggregate local models of UEs depends on the number of
UEs that are assigned to location Locq and whether service
Sm is placed to Locq . Let Yk,q be an event that the local
model of UE uek is assigned to a worker aggregator at Locq .
This event depends on two sub-events of (1) uek is assigned
to a worker aggregator Am,o, which is denoted by random
variable Y ′, and (2) Am,o is placed to Locq , represented by
random variable Y ′′. We then have the expectation of Yk,q

by

E(Yk,q) = E(Y ′′ | Y ′ = 1)

=
∑

Locq∈BS∪CL
pm,o,q · pk,o, (17)

considering that events Y ′ and Y ′′ are two independent
events.

Let Yq be the number of UEs whose data is sent to Locq
for aggregation. We have

E(Yq) =
∑

uek∈UE
Yk,q =

∑
uek∈UE,Locq∈BS∪CL

pm,o,q·pk,o.

Denote by Zm the event that whether service Sm of FL
request rm is placed to location Locq . Its expectation is
E(Zm) =

∑
Locq∈BS∪CL pm,q . Clearly, if all the worker ag-

gregators and Sm are placed to location Locq , the computing
capacity of Locq may be violated maximally. Following the
similar derivation in Ineq. (15), the probability of violating
the computing resource capacity on each Locq is

Pr(Yk,q + Zm ≥
Cq

γq · |wm|
)

≤ V ar(Yk,q) + V ar(Zm)

(
Cq

γq·|wm| − E(Yk,q)− E(Zm))2

≤ E((Yk,q)
2)− (E(Yk,q))

2 + E((Zm)2)− (E(Zm))2

(
Cq

γq·|wm| −
∑

uek,Locq
pm,o,q · pk,o −

∑
Locq

pm,q)2

≤
∑

uek,Locq
pm,o,q · pk,o(1)2 − (

∑
uek,Locq

pm,o,q · pk,o)2

(
Cq

γq·|wm| −
∑

uek,Locq
pm,o,q · pk,o −

∑
Locq

pm,q)2

+

∑
Locq

pm,q(1)
2 − (

∑
Locq

pm,q)
2

(
Cq

γq·|wm| −
∑

uek,Locq
pm,o,q · pk,o −

∑
Locq

pm,q)2

≤
∑

uek,Locq
(pm,o,q · pk,o − (pm,o,q · pk,o)2)

(
Cq

γq·|wm| −
∑

uek,Locq
pm,o,q · pk,o −

∑
Locq

pm,q)2

+

∑
Locq

(pm,q − (pm,q)
2)

(
Cq

γq·|wm| −
∑

uek,Locq
pm,o,q · pk,o −

∑
Locq

pm,q)2

≤
∑

uek,Locq
(1
pm,o,q·pk,o

− 1)

(
Cq

γq·|wm| − |UE| · |V | − |UE ∪ CL|)2

+

∑
Locq

(1
pm,q
− 1)

(
Cq

γq·|wm| −
∑

uek,Locq

pm,o,q·pk,o

pm,q
− |UE ∪ CL|)2

(18)

≤
∑

uek,Locq
(1
pm,o,q·pk,o

− 1)

(
Cq

γq·|wm| − |UE| · |V | − |UE ∪ CL|)2

+

∑
Locq

(1
pm,q
− 1)

(
Cq

γq·|wm| −
|UE|·|wmax|

dunit

∑
uek,Locq

pm,o,qpk,o − |UE ∪ CL|)2

(19)

≤
∑

uek,Locq
(1
pm,o,q·pk,o

− 1)

(
Cq

γq·|wm| − |UE|2|V |
|wmax|
dunit

− |UE ∪ CL|)2

+

∑
Locq

(1
pm,q
− 1)

(
Cq

γq·|wm| − |UE|2|V |
|wmax|
dunit

− |UE ∪ CL|)2

≤ |UE|2|V ||wmax|2/dunit
(|UE|/Ψ− |UE|2|V ||wmax|/dunit − |UE ∪ CL|)2

+
|V ||UE||wmax|/dunit

(|UE|/Ψ− |UE|2|V ||wmax|/dunit − |UE ∪ CL|)2
,

since Cq/(γq|wm|) ≥ |UE|/Ψ (20)

≤ 2|UE|2|V ||wmax|2/dunit
(|UE|/Ψ− |UE|2|V ||wmax|/dunit − |UE ∪ CL|)2

. (21)

Note that the derivation from Ineq. (18) to (19) is due to
the fact that the minimum non-negative flow goes to edge
⟨Loc′′q , Loc′′′q ⟩ is 1.

The violation of bandwidth resources at a location Locq
can be derived similarly; omitted.

Theorem 1. The approximation ratio of algorithm ApproAG
is 2ϵ|wm|/(|wm| − dunit) with probability 1/(ϵ|UE|),
where ϵ is constant with 0 < ϵ ≤ 1.

Proof: Considering that algorithm ApproAG is a ran-
domized algorithm, we show that its approximation ratio
is α with high probability. That is, Pr(C ≥ α · OPT),
where C is the cost by ApproAG and OPT is the optimal
solution to the problem. Let OPT ′ be the fractional solu-
tion of OPT that splits the flow to route along different
routing paths in the auxiliary graph G′. We then have
Pr(C ≥ α·OPT) ≤ Pr(C ≥ α·OPT ′) since OPT ′ ≤ OPT .
Due to the Markov’s inequality,

Pr(C ≥ αOPT) ≤ Pr(C ≥ αOPT ′) ≤ E(C)/(αOPT ′),

where E(C) is the expected cost of algorithm ApproAG.
Algorithm ApproAG consists of two stages: (1) splitting the
trained local model wm of each UE into |wm|

dunit
numbers of

data units; and (2) finding a splittable flow in auxiliary graph
G′, and then assigning different splits of each UE to the
selected base station and worker aggregator. These two stages
push-up the costs in comparison with the optimal fractional
solution OPT ′ of the problem.

For Stage (1), we divide the local model of each UE
into numbers of data units with each having a volume of
dunit. However, the optimal fractional solution OPT ′ to the
problem may consider smaller split blocks (smaller values
for dunit), because smaller split blocks can fit into locations

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. XX, NO. X, 2022 10

with low costs and small amount of available resources. We
thus have

Pr(C ≥ α ·OPT ′) ≤ E(C)/(α ·OPT ′)

≤ dunit/(2|wm||UE|)OPT ′

α ·OPT ′ =
dunit/(2|wm|UE|)

α
, (22)

due to the bounds of probabilities pi,k, pm,o,q , and pm,q . This
is due to: (1) the local model wm of each UE is split into |wm|

dunit

data units; and (2) the number of data units of each UE may
be split into different paths of the auxiliary graph. Let OPT
be the optimal solution to the original problem.

The obtained splittable flow in Stage (2) may be infeasible.
To make it become feasible, we reallocate the split flows of
each UE to the associated base station, placed worker aggre-
gators and service Sm. Such reallocation of the split flows
push up the costs of routing the trained local models of UEs
in UE . Denote by C the total cost of the solution delivered
by approximation algorithm ApproAG. For simplicity, we
distinguish such the cost increase into the following three
cases: (i) the cost push-ups due to moving partial data units
of a UE to its associated base station bsi; (ii) the cost push-ups
because of moving partial data units of a UE to its assigned
worker aggregator in location Locq ; and (iii) the push-ups
incurred by moving data units to its assigned service Sm in
location Locq′ .

Case (i). Following the construction of the auxiliary graph
G′, each UE uek may has its data units being split into |BS|
base stations in the worst case. Let bsi be the selected base
station for uek by algorithm ApproAG. It is selected with
probability pk,i. Let C ′

1 be the cost incurred by the splittable
flow f . In the worst case, for each uek, its |wm|

dunit
−1 data units

are moved to bsi. Then, Eq. (22) can be rewritten as

Pr(C ≥ α ·OPT ′) ≤ E(C)/(α ·OPT ′)

≤ (|wm|/dunit − 1)dunit/(2 · |wm| · |UE|)OPT ′

α ·OPT ′

= (|wm| − dunit)/(2 · |wm| · |UE|) · α. (23)

Cases (ii) and Case (iii) can be discussed similarly,
omitted.

Let |wm| ≥ 2 · dunit and α = 2ϵ|wm|/(|wm| − dunit),
we have Pr(C ≥ α · OPT) ≤ 1/(ϵ|UE|). Namely, the
approximation ratio of algorithm ApproAG is 2ϵ|wm|

|wm|−dunit

with probability 1
ϵ|UE| , where ϵ is a constant with 0 < ϵ ≤ 1.

5 AN ONLINE LEARNING ALGORITHM WITH UN-
CERTAIN MODEL

In this section we propose an online learning algorithm
for the online worker aggregator placement and UE assign-
ment problem in an MEC network.

5.1 Basic Idea

If the model size is uncertain, a feasible method is to
implement each FL request rm according to the average
model size. Let µ(|wm|) be the average size of local model
of each UE of request rm. That is, we modify algorithm
OptFWK by first calculating the minimum number nmin of
worker aggregators, according to the average value µ(|wm|)

instead of the actual value |wm|, and then considering each
commodity in ApproAG with a demand of |wm|. However,
the actual model size could be much larger than the average
one. This may lead to a violation on the resource capacity
at a location in the MEC network. To avoid such a resource
violation, we scale-up the average model size of each FL
request by a factor of χ, where χ is a real value in the range
of [1, |wmax|

µ(|wm|)]. Specifically, we calculate nmin in OptFWK by

nmin

= max
{
1, (γq(1 + χ)µ(|wm|)|UEm|)/(max{Cq | ∀Locq}),

(ξq · (1 + χ)µ(|wm|) · |UEm|)/max{Bq | ∀Locq}
}

(24)

Also each commodity of UE uek of rm has a demand of

(1 + χ) · µ(|wm|)/dunit. (25)

To determine the value of χ, we can simply adopt a fix value
for χ and perform a one-time optimization. This however
may lead to the case where the actual performance of the
algorithm may deviate far from the optimal one if the actual
model size of each FL request deviates significantly from its
expected one. We thus learn the value of χ adaptively as
requests are arriving into the system, by adopting a multi-
armed bandit-based online learning method with a fully
customized zooming algorithm [39].

5.2 Online Learning Algorithm

We devise an online learning algorithm based on a
customized zooming algorithm, by adjusting the scale up
factor χ according to the current mean cost of implementing
FL requests. Specifically, we have infinite choices of χ in
its range of [1, |wmax|/|wmin|]. Besides, there is not a clear
monotonic relationship between χ and the mean cost of
implementing FL requests. To find an appropriate value
for χ, we discretize the range of χ into ζ intervals with an
equal length of len = (|wmax|/|wmin| − 1)/ζ . Letting i be
an integer in range [1, ζ], we obtain a finite set of candidate
values for χ, i.e., VL = {1 + (i− 1) · len | 1 ≤ i ≤ ζ}.

Given the set VL of candidate values for χ, we adaptively
find a proper value for the scale-up factor χ in the candidate
value set VL, by considering each value in VL as an arm of
the MAB method.

We design a novel activation and selection scheme to decide
which arms can be activated and selected. Specifically, we
first activate a set of arms in VL, which is referred to as
activated set VL′. The arms in VL′ are the representatives
of the arms in set VL. We then select an arm from the
activated set VL′. The benefit of such an activation and
selection approach is to group arms with similar costs, and
thereby reducing the arm selection space and enhancing the
efficiency.

Arm activation: To this end, we keep a set of active arms
for the values in χ. Let VL′ be the set of active arms. Once
a value in VL is activated, it is put into set VL′. Values of
χ with small differences may incur similar implementation
cost of FL request rm. The activation of such values with
similar costs can reduce the efficiency of the algorithm. We
thus define a confidence radius for each arm v ∈ VL′, to active
a value v′ in VL and not in the confidence radius of v into
candidate value set VL′.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. XX, NO. X, 2022 11

For a value v and an FL request rm, we use numa(v) to
denote the number of requests before rm that have chosen
v as their value of χ. Let µc(v) be the average cost obtained
by the algorithm in the number numa(v) of selections of v,
and |R| the number of FL requests. The confidence radius is
defined as

radiusv =
√
2|R|/(numa(v) + 1), (26)

and the confidence ball of v by ballv = {x ∈ VL | |µc(v)−
µc(x)| ≤ radiusv}, which is a condition for the Lipschitz
bandits, that is, |µc(v)− µc(x)| ≤ radiusv .

Ideally, the radii of arms in VL′ should cover every value
in VL. Initially, the coverage radius of each arm is large, since
it has not been selected (meaning that numa(v) = 0). As
requests arrive, the confidence ball of each arm is shrinking,
leaving some values in VL uncovered. To ensure all values
in VL covered by the arms in VL′, we add those uncovered
values into set VL′.

Arm selection: Having obtained a set of active arms, we
select an arm from VL′ on the arrival of each FL request rm.
Ideally, we would like to select an arm that not only achieves
a lower cost but also covers more values in VL. We then
select the arm with the highest value of 1/µc(v)+2 ·radiusv ,
and its corresponding value is selected for χ. The detailed
steps of the proposed algorithm is shown in Algorithm 3.
Algorithm 3 ONLINE
Input: An MEC network G, a set R of FL requests that arrives one by

one without the knowledge of future arrivals and their model sizes.
Output: Implementation of each arrived FL request.
1: Discretize the range of χ into ζ intervals with a fixed length of

len = (|wmax|/|wmin| − 1)/ζ, and let VL be the obtained finite set
of values;

2: VL′ ← ∅; /*The set of values that are selected from VL*/
3: Greedily select a number of values in set VL that can cover all values

in VL by their radii, and add them to set VL′;
4: for each arrived request rm ∈ R do
5: Select a value from set VL′ with the highest rank of 1/µc(c) + 2 ·

radiusv ;
6: Invoke algorithm FWK with nmin being set following Eq. (24) and

the demand of each commodity set by Eq. (25);
7: Update the number of selections of each value in VL′;
8: if There are values that are not covered by the ones in VL′ then
9: Add these uncovered values in VL′;

10: end if
11: end for

Theorem 2. Assuming the costs satisfy the Lipschitz condi-
tion, i.e., |E(C(rm))−E(C(rm′))| ≤ L·|C(rm)−C(rm′)|,
the regret of algorithm ONLINE is

(2ϵ|wmin|
|wmin|−dunit

· 1
ϵ|UE| +

L+ 1
)
2
√
2R, where L is a given constant.

Proof: Let Hm be the random process of the model size
of FL request rm, and its average value is µ(|wm|). Let Cχ

be the solution cost delivered by algorithm ONLINE. Denote
by m′ the index of a previously implemented request rm′ .
Assuming that FL request rm is the to-be-implemented one,
the regret retm of dynamically adjusting the scale up factor
χ after its admission is

retm = E[C(rm))]−min1≤m′≤m

{
Copt(rm′)

}
. (27)

To obtain an upper bound on retm, we consider the following
three cases: (i) |wm| = (1 + χ)µ(|wm|); (ii) |wm| < (1 +
χ)µ(|wm|); and (iii) |wm| > (1 + χ)µ(|wm|).

Case (i). We implement request rm by its actual model
size. Let Copt(rm) and Copt

χ (rm) be the optimal solutions for

request being implemented according to model sizes of |wm|
and (1 + χ) · µ(|wm|). Following Theorem 1, we have

C(rm)

Copt(rm)
=

Cχ(rm)

Copt
χ (rm)

≤ 2ϵ(1 + χ)µ(|wm|)
(1 + χ)µ(|wm|)− dunit

(28)

with probability 1/(ϵ|UE|). From Ineq. (28), we have

C(rm)− Copt(rm)

Copt(rm)
≤ 2ϵ(1 + χ)µ(|wm|)

(1 + χ)µ(|wm|)− dunit
− 1, (29)

which means that

C(rm) ≤
(2ϵ(1 + χ)µ(|wm|)
(1 + χ)µ(|wm|)− dunit

−1
)
Copt(rm)+Copt(rm).

(30)
Assuming that request rm′ has the lowest implementation
cost, the regret for Case (i) is

E(C(rm))− Copt(rm′)

≤ E
(
(

2ϵ(1 + χ)µ(|wm|)
(1 + χ)µ(|wm|)− dunit

− 1)Copt(rm) + Copt(rm)
)

− Copt(rm′)

≤ (
2ϵ(1 + χ)µ(|wm|)

(1 + χ)µ(|wm|)− dunit
− 1)Copt(rm)

1

ϵ|UE|
+

E(Copt(rm))− Copt(rm′). (31)

Due to the Lipschitz condition, Ineq. (31) can be rewritten as

(31) ≤ (
2ϵ(1 + χ)µ(|wm|)

(1 + χ)µ(|wm|)− dunit
− 1)Copt(rm)

1

ϵ|UE|
+

E(Copt(rm))− Copt(rm′) (32)

≤ (
2ϵ(1 + χ)µ(|wm|)

(1 + χ)µ(|wm|)− dunit
− 1)Copt(rm)

1

ϵ|UE|
+

L · Copt(rm) + E(Copt(rm′))

≤ (
2ϵ(1 + χ)µ(|wm|)

(1 + χ)µ(|wm|)− dunit
− 1 + L)Copt(rm)

1

ϵ|UE|
+

+ E(Copt(rm′)). (33)

In each round of algorithm Online, each activated value
is treated as a representative of the values within its radius
radiusv . In the worst case, each value is activated and the
value with the highest cost is selected in a ball of each arm
(value) v may be selected. This means

(33)

≤ (
2ϵ(1 + χ)µ(|wm|)

(1 + χ)µ(|wm|)− dunit
− 1 + L)2

√
2R

1

ϵ|UE|
+ 2
√
2R

≤
(2ϵ(1 + χ)µ(|wm|)
(1 + χ)µ(|wm|)− dunit

· 1

ϵ|UE|
+ L+ 1

)
2
√
2R. (34)

Case (ii), It can be seen that each request is imple-
mented by adopting a larger model size compared in-
stead of its actual model size. By Theorem 1, we have
C(rm)/Copt(rm) < Cχ(rm)/Copt

χ (rm). The derivation from
inequalities (28) to (33) thus holds.

Case (iii). We have Cχ(rm)/Copt
χ (rm) <

C(rm)/Copt(rm) ≤ 2ϵ|wm|/(|wm| − dunit). Following
the similar derivation from (28) to (33), we have
retm ≤

(
(2ϵ|wmin|)/((|wmin| − dunit)·ϵ|UE|)+L+1

)
2
√
2R.

In summary, we have a regret of
(2ϵ|wmin|
|wmin|−dunit

· 1
ϵ|UE| +

L+ 1
)
2
√
2R.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. XX, NO. X, 2022 12

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
3 0 0
6 0 0
9 0 0

1 2 0 0
1 5 0 0
1 8 0 0

�

Co
st (

uni
ts)

N u m b e r o f U s e r E q u i p m e n t s

 O p t F W K
 H e u - A N S
 C l u F L
 G R E E D Y

(a) The average cost by varying
the number UEs of each FL re-
quest.

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
3 0 0
6 0 0
9 0 0

1 2 0 0

�

Co
st (

uni
ts)

N e t w o r k S i z e

 O p t F W K
 H e u - A N S
 C l u F L
 G R E E D Y

(b) The average cost by varying
network sizes (|BS ∪ CL|).

(c) The total cost by varying the
size of local model.

1 0 2 0 3 0 4 0 5 0
1 5
3 0
4 5
6 0
7 5

�

Ru
nni

ng
Tim

e

N e t w o r k S i z e

 O p t F W K
 H e u - A N S
 C l u F L
 G R E E D Y

(Se
con

ds)

(d) Running time (seconds).

Fig. 4. The performance of algorithms OptFWK, Heu-ANS, CluFL, and GREEDY

1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0
8

1 2
1 6
2 0
2 4
2 8

Nu
mb

er
of

agg
reg

ato
rs

N u m b e r o f U s e r E q u i p m e n t s
(a) The average number of worker aggregators by
varying the number UEs of each FL request.

1 0 2 0 3 0 4 0 5 0 1 0 00
2
4
6
8

Nu
mb

er
of

agg
reg

ato
rs

N e t w o r k S i z e
(b) The average number of aggregators by varying
network sizes.

Fig. 5. The impact of the number of UEs and the number of worker aggregators on the performance of algorithm OptFWK.

6 EXPERIMENTS

In this section, we evaluated the performance of the
proposed algorithms by both simulations and experiments
in a testbed.

6.1 Parameter Settings
We consider an MEC network generated by tool GT-

ITM [14]. 20% of locations in each network contain cloudlets
or base stations serving as potential locations for worker
aggregators of FL requests. The computing capacity of each
potential location is randomly drawn from [1,000 MHz,
5,000 MHz] [32]. The wireless and wired bandwidth capacity
on base stations and cloudlets are drawn from [1 Mpbs,
5 Mbps] and [1 Mpbs, 20 Mbps] [32], respectively. The
number of FL requests varies from 5 to 30. The size of the
trained model parameter of each UE is randomly drawn in
the range of [0.05 MB, 0.5 MB] [30], which is calculated and
validated based on existing neural networks, such as CNN,
ResNet, etc. The cost of transmitting 1MB of data is drawn
from [0.1, 0.3] units via wireless links, and [0.05, 0.2] units
in wired links. The cost of aggregating one MB of data is
withdrawn from [0.1, 0.3] units [1].

We evaluated the proposed algorithms against the listed
three comparison algorithms:

• The first one is a heuristic algorithm in [36], referred
to as Heu-ANS. It greedily finds a location for each
worker aggregator with the minimum weighted sum
of the communication latency and energy consump-
tion of edge devices.

• The second one is a hierarchical FL framework,
referred to as algorithm CluFL in [45]. Algorithm
�CluFL groups UEs into clusters, and each cluster has a
single worker aggregator, using the K-means method,
where the cluster head of each cluster has a worker
aggregator. There is also a master aggregator that
collects and aggregates the model from each cluster.

• The third one, referred to as GREEDY, consolidates all
worker aggregators into a single location.

6.2 Simulation Results
We first evaluated algorithm OptFWK against its counter-

parts Heu-ANS, CluFL and GREEDY for the problem of joint
worker aggregator placement and UE assignment problem
with a single FL request in an MEC network, as shown in
Fig. 4.

Fig. 4 (a) depicts the cost curves of implementing an FL
request, by varying the number of UEs from 100 to 500 while
fixing the network size at 20. We can see that algorithm
OptFWK has the lowest implementation cost among the
four comparison algorithms. The reasons are twofold. On
one hand, OptFWK leverages a binary search process to
find the appropriate number of worker aggregators for
each FL request. On the other hand, it places the worker
aggregators to multiple locations, which results in that the
worker aggregators can be distributed to the locations close
to UEs with high probability. We can also see that the
implementation cost of GREEDY increases with the growth
of the number of UEs. This is due to the fact that the use
of more UEs means aggregating larger volumes of local
models from these UEs. Fig. 4 (b) shows the implementation
cost of an FL request by varying network size from 10 to
100. It can be seen that the implementation cost fluctuates.
Specifically, the cost increases when the network size grows
from 10 to 20, because the communication cost grows with
the increase on the network size. However, the cost decreases
afterwards when the network size varies from 20 to 40. The
reason is that more worker aggregators are placed to the
network to reduce the cost of transmitting local models
to worker aggregators. Then, the cost increases when the
network size keeps growing. The rationale behind is that
the worker aggregators may be placed sparsely in a large
network, thereby pushing up the implementation cost of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. XX, NO. X, 2022 13

5 1 0 1 5 2 0 2 5 3 0
2 0 0 0
4 0 0 0
6 0 0 0
8 0 0 0

1 0 0 0 0
1 2 0 0 0

�

Co
st (

uni
ts)

N u m b e r o f R e q u e s t s

 O N L I N E
 H e u - A N S
 C l u F L
 G R E E D Y

(a) The total cost by varying the
number of requests.

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
2 0 0 0
4 0 0 0
6 0 0 0
8 0 0 0

1 0 0 0 0

�

Co
st (

uni
ts)

N u m b e r o f U s e r E q u i p m e n t s

 O N L I N E
 H e u - A N S
 C l u F L
 G R E E D Y

(b) The average cost by varying
the number of UEs.

1 0 2 0 3 0 4 0 5 0
6 0 0

1 2 0 0
1 8 0 0
2 4 0 0
3 0 0 0

Co
st (

uni
ts) O n l i n e

 H e u - A N S
 C l u F L
 G R E E D Y

N e t w o r k S i z e
(c) The total cost by varying
network sizes.

1 0 2 0 3 0 4 0 5 0
1 2 0
2 4 0
3 6 0
4 8 0
6 0 0

�

Ru
nni

ng
Tim

e

N e t w o r k S i z e

 O N L I N E
 H e u - A N S
 C l u F L
 G R E E D Y

(Se
con

ds)

(d) Running time.

Fig. 6. The performance of algorithms ONLINE, Heu-ANS, CluFL, and GREEDY for the online worker aggregator placement and UE assignment
problem with model uncertainty.

updating local models to the master aggregator. Fig. 4 (c)
describes the cost of implementing an FL request by varying
|w| from 50 to 500. The costs increase as |w| grows, because a
larger model size normally implies a higher communication
cost. Fig. 4 (d) shows the running times of the comparison
algorithms. We can see that algorithm OptFWK has a slightly
longer running time than the rest of the algorithms as the
solution delivered by it has a better quality.

Fig. 5 shows the impact of the number of UEs and the
number of worker aggregators on the solution of algorithm
OptFWK. Fig. 5 (a) depicts the number of worker aggregators
of implementing an FL request, by varying the number of
UEs from 100 to 500 while fixing network size at 20. The
number of worker aggregators increases with the increase
on the number of UEs. The reason is with more UEs,
more worker aggregators are to be distributed in the MEC
network to reduce the communication cost of local model
updating from UEs to their assigned worker aggregators.
In addition, there is a significant growth in the number of
worker aggregators when the number of UEs increases from
300 to 350. This is because that the computing resources of
potential locations are limited, the worker aggregators may
be dispersed in more locations, increasing the total number
of worker aggregators needed. Fig. 5 (b) depicts the number
of worker aggregators of an FL request by varying network
size from 10 to 100. It can be seen that the number of worker
aggregators fluctuates with the growth of network size. The
rationale behind is that to reduce the communication cost, the
number of worker aggregators is not needed to change much,
as the worker aggregators may be placed into locations that
are close to UEs.

We then studied the performance of algorithms ONLINE
against those of algorithms Heu-ANS, CluFL, and GREEDY
for the online worker aggregator placement and UE assign-
ment problem with the uncertainty on the size of trained
model. The results are shown in Fig. 6. Note that algorithms
Heu-ANS, CluFL, and GREEDY are not inherently online in
nature. We thus consider that algorithms Heu-ANS, CluFL,
and GREEDY performs ‘one-shot’ optimization at each time
slot.

Fig. 6 (a) illustrates the total cost of implementing all
FL requests by varying the number of requests from 5 to
30 while fixing the network size at 20. We can see that the
implementation cost of algorithm Online is the lowest one
among the four comparison algorithms. Besides, the total
cost of implementing all FL requests increases when the
number of arrived requests keeps increasing, since more
requests need more resources to aggregate local models.

Fig. 6 (b) shows the total costs of implementing all requests
by varying the number of UEs of each FL request from 100 to
500. Results show that the total costs of Online, Heu-ANS
and CluFL fluctuate at much lower levels than that of
algorithm GREEDY. The reason is that Online, Heu-ANS and
CluFL place the worker aggregators to multiple locations,
while GREEDY consolidates all worker aggregators into a
single location. Also, the total cost of GREEDY increases
as the number of UEs grows. The rationale behind is that
all the local models of a large number of UEs normally
needs to be aggregated by more worker aggregators. Further,
since GREEDY consolidates all worker aggregators into a
single location, the choices of lower-cost locations become
less and less with the growth of the number of worker
aggregators. Fig. 6 (c) depicts the total costs of the algorithms
by varying the network size from 10 to 50. Algorithm
Online has the lowest implementation cost among the three
comparison algorithms. Also, the total costs of the algorithms
increase when the network size increases from 10 to 20,
decreases when the network size varies from 20 to 40, and
increases afterwards. The reason is that as the network size
grows, more worker aggregators are needed to cover UEs,
thereby increasing the processing cost of worker aggregators.
However, as the network size keeps increasing, there is a
higher probability of distributing worker aggregators to the
locations close to UEs, decreasing the communication costs.
From Fig. 6 (d), it can be seen that the running times of
all algorithms increase with the network size. Although
algorithm Online has a higher running time than the other
three algorithms, the obtained cost is the lowest.

Fig. 7 demonstrates the impact of the number of requests
on a scale-up factor χ of algorithm ONLINE. Results show
that the value of χ when ζ = 100 is higher than the value
when ζ = 1000, when µ(|ω|) ∈ [50, 200]. The reason is that
a lower number of intervals of the range [1, |wmax|/|wmin|]
means a larger range of each interval. This indicates that χ
has a higher probabilities of selecting a larger value. Similar
trends can be found for other ranges of µ(|ω|).

We finally dealt with the impact of parameter dunit on
the performance of algorithm OptFWK by varying dunit from
0.005 to 5 and the number of UEs from 100 to 500.

Fig. 8 (a) describes the cost of implementing an FL request.
For different numbers of UEs, the minimum cost of algorithm
OptFWK can be obtained when the value of dunit is in the
range of [0.01, 0.05]. This is because when the value of dunit
is large, the number of flows in the auxiliary graph in OptFWK
is small, the paths in the auxiliary graph cannot be fully
utilized, so the final distribution probability is not optimal.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. XX, NO. X, 2022 14

1 2 3 4 5 6 7 8 9 1 0
2
4
6
8

1 0
1 2

�

Va
lue

T h e n u m b e r o f c o m i n g r e q u e s t

� � � � � � � � � � � � � � � � � �
 � � � � �
� � � � � � � � � � � � � � � � � �
 � � � � �
� � � � � � � � � � � � � � � � � �
 � � 	 � �

Fig. 7. The χ ’s transformation of algorithms Online.

Conversely, when the value of dunit is small, the number of
flows in the auxiliary graph is large, and each flow has a
higher probability of being routed via sub-optimal paths in
the auxiliary graph. Similar trends can be found in Fig. 8 (b),
which shows the cost of implementing an FL request by
varying dunit from 0.005 to 5 while changing the network
size from 10 to 50. It can be discovered that with different
network sizes, the minimum cost of OptFWK can be obtained
when the value of dunit is [0.01, 0.05]. In addition, Fig. 8 (c)
describes the cost of implementing an FL request by varying
the dunit from 0.05 to 5 while changing the size of local model
from 100 to 500. We can find that with different model sizes,
the minimum cost can be obtained when the value of dunit
is[0.01, 0.05]. It must be mentioned that the value setting
of dunit is also realistic in real scenarios, as it matches the
setting in our test-bed in Section 6.3. This is also the reason
that we set dunit in the range of [0.01, 0.05] in the rest of our
experiments.

6.3 Test-Bed Implementations
We designed a new optimization framework for the

hierarchy FL based on the existing FL framework, and
evaluated the proposed algorithms for image identification
and text recognition applications on real datasets in a real
test-bed. We now describe the hardware and software of
our test-bed for the hierarchy FL in an MEC network in the
following.

Hardware: We built a test-bed for the MEC network with
both real hardware devices and virtual network elements as
shown in Fig. 9. The hardware includes physical switches,
edge devices, edge servers, and virtual switches. There are
five Huawei S5720-32C-HI24S-AC switches. Netconf and
SNMP protocols are used to manage the physical switches
and the links that interconnect them. The edge devices
include 3 NVIDIA Jetson AGX Xavier, 3 NVIDIA Jetson TX2,
and 3 NVIDIA Jetson Nano. These devices are connected
to the MEC network as UEs via WiFi access points. Each
edge server is equipped with an Intel(R) Xeon(R) Gold 5118
CPU and two NVIDIA 2080Ti GPUs. The afore-mentioned
edge servers and physical switches form a physical underlay,
which can be seen as a resource pool with computing
and bandwidth resources. Built upon such a underlay, we
construct a overlay consisting of a number of virtual switches
whose topology corresponds to that of the MEC network.

Software framework: We implemented a hierarchical
FL training framework as Fig. 9 shows based on an open
source FL framework, i.e., FedML, which is referred to as
HierFedML. The framework includes three modules: (1)
an optimizer that implements the proposed algorithms. It
accepts FL requests as inputs to the algorithms, and the

algorithms returns configurations that include the number
of UEs, the datasets for training, the number of worker
aggregators, and the locations of worker aggregators; (2) a
controller which parses the configurations by the algorithms
and transfers the configuration into FL training plans; and
(3) a monitor monitors a hierarchy FL process based on the
interface provided by FedML, by providing necessary states
of the current FL processes.

Models and Datasets: Each FL is performed based on
datasets MNIST [17], FedEMNIST [33], Shakespeare [7]
and HARBox [31] with three different models: 1) Logistic
regression on the MNIST dataset; 2) CNN on the FedEMNIST
dataset; and 3) RNN on the Shakespeare dataset. By default,
we use the FedAvg based on FedEMNIST dataset. The train-
ing model is the AlexNet architecture of CNN. Data samples
are assigned to each UE uniformly. For all experiments, the
batch size, the learning rate, and the model optimizer are
set to 10, 0.03 and SGD, respectively. The values of global
communication round, the local epoch of each UE and the
group communication round are 10, 5 and 10, respectively.
The default setting of the numbers of UEs and network size
are 200 and 10, respectively.

Real and virtual UEs: Note that in our experiments
the number of real edge devices is small. To evaluate the
performance of the proposed algorithms when the number
of UEs is large, we use a container running in an edge server
as a virtual UE. Fig. 10, Fig. 11 and Fig. 12 shows the results
with virtual UEs. Fig. 13 and Fig. 14 illustrate the results with
only real edge devices.

Results: We evaluated the performance of OptFWK in the
customized FedML framework by varying the number of
UEs from 100 to 500. Fig. 10 (a) and (b) show the accuracy
and loss of CNN on the FeDEMNIST dataset, from which
we can see that the proposed algorithms converge to a high
accuracy and low loss within 100 rounds of training for
different numbers of UEs. Also, the accuracy increases with
the growth on the number of UEs. The reason is that more
UEs means the training of more data, and a higher number
of local models will be aggregated in each round, leading to
a higher accuracy.

We then studied the performance of algorithms OptFWK,
Heu-ANS, CluFL, and GREEDY in FedFL framework while
fixing the number of UEs at 200 and the network size at 30.
Fig. 11 (a) and (b) show the accuracy and loss of CNN on the
FedEMNIST dataset, from which we can see that GREEDY
has the fastest convergence followed by OptFWK, Heu-ANS,
and CluFL, since GREEDY has only one aggregator. However,
CluFL has the slowest convergence, since it groups UEs into
a number of distributed clusters. Also, OptFWK can guarantee
a relatively faster convergence while obtaining the minimum
cost among the four algorithms.

We finally studied the performance of algorithm OptFWK
to test its applicability to different machine learning algo-
rithms LR, CNN and RNN, using different real datasets.
From Fig. 12, we can see that LR has a faster convergence
speed due to its simple structure, and RNN has the slowest
convergence due to long delays in transmitting large number
of parameters.

We evaluated the performance of OptFWK by varying the
dunit from 0.005 to 5 while changing the model size from 100
to 500 and fixing the number of UEs at 15. Note that to obtain

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. XX, NO. X, 2022 15

5 1 0 . 5 0 . 1 0 . 0 5 0 . 0 1 0 . 0 0
51 0 0

2 0 0
3 0 0
4 0 0
5 0 0
6 0 0

�

Co
st (

uni
ts)

 U E (1 0 0) � U E (2 0 0) � U E (3 0 0) �
 U E (4 0 0) �� U E (5 0 0)

d u n i t

(a) The cost by varying dunit with different
numbers of UEs.

5 1 0 . 5 0 . 1 0 . 0 5 0 . 0 1 0 . 0 0
51 0 0

2 0 0
3 0 0
5 0 0
6 0 0
7 0 0

�

Co
st (

uni
ts)

 N e t w o r k S i z e (1 0) � (2 0)
 (3 0) � (4 0) �� (5 0)

d u n i t

(b) The cost by varying dunit with different
network sizes.

5 1 0 . 5 0 . 1 0 . 0 5 0 . 0 1 0 . 0 0
51 0 0

2 0 0
3 0 0
4 0 0
5 0 0

�

Co
st (

uni
ts)

 S i z e o f l o c a l m o d e l (1 0 0) � (2 0 0)
 (3 0 0) �� (4 0 0) �� (5 0 0)

d u n i t

(c) The cost by varying dunit with different
sizes of local model.

Fig. 8. The effect of varying dunit on the algorithm OptFWK under different conditions.

Hierarchical FL training Software framework

Optimizer FL MonitorController

FedML-API

Request
Receiver

Optimal
Configuration

Saver

ConfigParser

FL Training
Configurator

Group
Method

Hierarchical
Structure

DataModel

Algorithm

OptFWK ONLINE

Algorithm

OptFWK ONLINE

Topology FedAvg

Hardware of Prototype MEC network Testbed

Hardware
Switches

Edge
Devices Servers

Virtual
Switch
Groups

Fig. 9. A hierarchical FL training framework based on an open source FL
framework, referred to as HierFedML.

0 1 0 0 2 0 0 3 0 0 4 0 00
2 0
4 0
6 0
8 0

1 0 0

�

Ac
cur

acy
(%

)

 U E = 1 0 0 U E = 2 0 0
 U E = 3 0 0 U E = 4 0 0
 U E = 5 0 0

R o u n d
(a) The accuracy by varying the
number UEs of each FL request.

0 1 0 0 2 0 0 3 0 0 4 0 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0

�

Lo
ss

 U E = 1 0 0
 U E = 2 0 0
 U E = 3 0 0
 U E = 4 0 0
 U E = 5 0 0

R o u n d
(b) The loss by varying the num-
ber UEs of each FL request.

Fig. 10. The performance of algorithms OptFWK by varying the number
of UEs in FedFL framework

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 00
2 0
4 0
6 0
8 0

1 0 0

�

Ac
cur

acy
(%

)

 O p t F W K
 H e u - A N S
 C l u F L
 G R E E D Y

R o u n d
(a) The accuracy by changing
the algorithms of each FL re-
quest.

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 00
1
2
3
4
5

�Lo
ss

 O p t F W K
 H e u - A N S
 C l u F L
 G R E E D Y

R o u n d
(b) The loss by changing the
algorithms of each FL request.

Fig. 11. The performance of algorithms OptFWK, Heu-ANS, CluFL, and
GREEDY in FedFL framework.

the right settings for dunit we only use real edge devices.
Fig. 13 describes the cost of implementing an FL request. We
can find that with different model sizes, the minimum cost
can be obtained when the value of dunit is [0.01, 0.05]. Note
that this result is consistent with the simulation results in

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 00
2 0
4 0
6 0
8 0

1 0 0

�

Ac
cur

acy
(%

) L R
 C N N
 R N N

R o u n d
Fig. 12. The performance of algorithms OptFWK in FedML with machine
learning algorithms LR, CNN and RNN based on different real datasets.

5 1 0 . 5 0 . 1 0 . 0 5 0 . 0 1 0 . 0 0
5

6
1 2
1 8
2 4
3 0
3 6

�

Co
st (

uni
ts)

 S i z e o f l o c a l m o d e l (1 0 0) � (2 0 0)
 (3 0 0) �� (4 0 0) �� (5 0 0)

d u n i t

Fig. 13. The performance of algorithms OptFWK by varying dunit with
different sizes of local model in FedFL framework with hardware testbed.

Fig. 8, and this is the reason that we set dunit in the range of
[0.01, 0.05] in all other experiments.

We finally evaluated the performance of algorithms
OptFWK, Heu-ANS, CluFL, and GREEDY in FedFL frame-
work with only physical UEs. Fig. 14 (a) describes that, with
the increase of the sizes of local models, the costs of the
four algorithms increase accordingly. At the same time, the
cost of OptFWK is the smallest compared to other algorithms,
which echoes the results of our simulation experiments and
shows that OptFWK can also guarantee the smallest cost in
the actual environment. Fig. 14 (b) shows the accuracy and
the convergence speed of the algorithms, by fixing the size
of local model as 300 of each FL request. We can see that
the convergence speed of GREEDY is the fastest, OptFWK
and Heu-ANS are moderate, and CluFL is the slowest. Since
there are a limited number of physical edge devices, the
performance gap is not large.

7 CONCLUSIONS

In this paper, we investigated the problem of joint
worker aggregator placement and UE assignment in an MEC
network for different FL requests with model uncertainty.
We first proposed an optimization framework and an ap-
proximation algorithm with an approximation ratio for a
single FL request admission. We then studied the problem of
online worker aggregator placements and UE assignments
when a sequence of FL requests arrives one by one without
the knowledge of future arrivals, assuming that the size

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. XX, NO. X, 2022 16

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
1 5
3 0
4 5
6 0
7 5
9 0

�

Co
st (

uni
ts)

T h e s i z e o f l o c a l m o d e l

 O p t F W K
 H e u - A N S
 C l u F L
 G R E E D Y

(a) The cost varying the size of
local model of each FL request.

0 5 0 1 0 0 1 5 0 2 0 00
1 5
3 0
4 5
6 0

�

Ac
cur

acy
(%

)

 O p t F W K
 H e u - A N S
 C l u F L
 G R E E D Y

R o u n d
(b) The accuracy by fixing the
size of local model as 300 of each
FL request.

Fig. 14. The performance of algorithms OptFWK, Heu-ANS, CluFL, and
GREEDY in FedFL framework with hardware testbed.

of local model from each UE is uncertain, for which we
proposed an online learning algorithm with a bounded
accumulative regret, via leveraging the multi-armed bandits
technique. We finally evaluated the performance of the
proposed algorithms by simulations, and simulation results
show that the performance of the proposed algorithms are
promising. We also implemented a hierarchical FL training
framework HierFedML, and experiments based on real
datasets in HierFedML demonstrate that the performance of
the proposed algorithms indeed are promising.

ACKNOWLEDGMENTS

We appreciate the three anonymous referees and the
associate editor for their constructive comments and valuable
suggestions, which helped us improve the quality and
presentation of the paper greatly. The work by Zichuan Xu
and Qiufen Xia is funded by the National Natural Science
Foundation of China (NSFC) with grant numbers 62172068,
62172071, and the “Xinghai scholar” program. The work by
Weifa Liang was supported by a grant from City University
of Hong Kong with project No: 9380137/CS.

REFERENCES

[1] Amazon Pricing. https://aws.amazon.com/emr/pricing/, ac-
cessed in Apr 2021.

[2] A. Acharya, Y. Hou, Y. Mao, et al. Workload-aware task placement
in edge-assisted human re-identification. Proc. of SECON, IEEE,
2019.

[3] M. S. H. Abad, E. Ozfatura, D. Gunduz , et al.. Hierarchical
federated learning across heterogeneous cellular networks IEEE
International Conference on Acoustics Speech and Signal Processing, pp.
8866–8870, 2020.

[4] K. Bonawitz, H. Eichner, W. Grieskamp, et al.. T. V. Overveldt, D.
Petrou, D. Ramage, and J. Roselander. Towards Federated Learning
at Scale: System Design. Proc. of SysML, 2019.

[5] S. Caldas, Peter Wu, Tian Li et al. LEAF: A Benchmark for Federated
Settings. [online] Available: https://arxiv.org/abs/1812.01097.

[6] Y. Chen, X. Qin, J. Wang et al. FedHealth: A Federated Transfer
Learning Framework for Wearable Healthcare IEEE Intelligent
Systems, Vol. 35, No. 4, pp. 83–93, 2020.

[7] H. Chai, S. Leng, Y. Chen , et al.. A Hierarchical Blockchain-Enabled
Federated Learning Algorithm for Knowledge Sharing in Internet
of Vehicles IEEE Transactions on Intelligent Transportation Systems,
vol. 22, no. 7, pp. 3975–3986,2021.

[8] E. Diao, J. Ding, and V. Tarokh. Computation and communication
efficient federated learning for heterogeneous clients. Proc. of ICLR,
2021.

[9] M. Duan, D. Liu, X. Chen, et al. Self-Balancing Federated Learning
With Global Imbalanced Data in Mobile Systems. IEEE Transactions
on Parallel and Distributed Systems, Vol. 32, No. 1, pp. 59–71, 2021.

[10] J. Feng, L. Liu, Q. Pei,et al. Min-Max Cost Optimization for
Efficient Hierarchical Federated Learning in Wireless Edge Net-
works. IEEE Transactions on Parallel and Distributed Systems, doi:
10.1109/TPDS.2021.3131654.

[11] R. Girshick, J. Donahue, T. Darrell, et al. Rich Feature Hierarchies
for Accurate Object Detection and Semantic Segmentation. IEEE
Conference on Computer Vision and Pattern Recognition, pp. 580–587,
2014.

[12] C. He, S. Li, J. So, et al. FedML: A Research Library and Benchmark
for Federated Machine Learning. Proc. of NeurIPS, MIT Press, 2020.

[13] H. Ko, J. Lee, S. Seo, et al. Joint Client Selection and Bandwidth
Allocation Algorithm for Federated Learning. IEEE Transactions on
Mobile Computing, doi: 10.1109/TMC.2021.3136611.

[14] GT-ITM. http://www.cc.gatech.edu/projects/gtitm/.
[15] L. Ibraimi, M. Selimi and F. Freitag BePOCH: Improving Feder-

ated Learning Performance in Resource-Constrained Computing
Devices IEEE Global Communications Conference, IEEE, 2021, doi:
10.1109/GLOBECOM46510.2021.9685095.

[16] A. Imteaj, U. Thakker, S. Wang, et al. A Survey on Federated
Learning for Resource-Constrained IoT Devices. IEEE Internet of
Things Journal, Vol. 9, No. 1, pp. 1–24, 2022.

[17] Y. Lecun, L. Bottou, Y. Bengio ,et al. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, Vol. 86, No. 11,
pp. 2278-2324, IEEE, 1998.

[18] S. Luo, X. Chen, Q. Wu, et al. HFEL: Joint Edge Association and
Resource Allocation for Cost-Efficient Hierarchical Federated Edge
Learning. IEEE Transactions on Wireless Communications, Vol.19,
No.10, pp. 6535–6548, 2020.

[19] Z. Li, W. Xie, L. Zhang, et al. Toward efficient safety helmet detec-
tion based on YoloV5 with hierarchical positive sample selection
and box density filtering IEEE Transactions on Instrumentation and
Measurement, Vol. 71, pp. 1–14, 2022.

[20] B. Li, W. Dong, G. Guan, et al. Queec: QoE-aware edge computing
for IoT devices under dynamic workloads. ACM Transactions on
Sensor Networks, Vol. 17, No. 3, Article 27, 2021.

[21] W. Lim, J. Ng, Z. Xiong, et al. Dynamic edge association and re-
source allocation in self-organizing hierarchical federated learning
networks. IEEE Journal on Selected Areas in Communications, Vol. 39,
No. 12, pp. 3640–3653, 2021.

[22] W. Lim, J. Ng, Z. Xiong, et al. Decentralized edge intelligence: A
dynamic resource allocation framework for hierarchical federated
learning. IEEE Transactions on Parallel and Distributed Systems, Vol.
33, No. 3, pp. 536–550, 2022.

[23] J. Liu, H. Xu, L. Wang et al. Adaptive Asynchronous Federated
Learning in Resource-Constrained Edge Computing IEEE Transac-
tions on Mobile Computing, doi: 10.1109/TMC.2021.3096846.

[24] S. Liu, J. Yu, X. Deng, et al. FedCPF: An Efficient-Communication
Federated Learning Approach for Vehicular Edge Computing in
6G Communication Networks. IEEE Transactions on Intelligent
Transportation Systems, doi: 10.1109/TITS.2021.3099368.

[25] J. Liu, H. Xu, L. Wang et al. Adaptive Asynchronous Federated
Learning in Resource-Constrained Edge Computing IEEE Transac-
tions on Mobile Computing, doi: 10.1109/TMC.2021.3096846.

[26] S. Luo, X. Chen, Q. Wu, et al. HFEL: Joint Edge Association and
Resource Allocation for Cost-Efficient Hierarchical Federated Edge
Learning. IEEE Transactions on Wireless Communications, Vol.19,
No.10, pp. 6535–6548, 2020.

[27] H. B. McMahan, E. Moore, D. Ramage, et al. Communication-
Efficient Learning of Deep Networks from Decentralized Data.
Proc. of AISTATS, 2016.

[28] J. Mills, J. Hu and G. Min. Communication-Efficient Federated
Learning for Wireless Edge Intelligence in IoT. IEEE Internet of
Things Journal, Vol. 7, No. 7, pp. 5986–5994, 2020.

[29] M. Mitzenmacher and E. Upfal. Probability and Computing: Ran-
domized Algorithms and Probabilistic Analysis. Cambridge University
Press, 2005.

[30] M. N. H. Nguyen, N. H. Tran, K. Yan, et al. Toward Multiple
Federated Learning Services Resource Sharing in Mobile Edge
Networks. [online] Available: https://arxiv.org/abs/2011.12469.

[31] X. Ouyang, Z. Xie, J. Zhou, et al. Clusterfl: a similarity aware
federated learning system for human activity recognition. Proc. of
MobiSys, ACM, 2021.

[32] Y. Qian, L. Hu, J. Chen, et al. Privacy-aware Service Placement
for Mobile Edge Computing via Federated Learning. Information
Sciences, Vol. 505, pp. 562–570, Elsevier, 2019.

[33] S. Reddi, Z. Charles, M. Zaheer,et al. Adaptive Federated Optimiza-
tion. [online] Available: https://arxiv.org/abs/2003.00295.

[34] S. Ren, K. He, R. Girshick , et al. Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 39, No. 6, pp. 1137–
1149, 2017.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. XX, NO. X, 2022 17

[35] D. Rothchild, A. Panda, E. Ullah, et al. FetchSGD: Communication-
Efficient Federated Learning with Sketching. Proc. of ICML, 2020.

[36] R. Saha, S. Misra, and P. K. Deb. FogFL: Fog Assisted Federated
Learning for Resource-constrained IoT Devices. To appear in IEEE
Internet of Things Journal, 2020, DOI: 10.1109/JIOT.2020.3046509.

[37] L. Shi, J. Shu, W. Zhang et al. HFL-DP: Hierarchical federated
learning with differential privacy. IEEE Global Communications
Conference, 2021, DOI: 10.1109/GLOBECOM46510.2021.9685644.

[38] W. Shi, S. Zhou, Z. Niu, et al. Joint Device Scheduling and Resource
Allocation for Latency Constrained Wireless Federated Learning.
To appear in IEEE Transactions on Wireless Communications, IEEE,
2020, DOI: 10.1109/TWC.2020.3025446.

[39] A. Slivkins. Introduction to Multi-armed Bandits. 2019. [Online].
Available: http://arxiv.org/abs/1904.07272

[40] N. H. Tran, W. Bao, A. Zomaya, et al. Federated Learning over
Wireless Networks: Optimization Model Design and Analysis. Proc.
of INFOCOM, 2019.

[41] W. Wen, Z. Chen, H. H. Yang, et al. Joint Scheduling and
Resource Allocation for Hierarchical Federated Edge Learn-
ing. IEEE Transactions on Wireless Communications, 2022, DOI:
10.1109/TWC.2022.3144140.

[42] H. Wang, Z. Kaplan, D. Niu, et al. Optimizing Federated Learning
on Non-IID Data with Reinforcement Learning. Proc. of INFOCOM,
2020.

[43] S. Wang, T. Tuor, T. Salonidis, et al. Adaptive Federated Learning
in Resource Constrained Edge Computing Systems. IEEE Journal
on Selected Areas in Communications, Vol. 37, No. 6, pp. 1205–1221,
2019.

[44] X. Wang, C. Wang, X. Li, et al. Federated Deep Reinforcement
Learning for Internet of Things With Decentralized Cooperative
Edge Caching. IEEE Internet of Things Journal, Vol. 7, No. 10, pp.
9441–9455, 2020.

[45] Z. Wang, H. Xu, J. Liu, et al. Resource-efficient federated learning
with hierarchical aggregation in edge computing. Proc. of INFO-
COM, IEEE, 2021.

[46] W. Wu, L. He, W. Lin, et al. SAFA: a Semi-Asynchronous Protocol
for Fast Federated Learning with Low Overhead. To appear in IEEE
Transactions on Computers, 2020, DOI: 10.1109/TC.2020.2994391.

[47] X. Wu, X. Yao and C. L. Wang. FedSCR: Structure-Based Commu-
nication Reduction for Federated Learning. IEEE Transactions on
Parallel and Distributed Systems, Vol. 32, no. 7, pp. 1565–1577, 2021.

[48] W. Xia, T. Q. S. Quek, K. Guo, et al. Multi-Armed Bandit-Based
Client Scheduling for Federated Learning. IEEE Transactions on
Wireless Communications, Vol. 19, No.11, pp. 7108–7123, 2020.

[49] Q. Xia, W. Ren, Z. Xu, X. Wang, and W. Liang. When edge caching
meets a budget: Near optimal service delivery in multi-tiered edge
clouds. IEEE Transactions on Services Computing, to appear, 2021.

[50] J. Xu and H. Wang. Client Selection and Bandwidth Allocation in
Wireless Federated Learning Networks: A Long-Term Perspective.
IEEE Transactions on Wireless Communications, Vol. 20, No. 2, pp.
1188–1200, 2021.

[51] Z. Xu, J. Wu, Q. Xia, P. Zhou, J. Ren and H. Liang. Identity-aware
attribute recognition via real-time distributed inference in mobile
edge clouds. Proc. of ACM Multimedia, 2020.

[52] S. Xie, Y. Xue, Y. Zhu and Z. Wang Cost Effective MLaaS Feder-
ation: A Combinatorial Reinforcement Learning Approach IEEE
INFOCOM 2022 - IEEE Conference on Computer Communications, pp.
2078–2087, doi: 10.1109/INFOCOM48880.2022.9796701.

[53] Z. Xu, L. Zhou, S. Chau, W. Liang, Q. Xia and P. Zhou. Collaborate
or separate? Distributed service caching in mobile edge clouds.
Proc. of IEEE INFOCOM, 2020.

[54] Z. Xu, L. Zhao, Weifa Liang, Omer F. Rana, Pan Zhou, Qiufen
Xia, Wenzheng Xu, and Guowei Wu. Energy-aware inference
offloading for DNN-driven applications in mobile edge clouds.
IEEE Transactions on Parallel and Distributed Systems , Vol. 32, No.
4, pp. 799-814, IEEE, 2021.

[55] Z. Yang, M. Chen, W. Saad, et al. Energy efficient federated learn-
ing over wireless communication Networks. [online] Available:
https://arxiv.org/abs/1911.02417.

[56] Z. Yang, M. Chen, W. Saad, et al. Energy Efficient Federated Learn-
ing Over Wireless Communication Networks. IEEE Transactions on
Wireless Communications, Vol. 20, No. 3, pp. 1935–1949, 2021.

[57] Z. Yu, J. Hu, G. Min, et al. Mobility-Aware Proactive Edge Caching
for Connected Vehicles Using Federated Learning. To appear
in IEEE Transactions on Intelligent Transportation Systems, 2020,
DOI:10.1109/TITS.2020.3017474.

[58] K. Yang, T. Jiang, Y. Shi et al. Federated Learning via Over-the-Air
Computation. IEEE Transactions on Wireless Communications, Vol.19,
No. 3, pp. 2022–2035, 2019.

[59] Q. Yang, Y. Liu, T. Chen, et al. Federated Machine Learning ACM
Transactions on Intelligent Systems and Technology, Vol. 10, No.2, pp.
1–19, 2019.

[60] R. Zeng, S. Zhang, J. Wang, et al. FMore: An Incentive Scheme
of Multi-dimensional Auction for Federated Learning in MEC.
[online] Available: https://arxiv.org/abs/2002.09699.

[61] J. Zhao, X. Zhu, J. Wang and J. Xiao, Efficient Client Contribution
Evaluation for Horizontal Federated Learning IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 3060–3064,
doi: 10.1109/ICASSP39728.2021.9413377.

[62] Y. Zhao, M. Li, L. Lai, et al.Federated Learning with Non-IID Data,
2018 [online] Available: https://arxiv.org/abs/1806.00582.

[63] Z. Zhong, Y.Zhou, D.Wu, et al., P-FedAvg: Parallelizing Federated
Learning with Theoretical Guarantees. IEEE INFOCOM, pp. 1-10,
doi: 10.1109, 2021.

[64] G. Zhu, Y. Wang, and K. Huang. Broadband Analog Aggregation
for Low-Latency Federated Edge Learning IEEE Transactions on
Wireless Communications, Vol. 19, No. 1, pp. 491–506, 2019.

Zichuan Xu (M’17) received his PhD degree from
the Australian National University in 2016, ME
degree and BSc degree from Dalian University
of Technology in China in 2011 and 2008, all in
Computer Science. From 2016 to 2017, he was a
Research Associate at Department of Electronic
and Electrical Engineering, University College
London, UK. He is currently a full professor and
PhD advisor in School of Software at Dalian
University of Technology. He is also a ‘Xinghai
Scholar’ in Dalian University of Technology. His

research interests include mobile edge computing, serverless computing,
network function virtualization, software-defined networking, algorithmic
game theory, and optimization problems.

Dapeng Zhao received the B.S. degree in the
School of Software from Dalian University of
Technology, China, in 2019. He is currently pur-
suing his M.S. degree in the School of Software,
Dalian University of Technology, Dalian, China.
His current research interests include federated
Learning, mobile-edge computing, and resource
allocation.

Weifa Liang (M’99–SM’01) received the PhD
degree from the Australian National University
in 1998, the ME degree from the University of
Science and Technology of China in 1989, and
the BSc degree from Wuhan University, China in
1984, all in Computer Science. He is currently
a Professor at the Department of Computer
Science, City University of Hong Kong, Hong
Kong, prior to that position, he was a Professor at
the Australian National University. His research
interests include design and analysis of energy

efficient routing protocols for wireless ad hoc and sensor networks, the
Internet of Things, Mobile Edge Computing (MEC), Network Function
Virtualization (NFV), Software-Defined Networking (SDN), design and
analysis of parallel and distributed algorithms, approximation algorithms,
combinatorial optimization, and graph theory. He currently serves as an
Associate Editor for the IEEE Transactions on Communications, and he
is a senior member of the IEEE.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. XX, NO. X, 2022 18

Omer F. Rana received the B.S. degree in infor-
mation systems engineering from the Imperial
College of Science, Technology and Medicine,
London, U.K., the M.S. degree in microelectronics
systems design from the University of Southamp-
ton, Southampton, U.K., and the Ph.D. degree
in neural computing and parallel architectures
from the Imperial College of Science, Technology
and Medicine. He is a Professor of performance
engineering with Cardiff University, Cardiff, U.K.
His current research interests include problem

solving environments for computational science and commercial com-
puting, data analysis and management for large-scale computing, and
scalability in high performance agent systems.

Pan Zhou (S’07-M’14) received the B.S. degree
in the Advanced Class of Huazhong University of
Science and Technology (HUST), Wuhan, China,
in 2006, and the Ph.D. degree from the School of
Electrical and Computer Engineering, Georgia
Institute of Technology, Atlanta, GA, USA, in
2011. He is currently an Associate Professor
with the School of Electronic Information and
Communications, HUST, Wuhan, China. He was
a Senior Technical Member with Oracle, Inc.,
American, from 2011 to 2013, Boston, MA, USA.

His current research interests include security and privacy, machine
learning and big data analytics, and information networks.

Mingchu Li received the B.S. degree in mathe-
matics from Jiangxi Normal University, Nanchang,
China, in 1983, the M.S. degree in applied sci-
ence from the University of Science and Tech-
nology Beijing, Beijing, China, in 1989, and the
Ph.D. degree in mathematics from the University
of Toronto, Toronto, ON, Canada, in 1998.

He was an Associate Professor with the Uni-
versity of Science and Technology Beijing from
1989 to 1994. From 2002 to 2004, he was a Full
Professor with the School of Software, Tianjin

University, Tianjin, China. Since 2004, he has been a Full Professor and
the Vice-Dean of the School of Software Technology, Dalian University of
Technology, Dalian, China. His main research interests include theoretical
computer science and information security, trust models and cooperative
game theory.

Wenzheng Xu received the BSc, ME and PhD
degrees in computer science from Sun Yat-Sen
University, Guangzhou, PR China, in 2008, 2010,
and 2015, respectively. He currently is a Special
Associate Professor at the Sichuan University
and was a visitor at the Australian National Uni-
versity. His research interests include wireless
ad hoc and sensor networks, mobile computing,
approximation algorithms, combinatorial optimiza-
tion, online social networks, and graph theory. He
is a member of the IEEE.

Hao Li is currently an associate researcher in
the Institute of Ningxia at China Coal Research
Institute. Dr. Li’s research interests include Coal
mine intellectualization, automation of fully mech-
anized mining face, Edge computing, AI and
Internet of Things.

Qiufen Xia received her PhD degree from the
Australian National University in 2017, the ME
degree and BSc degree from Dalian University
of Technology in China in 2012 and 2009, all in
Computer Science. She is currently an Associate
Professor at Dalian University of Technology. Her
research interests include mobile cloud comput-
ing, query evaluation, big data analytics, big data
management in distributed clouds, and cloud
computing.

