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reflected hydrological conditions irrespective of land 
cover. These results show how some organic matter 
fractions in streams are sensitive to hydrological con-
ditions, illustrating how wetter climates will influence 
FPOM exports. Nevertheless, riparian broadleaves 
have the potential to offset climatic effects on organic 
matter processing in headwaters through the replen-
ishment and retention of CPOM.

Keywords Adaptation · Climate change · Land 
use · Leaf litter · Nature-based solutions · Small water 
bodies

Introduction

Climate change poses major threats to global biodi-
versity and ecological functioning, with rivers among 
the most sensitive of all ecosystems (Ormerod, 2009). 
Many freshwater organisms are affected by thermal 
and hydrological regimes either directly, indirectly 
through resource availability, or through interactions 
between climatic effects and other stressors (Wood-
ward et  al., 2010). Among river types, headwater 
streams (first to third order) are at particular risk to 
changing temperature and precipitation because of 
their low thermal mass and rapid response to hydro-
logical events (Gomi et  al., 2002; Caissie, 2006). 
Headwaters are also the most extensive small water 
bodies in temperate landscapes because of their dis-
proportionately large contribution to total river length 

Abstract Climate change could alter fluxes of 
organic matter and macronutrients through freshwa-
ter ecosystems potentially affecting stream organ-
isms. However, riparian controls on litter dynamics 
offer an opportunity to adapt headwaters to climate 
change by protecting or restoring riparian vegetation. 
We assessed how riparian land cover and climatic 
variability affected the supply, retention and down-
stream transport of particulate organic matter (POM) 
in headwaters—the most extensive small water bod-
ies in temperate landscapes. Leaf litter inputs, benthic 
stocks and suspended organic matter were measured 
nominally monthly in second–third-order streams 
draining broadleaf woodland, conifer, acid moorland 
and circumneutral moorland over four years with 
varying discharge. Streams draining broadleaf wood-
land received more leaf litter from the riparian zone 
than conifer and moorland and transported higher 
concentrations of CPOM and FPOM at base flows. 
Broadleaf sites had higher CPOM stocks, even after 
hydrological events that reduced CPOM in conifer 
and moorland sites. In contrast, FPOM dynamics 

Guest editors: Mary Kelly-Quinn, Jeremy Biggs,  
J. Iwan Jones & William D. Riley / Small Water Bodies  
in the Landscape

M. C. Pye · I. P. Vaughan · S. J. Ormerod (*) · I. Durance 
Water Research Institute, Cardiff School of Biosciences, 
Cardiff University, Sir Martin Evans BuildingMuseum 
Avenue, Cardiff CF10 3AX, UK
e-mail: ormerod@cardiff.ac.uk

http://orcid.org/0000-0002-7263-3822
http://orcid.org/0000-0002-8174-302X
http://orcid.org/0000-0002-4138-3349
http://crossmark.crossref.org/dialog/?doi=10.1007/s10750-022-05084-4&domain=pdf


 Hydrobiologia

1 3
Vol:. (1234567890)

(Biggs et al., 2017; Riley et al., 2018). Already, head-
waters at higher latitudes and altitudes show evi-
dence of increasing discharge in winter, increased 
frequency of hydrological events (Birsan et al., 2005; 
Dixon et al., 2006; Hannaford & Marsh, 2006; Marsh 
& Dixon, 2012), earlier spring snowmelt (Kormann 
et al., 2015) and rapid warming (Hassan et al., 2005). 
Evidence of concomitant biological change is also 
emerging (Durance & Ormerod, 2007), although 
the exact causes are unclear (Cahill et al., 2012) and 
likely to reflect complex mechanisms that include 
direct physiological effects on individual taxa as well 
as indirect effects on organisms, processes and func-
tions (e.g., Durance and Ormerod, 2010).

Given their importance as biodiversity hotspots 
(Meyer et al., 2007; Finn et al., 2011), their value as 
‘sentinel systems’ (Perkins et al., 2010), and their role 
as sources of water, organic matter and macronutri-
ents for downstream ecosystems (Wipfli et al., 2007; 
Battin et al., 2008), there is a need to understand how 
headwaters respond to climate change and varia-
tion (Riley et al., 2018). One potential mechanism is 
through changes in the amount, composition, timing, 
flux or retention of key basal resources that normally 
support biological production (Verdonschot & van 
den Hoorn, 2010; Kominoski & Rosemond, 2012). 
Like many ecosystems (Polis et al., 1997), headwaters 
are fuelled by resources from outside their bounda-
ries, as well as by in  situ primary production. In 
upland streams, these ‘resource subsidies’ are largely 
composed of terrestrial detritus, mostly leaf litter 
from riparian vegetation, whose availability could 
be sensitive to changes in stream flow and thermal 
regimes. For example, temperatures affects the sea-
sonality and timing of leaf fall (Duputié et al., 2015; 
Sanpera-Calbet et al., 2016), while warming acceler-
ates the biological decomposition of leaves in ways 
that vary among species (Graça et al., 2015; Follstad 
Shah et  al., 2017). Additionally, leaf litter retention 
decreases with increasing discharge ( Webster et al., 
1987; Pretty & Dobson, 2004; Koljonen et al., 2012), 
while the majority of annual litter export occurs dur-
ing storm events (Webster et al., 1987; Johnson et al., 
2006; Richardson et al., 2009a; Eggert et  al., 2012). 
These effects raise the possibility that leaf litter in 
headwaters may be depleted more rapidly as tem-
peratures rise and as the hydrological cycle intensi-
fies (Acuña & Tockner, 2010; Heartsill-Scalley et al., 
2012).

As well as understanding potential climatic influ-
ences on litter fluxes in headwaters, there is an 
opportunity to consider whether factors affecting 
litter inputs and dynamics could offer a means of 
managing climate change impacts. Interest in such 
‘nature-based solutions’ to address environmental 
stressors is growing rapidly (Murphy et  al., 2021; 
Seddon et al., 2020). For example, the restoration or 
planting of riparian trees is advocated as an adap-
tive management strategy to mitigate the effects of 
land use and climate change on stream ecosystems 
(e.g., Abell et  al., 2007; Ormerod, 2009; Palmer 
et al., 2009; Seavy et al., 2009). Specifically, ripar-
ian trees moderate hydrological (Bradshaw et  al., 
2007) and thermal extremes in streams (Broad-
meadow et  al., 2011; Garner et  al., 2015), reduce 
sediment and nutrient inputs (Broadmeadow & Nis-
bet, 2004; Sweeney et  al., 2004), increase aquatic 
and terrestrial biodiversity (Naiman et  al., 1993; 
Suurkuukka et  al., 2014) and increase in-stream 
habitat diversity through inputs of woody debris 
(Naiman & Décamps, 1997; Gurnell et  al., 2002). 
However, benefits might also arise through ripar-
ian controls on litter stocks and secondary produc-
tion (Thomas et  al., 2016) with associated value 
to food web structure (Polis et  al., 1997), habitat 
structure (Moore et al., 2004) and ecosystem stabil-
ity (Rooney et  al., 2006). Indeed, a wealth of evi-
dence demonstrates the importance of detritus in 
subsidising recipient food webs in forested head-
water streams (e.g., Fisher and Likens, 1973; Benke 
et al., 1984; Wallace et al., 1999, 2015) and increas-
ingly also even in open-canopy streams where detri-
tal inputs here are comparatively low (e.g., Men-
ninger and Palmer, 2007; Leberfinger et  al., 2011; 
Dekar et  al., 2012). The significance of detritus in 
headwaters is reflected in the trait diversity among 
aquatic invertebrates such that some taxa ‘shred’ 
coarser particles of organic matter (CPOM) while 
others ‘collect’ or ‘filter’ the smaller, more labile 
particles of fine particulate organic matter (FPOM) 
(Cummins et  al., 1989). In combination with bac-
terial and fungal breakdown, these processes trans-
fer energy and nutrients from detritus to higher 
trophic levels and to other downstream consumers. 
Interactions between climatic and land use controls 
on organic matter inputs and fluxes through head-
waters are therefore likely to have wide ranging 
consequences both locally and beyond headwater 
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boundaries (Wipfli et  al., 2007; Richardson et  al., 
2010; Scharnweber et  al., 2014; Jonsson et  al., 
2015).

Despite the potential importance of interactions 
between climate and riparian land use in mediat-
ing the dynamics of organic matter dynamics in 
headwaters, understanding is currently rudimen-
tary despite decades of research focus (Tank et al., 
2010). Recent attempts to model organic matter 
dynamics under future climate or riparian manage-
ment scenarios have been limited by gaps in empiri-
cal evidence and process-based understanding (e.g., 
Richardson et al., 2009a; Acuña and Tockner, 2010; 
Stenroth et  al., 2014). To date, most field-based 
studies on organic matter dynamics have involved 
short timescales (~ 1  year, e.g., Abelho & Graça, 
1996; González and Pozo, 1996; Cariss and Dob-
son, 1997; Pozo et al., 1997), or small spatial scales 
(~ 1 study site e.g., Molinero and Pozo, 2004; Mollá 
et al., 2006; Wallace et al., 2015). Long-term, field-
based studies conducted over multiple catchments 
with contrasting land use are therefore a priority.

In this paper, we assess whether riparian broad-
leaved woodlands can offset the effects of climate-
driven changes in flow regimes on organic matter 
dynamics in headwaters by comparing the inputs, 
availability and exports of particulate organic mat-
ter with adjacent conifer and moorland streams. 
Specifically, variations in organic matter inputs, 
benthic standing stocks, and suspended concentra-
tions were measured over four years in headwater 
streams with contrasting riparian land cover types in 
central Wales, UK, to test the following predictions:

1. In all land cover types, organic matter storage and 
downstream transport are driven by hydrological 
conditions, with wetter conditions resulting in 
reduced standing stocks and enhanced export.

2. Despite hydrological effects, streams draining 
broadleaved woodlands receive, store and trans-
port greater quantities of particulate organic mat-
ter by comparison with conifer and moorland 
streams.

The second of these predictions, if upheld, has 
particular importance for the role of riparian broad-
leaved woodlands in climate change management.

Materials and methods

Study sites and overall experimental design

The study was conducted in eight second- to third-
order streams (catchment area 17–264 ha), located in 
the headwaters of the Afon Tywi, within the Llyn Bri-
anne Stream Observatory (LBSO; https:// www. cardi 
ff. ac. uk/ llyn- brian ne- obser vatory) in central Wales, 
UK (52°8’N 3°45’W; Fig. 1; see Durance & Ormerod 
(2007) and Weatherley & Ormerod (1987) for full site 
details). The sites have a long history in global change 
research on a range of themes (Durance & Ormerod, 
2007; Larsen et al., 2018). Regional climate is mari-
time and temperate, with mean daily stream temper-
atures between 0.5 and 16°C and annual mean rain-
fall ca. 1900  mm (Weatherley & Ormerod, 1990). 
The sites were chosen at the project’s outset in 1981 
to represent typical classes of land cover that occur 
across upland Britain, and were categorised on the 
dominant vegetation within 10  m of the stream 
bank as broadleaved woodland (Blf; site codes ‘G1’ 
and ‘G2’, mostly oaks Quercus  robur L.  and birch 
Betula pendula Roth), conifer plantation (Con; site 
codes ‘L1’ and ‘L2’ mostly Sitka spruce Picea sitch-
ensis (Bong) Carr.  and lodgepole pine Pinus con-
torta Douglas), acid moorland (AM; site codes ‘C1’ 
and ‘C4’) and circumneutral moorland (CM; site 
codes ‘L6’ and ‘L7’). Although acid and circumneu-
tral moorland streams are similar in catchment land 
classification, they differ in acid–base status because 
of local calcite veins, while there is also increased 
cover of bracken Pteridium aquilinum (L.) Kuhn with 
occasional mountain ash Sorbus aucuparia L.,  wil-
low Salix spp and hawthorn Cretaegus monogyna 
Jacq. over the brown earth soils at the CM sites. The 
AM sites, in contrast, have more purple moor-grass 
Molinia caerulea (L.) Moench over peaty gley soils. 
All study sites were located within 10  km of each 
other ensuring that climatic conditions were similar.

For logistical reasons reflecting the intensity of 
work required in assessing litter dynamics, we con-
centrated effort on one ‘core’ site from each land use 
category (C4, G1, L1 and L6) while ensuring some 
replication for less intensive measurements (C1, G2, 
L2, L7). Over four years between November 2010 
and September 2014, inputs of leaf litter, benthic 
standing stocks of CPOM and FPOM, and suspended 
concentrations of CPOM and FPOM (hereafter “leaf 

https://www.cardiff.ac.uk/llyn-brianne-observatory
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litter inputs”, “CPOM/FPOM standing stocks” and 
“CPOM/FPOM concentrations”, respectively) were 
measured at monthly-bimonthly intervals in the four 
“core” catchments. Leaf litter inputs were measured 
during three periods of broadleaf litterfall and move-
ment (November, late December, January/February). 
CPOM/FPOM standing stocks and concentrations 
were measured monthly/bimonthly depending on 
weather and flow conditions. CPOM/FPOM was sam-
pled at 35 dates; on average, 8–9 dates were sampled 
every year. Standing stocks were measured in all eight 
catchment (i.e., two per land use type) from October 
2011 onwards.

Stream discharge measurements

Stream discharge  (m3  s−1) was recorded at 15-min 
intervals at one of the study sites, L1 (data sup-
plied by Natural Resource Wales from 1991; Station 
number 060S0589W), and was assumed to reflect 

relative flow conditions for all sites as well as wider 
hydro-climatic conditions. These assumptions were 
supported by (i) comparisons between stream flow 
measured at L1 and regional rainfall data (Fig.  2) 
and (ii) long-term observations of stream flow at sev-
eral nearby catchments of identical order and similar 
altitude that show clear similarities in relative flow 
regimes (Marc & Robinson, 2007). Thus, discharge 
measured continuously by the UK Centre for Ecol-
ogy and Hydrology on Plynlimon, 37 km to the north 
(Plynlimon flume; 52°28·14′ N, 3°41·16′ W), and at 
a gauged site on the Afon Cothi, 20 km to the south 
west (51°51·37′ N, 4°11·00′ W), correlated highly 
significantly with measured values at Llyn Brianne 
(r = 0·90, n = 289 monthly mean values, P < 0·0001).

Organic matter sampling and laboratory methods

Direct and indirect inputs of leaf litter were estimated 
on each occasion using separate proxy measurements 

Fig. 1  Locations of the eight study streams within the Llyn Brianne Stream Observatory in central Wales, UK. Major river systems 
are labelled. Images adapted from Edwards et al. (1990) and Broadmeadow and Nisbet (2002)
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of the mass and movement of leaf litter. Direct inputs 
(i.e., vertical inputs of leaf litter falling directly into 
the stream from the overhead canopy) were estimated 
by collecting all non-woody leaf litter from each of 
four 0.42  m2 marked plots (cleared of all loose mate-
rial one month prior to the first collection), which 
were positioned on the ground approximately 1  m 
from the stream bank, 10 m apart, along each stream 
bank (n = 8 ‘proximal plots’ per site). This posi-
tion reflected a trade-off between the quadrats being 
placed close enough to the stream to represent likely 

inputs and the risk of samples being lost during storm 
events. Note, also, that the Brianne streams are mostly 
0.5–2 m in width, so that lateral variations in direct 
litterfall into the streams are likely to be small. Litter 
samples were air-dried in the laboratory and weighed 
to the nearest 0.01 g. To correct for any losses of leaf 
litter from each plot, set numbers of painted leaves 
were placed in adjacent 0.42  m2 plots on each sam-
pling occasion. Painted leaves were used as markers 
of leaf residence and throughout, and the proportion 
of remaining painted leaves collected and recorded 
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Fig. 2  Hydrological conditions over the study period, 2010–
2014 and comparisons with long-term records, 1910–2014, 
at the local (study site L1, Llyn Brianne Stream Observa-
tory, mid-Wales, UK) and regional (Wales, UK) scale. Figure 
a shows 15-min stream discharge  (m3  s−1) at L1 during the 
study period October 2010 to September 2014. Horizontal 
dashed line and shaded band, respectively, depict the overall 
mean and range of stream flows under which organic matter 
sampling took place. Figure b–c shows seasonal anomalies in 
(b) regional rainfall and c local stream flow, respectively, dur-
ing the study period October 2010 to September 2014 (cor-
responding to the shaded areas in (d)). Seasonal anomalies 

represent differences in average seasonal rainfall or discharge 
from 1996 to 2010 averages. Seasonal averages are calcu-
lated using data over a 3-month period for Autumn (A; Sep–
Oct–Nov), Winter (W; Dec–Jan–Feb), Spring (S; Mar–Apr–
May) and Summer (S; Jun–Jul–Aug). Figure d shows annual 
(= Oct–Sept) anomalies in regional rainfall during 1910–2014. 
Blue and red dotted lines denote maximum and minimum val-
ues, respectively. Black dotted line denotes moving 10-year 
average. Regional rainfall data provided by © UK Meteoro-
logical Office; L1 stream discharge data provided by Natural 
Resources Wales (© Natural Resources Wales and database 
right)
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on each subsequent sampling occasion. These marked 
leaves included the dominant species present in each 
catchment (acid moorland = purple moor-grass); 
broadleaf woodland = common oak; conifer for-
est = Sitka spruce). The mass of leaf litter samples in 
each distal plot was then divided by the proportion 
of painted leaves remaining and the number of days 
since the last sampling occasion to estimate the mass 
per unit area of direct leaf litter input per day for each 
sampling period.

Indirect inputs (i.e., leaf litter entering the stream 
indirectly via lateral movement from the stream bank; 
measured during Oct 2013–Sep 2014 only) were esti-
mated by measuring the mean distance moved (in m) 
by set numbers of painted leaves (using the same spe-
cies as in the proximal plots, see above), which were 
placed in four marked 0.42  m2 plots positioned on the 
ground approximately 10  m from the stream bank, 
10 m apart, along each stream bank (n = 8 distal plots 
per site), on each sampling occasion. The mean dis-
tance moved (m) from each distal plot was then mul-
tiplied by the mean mass of direct inputs (g  m−2 per 
day, estimated from all proximal plots) and then mul-
tiplied by 2 (two sides of stream) to estimate the mass 
of indirect leaf litter input per  m−2 per day (assuming 
a 1 m-wide stream), for each sampling occasion.

Benthic coarse and fine POM (benthic 
CPOM = non-woody detritus > 2  mm; benthic 
FPOM =  > 0.5  mm < 2  mm) was sampled on each 
occasion using a randomly positioned Hess sampler 
(n = 5 replicates per site; area 0.707  m2; mesh aper-
ture 500  µm; sampling depth 10–15  cm) and pre-
served on-site in 70% industrial methylated spirit 
(IMS; Fisher Scientific, UK). In the laboratory, all 
macroinvertebrates were removed; then, the remain-
ing sample material was rinsed under tap water to 
remove sediment and retained on graduated 0.5- and 
2-mm sieves (Endecotts Ltd., UK), air-dried and 
weighed to the nearest 0.01 g.

Suspended fine and coarse POM (suspended 
FPOM = suspended particles > 10  µm and < 1  mm; 
suspended CPOM = suspended particles > 1  mm) 
was sampled on each occasion (n = 3 replicates per 
reach) by filtering known volumes (range = 10–600 l 
as measured by repeated use of a 5  l container; 
mean = 142.6  l) of stream water through a stacked 
pair of 10  µm (fine) and 1  mm (coarse) mesh fil-
ters, with care taken not to resuspend particles from 
the stream bed. Upon collection, suspended POM 

samples were refrigerated at ~ 4  °C, returned to the 
laboratory and frozen within 24 h. Frozen suspended 
POM samples were then freeze-dried at -20  °C for 
48–72 h and weighed to the nearest 0.001 g.

Ash-free dry mass (AFDM) of all samples was 
estimated by combusting a subset (~ 1/3) of samples 
from each site at 550 °C for 5 h in a muffle furnace 
and applying ash-free conversion factors to the air-
dried mass. Leaf litter input data were expressed in g 
AFDM  m−2  day−1; CPOM and FPOM standing stock 
data were expressed in g AFDM  m−2 and suspended 
CPOM and FPOM concentration data in mg AFDM 
 l−1.

Data analysis

To determine whether quantities of leaf litter inputs, 
POM standing stocks and POM concentrations dif-
fered among riparian land cover types, each response 
variable was modelled using a linear mixed-effects 
model with ‘Land cover’ (acid moorland, broadleaf 
woodland, circumneutral moorland, conifer forest) as 
a fixed term. ‘Sampling date’ was included as a ran-
dom term in all models to account for unexplained 
temporal variation likely to affect all locations (e.g., 
seasonal variation or flow conditions). In leaf litter 
inputs models, the random term ‘Quadrat ID’ was 
crossed with ‘Sampling date’ to account for the non-
independence of samples collected from the same 
quadrate. In POM standing stock models, the ran-
dom term ‘Site’ was crossed with ‘Sampling date’ 
to account for the non-independence of samples col-
lected from the same site on each sampling occasion. 
All models were fitted using restricted maximum 
likelihood (REML) and validated by visual inspection 
of the distribution of the standardised residuals versus 
the fitted values and of the distribution of the random 
effects (Zuur et al., 2009).

To determine whether temporal variations in 
CPOM and FPOM standing stocks and concentrations 
were determined by riparian land cover and/or stream 
discharge patterns, each of the four response vari-
ables was modelled using global linear mixed-effects 
models, which were then refined using a backwards 
selection procedure (after Zuur et  al., 2009). First, 
the initial global models were fitted with ‘Riparian 
land cover, ‘Discharge’ and a two-way ‘Riparian land 
cover x Discharge’ interaction as fixed terms. Then, 
non-significant terms were removed sequentially 
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using likelihood ratio tests with maximum likeli-
hood estimation, selecting the models with the lowest 
Akaike Information Criterion (AIC) in each case until 
only significant terms remained (Zuur et  al., 2009). 
The final optimal models were then re-fitted using 
REML and their residual distributions checked (Zuur 
et al., 2009). ‘Discharge’ was represented by the mag-
nitude of antecedent high flows (‘Q5’; determined 
as stream discharge  (m3  s−1) equalled or exceeded in 
5% of the 30-day flow record prior to each sampling 
occasion) for the CPOM and FPOM standing stocks 
models, and mean discharge on the day of sampling 
(‘Q-day’; determined as mean stream discharge  (m3 
 s−1) was recorded over 24 h on the calendar date of 
sampling) for the CPOM and FPOM concentration 
models. Both discharge variables were derived from 
the 15-min discharge data recorded at L1.

In all final models, the P-values of the fixed effects 
were estimated using conditional F-tests based on 
Kenward–Roger approximation for degrees of free-
dom (Kenward & Roger, 1997), using the R package 
Pbkrtest (Halekoh & Højsgaard, 2014). In addition, 
the predictive power of the model parameters (i.e., 
marginal R2; the proportion of variance explained by 
the fixed factors alone, and conditional R2; the pro-
portion of variance explained by both the fixed and 
random factors) was estimated using the r.squared.
GLMM function in the R package MuMin (Nakagawa 
& Schielzeth, 2013; Bartón, 2015). Where necessary, 
response and explanatory variables were transformed 
to homogenise variances. All mixed models were fit-
ted using the lmer function within the lme4 package 
(Bates et al., 2015) in R (R Development Core Team, 
2016).

Results

Hydrological conditions

Over the four-year study period, stream discharge 
at the gauged index site, L1, ranged between 0.001 
and 4.080  m3   s−1 with an overall median of 0.120 
 m3   s−1 (Fig.  2a). Seasonal anomalies in stream flow 
(Fig.  2b) were similar to regional rainfall patterns 
(Fig.  2c), which in turn reflected long-term histori-
cal inter-annual variability (Fig. 2d). Relative to his-
torical averages, the first and third years of study were 
relatively dry, while the second and fourth years were 
relatively wet (Fig.  2d). The two wet years notably 
included the wettest summer and the wettest winter in 
Wales in the preceding 100 years (data not shown).

Riparian land cover and organic matter dynamics

Across all years of the study, the broadleaf woodland 
site supplied significantly greater amounts of leaf lit-
ter directly and indirectly to the associated stream 
than the acid moorland, circumneutral moorland and 
conifer forest sites, among which litter inputs were 
not distinguishable (Table 1; Fig. 3a). Standing stocks 
of CPOM and FPOM were more similar across land 
cover types (Table  1; Fig.  3b), with broadleaf sites 
storing significantly more CPOM than circumneutral 
sites but not acid moorland and conifer sites. FPOM 
followed similar patterns, though there were no sig-
nificant differences among riparian land cover types.

Concentrations of suspended CPOM and FPOM 
were significantly greater in the broadleaf stream 
than in all the other riparian land cover types 
(Table  1; Fig.  3b). Otherwise, CPOM and FPOM 

Table 1  Summary GLMM 
output for all individual 
responses to riparian land 
cover

The results of the post hoc 
tests indicate significant 
differences in rank order 
among the sites

Response Df F-value P-value Post-hoc r2
m r2

c

Input rates
Direct 3 31.82  < 0.001 Br > AM,CM,Co 0.43 0.65
Indirect 3 25.02  < 0.001 Br > AM,CM,Co 0.32 0.45
Standing stocks
CPOM 3 7.39 0.042 Br > CM 0.36 0.55
FPOM 3 3.96 0.109 – 0.25 0.60
Concentrations
CPOM 3 52.96  < 0.001 Br > AM,CM,Co 0.18 0.55
FPOM 3 106.89  < 0.001 Br > AM,CM,Co; 

AM > Co; Co > CM
0.21 0.74
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concentrations were similar among the conifer and 
moorland sites, though CPOM concentrations were 
lower in the circumneutral moorland site than the acid 
moorland site, while the conifer site had lower FPOM 
concentrations than the acid moorland site. Across all 
sites, standing stocks of POM occurred largely in the 
form of coarse particles, whereas POM in suspension 
was dominated by fine particles (Fig. 3b, c).

Hydrological conditions and organic matter dynamics

Following larger floods, benthic FPOM standing 
stocks were reduced in all land cover types, with this 
effect most pronounced in circumneutral moorland 
sites  (F3,1196.5 = 8.97, P < 0.001;  r2

m = 0.31,  r2
c = 0.61; 

Fig. 4b). In contrast, benthic CPOM standing stocks 
were reduced in streams draining all land cover types 
except broadleaf woodland  (F3,1200.3 = 5.77, P < 0.001; 
 r2

m = 0.38,  r2
c = 0.56; Fig. 4a).

Concentrations of suspended CPOM were con-
sistently reduced at higher stream discharge lev-
els  (F1,32.8 = 5.36, P = 0.027;  r2

m = 0.23,  r2
c = 0.56; 

Fig. 4c), implying dilution effects, but remained high-
est in broadleaves. For FPOM, the effect of stream 
discharge depended on land cover type, with broad-
leaf sites transporting the highest concentrations of 
FPOM at base flows, whereas concentrations were 
similar among sites at higher flows  (F3,366.1 = 3.68, 
P = 0.012;  r2

m = 0.26,  r2
c = 0.75; Fig. 4d).

Discussion

Leaf litter dynamics provide an important research 
focus in freshwater ecology, particularly set against 
the need to address climate change effects on river 
ecosystems. As a fundamental resource for temper-
ate stream organisms, the input, storage and export 
of autochthonous litter in headwaters are expected 
to be controlled hydrologically, while temperature 
also affects its breakdown (Webster et  al., 1999; 
Northington & Webster, 2017; Follstad Shah et  al., 
2017). Additionally, management proposals to reduce 
the risks of climate change to streams include the 
restoration of riparian woodlands both to moder-
ate temperatures and to enhance resource supply to 
freshwater organisms (Thomas et  al., 2016). So far, 
however, there have been few empirical compari-
sons of these effects across different riparian land 

Fig. 3  Estimated a inputs, b standing stocks and c concentra-
tions of particulate organic matter versus riparian land cover 
(Br = Broadleaf woodland; Co = Conifer forest; AM = Acid 
moorland; CM = Circumneutral moorland) for each of the four 
core streams at Llyn Brianne (all data are means with 95% 
confidence intervals)
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uses. We therefore aimed in this investigation to test 
two related hypotheses that (i) organic matter stor-
age in upland streams is reduced through downstream 
export under wetter conditions and (ii) streams drain-
ing broadleaved woodlands receive and store more 
particulate organic matter than other streams, thus 
offsetting any flow-related losses. Both hypotheses 
were supported with minor qualification: wetter peri-
ods reduced FPOM standing stocks across all land 
cover types, while CPOM stocks were reduced at 
conifer and moorland sites. In contrast, at broadleaf 
sites CPOM stocks were maintained following hydro-
logical events, losses of FPOM here were lower, and 
suspended concentrations were effectively maintained 
during high flow. Moreover, broadleaf sites received 
greater quantities of leaf litter from the riparian zone 
than conifer and moorland sites, reflected also in 
greater CPOM and FPOM in suspension at low flows. 
There was some departure from expectation in that 
variations in benthic FPOM and CPOM stocks were 
masked by inter-site variability, and only for CPOM 

were stocks greater in broadleaf than in circumneu-
tral moorland. Overall, support for the first hypothesis 
implies that any increased discharge resulting from 
climate change has the potential to reduce litter stocks 
for consumers, while general support for the second 
hypothesis illustrates further the value of riparian 
broadleaves along temperate headwaters in climate 
change adaptation (Thomas et al., 2016).

As with all field investigations, several caveats 
apply to our results. For example, we made no assess-
ments of the phenology or quality of litter inputs 
to streams, which could differ in important ways 
between native, deciduous woodlands and non-native 
conifer catchments. The life cycles of temperate 
stream organisms that rely on litter inputs are more 
likely to be attuned to the seasonality of resource 
inputs to streams in native deciduous woodland 
(Huryn & Wallace, 2000). Additionally, the quality 
of organic litter from deciduous and conifer canopies 
can differ markedly with consequences for stream 
ecosystem processes and the abundances of stream 

Fig. 4  Estimated slopes 
and 95% confidence 
intervals for modelled a 
CPOM standing stocks and 
b FPOM standing stocks 
(g AFDM  m−2) versus the 
magnitude of high flows 
(Q5: stream discharge 
exceeded 5% of the time), 
and modelled c CPOM 
concentrations and d FPOM 
concentrations (mg AFDM 
 l−1) versus mean discharge 
on the day of sampling, 
for each land cover type 
(AM = Acid moorland; 
Br = Broadleaf woodland; 
CM = Circumneutral 
moorland; Co = Conifer 
forest). Stream discharge 
variables derived from 
15-min data recorded at 
study site L1, provided by 
Natural Resources Wales ( 
© Natural Resources Wales 
and database right)
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organisms (Thomas et  al., 2016). More fundamen-
tally, rather than controlled, randomised experiments 
with replicated treatment effects, our assessments 
depended on cross-sectional analyses across a small 
number of years and a limited number of catchments 
with low replication. These limitations are inevitable 
given the ecosystem-scale processes we investigated, 
and few other studies achieve replication at catchment 
scales over prolonged timescales. At Llyn Brianne, 
also, there is some risk of spatial auto-correlation 
because catchments with the same land uses occur 
mostly in adjacent locations, although we have no 
evidence that this pattern results in significant error.

At a more detailed level, there were uncertainties 
over the exact relationship between discharge and the 
downstream fluxes of organic matter. In the absence 
of a broadleaf canopy, CPOM stocks declined at 
conifer and moorland sites following wetter peri-
ods, while FPOM declined at all sites. These results 
illustrate that downstream export at high flow was 
sufficient to reduce amounts of benthic litter at the 
whole stream scale even though concentrations of 
suspended organic matter declined as flow increased. 
Sample collection was not practicable during storm 
events, however, nor during all stages of the storm 
hydrograph. This meant that definitive input–output 
budgets for organic matter could be calculated. These 
limitations should be noted given that the majority of 
downstream organic matter transport probably occurs 
during storms (Golladay et  al., 1987; Wallace et  al., 
1995; Johnson et  al., 2006). As well as discharge 
pattern, litter dynamics in upland streams are influ-
enced by retention effects resulting from bed rough-
ness and in-stream structure created, for example, by 
debris dams and snags. This effect has been demon-
strated experimentally at Llyn Brianne (Dobson et al., 
1995), where streams draining moorland and broad-
leaves have more vegetated and woody features than 
the streams draining conifer (Rutt et  al., 1989). The 
management of litter storage would ideally take such 
effects into account as a possible additional measure 
to increase climate resilience.

Notwithstanding these limitations, our four-year 
study captured substantial variations in rainfall 
and discharge, representative of long-term pattern 
(Fig.  2). Moreover, the use of the Llyn Brianne 
Stream Observatory provides a research context 
for the study that stretches from 1981 to the pre-
sent day, and work to understand the implications 

of our findings is continuing (Durance & Ormerod, 
2007). Some of the clearest effects we observed 
were related to land use, and to the apparent effects 
of broadleaf trees in the catchments studied: broad-
leaves (i) supplied more litter to the streams than 
any other land use; (ii) stored the greatest masses of 
coarse litter in the benthos which were maintained 
after events, and (iii) produced the highest sus-
pended concentrations of FPOM and CPOM which 
were most effectively maintained during floods. All 
of these effects are likely to be important to organ-
isms dependent of benthic or suspended organic 
matter in headwaters, such as leaf shredders, detri-
tivores and filter feeders. The role of organic litter 
from riparian broadleaf trees in temperate headwa-
ters is one of the most widely recognised principles 
in stream ecology (e.g., Fisher and Likens, 1973; 
Wallace et al., 2015; Campbell et al., 1992; Delong 
and Brusven, 1994; Benfield, 1997; Hart et  al., 
2013). Not only does this organic subsidy drive 
major ecological processes through energetic trans-
fer and secondary production, but it has also shaped 
trait development in a wide range of stream organ-
isms whose feeding methods, life cycles and mor-
phology are tied to the annual input and subsequent 
processing of allochthonous litter.

In contrast, there is less recognition in climate 
change adaptation of the importance of protecting or 
restoring riparian broadleaves because of their role 
in organic subsidies (Thomas et al., 2016). Typically, 
the value of riparian trees to climate change manage-
ment is seen more from the perspective of carbon 
sequestration (i.e., climate mitigation: Dewar & Can-
nell, 1992), stream thermal damping (Broadmeadow 
et  al., 2011), reduced pollutant flux (Sweeney & 
Newbold, 2014), enhanced connectivity or landscape 
permeability to dispersing organisms (Manning et al., 
2009) and, increasingly, natural flood management 
(Kay et al., 2019). As well as confirming the potential 
adaptive value of riparian broadleaves in increasing 
litter inputs to streams that could maintain produc-
tion, our data illustrated the processes involved: in 
these upland streams broadleaves contributed litter 
to streams in roughly equal amounts between direct 
and indirect pathways, and in quantities significantly 
greater than any other site type by 2.5-4X through 
direct input and by 6-9X through indirect pathways 
(Fig. 3). These effects reflect likely overall litter pro-
duction and less ground vegetation acting as barriers 
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to lateral movement (Scarsbrook et  al., 2001; Hart 
et al., 2013).

Although the difference in inputs was not reflected 
clearly in organic matter standing stocks overall, input 
masses offer the most plausible reason to explain why 
broadleaf sites maintained higher standing stocks of 
benthic CPOM than all other land cover types follow-
ing wetter periods. Our data illustrate how catchment 
or riparian broadleaves could replenish losses during 
events through the influx of leaf litter from terrestrial 
sources, which are transported to the stream via sur-
face runoff during rainfall events (Maridet et al., 1995; 
Naiman & Décamps, 1997; Hart et al., 2013). As well 
as the quantities added, laterally transported litter may 
also be qualitatively important to consumers because 
of its higher nitrogen concentration than that of litter 
falling directly into the stream (Benson & Pearson, 
1993). We suggest that these lateral inputs provide an 
important, high-quality replenishment of resources 
that are apparently depleted in other catchment types 
(Hart et al., 2013; Riedl et al., 2013). As well as lat-
eral inputs, the re-surfacing of buried organic matter 
from the stream channel during turbulent flows could 
also replenish benthic standing stocks (Cornut et al., 
2012). In addition to having greater resource avail-
ability, streams bordered by mature broadleaved tree 
species are also likely to have a greater capacity to 
retain organic matter than their coniferous or moor-
land counterparts. This is due to the characteristics 
of the leaf litter itself (Pretty & Dobson, 2004; Quinn 
et al., 2007; Cordova et al., 2008; Hoover et al., 2010) 
and the presence of large woody retention structures 
in the form of fallen branches and mature trees, which 
together promote retention and longer-term storage, 
particularly of CPOM (e.g., Muotka and Laasonen, 
2002; Lepori et  al., 2005; Flores et  al., 2011; Egg-
ert et  al., 2012). In turn, this constant, heterogene-
ous supply of food resources is expected to sustain a 
diverse array of stream organisms (Petersen & Cum-
mins, 1974; Webster & Benfield, 1986; Moore et al., 
2004; Rooney et  al., 2006). In contrast, conifer and 
moorland streams are likely to limited by litter sup-
ply, and at Llyn Brianne also they are less retentive 
and more likely to export litter downstream at rates 
faster than can be maintained by supply (Rutt et  al., 
1989). Woody debris and litter retention could, never-
theless, be enhanced in conifer sites if riparian zones 
were appropriately managed for broadleaf tree species 
and woody debris left in place (Ormerod et al., 1993).

Conclusions

Overall, our study demonstrates an interaction 
between riparian land cover, hydrological conditions 
and organic matter dynamics in headwater catch-
ments. If organic matter supplies are limited and 
retention capacity is low, organic matter stocks in 
headwaters are likely to be depleted under wetter cli-
matic conditions. A reduction in the amount of basal 
resources retained within headwater streams, particu-
larly structurally complex resources such as particu-
late organic matter, could have ecological implica-
tions. Fewer resources at the base of the stream food 
web will ultimately reduce the amount of energy and 
matter available to be biologically processed and 
transferred to higher trophic levels (Wallace et  al., 
1997), and therefore limit overall food web produc-
tivity in the upper reaches of river networks. These 
effects might not only be local to headwater reaches, 
but could extend beyond their aquatic boundaries and 
downstream: streams, like many ecosystems, are open 
and permeable, and reciprocate subsidies to the adja-
cent terrestrial ecosystem in the form of emerging 
adult aquatic insects, which, in turn, provide impor-
tant prey items for organisms such as riparian and 
river birds (Polis et al., 2004; Marczak et al., 2007). 
While further studies are needed to investigate the 
energetic contribution of headstreams to downstream 
rivers and estuaries, there is some expectation that 
upstream contributions of organic matter can affect 
the functioning of downstream ecosystems, including 
fish production (Wipfli et al., 2007).

As an option to effectively adapt river ecosystem 
functions and services to climate change, our data are 
consistent with the notion of protecting and restoring 
tree cover in temperate headwater catchments. While 
there is a need for fuller quantification of input–out-
put budgets of organic material at catchment scales, 
on the basis of current evidence we advocate greater 
attention to headwater streams in water policies (Las-
saletta et  al., 2010; Biggs et  al., 2017). Second, we 
suggest that adaptive management actions should 
consider organic matter processes in ecosystem func-
tion and resilience, and their sensitivity to future cli-
mate. Management actions warranting attention could 
include: (1) increasing organic matter supplies to 
river networks by enhancing broadleaved tree cover in 
headwater catchments via catchment-wide tree plant-
ing; (2) increasing the retentiveness of headwaters 
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by introducing organic matter retention structures, 
such as log jams and boulders, to stream reaches; 
(3) allowing the development of mature woodlands 
along river margins to establish complex and sus-
tainable stream-riparian linkages; and (4) protecting 
existing natural woodlands in headwater catchments 
from deforestation to maintain complex ecological 
properties.
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