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Introduction: We investigated the structural brain networks of 562 young

adults in relation to polygenic risk for Alzheimer’s disease, using magnetic

resonance imaging (MRI) and genotype data from the Avon Longitudinal Study

of Parents and Children.

Methods: Diffusion MRI data were used to perform whole-brain tractography

and generate structural brain networks for the whole-brain connectome, and

for the default mode, limbic and visual subnetworks. The mean clustering

coefficient, mean betweenness centrality, characteristic path length, global

efficiency and mean nodal strength were calculated for these networks,

for each participant. The connectivity of the rich-club, feeder and local

connections was also calculated. Polygenic risk scores (PRS), estimating each

participant’s genetic risk, were calculated at genome-wide level and for nine

specific disease pathways. Correlations were calculated between the PRS

and (a) the graph theoretical metrics of the structural networks and (b) the

rich-club, feeder and local connectivity of the whole-brain networks.

Results: In the visual subnetwork, the mean nodal strength was negatively

correlated with the genome-wide PRS (r = –0.19, p = 1.4 × 10−3), the mean

betweenness centrality was positively correlated with the plasma lipoprotein

particle assembly PRS (r = 0.16, p = 5.5 × 10−3), and the mean clustering

coefficient was negatively correlated with the tau-protein binding PRS (r = –

0.16, p = 0.016). In the default mode network, the mean nodal strength was

negatively correlated with the genome-wide PRS (r = –0.14, p = 0.044).
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The rich-club and feeder connectivities were negatively correlated with the

genome-wide PRS (r = –0.16, p = 0.035; r = –0.15, p = 0.036).

Discussion: We identified small reductions in brain connectivity in young

adults at risk of developing Alzheimer’s disease in later life.

KEYWORDS

Avon Longitudinal Study of Parents and Children (ALSPAC), Alzheimer’s disease,
polygenic risk score, brain networks, brain structure, diffusion magnetic resonance
imaging, tractography

Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder that affects over 35 million people world-wide (Prince
et al., 2013). It leads to severe cognitive impairment and the
inability of patients to function independently. There is a
pressing need to identify non-invasive biomarkers that could
facilitate pre-symptomatic diagnosis when disease-modifying
therapies become available. Although a minority of early-onset
AD cases are caused by mutations in specific genes with
autosomal dominant inheritance (Tanzi, 2012), the majority of
AD has a complex genetic architecture and is highly heritable
(Gatz et al., 2006), with different genes conveying different
amounts of risk. Genome-wide Association Studies (GWAS)
have implicated many Single Nucleotide Polymorphisms (SNPs)
(Kunkle et al., 2019), of which the apolipoprotein e4 allele
(APOE4) confers the greatest risk (Saunders et al., 1993;
Strittmatter et al., 1993; Farrer et al., 1997; Lambert et al.,
2013; Yu et al., 2014), but is neither necessary nor sufficient
to cause AD (Sims et al., 2020). AD GWAS have also found
evidence that specific biological processes, or disease pathways,
such as cell trafficking, beta amyloid production, tau protein
regulation and cholesterol transport are involved (Jones et al.,
2010; Kunkle et al., 2019). Polygenic risk scores (PRS), which
aggregate risk loci genome-wide (Wray et al., 2014), are highly
predictive of AD (Escott-Price et al., 2015, 2017; Sleegers et al.,
2015; Xiao et al., 2015; Yokohama et al., 2015; Tosto et al., 2017;
Chaudhury et al., 2018; Cruchaga et al., 2018; Altmann et al.,
2020; Harrison et al., 2020) and have been widely used in the
search for biomarkers for the disease (Harrison et al., 2020).

Obtaining reliable biomarkers in a non-invasive manner is
very valuable because it can be better tolerated by participants
compared to more invasive methods (Zhang S. et al., 2012;
Prestia et al., 2013). Magnetic resonance imaging (MRI) can
non-invasively measure characteristics of the brain’s structure.
Diffusion-weighted MRI (dMRI, Le Bihan et al., 2006) has
allowed mapping of the brain’s white-matter (WM) tracts,
enabling the study of the human brain as a network of cortical
and subcortical areas connected via those tracts. Via these
techniques, alterations in the brain of AD patients and of
people at risk of developing AD have been identified. AD

patients exhibit axonal loss in tracts associated with certain
default mode network (DMN) nodes (Mito et al., 2018). They
also exhibit increased characteristic path length and decreased
intramodular connections in functional and structural brain
networks compared to healthy controls (Dai et al., 2019). The
DMN is altered in the presence of AD pathology (Dai et al.,
2019) where a decrease in its connectivity has been observed
(Mohan et al., 2016; Badhwar et al., 2017). The diffusion tensor
fractional anisotropy in the cingulum and of the splenium of the
corpus callosum is reduced in AD patients compared to controls
(Zhang et al., 2007). Structural covariance brain networks, in
which the edges are calculated as the correlations between the
node volumes, show decreased small-worldness in AD (John
et al., 2017). Increased shortest path length and clustering
coefficient, as well as decreased global and local efficiency have
been observed in the structural brain networks of AD patients
(He et al., 2008; Lo et al., 2010). These results, as well as recent
work by Palesi et al. (2016), suggest that, in addition to the AD
pathology preferentially affecting specific brain areas, AD is a
disconnection syndrome.

Cognitively healthy middle-aged and older carriers of
AD risk (genetic or otherwise) also exhibit alterations in
brain structure. Decreased hippocampal volume and cortical
thickness have been associated with high AD PRS (Mormino
et al., 2016; Corlier et al., 2018; Li et al., 2018). Aging
APOE4 carriers have reduced local structural connectivity at
the precuneus, medial orbitofrontal cortex and lateral parietal
cortex (Brown et al., 2011). APOE4 status also affects the
clustering coefficient and the local efficiency of structural brain
networks. Specifically, Ma et al. (2017) observed that the
values for the APOE4 carriers were higher than those of the
non-carriers in a normal-cognition group, while the opposite
pattern was observed in a group of participants suffering from
Mild Cognitive Impairment (MCI). Middle-aged adults with
genetic, family and lifestyle risks of developing AD have a
hub in their structural connectome that is not present in
the structural connectome of people with no such risks of
developing AD (Clarke et al., 2020). Significant functional
connectivity differences in the brain networks implicated in
cognition were seen in middle-aged individuals with a genetic
risk for AD (Goveas et al., 2013). The DMN also exhibits
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changes in mature (Fleisher et al., 2009) and young APOE4
carriers (Filippini et al., 2009). A PRS composed of immune
risk SNPs is associated with a thinner regional cortex in healthy
older adults at risk of developing AD (Corlier et al., 2018).
Other studies have also investigated the effect of AD PRS on
brain structure (Sabuncu et al., 2012; Harrison et al., 2016;
Lupton et al., 2016; Hayes et al., 2017), finding alterations
associated with increased genetic burden. Some of the studies
have also used disease pathways to inform the PRS (Ahmad
et al., 2018; Caspers et al., 2020). A few studies have also
identified alterations in the brain of young AD-risk carriers.
The hippocampal volume and the fractional anisotropy of the
right cingulum are altered in young adults with increased risk of
developing AD (Foley et al., 2017), and their precuneal volume is
reduced (Li et al., 2018). Increased functional connectivity and
hippocampal activation in a memory task was observed in the
DMN of young, cognitively normal APOE4 carriers (Filippini
et al., 2009). Young APOE4 carriers also showed increased
activation (measured via fMRI) in the medial temporal lobe
compared to non-carriers, while performing a memory task
(Dennis et al., 2010).

Despite the evidence that (a) there are alterations in the
brain networks of AD patients, and (b) there are functional
and structural changes in the brains of young adults at risk of
developing AD, the structural brain networks of young adults
at risk of AD have not been studied. Our work fills that gap,
by investigating structural brain networks of young adults at
different risks of developing AD, where the risk is evaluated
both via GWAS and via specific risk pathways. We hypothesize
that the localized alterations in the structure of the brain
of young adults at risk of AD would present themselves as
changes in their structural brain networks. We investigate the
network corresponding to the whole-brain connectome, as well
as the DMN, the limbic and visual subnetworks, because those
subnetworks are known to be affected in AD (Power et al.,
2011; Deng et al., 2016; Badhwar et al., 2017; Hansson et al.,
2017; Wang et al., 2019). We also investigate the hubs of the
whole-brain connectome and their interconnectivity.

Hypotheses

We hypothesize that increased risk of AD would lead to
increased characteristic path length for those networks, and an
increased mean clustering coefficient, in agreement with the
alterations these measures present in AD. We also hypothesize
that the interconnectivity of the hubs would be reduced for
increased risk of AD. Given the young age of the participants,
we expect any observed alterations to be small. Any identified
changes could be followed up in a longitudinal study of the same
cohort, and possibly lead to important biomarkers that indicate
disease onset or progression, or inform early preventative
interventions in adults at risk of AD.

Materials and methods

Participants

The Avon Longitudinal Study of Parents and Children
(ALSPAC) is a pregnancy and birth cohort established to
identify the factors influencing child health and developmental
outcomes. Pregnant women resident in Avon, UK with expected
dates of delivery 1st April 1991 to 31st December 1992
were invited to take part in the study. The initial number
of pregnancies enrolled is 14,541 (for these at least one
questionnaire has been returned or a “Children in Focus” clinic
had been attended by 19/07/99). Of these initial pregnancies,
there was a total of 14,676 fetuses, resulting in 14,062 live births
and 13,988 children who were alive at 1 year of age.

Between the ages of 18–24 years, a subset of ALSPAC
offspring were invited to participate in three different
neuroimaging studies; the ALSPAC Testosterone study
(Patel et al., 2020; Liao et al., 2021; n = 513, mean age at
attendance 19.62 years, range 18.00–21.50 years), the ALSPAC
Psychotic Experiences (PE) study (Drakesmith et al., 2015,
2016, 2019; Fonville et al., 2015; n = 252, mean age at
attendance 20.03 years, range 19.08–21.52 years), and the
ALSPAC Schizophrenia Recall-by-Genotype (SCZ-RbG) study
(Lancaster et al., 2019; n = 196, mean age at attendance
22.75 years, range 21.12–24.55 years). Scanning protocols were
harmonized across sub-studies where possible, and all data were
acquired at Cardiff University Brain Research Imaging Centre
(CUBRIC).

We analyzed data from 562 individuals (mean age
19.81 years, SD 0.02 years; 62% male) from those ALSPAC
neuroimaging studies (Boyd et al., 2013; Fraser et al., 2013;
Sharp et al., 2020). Please note that the study website contains
details of all the data that is available through a fully searchable
data dictionary and variable search tool (http://www.bristol.
ac.uk/alspac/researchers/our-data). Written informed consent
was collected for all participants in line with the Declaration
of Helsinki. Ethical approval for the neuroimaging studies
was received from the ALSPAC Ethics and Law Committee
and the local NHS Research Ethics Committees. Informed
consent for the use of data collected via questionnaires
and clinics was obtained from participants following the
recommendations of the ALSPAC Ethics and Law Committee
at the time.

MRI acquisition

MRI data were acquired using a GE HDx 3T system
(GE Healthcare, Milwaukee, WI, USA) at CUBRIC. Axial
T1-weighted images were acquired using a 3D fast spoiled
gradient recalled sequence (TR = 8 ms, TE = 3 ms, TI = 450 ms,
flip angle = 20◦, matrix size = 256 × 192 × 159) to aid
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co-registration. Diffusion-weighted images were acquired
with a twice refocused spin-echo echo-planar imaging
sequence parallel to the anterior-posterior commissure
and the acquisition was peripherally gated to the cardiac
cycle. Data were collected from 60 slices of 2.4 mm thickness
(FOV = 230 mm, matrix size 96 × 96, TE = 87 ms, b-values 0
and 1200 s/mm2) using parallel imaging (ASSET factor = 2)
encoding along 30 isotopically distributed directions according
to vectors taken from the International Consortium for
Brain Mapping protocol (Jones et al., 1999). For 219 of those
participants, the diffusion-weighted images were acquired using
60 directions. For those participants, a subsample of the optimal
30 directions were used, alongside the first three images with
b-value equal to 0 (see Foley et al., 2018; for further details;
Jones et al., 1999; Afzali et al., 2021).

Data processing and tractography

Data pre-processing was performed as described by Foley
et al. (2018). To summarize, T1 structural data were down-
sampled to 1.5 mm × 1.5 mm × 1.5 mm resolution. Eddy-
current and participant motion correction were performed with
an affine registration to the non-diffusion-weighted images
(Leemans and Jones, 2009) with appropriate reorienting of
the encoding vectors. Echo-planar imaging of the diffusion-
weighted data was performed, warping the data to the
down-sampled T1-weighted images (Irfanoglu et al., 2012).
RESTORE (Chang et al., 2005), RESDORE (Parker et al.,
2013a), and free water correction (Pasternak et al., 2009)
algorithms were run. Whole-brain tractography was performed
for each data set using the damped Richardson-Lucy pipeline
(Dell’acqua et al., 2010) which has been shown to produce a
reliable tractogram in cases of crossing fibers, and in-house
MATLAB code (Parker et al., 2013b). The criteria used for
termination of the tracts were: angle threshold of > 45◦,
fiber orientation density function peak < 0.05 and fractional
anisotropy < 0.2.

Network construction

We used the Automated Anatomical Labeling (AAL)
(Tzourio-Mazoyer et al., 2002) to define the 90 cortical and
subcortical areas of the cerebrum that correspond to the
nodes of the structural networks. The WM tracts linking
those areas are the connections, or edges, of the networks.
The network generation was performed in ExploreDTI-4.8.6
(Leemans et al., 2009). We generated two connectivity matrices
for each participant, one in which the edges are weighted by
the number of streamlines (NS) and one in which they are
weighted by the mean fractional anisotropy (FA) of the diffusion
tensor along the streamlines of the tracts. Both these metrics

have been shown to result in measures of connectivity that
exhibit heritability (Arnatkeviciute et al., 2021), repeatability
(Yuan et al., 2018; Messaritaki et al., 2019; Roine et al., 2019;
Dimitriadis et al., 2021), and functional relevance (Honey et al.,
2009; Goni et al., 2014; Messaritaki et al., 2021). To reduce the
possible number of false connections, structural connections
reconstructed with 5 or fewer streamlines were discarded from
the analysis. Furthermore, to avoid our results being dependent
on this choice of threshold, the analysis was repeated for
this threshold being from 1 to 12 streamlines. A graphical
representation of this part of the analysis is shown in Figure 1.

In addition to the whole-brain connectome, we derived
the DMN, the limbic subnetwork and the visual subnetwork,
by selecting the edges that connect only the nodes in those
subnetworks. The AAL atlas regions for the subnetworks are
listed in Table 1 (Power et al., 2011).

Graph theory and network analysis

The Brain Connectivity Toolbox (BCT, Rubinov and Sporns,
2010) was used to calculate the graph theoretical metrics for
the structural brain networks of all participants (Figure 2).
A detailed description of graph theoretical metrics is provided
by Rubinov and Sporns (2010), but we provide here a brief
explanation of the ones we use, for completeness. The clustering
coefficient of a node is equal to the number of existing edges
among the neighbors of the node divided by the number of
all possible edges and is a measure of how interconnected the
node’s neighbors are. The degree of a node is the number of
edges that stem from that node. The betweenness centrality of
a node is the number of shortest paths (connecting pairs of
nodes) that the node belongs to in the network. The nodal
strength is the sum of the weights of the edges stemming from
a node. These four graph theoretical metrics are node-specific.
To derive network-wide measures, their mean values over all
the nodes in the network are used. The characteristic path length
of a network is the mean value of the steps along the shortest
paths that connect all possible pairs of nodes in the network.
The global efficiency of the network is proportional to the sum
of the inverse shortest path lengths over all pairs of nodes in
the network and is related to how efficiently the nodes of the
network can exchange information. In contrast to the previous
measures mentioned, the characteristic path length and the
global efficiency are network-wide, rather than node-specific,
measures. Finally, the local efficiency of a node is calculated the
same way as the global efficiency of the subnetwork that consists
of the node’s neighbors.

For our analysis, we calculated the mean clustering
coefficient, mean betweenness centrality, characteristic path
length, global efficiency and mean nodal strength. The
expectation is that, if changes to the topological organization
are a result of increased risk of developing AD, then the
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FIGURE 1

Analysis that leads from the MR images to the structural brain networks. This analysis is repeated for each participant individually.

FIGURE 2

Diagram showing the sub/networks used in our analysis and the graph theoretical and connectivity metrics that are correlated with the PRS.
NS: number of streamlines; FA: fractional anisotropy of the diffusion tensor.

mean clustering coefficient, global efficiency and mean nodal
strength will decrease, and the characteristic path length
will increase, for increased risk. In order to remove metrics
that represent redundant information from our analysis, we
calculated the Pearson correlation between all pairs of graph
theoretical metrics for each network and excluded from
further analysis metrics that exhibited correlation coefficients
of 0.85 or higher.

In order to investigate the hubs of the networks, we also
calculated the local efficiency and the degree of each node.
This allowed us to calculate the hub-score, or hubness, of each

node for the whole-brain network. Instead of using a single
measure for identifying hubs (for example only the node degree
or only the betweenness centrality as is sometimes done), we
used a composite measure as proposed by Betzel et al. (2014).
Specifically, we normalized the node degree, nodal strength,
betweenness centrality and local efficiency for each participant –
this was in order for all four metrics to be equally weighted in the
hubness calculation and was done by dividing the values of each
metric across nodes by the largest value. We then averaged the
normalized values for each node. That average was the hubness
of the node.
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TABLE 1 Nodes of the AAL atlas included in the DMN, limbic and
visual subnetworks. The nodes from both the left and right
hemispheres are included.

DMN Limbic Visual

Middle
orbitofrontal gyr

Middle frontal gyr Hippocampus Inferior
temporal gyr

Thalamus Inferior
orbitofrontal gyr

Amygdala Fusiform gyr

Precuneus Superior frontal
gyr

Anterior cingulate
gyr

Lingual gyr

Superior
orbitofrontal gyr

Inferior frontal gyr
(triangular)

Middle cingulate
gyr

Calcarine fissure

Anterior
cingulate gyr

Inferior frontal gyr
(opercula)

Posterior cingulate
gyr

Cuneus

Middle cingulate
gyr

Middle occipital
gyr

Parahippocampal
gyr

Middle occipital
gyr

Posterior
cingulate gyr

Angular gyr Olfactory Superior
occipital gyr

Hippocampus Parahippocampal
gyr

Insula Inferior occipital
gyr

The hubness of each node was averaged over all participants,
to derive the mean node hubness. Hub nodes were defined as
those with mean node hubness greater or equal to the average
of the mean node hubnesses plus one standard deviation,
according to van den Heuvel and Sporns (2011). The hub nodes
comprise a rich club of nodes. The rich-club connectivity was
calculated for each participant by summing the strength of the
edges that connect the hub nodes only. The feeder connections,
i.e., the connections that link one hub node and one non-
hub node, were also identified. The feeder connectivity was
also calculated for each participant, as the sum of the strength
of the feeder connections. Finally, the local connections were
identified as the connections that link non-hub nodes only.
The local connectivity was the sum of the strength of the
local connections. We stress that the rich-club, feeder and local
connectivities are defined for the whole-brain network.

Polygenic risk score calculation

Genome data were provided by the University of Bristol.
ALSPAC participants were genotyped using the Illumina
HumanHap550 quad genome-wide SNP genotyping platform
by 23andMe subcontracting the Wellcome Trust Sanger
Institute (WTSI, Cambridge, UK) and the Laboratory
Corporation of America (Burlington, NC, USA). Participants
were excluded from analysis if they had minimal or excessive
heterozygosity, genotyping completeness < 97%, or if they
were of non-European ethnicity. Quality control parameters
were as follows: Minor allele frequency (MAF) > 0.01;
Individual call rate > 95%, Hardy Weinberg Equilibrium
(HWE) (P > 5 × 10−7). PRSs were calculated according
to the International Schizophrenia Consortium method

(Purcell et al., 2009). Training data were taken from the latest
genetic meta-analysis of AD (Kunkle et al., 2019) comprising
of 94,437 cases and controls. In our sample, SNPs with low
MAF < 0.1 and imputation quality < 0.9 were removed. Data
were then pruned for SNPs in linkage disequilibrium (LD)
using genetic data analysis tool PLINK (Chang et al., 2015)
using the clumping function (–clump). This aimed to remove
SNPs in LD within a 500 kilobase window, retaining only the
most significantly associated SNPs. Scores were generated in
PLINK using the –score command. We note that APOE has a
p-value of around 7 × 10−44 in most Alzheimer’s GWAS, and
it explains almost as much variance in the phenotype as all the
other loci combined. Therefore, APOE4 carriers are invariably
in the highest deciles of the polygenic score.

To compute pathway-specific PRS, nine pathway groups
were taken from Kunkle et al. (2019), who matched lists of SNPs
to genes and tested them for enrichment within gene functional
categories. The pathway groups were as follows: protein-
lipid complex assembly, regulation of beta-amyloid formation,
protein-lipid complex, regulation of amyloid precursor protein
catabolic process, tau protein binding, reverse cholesterol
transport, protein-lipid complex subunit organization, plasma
lipoprotein particle assembly and activation of the immune
response. The lists of SNPs were matched to SNPs in our target
dataset. Then the data was clumped and scored as described
above.

A previous study found that an AD PRS computed with
p-value threshold (PT) of 0.001 explained the most variance in
structural (non-network) neuroimaging phenotypes of healthy
young adults (Foley et al., 2017). Therefore, our primary analysis
used PT = 0.001 to select relevant SNPs from the discovery
sample. For our secondary analysis, seven different progressive
training PTs were computed (0.00001; 0.0001; 0.01; 0.05; 0.1; 0.3;
and 0.5). Lower PT indicates that SNPs are more significantly
associated with AD case status in the training dataset. Two
versions of each score were calculated, including and excluding
the APOE locus. This was done to assess the effect of PRS
without APOE and the effect of APOE within the PRS.

Through this method, we ended up with 20 different
PRS: genome-wide with and without APOE, and each of the
nine pathway-specific PRS with and without APOE. Each of
these PRS further corresponds to eight values for the PTs, as
described above.

Statistical analyses

Correlations between graph theoretical metrics and the
genome-wide PRS (APOE included) and the nine pathway-
specific PRS (APOE included) were calculated in MATLAB
(MATLAB and Statistics Toolbox Release, 2015b and 2021a;
The MathWorks, Inc, Natick, MA, United States). Correlations
were also calculated between the rich-club, feeder and local
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connectivity versus the 10 PRS scores. The participant gender
and the diffusion scan type (30 vs. 60 diffusion gradient
directions) were controlled for by using partial correlations.
Data points that had Cook’s distance higher than three
times the mean Cook’s distance (Cook, 1977) were removed
from the calculation. Our primary analysis used PT = 0.001.
Resulting p-values were corrected for multiple comparisons
using false-discovery-rate (FDR) correction (Benjamini and
Yekutieli, 2005). The correction was applied over the graph
theoretical metrics of all four networks, the rich-club, feeder
and local connectivities, and the 10 PRS (i.e., the genome-
wide plus the nine pathway-specific ones) for each PT. If
a significant association was found between a PRS and the
graph theoretical metrics or connectivities, correlations were
also calculated with the PRS excluding the APOE locus, to
assess whether the correlations were purely due to that locus.
To exclude the possibility that our results are confounded by
population stratification, we repeated our analyses using the
first 10 principal components derived from common alleles as
covariates.

We also looked at the rest of the PT thresholds, as is
standard practice (Purcell et al., 2009; de Leeuw et al., 2015).
In particular, the investigations for the higher values of PT

are justified, because it is likely that many loci that show only
nominal association with disease status are actually involved in
the pathological process. This was demonstrated by Escott-Price
et al. (2015) who found that the highest prediction accuracy
was given by a PRS which included SNPs from 0.5 and below
(AUC = 78.2%, 95% confidence interval: 77–80%). To control
for multiple comparisons in this case, and since the performed
tests are not independent, we calculated the permutation-
corrected p-values via the minP procedure (Westfall and Young,
1993; Rempala and Yang, 2013), intended for strong control of
the family wise error rate. In the “Results” Section we report
the p-values without this correction [corrected, however, for
multiple testing over all the graph theoretical metrics and

(sub)networks as listed above], and clearly state at the end of
the Section which of these values survived this latter multiple-
comparison testing for the PT thresholds. The related corrected
p-values are given in Section A of the Supplementary Material.

Results

Networks

The whole-brain, default mode, limbic and visual
subnetworks for one participant are shown in Figure 3
(NS-weighted networks) and Figure 4 (FA-weighted networks).
The relative strength of the connections depends on the edge-
weighting and has an impact on the graph theoretical metrics of
the networks. Given the differences observed between NS- and
FA-weighted networks, performing the analysis for both these
edge-weightings is warranted.

The correlation coefficients between graph theoretical
metrics of the networks and the related p-values are given in
Table 2A (for the NS-weighted networks) and Table 2B (for the
FA-weighted networks). Based on these, we selected the metrics
to be used in subsequent analysis, which are summarized in
Table 3.

Whole-brain connectome

No statistically significant correlations between graph
theoretical metrics of the whole-brain network and the PRSs
were found to survive multiple comparison correction.

Default-mode network

For our primary analysis (PT = 0.001), no statistically
significant correlations between the PRS and the graph

FIGURE 3

Whole-brain, DMN, limbic and visual subnetworks, for NS-weighted networks, from the data of one participant. The lines represent the edges
(connections) between brain areas.
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FIGURE 4

Whole-brain, DMN, limbic and visual subnetworks, for FA-weighted networks, from the data of one participant. The lines represent the edges
(connections) between brain areas.

theoretical metrics of the DMN survived multiple-comparison
correction. The following correlations, however, did survive
multiple comparison correction.

For PT = 0.3, the mean nodal strength of the NS-weighted
DMN was correlated with the genome-wide PRS, including
APOE (r = –0.14, p = 1.5 × 10−3). When the APOE locus
was excluded from the analysis, the correlation persisted (r = –
0.14, p = 1.6 × 10−3). The correlations also persisted when the
analysis was repeated for NS thresholds between 1 and 12.

For PT = 0.01, the mean betweenness centrality of the
FA-weighted DMN was correlated with the activation of
the immune response PRS, including APOE (r = –0.16,
p = 1.2 × 10−4). When the APOE locus was excluded from the
analysis, the correlation persisted (r = –0.15, p = 4.5 × 10−4).
The correlations also persisted when the analysis was repeated
for NS thresholds between 1 and 12.

Repeating the analyses for the visual subnetwork using the
first ten principal components derived from common alleles as
covariates did not change these results.

All these results are shown in Figure 5.

Limbic subnetwork

No statistically significant correlations between graph
theoretical metrics of the limbic subnetwork and the PRSs were
found to survive multiple comparison correction.

Visual subnetwork

For our primary analysis (PT = 0.001), no statistically
significant correlations between the PRS and the graph
theoretical metrics of the visual subnetwork survived multiple-
comparison correction. The following correlations, however, did
survive multiple comparison correction:

The mean nodal strength of the NS-weighted visual
subnetwork was correlated with the genome-wide PRS,
including APOE, for PT = 0.1, 0.3, and 0.5. The correlation
coefficients were r = –0.17, –0.18, and –0.19, for the
three values of PT respectively, while the p-values were
8.4 × 10−5, 4.1 × 10−5, and 1.3 × 10−5 respectively. When
the analysis was repeated with the APOE locus excluded,
the correlations persisted. Specifically, the correlation
coefficients were: –0.15, –0.17, and –0.18, while the
p-values were 7.6 × 10−4, 1.4 × 10−4, 2.9 × 10−5, for
the three values of PT respectively. The correlations also
persisted when the analysis was repeated for NS thresholds
between 1 and 12.

The mean clustering coefficient of the NS-weighted visual
subnetwork was correlated with the tau protein binding PRS,
including APOE, for PT = 0.3 and 0.5. The correlation
coefficients were r = –0.14, while the p-values were 1.4 × 10−3

for both PTs. When the analysis was repeated with the
APOE locus excluded, the significance of the correlations
disappeared, with the correlation coefficients being –0.02
and the p-values being 0.71. The correlations persisted,
however, when the analysis was repeated for NS thresholds
between 1 and 12.

The mean betweenness centrality of the NS-weighted visual
subnetwork was correlated with the plasma lipoprotein particle
assembly PRS, including APOE, for PT = 0.3 and 0.5. The
correlation coefficients were r = 0.15 and 0.16, for the two
values of PT respectively, while the p-values were 9.2 × 10−4

and 3.6 × 10−4 respectively. When the analysis was repeated
with the APOE locus excluded, the correlations persisted,
with the correlation coefficients being r = 0.12 and 0.13 for
the two values of PT respectively, and the p-values being
7.5 × 10−3 and 2.2 × 10−3 respectively. The correlations also
persisted when the analysis was repeated for NS thresholds
between 1 and 12.
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TABLE 2 Correlation coefficients and p-values (the latter in italics) for the graph theoretical metrics of the NS-weighted networks (A) and the
FA-weighted networks (B).

Network cc/cpath cc/Eg cc/bc cc/nstr cpath/Eg cpath/bc cpath/nstr Eg/bc Eg/nstr bc/nstr

A

WB 0.09
0.025

–0.14
0.001

–0.14
8 × 10−4

–0.13
0.002

–0.97
<10−10

0.19
10−5

–0.93
<10−10

–0.10
0.021

0.97
<10−10

–0.13
0.001

DMN 0.05
0.273

–0.15
2 × 10−4

–0.07
0.092

–0.25
<10−8

–0.78
<10−10

0.09
0.032

–0.71
<10−10

–0.01
0.784

0.95
<10−10

–0.06
0.140

LIMBIC –0.07
0.090

–0.03
0.414

0.02
0.575

–0.09
0.030

–0.53
<10−10

0.34
<10−10

–0.46
<10−10

–0.23
3 × 10−8

0.95
<10−10

–0.24
<10−8

Visual –0.21
6 × 10−7

0.13
2 × 10−3

–0.27
<10−8

0.15
3 × 10−4

–0.91
<10−10

0.38
<10−10

–0.87
<10−10

–0.28
<10−10

0.98
<10−10

–0.33
<10−10

B

WB –0.35
<10−10

0.37
<10−10

–0.31
<10−10

0.44
<10−10

–0.99
<10−10

0.69
<10−10

–0.91
<10−10

–0.65
<10−10

0.91
<10−10

–0.85
<10−10

DMN –0.44
<10−10

0.45
<10−10

–0.45
<10−10

0.53
<10−10

–0.98
<10−10

0.78
<10−10

–0.92
<10−10

–0.73
<10−10

0.93
<10−10

–0.90
<10−10

LIMBIC –0.56
<10−10

0.55
<10−10

–0.57
<10−10

0.63
<10−10

–0.98
<10−10

0.81
<10−10

–0.95
<10−10

–0.76
<10−10

0.94
<10−10

–0.92
<10−10

Visual –0.43
<10−10

0.40
<10−10

–0.33
<10−10

0.41
<10−10

–0.98
<10−10

0.78
<10−10

–0.96
<10−10

–0.70
<10−10

0.96
<10−10

–0.83
<10−10

cc, mean clustering coefficient; cpath, characteristic path length; Eg, global efficiency; nstr, mean nodal strength; bc, mean betweenness centrality.

Repeating the analyses for the DMN using the first
ten principal components derived from common alleles as
covariates did not change these results.

All these results are shown in Figure 6.

Rich-club, feeder, and local
connectivity of the whole-brain
network

Figure 7 shows the nodes that are hubs for the NS-weighted
and the FA-weighted networks. For the NS-weighted networks,
the hubs were the left and right putamen, left and right
precuneus, left and right hippocampus, left and right superior
frontal gyrus, left middle occipital gyrus, left and right superior
occipital gyrus, right calcarine sulcus and right caudate. For
the FA-weighted networks, the hubs were the left and right
putamen, left and right precuneus, left and right hippocampus,
left and right superior frontal gyrus, left middle occipital gyrus,
left calcarine sulcus, right superior parietal gyrus, left superior
orbitofrontal gyrus, and left superior occipital gyrus. We note
that ten out of the 13 hubs were the same in the NS- and
FA-weighted networks, while three differed.

For our primary analysis (PT = 0.001), no statistically
significant correlations between the PRS and the rich-club,
feeder or local connectivities of the whole-brain network
survived multiple-comparison correction. The following
correlations, however, did survive multiple comparison
correction:

The rich-club connectivity of the NS-weighted whole-
brain connectome was correlated with the genome-wide PRS,
including APOE, for PT = 0.3 and 0.5. The correlation
coefficients were r = –0.16 and –0.15 for the two PTs
respectively, while the p-values were 3.7 × 10−4 and 1.1 × 10−3

respectively. When the analysis was repeated with the APOE
locus excluded, the correlations persisted, with the correlation
coefficients being r = –0.15 and –0.14 for the two PTs
respectively, and the p-values being 6 × 10−4 and 1.7 × 10−3

TABLE 3 Metrics used in the analysis for each network.

NS-weighted FA-weighted

Whole-brain Mean clustering coefficient
Mean betweenness centrality
Mean nodal strength
Rich-club connectivity
Feeder connectivity
Local connectivity

Mean clustering coefficient
Mean betweenness centrality
Mean nodal strength
Rich-club connectivity
Feeder connectivity
Local connectivity

Default-mode Mean clustering coefficient
Mean betweenness centrality
Mean nodal strength
Characteristic path length

Mean clustering coefficient
Mean betweenness centrality
Mean nodal strength

Limbic Mean clustering coefficient
Mean betweenness centrality
Mean nodal strength
Characteristic path length

Mean clustering coefficient
Mean betweenness centrality

Visual Mean clustering coefficient
Mean betweenness centrality
Mean nodal strength

Mean clustering coefficient
Mean betweenness centrality
Mean nodal strength
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FIGURE 5

Correlation coefficients between the graph theoretical metrics of the default-mode network and the genome-wide PRS including APOE for the
eight different values of PT. The asterisk indicates the instances in which the p-value survived multiple comparison correction.

respectively. The correlations also persisted when the analysis
was repeated for NS thresholds of 1–12.

The feeder connectivity of the NS-weighted whole-brain
connectome was correlated with the genome-wide PRS,
including APOE, for PT = 0.3 and 0.5. The correlation
coefficients were r = –0.14 and –0.15 for the two PTs
respectively, while the p-values were 1.3 × 10−3 and 8.8 × 10−4

respectively. When the analysis was repeated with the APOE
locus excluded, the correlations persisted, with the correlation
coefficients being r = –0.14 and –0.13 for the two PTs
respectively, and the p-values being 1.4 × 10−3 and 2.3 × 10−3

respectively. The correlations also persisted when the analysis
was repeated for NS thresholds of 1–12.

All these results are shown in Figure 8.
As mentioned earlier, the minP procedure was used

to calculate the permutation-corrected p-values for the PT

thresholds. The related p-values are given in Section A
of the Supplementary Material. They remained statistically
significant for all the cases above, with the exception of the
correlation between the mean betweenness centrality of the
visual network and the PRS for plasma lipoprotein particle
assembly excluding APOE for PT = 0.3, and the correlation
between the feeder connectivity and the genome-wide PRS
excluding APOE for PT = 0.3. Additionally, the values of the
correlation coefficients for the thresholds between 1 and 12 are
given in Section B of the Supplementary Material.

Discussion

To the best of our knowledge, this is the first study
to examine the relationship between AD PRS and network-
based measures for the whole-brain structural connectome and
subnetworks. We used a cohort of young participants to assess

any potential early changes in the structural connectome. From
a clinical perspective, using pathway-specific PRSs in addition
to genome-wide ones is important, because it can pave the
way for more targeted interventions based on the predicted
pathway involvement and potentially allow clinical trials to
stratify patients using their specific risk profiles.

Compared to the FA-weighted networks, using NS-weighted
networks resulted in more statistically significant relationships
between the PRS and structural network metrics, such as the
graph theoretical metrics we employed and the connectivity
strength between the rich-club, and feeder connections. Even
though both the NS and the FA are routinely used to assign
significance to the edges of structural networks, it has been
argued (Huang and Ding, 2016) and proven experimentally
(Messaritaki et al., 2021) that the NS is more relevant from
a functional perspective to the network organization of the
human brain compared to the FA. This may be contributing to
the increased sensitivity of the NS in the differences observed
in our study. Other metrics have also been used as edge-
weights, such as the inverse radial diffusivity (Caeyenberghs
et al., 2016; Messaritaki et al., 2022), which captures myelination
and axonal packing and is, therefore, also meaningful in
assessing connectivity. From a methodological point of view,
this demonstrates that the selection of the metric for the edge
weights can impact the results and, if not optimal, it can
fail to reveal certain statistically significant relationships. As
the capabilities of MRI to measure microstructural metrics
evolves (Wolff and Balaban, 1989; Mackay et al., 1994; Assaf
and Basser, 2005; Barazany et al., 2009; Zhang H. et al.,
2012), using these and other measures (e.g., myelin, axonal
density and axon diameter) as edge weights should also be
explored.

Our analysis identified statistically significant (after
correction for multiple comparisons) correlations between
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FIGURE 6

Correlation coefficients between the graph theoretical metrics of the visual subnetwork and the three PRSs for which those survived multiple
comparison correction, for the eight different values of PT. The asterisk indicates the instances in which the p-value survived multiple
comparison correction.

graph theoretical metrics and PRS, present in the DMN. The
negative correlation between the mean nodal strength and the
genome-wide PRS for the NS-weighted DMN indicates that
high genome-wide risk of AD results in lower nodal strength
in that network. Furthermore, the fact that the correlation
persisted when the APOE locus was removed from the analysis
indicates that this relationship is a result of multiple genetic
factors and not exclusively due to the APOE gene.

Our analysis also revealed statistically significant (after
multiple-comparison correction) correlations between the
graph theoretical metrics of the NS-weighted visual subnetwork
and the PRSs. The negative correlation between the mean nodal
strength and the genome-wide PRS (including APOE) implies
weaker connectivity in the visual subnetwork of participants
at higher risk of developing AD. The negative correlation

between the mean clustering coefficient and the tau protein
binding PRS (including APOE) indicates that participants at
higher risk of developing AD through this pathway have less
clustered communities in the visual subnetwork. The positive
correlation between the mean betweenness centrality and the
PRS for plasma lipoprotein particle assembly (including APOE)
implies that, in participants at higher risk of developing AD,
each node participates in more shortest paths and therefore the
organization of the visual subnetwork is less central compared
to participants at low risk. The fact that the first and third of
these correlations persisted when the APOE locus was excluded
from the genetic risk calculation indicates that they are a result
of multiple genetic factors, and not exclusively due to the APOE
gene. The second correlation, however, appears to be driven
predominantly by the APOE gene.
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FIGURE 7

Hubness scores for the network nodes for the NS-weighted (top) and FA-weighted (bottom) networks. The purple circles indicate nodes that
are hubs for the respective networks.

Studies of young adults with genetic predisposition to AD
are still limited, and predominantly involve brain function
rather than structure. As mentioned earlier, increased functional
connectivity and hippocampal activation in a memory task was
observed in the DMN of young, cognitively normal APOE4
carriers (Filippini et al., 2009). This finding was not, however,
replicated in a study by Mentink et al. (2021), which instead
found that compared to non-carriers, APOE4 young carriers
had increased functional activation in facial-recognition areas
during the encoding of subsequently recollected items. Young
APOE4 carriers also showed increased activation (measured
via fMRI) in the medial temporal lobe compared to non-
carriers, while performing a memory task (Dennis et al., 2010).
In contrast to these studies which focused on the DMN,
the majority of our findings pertained to the visual network.
Additionally, observing small changes in the NS-weighted and
FA-weighted structural networks does not necessarily imply
the presence of measurable functional deficiencies (which
also depends on the sensitivity of those functional studies).
Functional connectivity is believed to be also reliant on a
number of other microstructural metrics (such as myelination
and axonal density) which could be compensating for changes
present in the NSs.

As mentioned earlier, alterations in the visual subnetwork of
AD patients have been recently reported in the literature. For
example, Deng et al. (2016) observed increased characteristic
path length and clustering coefficient in the visual subnetwork
(measured with BOLD fMRI) of AD patients. Badhwar et al.
(2017) also observed decreased connectivity in the primary
visual cortex of AD patients. Wang et al. (2019) observed
impairments in the visual subnetwork of AD patients, as well as
in patients with subjective cognitive decline, which is considered
a prodromal stage of AD. This last result further supports the
idea that alterations in the visual subnetwork can appear many
years before AD diagnosis.

We also observed statistically significant correlations (after
multiple-comparison correction) between the rich-club and
feeder connectivities of the NS-weighted whole-brain network
and the genome-wide PRS, including APOE. These negative
correlations indicate that structural connections that involve
at least one hub node are weaker in the brains of young
participants at risk of developing AD. The relationships held
when the APOE locus was excluded from the analysis, which
indicates that the effect comes from genetic influences above and
beyond APOE.
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FIGURE 8

Correlation coefficients between the rich-club, feeder and local connectivities and the genome-wide PRS including APOE, for the eight
different values of PT. Asterisks indicate p-values that survived multiple comparison correction.

A few studies have reported altered connectivity of the
rich-club and feeder edges in the structural brain networks
of participants with AD and with MCI. Xue et al. (2020)
recently observed reduced rich-club connectivity in patients
with amnestic MCI compared to healthy age-matched controls,
and reduced feeder and local connectivity in patients with
amnestic MCI compared to participants with subjective
cognitive decline. Cai et al. (2019) reported decreased feeder
(and local) connection strength in the structural networks of AD
patients compared to healthy controls. Our results are in line
with these alterations in connectivity strength observed in AD
and MCI patients.

It is interesting that we observed decreased clustering
coefficient with increased AD risk, while AD studies (He
et al., 2008; Lo et al., 2010; Deng et al., 2016) observed
increased clustering coefficient in AD patients. However, it is not
uncommon that a pattern of structural or functional metrics is
observed in at-risk populations, for that pattern to be reversed
when the pathology is realized. Specifically for AD for example,
Koelewijn et al. (2019) observed that young APOE carriers
exhibited hyperconnectivity in brain areas that were found,
in the same work, to show hypoconnectivity in AD patients.
We also note that the structural networks in He et al. (2008)
were structural covariance networks rather than tractography-
derived networks, and that Lo et al. (2010) had a small sample
of 25 patients and 30 controls in their tractography study. Also,
Deng et al. (2016) used functional MRI rather than diffusion
MRI and had a much smaller sample than ours.

The rest of the graph theoretical metrics we investigated
showed no statistically significant correlations after multiple
comparison correction was applied. Recently, Foley et al. (2017)
showed that there is a reduction in the FA of the right cingulum
and a decrease in the left hippocampal volume of young adults
at genetic risk of developing AD. In this context, our results
imply that those alterations do not translate into changes in
the structural brain networks and subnetworks of those young
adults. We note, however, that the participants in that study
included participants that were a few years older compared to
those in our study.

The correlations observed in our analysis are small, in the
range of 0.14–0.19 (in absolute value). This is to be expected,
given that the cohort of our study consisted of young adults with
normal brain function.

We note that the summary statistics used in PRS analysis
were taken from a large discovery sample reported in the
latest GWAS meta-analysis (Kunkle et al., 2019). Therefore,
our risk estimates for AD loci are the best available. We
computed PRS in our sample manually in PLINK, rather
than using automated PRS tools. This gives us the ability to
specify several exact parameters which can be difficult with
automated PRS tools. Furthermore, these automatic tools have
precalculated SNPs linkage disequilibrium scores. They often
use only 1 million SNPs, whereas the current GWASes have
4–8 million SNPs available. Our study employed a relatively
large sample size comprising participants of the same age
(19.81 ± 0.02 years old), therefore avoiding the confound
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of brain changes that are age related, and which are known
to exist in young adults up to the age of at least 25 years.
Furthermore, our study is the first to use disease pathway
PRS to explore associations between biological pathways and
underlying differences in structural brain connectivity. We
used two different edge weights, NS and FA, in our analysis.
These metrics are the most widely used in the literature to
weigh the edges of structural networks. It is worth pointing
out that some graph theoretical metrics are dependent on the
choice of edge weighting (such as the clustering coefficient and
the nodal strength), while others are not (such as the node
degree). Furthermore, we could have calculated correlations for
other graph theoretical metrics, however, we chose to limit our
choice as described in the “Materials and Methods” section,
in order to avoid multiple comparison corrections forcing
us to reject results that are truly statistically significant. We
also note that changes in the topological properties of brain
networks can be complex and due to a number of factors,
such as, for example, volumetric changes, which could exhibit
themselves as altered connectivity. Regarding the pathway-
specific PRS, the accuracy of our results is limited by the current
knowledge of pathway variants. Additionally, our study involved
a geographically limited sample in which men are slightly over-
represented. Therefore, our results may not be representative
of the general population. We note that the AAL atlas that
we used is one of a few atlases that could have been used to
conduct the analysis. Recent studies have shown how results
from tractography studies could be dependent on the choice of
atlas (Parker et al., 2014). Finally, participants of non-European
ethnicity were excluded from the analysis because polygenic
score analyses in populations with high genetic admixture are
not valid. Even small differences in population genetics may lead
to distinctive linkage disequilibrium (LD) structure and allele
frequencies (Moskvina et al., 2010). Pruning, an essential part
of PRS calculation, relies on LD structure to retain SNPs that
are most associated with a trait while removing others that are
closely linked. Where LD structure diverges, alternative SNPs
will be selected. This means that ethnicity admixture must be
avoided and comparisons between population groups using PRS
are not valid. This further implies that the findings of our study
may not generalize to other ethnicities. Around 2% of ALSPAC
participants were non-white (Fraser et al., 2013).

Conclusion

Our results demonstrate that genetic burden is linked to
changes in structural brain networks, both for the whole-brain
connectome and the visual subnetwork, in young adults. The
genome-wide PRS including APOE was linked to a reduction
in the mean nodal strength of the visual subnetwork and of the
rich-club and feeder connections of the whole-brain network.
The plasma-lipoprotein particle assembly PRS including APOE
was linked to an increase in the betweenness centrality of

the visual subnetwork. Importantly, these relationships were
still present, albeit slightly weaker, when the APOE locus was
excluded from the analysis. This indicates that the search for
AD biomarkers can benefit from the consideration of genetic
risk above and beyond APOE. Different biomarkers could
point to different pathway involvement, which could allow
clinical trials to stratify patients accordingly. Specifically for
the pathway-specific PRS, it is not currently known exactly
how these biological processes relate to brain networks, and
this is incredibly complicated to decipher. As such, this work
points to possible directions that researchers can look into
in future studies.
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