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Abstract. We study a relaxed version of the column-sampling problem
for the Nyström approximation of kernel matrices, where approximations
are defined from multisets of landmark points in the ambient space; such
multisets are referred to as Nyström samples. We consider an unweighted
variation of the radial squared-kernel discrepancy (SKD) criterion as a
surrogate for the classical criteria used to assess the Nyström approxi-
mation accuracy; in this setting, we discuss how Nyström samples can
be efficiently optimised through stochastic gradient descent. We perform
numerical experiments which demonstrate that the local minimisation of
the radial SKD yields Nyström samples with improved Nyström approx-
imation accuracy in terms of trace, Frobenius and spectral norms.
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1 Introduction

In Data Science, the Nyström method refers to a specific technique for the low-
rank approximation of symmetric positive-semidefinite (SPSD) matrices; see e.g.
[4,5,10,11,18]. Given an N × N SPSD matrix K, with N ∈ N, the Nyström
method consists of selecting a sample of n ∈ N columns of K, generally with
n � N , and next defining a low-rank approximation K̂ of K based on this
sample of columns. More precisely, let c1, · · · , cN ∈ R

N be the columns of K, so
that K = (c1| · · · |cN ), and let I = {i1, · · · , in} ⊆ {1, · · · , N} denote the indices
of a sample of n columns of K (note that I is a multiset, i.e. the indices of some
columns might potentially be repeated). Let C = (ci1 | · · · |cin) be the N × n
matrix defined from the considered sample of columns of K, and let W be the
n × n principal submatrix of K defined by the indices in I, i.e. the k, l entry of
W is [K]ik,il , the ik, il entry of K. The Nyström approximation of K defined
from the sample of columns indexed by I is given by

K̂ = CW†CT , (1)

with W† the Moore-Penrose pseudoinverse of W. The column-sampling problem
for Nyström approximation consists of designing samples of columns such that
the induced approximations are as accurate as possible (see Sect. 1.2 for more
details).
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1.1 Kernel Matrix Approximation

If the initial SPSD matrix K is a kernel matrix, defined from a SPSD kernel K
and a set or multiset of points D = {x1, · · · , xN} ⊆ X (and with X a general
ambient space), i.e. the i, j entry of K is K(xi, xj), then a sample of columns of
K is naturally associated with a subset of D; more precisely, a sample of columns
{ci1 , · · · , cin}, indexed by I, naturally defines a multiset {xi1 , · · · , xin} ⊆ D, so
that the induced Nyström approximation can in this case be regarded as an
approximation induced by a subset of points in D. Consequently, in the kernel-
matrix framework, instead of relying only on subsets of columns, we may more
generally consider Nyström approximations defined from a multiset S ⊆ X .
Using matrix notation, the Nyström approximation of K defined by a subset
S = {s1, · · · , sn} is the N × N SPSD matrix K̂(S), with i, j entry

[
K̂(S)

]
i,j

= kT
S (xi)K

†
SkS(xj), (2)

where KS is the n × n kernel matrix defined by the kernel K and the subset S,
and where

kS(x) =
(
K(x, s1), · · · ,K(x, sn)

)T ∈ R
n.

We refer to such a set or multiset S as a Nyström sample, and to the elements of
S as landmark points (the terminology inducing points can also be found in the
literature); the notation K̂(S) emphasises that the considered Nyström approx-
imation of K is induced by S. As in the column-sampling case, the landmark-
point-based framework naturally raises questions related to the characterisation
and the design of efficient Nyström samples (i.e. samples leading to accurate
approximations of K). In this work, for a fixed n ∈ N, we interpret Nyström sam-
ples of size n as elements of X n, and we investigate the possibility of directly
optimising Nyström samples over X n. We consider the case X = R

d, with
d ∈ N, but X may more generally be a differentiable manifold.

Remark 1. Denoting by H the reproducing kernel Hilbert space (RKHS, see e.g.
[1,14]) of real-valued functions on X associated with K, we may note that the
matrix K̂(S) is the kernel matrix defined by KS and D, with KS the reproducing
kernel of the closed linear subspace

HS = span{ks1 , · · · , ksn
} ⊆ H,

where, for t ∈ X , the function kt ∈ H is defined as kt(x) = K(x, t), for all
x ∈ X . �

1.2 Assessing the Accuracy of Nyström Approximations

In the classical literature on the Nyström approximation of SPSD matrices, the
accuracy of the approximation induced by a Nyström sample S is often assessed
through the following criteria:

(C.1) Ctr(S) =
∥
∥K − K̂(S)

∥
∥

∗, with ‖.‖∗ the trace norm;
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(C.2) CF(S) =
∥
∥K − K̂(S)‖F, with ‖.‖F the Frobenius norm;

(C.3) Csp(S) =
∥
∥K − K̂(S)

∥
∥
2
, with ‖.‖2 the spectral norm.

Although defining relevant and easily interpretable measures of the approxima-
tion error, these criteria are relatively costly to evaluate. Indeed, each of them
involves the inversion or pseudoinversion of the kernel matrix KS , with complex-
ity O(n3). The evaluation of the criterion (C.1) also involves the computation of
the N diagonal entries of K̂(S), leading to an overall complexity of O(n3+Nn2).
The evaluation of (C.2) involves the full construction of the matrix K̂(S), with
an overall complexity of O(n3 + n2N2), and the evaluation of (C.3) in addition
requires the computation of the largest eigenvalue of an N × N SPSD matrix,
leading to an overall complexity of O(n3 + n2N2 + N3). For X = R

d, the eval-
uation of the partial derivatives of these criteria (regarded as maps from X n

to R) with respect to a single coordinate of a landmark point has a complexity
similar to the complexity of evaluating the criteria themselves (and there are
in this case nd such partial derivatives). Consequently, a direct optimisation of
these criteria over X n is intractable in most practical applications.

1.3 Radial Squared-Kernel Discrepancy

As a surrogate for the criteria (C.1)–(C.3), and following the connections between
the Nyström approximation of SPSD matrices, the approximation of integral
operators with SPSD kernels and the kernel embedding of measures, we consider
the following radial squared-kernel discrepancy criterion (radial SKD, see [7,9]),
denoted by R and given by, for S = {s1, · · · , sn},

R(S) =

⎧
⎪⎨

⎪⎩

‖K‖2F − 1
‖KS‖2

F

(
N∑

i=1

n∑

j=1

K2(xi, sj)
)2

, if ‖KS‖F > 0,

‖K‖2F, otherwise,
(3)

where K2(xi, sj) stands for
(
K(xi, sj)

)2. We may note that 0 � R(S) � ‖K‖2F.
In (3), the evaluation of the term ‖K‖2F has complexity O(N2); nevertheless,
this term does not depend on the Nyström sample S, and may thus be regarded
as a constant. The complexity of the evaluation of the term R(S) − ‖K‖2F, i.e.
of the radial SKD up to the constant ‖K‖2F, is O(n2 + nN); for X = R

d,
the same holds for the complexity of the evaluation of the partial derivative
of R(S) with respect to a coordinate of a landmark point, see Eq. (5) below.
Importantly, and in contrast to the criteria discussed in Sect. 1.2, the evaluation
of the radial SKD criterion or of its partial derivatives does not involve the
inversion or pseudoinversion of the n × n matrix KS .

Remark 2. From a theoretical standpoint, the radial SKD criterion measures the
distance, in the Hilbert space of all Hilbert-Schmidt operators on H, between the
integral operator corresponding to the initial matrix K (i.e. the integral operator
defined from the kernel K and a uniform measure on D), and the projection of
this operator onto the subspace spanned by an integral operator defined from
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the kernel K and a uniform measure on S. The radial SKD may also be defined
for non-uniform measures, and the criterion in this case depends not only on S,
but also on a set of relative weights associated with each landmark point in S; in
this work, we only focus on the uniform-weight case. See [7,9] for more details. �

The following inequalities hold:

∥
∥K−K̂(S)

∥
∥
2

2
�

∥
∥K−K̂(S)

∥
∥
2

F
� R(S) � ‖K‖2

F, and
1

N

∥
∥K−K̂(S)

∥
∥
2

∗ �
∥
∥K−K̂(S)

∥
∥
2

F
,

which, in complement to the theoretical properties enjoyed by the radial SKD,
further support the use of the radial SKD as a numerically-affordable surrogate
for (C.1)–(C.3) (see also the numerical experiments in Sect. 4).

From now on, we assume that X = R
d. Let [s]l, with l ∈ {1, · · · , d}, be

the l-th coordinate of s in the canonical basis of Rd. For x ∈ X , we denote by
(assuming they exist)

∂
[l]
[s]l

K2(s, x) and ∂
[d]
[s]l

K2(s, s) (4)

the partial derivatives of the maps s �→ K2(s, x) and s �→ K2(s, s) at s and with
respect to the l-th coordinate of s, respectively; the notation ∂[l] indicates that
the left entry of the kernel is considered, while ∂[d] refers to the diagonal of the
kernel; we use similar notations for any kernel function on X × X .

For a fixed number of landmark points n ∈ N, the radial SKD criterion
can be regarded as a function from X n to R. For a Nyström sample S =
{s1, · · · , sn} ∈ X n, and for k ∈ {1, · · · , n} and l ∈ {1, · · · , d}, we denote by
∂[sk]lR(S) the partial derivative of the map R : X n → R at S with respect to
the l-th coordinate of the k-th landmark point sk ∈ X . We have

∂[sk]lR(S) =
1

‖KS‖4
F

( N∑

i=1

n∑

j=1

K2(sj , xi)

)2(

∂
[d]

[sk]l
K2(sk, sk) + 2

n∑

j=1,
j �=k

∂
[l]

[sk]l
K2(sk, sj)

)

− 2

‖KS‖2
F

( N∑

i=1

n∑

j=1

K2(sj , xi)

)( N∑

i=1

∂
[l]

[sk]l
K2(sk, xi)

)

.

(5)

By mutualising the evaluation of the terms in (5) that do not depend on k and
l, the evaluation of the nd partial derivatives of R at S has a complexity of
O(

(d + 1)(n2 + nN)
)
; by contrast (and although the pseudoinversion of KS can

be mutualised), evaluating the nd partial derivatives of the trace criterion has a
complexity of O(

d(n4 + n3N)
)
.

In this work, we investigate the possibility to use the partial derivatives
(5), or stochastic approximations of these derivatives, to directly optimise the
radial SKD criterion R over X n via gradient or stochastic gradient descent; the
stochastic approximation schemes we consider aim at reducing the burden of the
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numerical cost induced by the evaluation of the partial derivatives of R when N
is large.

The document is organised as follows. In Sect. 2, we discuss the convergence
of a gradient descent with fixed step size for the minimisation of R over X n.
The stochastic approximation of the gradient of the radial SKD criterion (3) is
discussed in Sect. 3, and some numerical experiments are carried out in Sect. 4.
Section 5 consists of a concluding discussion, and the Appendix contains a proof
of Theorem 1.

2 A Convergence Result

We use the same notation as in Sect. 1.3 (in particular, we still assume that
X = R

d), and by analogy with (4), for s and x ∈ X , and for l ∈ {1, · · · , d},
we denote by ∂

[r]
[s]l

K2(x, s) the partial derivative of the map s �→ K2(x, s) with
respect to the l-th coordinate of s. Also, for a fixed n ∈ N, we denote by ∇R(S) ∈
X n = R

nd the gradient of R : X n → R at S; in matrix notation, we have

∇R(S) =
((∇s1R(S)

)T
, · · · ,

(∇s1R(S)
)T

)T

,

with ∇sk
R(S) =

(
∂[sk]1R(S), · · · , ∂[sk]dR(S)

)T ∈ R
d for k ∈ {1, · · · , n}.

Theorem 1. We make the following assumptions on the squared-kernel K2,
which we assume hold for all x and y ∈ X = R

d, and all l and l′ ∈ {1, · · · , d},
uniformly:

(A.1) there exists α > 0 such that K2(x, x) � α;
(A.2) there existsM1 > 0 such that

∣
∣∂[d]

[x]l
K2(x, x)

∣
∣ � M1 and

∣
∣∂[l]

[x]l
K2(x, y)

∣
∣ � M1;

(A.3) there exists M2 > 0 such that
∣
∣∂[d]

[x]l
∂
[d]
[x]l′

K2(x, x)
∣
∣ � M2,

∣
∣∂[l]

[x]l
∂
[l]
[x]l′

K2

(x, y)
∣
∣ � M2 and

∣
∣∂[l]

[x]l
∂
[r]
[y]l′

K2(x, y)
∣
∣ � M2.

Let S and S ′ ∈ R
nd be two Nyström samples; under the above assumptions, there

exists L > 0 such that
∥
∥∇R(S) − ∇R(S ′)

∥
∥ � L

∥
∥S − S ′∥∥

with ‖.‖ the Euclidean norm of Rnd; in other words, the gradient of R : Rnd → R

is Lipschitz-continuous with Lipschitz constant L.

Since R is bounded from below, for 0 < γ � 1/L and independently of
the considered initial Nyström sample S(0), Theorem 1 entails that a gradient
descent from S(0), with fixed stepsize γ for the minimisation of R over X n,
produces a sequence of iterates that converges to a critical point of R. Barring
some specific and largely pathological cases, the resulting critical point is likely
to be a local minimum of R, see for instance [12]. See the Appendix for a proof
of Theorem 1.
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The conditions considered in Theorem1 ensure the existence of a general Lip-
schitz constant L for the gradient of R; they, for instance, hold for all sufficiently
regular Matérn kernels (thus including the Gaussian, or squared-exponential,
kernel). These conditions are only sufficient conditions for the convergence of a
gradient descent for the minimisation of R. By introducing additional problem-
dependent conditions, some convergence results might be obtained for more gen-
eral squared kernels K2 and adequate initial Nyström samples S(0). For instance,
the condition (A.1) simply aims at ensuring that ‖KS‖2F � nα > 0 for all
S ∈ X n; this condition might be relaxed to account for kernels with vanishing
diagonal, but one might then need to introduce ad hoc conditions to ensure that
‖KS‖2F remains large enough during the minimisation process.

3 Stochastic Approximation of the Radial-SKD Gradient

The complexity of evaluating a partial derivative of R : X n → R is O(n2 +
nN), which might become prohibitive for large values of N . To overcome this
limitation, stochastic approximations of the gradient of R might be considered
(see e.g. [2]).

The evaluation of (5) involves, for instance, terms of the form
∑N

i=1 K2(s, xi),
with s ∈ X and D = {x1, · · · , xN}. Introducing a random variable X with
uniform distribution on D, we can note that

N∑

i=1

K2(s, xi) = NE
[
K2(s,X)

]
,

and the mean E[K2(s,X)] may then, classically, be approximated by random
sampling. More precisely, if X1, · · · ,Xb are b ∈ N copies of X, we have

E
[

K2(s, X)
]

=
1

b

b∑

j=1

E
[

K2(s, Xj)
]

and E
[

∂
[l]

[s]l
K2(s, X)

]

=
1

b

b∑

j=1

E
[

∂
[l]

[s]l
K2(s, Xj)

]

,

so that we can easily define unbiased estimators of the various terms appearing
in (5). We refer to the sample size b as the batch size.

Let k ∈ {1, . . . , n} and l ∈ {1, . . . , d}; the partial derivative (5) can be rewrit-
ten as

∂[sk]lR(S) =
T 2
1

‖KS‖4F
Υ (S) − 2T1T

k,l
2

‖KS‖2F
,

with T1 =
∑N

i=1

∑n
j=1 K2(sj,xi) and T k,l

2 =
∑N

i=1 ∂
[l]
[sk]l

K2(sk, xi), and

Υ (S) = ∂
[d]
[sk]l

K2(sk, sk) + 2
n∑

j=1,
j �=k

∂
[l]
[sk]l

K2(sk, sj).
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The terms T1 and T k,l
2 are the only terms in (5) that depend on D. From a

random sample X = {X1, · · · ,Xb}, we define the unbiased estimators T̂1(X) of
T1, and T̂ k,l

2 (X) of T k,l
2 , as

T̂1(X) =
N

b

n∑

i=1

b∑

j=1

K2(si,Xj), and T̂ k,l
2 (X) =

N

b

b∑

j=1

∂
[l]
[sk]l

K2(sk,Xj).

In what follows, we discuss the properties of some stochastic approximations of
the gradient of R that can be defined from such estimators.

One-Sample Approximation. Using a single random sampleX={X1, · · · ,Xb}
of size b, we can define the following stochastic approximation of the partial
derivative (5):

∂̂[sk]lR(S;X) =
T̂1(X)2

‖KS‖4F
Υ (S) − 2T̂1(X)T̂ k,l

2 (X)
‖KS‖2F

. (6)

An evaluation of ∂̂[sk]lR(S;X) has complexity O(n2 + nb), as opposed to
O(n2 + nN) for the corresponding exact partial derivative. However, due to
the dependence between T̂1(X) and T̂ k,l

2 (X), and to the fact that ∂̂[sk]lR(S;X)
involves the square of T̂1(X), the stochastic partial derivative ∂̂[sk]lR(S;X) will
generally be a biased estimator of ∂[sk]lR(S).

Two-Sample Approximation. To obtain an unbiased estimator of the partial
derivative (5), instead of considering a single random sample, we may define
a stochastic approximation based on two independent random samples X =
{X1, · · · ,XbX} and Y = {Y1, · · · , YbY}, consisting of bX and bY ∈ N copies of
X (i.e. consisting of uniform random variables on D), with b = bX + bY. The
two-sample estimator of (5) is then given by

∂̂[sk]lR(S;X,Y) =
T̂1(X)T̂1(Y)

‖KS‖4F
Υ (S) − 2T̂1(X)T̂ k,l

2 (Y)
‖KS‖2F

, (7)

and since E
[
T̂1(X)T̂1(Y)

]
= T 2

1 and E
[
T̂1(X)T̂ k,l

2 (Y)
]

= T1T
k,l
2 , we have

E

[
∂̂[sk]lR(S;X,Y)

]
= ∂[sk]lR(S).

Although being unbiased, for a common batch size b, the variance of the two-
sample estimator (7) will generally be larger than the variance of the one-sample
estimator (6). In our numerical experiments, the larger variance of the unbiased
estimator (7) seems to actually slow down the descent when compared to the
descent obtained with the one-sample estimator (6).

Remark 3. While considering two independent samples X and Y, the two terms
T̂1(X)T̂1(Y) and T̂1(X)T̂ k,l

2 (Y) appearing in (7) are dependent. This dependence
may complicate the analysis of the properties of the resulting SGD; nevertheless,
this issue might be overcome by considering four independent samples instead
of two. �
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4 Numerical Experiments

Throughout this section, the matrices K are defined from multisets D =
{x1, · · · , xN} ⊂ R

d and from kernels K of the form K(x, t) = e−ρ‖x−t‖2
, with

ρ > 0 and where ‖.‖ is the Euclidean norm of Rd (Gaussian kernel). Except for
the synthetic example of Sect. 4.1, all the multisets D we consider consist of the
entries of data sets available on the UCI Machine Learning Repository; see [6].

Our experiments are based on the following protocol: for a given n ∈ N, we
consider an initial Nyström sample S(0) consisting of n points drawn uniformly
at random, without replacement, from D. The initial sample S(0) is regarded as
an element of X n, and is used to initialise a SGD (except in Sect. 4.1, where GD
is used), with fixed stepsize γ > 0, for the minimisation of R over X n, yielding,
after T ∈ N iterations, a locally optimised Nyström sample S(T ). The SGDs are
performed with the one-sample estimator (6) and are based on independent and
identically distributed uniform random variables on D (i.e. i.i.d. sampling), with
batch size b ∈ N; see Sect. 3. We assess the accuracy of the Nyström approxima-
tions of K induced by S(0) and S(T ) in terms of radial SKD and of the classical
criteria (C.1)–(C.3) (for large matrices, we only consider the trace norm). We
in parallel investigate the impact of the Nyström-sample size (Sects. 4.1 and
4.3) and of the kernel parameter (Sect. 4.2), and demonstrate the ability of the
proposed approach to tackle problems of relatively large size (Sect. 4.4).

For a Nyström sample S ∈ X n of size n ∈ N, the matrix K̂(S) is of rank
at most n. Following [4,10], to assess the efficiency of the approximation of K
induced by S, we consider the approximation factors

Etr(S) =
‖K − K̂(S)‖∗
‖K − K̂∗

n‖∗
, EF(S) =

‖K − K̂(S)‖F

‖K − K̂∗
n‖F

, and Esp(S) =
‖K − K̂(S)‖2

‖K − K̂∗
n‖2

,

(8)
where K̂∗

n denotes an optimal rank-n approximation of K (i.e. the approximation
of K obtained by truncation of a spectral expansion of K and based on n of the
largest eigenvalues of K). The closer Etr(S), EF(S) and Esp(S) are to 1, the more
efficient the approximation is.

4.1 Bi-Gaussian Example

We consider a kernel matrix K defined by a set D consisting of N = 2,000
points in [−1, 1]2 ⊂ R

2 (i.e. d = 2); for the kernel parameter, we use ρ = 1. A
graphical representation of the set D is given in Fig. 1; it consists of N indepen-
dent realisations of a bivariate random variable whose density is proportional
to the restriction of a bi-Gaussian density to the set [−1, 1]2 (the two modes of
the underlying distribution are located at (−0.8, 0.8) and (0.8,−0.8), and the
covariance matrix of each Gaussian density is I2/2, with I2 the 2 × 2 identity
matrix).
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Fig. 1. For the bi-Gaussian example, graphical representation of the path t �→ S(t)

followed by the landmark points of a Nystrom sample during the local minimisation
of R through GD, with n = 50, γ = 10−6 and T = 1,300; the green squares are the
landmark points of the initial sample S(0), the red dots are the landmark points of the
locally optimised sample S(T ), and the purple lines correspond to the paths followed
by each landmark point (left). The evolution, during the GD, of the radial-SKD and
trace criteria is also presented (right). (Color figure online)

The initial samples S(0) are optimised via GD with stepsize γ = 10−6 and for
a fixed number of iterations T . A graphical representation of the paths followed
by the landmark points during the optimisation process is given in Fig. 1 (for
n = 50 and T = 1,300); we observe that the landmark points exhibit a relatively
complex dynamic, some of them showing significant displacements from their
initial positions. The optimised landmark points concentrate around the regions
where the density of points in D is the largest, and inherit a space-filling-type
property in accordance with the stationarity of the kernel K. We also observe
that the minimisation of the radial-SKD criterion induces a significant decay of
the trace criterion (C.1).

To assess the improvement, in terms of Nyström approximation, yielded by
the optimisation of the radial-SKD, for a given number of landmark points n ∈ N,
we randomly draw an initial Nyström sample S(0) from D (uniform sampling
without replacement) and compute the corresponding locally optimised sam-
ple S(T ) (GD with γ = 10−6 and T = 1,000). We then compare R

(S(0)
)

with
R

(S(T )
)
, and compute the corresponding approximation factors with respect

to the trace, Frobenius and spectral norms, see (8). We consider three differ-
ent values of n, namely n = 20, 50 and 80, and each time perform m = 1,000
repetitions of this experiment. Our results are presented in Fig. 2; we observe
that, independently of n, the local optimisation produces a significant improve-
ment of the Nyström approximation accuracy for all the criterion considered; the
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improvements are particularly noticeable for the trace and Frobenius norms, and
slightly less for the spectral norm (which of the three, appears the coarsest mea-
sure of the approximation accuracy). Remarkably, the efficiencies of the locally
optimised Nyström samples are relatively close to each other, in particular in
terms of trace and Frobenius norms, suggesting that a large proportion of the
local minima of the radial SKD induce approximations of comparable quality.
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Fig. 2. For the bi-Gaussian example, comparison of the efficiency of the Nyström
approximations for the initial samples S(0) and the locally optimised samples S(T )

(optimisation through GD with γ = 10−6 and T = 1,000). Each row corresponds to a
given value of n; in each case m = 1,000 repetitions are performed. The first column
corresponds to the radial SKD, and the following three correspond to the approxima-
tion factors defined in (8).

To further illustrate the relationship between the radial SKD and the criteria
(C.1)–(C.3), for m = 200 random initial samples of size n = 15, we perform direct
minimisations, through GD, of the criteria R and Ctr (we consider the trace norm
as it is the less costly to implement). For each descent, we assess the accuracy of
the locally-optimised Nyström samples in terms of radial SKD and trace norm;
the results are presented in Fig. 3. We observe some strong similarities between
the radial-SKD and trace-norm landscapes, further supporting the use of the
radial SKD as a surrogate for the trace criterion (the minimisation of the radial
SKD being, from a numerical standpoint, significantly more affordable than the
minimisation of the trace norm; see Sect. 1.3).

4.2 Abalone Data Set

We now consider the d = 8 attributes of the Abalone data set. After removing
two observations that are clear outliers, we are left with N = 4,175 entries. Each
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Fig. 3. For the bi-Gaussian example, graphical representation of the paths followed
by the landmark points of a random initial sample of size n = 15 during the local
minimisations of R and Ctr through GD; the green squares are the initial landmark
points, and the red dots and orange triangles are the optimised landmark points for R
and Ctr, respectively. The solid purple lines correspond to the paths followed by the
points during the minimisation of R, and the dashed blue lines to the paths followed
during the minimisation of Ctr (left). For m = 200 random initial Nyström samples of
size n = 15, comparison of the improvements yielded by the minimisations of R and
Ctr in terms of radial SKD (middle) and trace norm (right). Each GD uses T = 1,000
iterations, with γ = 10−6 for R and γ = 8 × 10−5 for Ctr. (Color figure online)

of the 8 features is standardised such that it has zero mean and unit variance.
We set n = 50 and consider three different values of the kernel paramater ρ,
namely ρ = 0.25, 1, and 4; this values are chosen so that the eigenvalues of the
kernel matrix K exhibit sharp, moderate and shallower decays, respectively. For
the Nyström sample optimisation, we use SGD with i.i.d. sampling and batch
size b = 50, T = 10,000 and γ = 8 × 10−7; these values were chosen to obtain
relatively efficient optimisations for the whole range of values of ρ we consider.
For each value of ρ, we perform m = 200 repetitions. The results are presented
in Fig. 4.

We observe that regardless of the values of ρ and in comparison with the
initial Nyström samples, the efficiencies of the locally optimised samples in terms
of trace, Frobenius and spectral norms are significantly improved. As observed
in Sect. 4.1, the gains yielded by the local optimisations are more evident in
terms of trace and Frobenius norms, and the impact of the initialisation appears
limited.

4.3 MAGIC Data Set

We consider the d = 10 attributes of the MAGIC Gamma Telescope data set. In
pre-processing, we remove the 115 duplicated entries in the data set, leaving us
with N = 18,905 data points; we then standardise each of the d = 10 features of
the data set. For the kernel parameter, we use ρ = 0.2.
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Fig. 4. For the Abalone data set with n = 50 and ρ ∈ {0.25, 1, 4}, comparison of
the efficiency of the Nyström approximations for the initial Nyström samples S(0) and
the locally optimised samples S(T ) (SGD with i.i.d sampling, b = 50, γ = 8 × 10−7

and T = 10,000). Each row corresponds to a given value of ρ; in each case, m = 200
repetitions are performed.

In Fig. 5, we present the results obtained after the local optimisation of m =
200 random initial Nyström samples of size n = 100 and 200. Each optimisation
was performed through SGD with i.i.d. sampling, batch size b = 50 and stepsize
γ = 5 × 10−8; as number of iterations, for n = 100, we used T = 3,000, and T =
4,000 for n = 200. The optimisation parameters were chosen to obtain relatively
efficient but not fully completed descents, as illustrated in Fig. 5. Alongside the
radial SKD, we only compute the approximation factor corresponding to the
trace norm (the trace norm is indeed the least costly to evaluate of the three
matrix norms we consider, see Sect. 1.2). As in the previous experiments, we
observe a significant improvement of the initial Nyström samples obtained by
local optimisation of the radial SKD.

4.4 MiniBooNE Data Set

In this last experiment, we consider the d = 50 attributes of the MiniBooNE
particle identification data set. In pre-processing, we remove the 471 entries in
the data set with missing values, and 1 entry appearing as a clear outlier, leaving
us with N = 129,592 data points; we then standardise each of the d = 50 features
of the data set. We use ρ = 0.04 (kernel parameter).

We consider a random initial Nyström sample of size n = 1,000, and optimise
it through SGD with i.i.d. sampling, batch size b = 200, stepsize γ = 2 × 10−7;
the descent is stopped after T = 8,000 iterations. The resulting decay of the
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Fig. 5. For the MAGIC data set, boxplots of the radial SKD R and of the approxi-
mation factor Etr before and after the local optimisation via SGD of random Nyström
samples of size n = 100 and 200; for each value of n, m = 200 repetitions are performed.
The SGD is based on i.i.d. sampling, with b = 50 and γ = 5 × 10−8; for n = 100, the
descent is stopped after T = 3,000 iterations, and after T = 4,000 iterations for n = 200
(left). A graphical representation of the decay of the radial SKD is also presented for
n = 200 (right).

radial SKD is presented in Fig. 6 (the cost is evaluated every 100 iterations), and
the trace norm of the Nyström approximation error for the initial and locally
optimised samples are reported.
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Fig. 6. For the MiniBooNE data set, decay of the radial SKD during the optimisation
of a random initial Nyström sample of size n = 1,000. The SGD is based on i.i.d.
sampling with batch size b = 200 and stepsize γ = 2×10−7, and the descent is stopped
after T = 8,000 iterations; the cost is evaluated every 100 iterations.

In terms of computation time, on our machine (endowed with an 3.5 GHz
Dual-Core Intel Core i7, and using a single-threaded C implementation inter-
faced with R), for n = 1,000, an evaluation of the radial SKD (up to the constant
‖K‖2F) takes 6.8 s, while an evaluation of the trace criterion ‖K− K̂(S)‖∗ takes
6,600 s (the pseudoinverse of KS being computed in R); performing the optimi-
sation reported in Fig. 6 without checking the decay of the cost takes 1,350 s. In
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this specific setting, the full radial-SKD optimisation process is thus roughly 5
times faster than a single evaluation of the trace criterion.

5 Conclusion

We demonstrated the relevance of the radial-SKD framework for the local opti-
misation, through SGD, of Nyström samples for SPSD kernel-matrix approx-
imation. We studied the Lipschitz continuity of the underlying gradient and
discussed its stochastic approximation. We performed numerical experiments
illustrating that local optimisation of the radial SKD yields significant improve-
ment of the Nyström approximation in terms of trace, Frobenius and spectral
norms.

In our experiments, we used SGD with i.i.d. sampling, fixed stepsize and
fixed number of iterations. Although already bringing satisfactory results, to
improve the efficiency of the approach, the optimisation could be accelerated
by considering for instance adaptive stepsizes or momentum-type techniques
(see [16] for an overview), and parallelisation may be implemented. The initial
Nyström samples S(0) we considered were drawn uniformly at random without
replacement; while our experiments suggest that the local minima of the radial
SKD often induce approximations of comparable quality, the use of more effi-
cient initialisation strategies may be investigated (see e.g. [3,4,11,13,18]). To
evaluate the involved partial derivatives, we relied on analytical expressions of
the partial derivatives of the kernel; nevertheless, in cases where implementing
such analytical expressions might prove challenging, and at the cost of a loss
in computational efficiency, numerical approximation of the partial derivatives
(through finite differences for instance) may be considered.

As a side note, when considering the trace norm, the Nyström sampling prob-
lem is intrinsically related to the integrated-mean-squared-error design criterion
in kernel regression (see e.g. [8,15,17]); consequently the approach considered in
this paper may be used for the design of experiments for such models.

Acknowledgments. M. Hutchings thankfully acknowledges funding from the Engi-
neering and Physical Sciences Research Council grant EP/T517951/1. All data sup-
porting this study is openly available in the UCI Machine Learning repository at
https://archive.ics.uci.edu/.

Appendix

Proof of Theorem 1. We consider a Nyström sample S ∈ X n and introduce

cS =
1

‖KS‖2F

N∑

i=1

n∑

j=1

K2(xi, sj). (9)

In view of (5), the partial derivative of R at S with respect to the l-th coordinate
of the k-th landmark point sk can be written as

https://archive.ics.uci.edu/
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∂[sk]lR(S) = c2S

(

∂
[d]

[sk]l
K2(sk, sk) + 2

n∑

j=1,
j �=k

∂
[l]

[sk]l
K2(sk, sj)

)

− 2cS
N∑

i=1

∂
[l]

[sk]l
K2(sk, xi).

(10)
For k and k′ ∈ {1, · · · , n} with k 
= k′, and for l and l′ ∈ {1, · · · , d}, the
second-order partial derivatives of R at S, with respect to the coordinates of the
landmark points in S, verify

∂[sk]l
∂[sk]

l′ R(S) = c
2
S∂

[d]
[sk]l

∂
[d]
[sk]

l′
K

2
(sk, sk) + 2cS(∂[sk]

l′ cS)∂
[d]
[sk]l

K
2
(sk, sk)

+ 2c
2
S

n∑

j=1,
j �=k

∂
[l]
[sk]l

∂
[l]
[sk]

l′
K

2
(sk, sj) + 4cS(∂[sk]

l′ cS)

n∑

j=1,
j �=k

∂
[l]
[sk]l

K
2
(sk, sj)

− 2cS
N∑

i=1

∂
[l]
[sk]l

∂
[l]
[sk]

l′
K

2
(sk, xi) − 2(∂[sk]

l′ cS)

N∑

i=1

∂
[l]
[sk]l

K
2
(sk, xi), and

(11)

∂[sk]l
∂[s

k′ ]l′ R(S) = 2cS(∂[s
k′ ]l′ cS)∂

[d]
[sk]l

K
2
(sk, sk) + 2c

2
S∂

[l]
[sk]l

∂
[r]
[s

k′ ]l′
K

2
(sk, sk′ )

+ 4cS(∂[s
k′ ]l′ cS)
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j �=k

∂
[l]
[sk]l

K
2
(sk, sj) − 2(∂[s

k′ ]l′ cS)
N∑
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∂
[l]
[sk]l

K
2
(sk, xi),

(12)

the partial derivative of cS with respect to the l-th coordinate of the k-th land-
mark point sk is given by

∂[sk]lcS =
1

‖KS‖2
F

( N∑

i=1

∂
[l]

[sk]l
K2(sk, xi)−cS∂

[d]

[sk]l
K2(sk, sk)−2cS

n∑

j=1,
j �=k

∂
[l]

[sk]l
K2(sk, sj)

)

.

(13)
From (A.1), we have

‖KS‖2F =
n∑

i=1

n∑

j=1

K2(si, sj) �
n∑

i=1

K2(si, si) � nα. (14)
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By the Schur product theorem, the squared kernel K2 is SPSD; we denote
by G the RKHS of real-valued functions on X for which K2 is reproducing. For
x and y ∈ X , we have K2(x, y) = 〈k2

x, k2
y〉G , with 〈·, ·〉G the inner product on

G, and where k2
x ∈ G is such that k2

x(t) = K2(t, x), for all t ∈ X . From the
Cauchy-Schwartz inequality, we have

N∑

i=1

n∑

j=1

K2(sj , xi) =
N∑

i=1

n∑

j=1

〈k2
sj

, k2
xi

〉G =
〈 n∑

j=1

k2
sj

,

N∑

i=1

k2
xi

〉

G

�
∥
∥
∥
∥

n∑

j=1

k2
sj

∥
∥
∥
∥

G

∥
∥
∥
∥

N∑

i=1

k2
xi

∥
∥
∥
∥

G
= ‖KS‖F‖K‖F. (15)

By combining (9) with inequalities (14) and (15), we obtain

0 � cS � ‖K‖F
‖KS‖F � ‖K‖F√

nα
= C0. (16)

Let k ∈ {1, . . . , n} and let l ∈ {1, . . . , d}; from Eq. (13), and using inequalities
(14) and (16) together with (A.2), we obtain

|∂[sk]lcS | � M1

nα
[N + (2n − 1)C0] = C1. (17)

In addition, let k′ ∈ {1, . . . , n} \ {k} and l′ ∈ {1, . . . , d}; from Eqs. (11), (12),
(16) and (17), and conditions (A.2) and (A.3), we get

|∂[sk]l∂[sk]l′ R(S)|
� C2

0M2 + 2C0C1M1 + 2(n − 1)C2
0M2 + 4(n − 1)C0C1M1 + 2C0M2N + 2C1M1N

= (2n − 1)C2
0M2 + (4n − 2)C0C1M1 + 2N(C0M2 + C1M1), (18)

and

|∂[sk]l∂[sk′ ]l′ R(S)| � 2C0C1M1 + 2C2
0M2 + 4(n − 1)C0C1M1 + 2C1M1N

= 2C2
0M2 + (4n − 2)C0C1M1 + 2NC1M1. (19)

For k, k′ ∈ {1, . . . , n}, we denote by Bk,k′
the d × d matrix with l, l′ entry

given by (11) if k = k′, and by (12) otherwise. The Hessian ∇2R(S) can then
be represented as a block-matrix, that is

∇2R(S) =

⎡

⎢
⎣

B1,1 · · · B1,n

...
. . .

...
Bn,1 · · · Bn,n

⎤

⎥
⎦ ∈ R

nd×nd.
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The d2 entries of the n diagonal blocks of ∇2R(S) are of the form (11), and the
d2 entries of the n(n− 1) off-diagonal blocks of ∇2R(S) are the form (12). From
inequalities (18) and (19), we obtain

‖∇2R(S)‖2
2 � ‖∇2R(S)‖2

F =

n∑

k=1

d∑

l=1

d∑

l′=1

[Bk,k]2l,l′ +

n∑

k=1

n∑

k′=1,
k′ �=k

d∑

l=1

d∑

l′=1

[Bk,k′
]2l,l′ � L2,

with

L =
(
nd2[(2n − 1)C2

0M2 + (4n − 2)C0C1M1 + 2N(C0M2 + C1M1)]2

+ 4n(n − 1)d2[C2
0M2 + (2n − 1)C0C1M1 + NC1M1]2

) 1
2 .

For all S ∈ X n, the constant L is an upper bound for the spectral norm of the
Hessian matrix ∇2R(S), so the gradient of R is Lipschitz continuous over X n,
with Lipschitz constant L. ��
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