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Abstract 

Background: There is large individual variation in both clinical presentation and progression between Parkinson’s 
disease patients. Generation of deeply and longitudinally phenotyped patient cohorts has enormous potential to 
identify disease subtypes for prognosis and therapeutic targeting.

Methods: Replicating across three large Parkinson’s cohorts (Oxford Discovery cohort (n = 842)/Tracking UK Parkin‑
son’s study (n = 1807) and Parkinson’s Progression Markers Initiative (n = 472)) with clinical observational measures 
collected longitudinally over 5–10 years, we developed a Bayesian multiple phenotypes mixed model incorporating 
genetic relationships between individuals able to explain many diverse clinical measurements as a smaller number of 
continuous underlying factors (“phenotypic axes”).

Results: When applied to disease severity at diagnosis, the most influential of three phenotypic axes “Axis 1” was 
characterised by severe non‑tremor motor phenotype, anxiety and depression at diagnosis, accompanied by faster 
progression in cognitive function measures. Axis 1 was associated with increased genetic risk of Alzheimer’s disease 
and reduced CSF Aβ1‑42 levels. As observed previously for Alzheimer’s disease genetic risk, and in contrast to Par‑
kinson’s disease genetic risk, the loci influencing Axis 1 were associated with microglia‑expressed genes implicating 
neuroinflammation. When applied to measures of disease progression for each individual, integration of Alzheimer’s 
disease genetic loci haplotypes improved the accuracy of progression modelling, while integrating Parkinson’s dis‑
ease genetics did not.

Conclusions: We identify universal axes of Parkinson’s disease phenotypic variation which reveal that Parkinson’s 
patients with high concomitant genetic risk for Alzheimer’s disease are more likely to present with severe motor and 
non‑motor features at baseline and progress more rapidly to early dementia.
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Background
A critical challenge in medicine is to understand why 
the clinical presentations of each patient affected by the 
same disorder vary. This is especially true for Parkinson’s 

disease, for which the age of onset, the rate of progres-
sion, type and severity of symptoms differ across more 
than a million people worldwide living with this disease 
[1]. To accelerate the identification of disease subtypes, 
large deeply phenotyped cohorts of Parkinson’s disease 
patients have been created, in which valuable clinical, 
imaging, biosample and genetic data have been collected, 
increasingly with longitudinal monitoring [2–4].
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Recent studies exploiting these deeply phenotyped 
cohorts have classified patients into discrete phenotypic 
subgroups, each displaying a characteristic set of symp-
toms [5–7]. To define Parkinson’s disease subtypes, most 
of these studies employ some form of variable selection 
to create a distance matrix between individuals, followed 
by clustering methods such as k-means or hierarchical 
clustering. These methods provide discrete phenotypic 
groups, which are appealing in their categorical nature 
but have many shortfalls. Firstly, while selection methods 
quantify how much variance each phenotype explains, 
no robust method has defined a threshold for this meas-
ure above which a phenotype contributes to the distance 
matrix. Consequently, the definition of which phenotypes 
are essential to classify patients, and which are irrelevant 
can be somewhat arbitrary. For example, two recent stud-
ies [5, 8], using the same Parkinson’s Progression Markers 
Initiative (PPMI) cohort show divergent results: apathy 
and hallucinations were key subtype classifiers in the first 
study [8], but not in the second one [5], because these 
variables were not included. Secondly, K-means cluster-
ing requires the number of phenotypic groups to be pre-
specified, and this choice has the potential to be biased 
towards preconceived expectations with smaller groups 
ignored or erroneously joined with larger groups. Two 
studies using a k-means approach and the same cohort 
came to different conclusions. Lawton et  al. (2015) [6] 
and Lawton et al. (2018) [7] identified five and four clus-
ters, respectively, with some individuals previously in the 
same cluster moving to different clusters. This discrep-
ancy reflects that the optimal number of clusters is not 
trivial to select and different statistics used to decide on 
optimal numbers often disagree. Finally, the creation of 
discrete groups may not reflect the possibly continuous 
nature of phenotypic variability and ignores the greater 
statistical power of continuous traits.

To overcome these limitations, we propose here an 
approach focused on the continuous variation of pheno-
types. For this, we applied PHENIX (PHENotype Impu-
tation eXpediated), a multiple phenotype mixed model 
(MPMM) approach initially developed to impute miss-
ing phenotypes [9], that is employed here to perform 
genetically-guided dimensionality reduction of multiple 
clinical traits. This approach models the phenotypes as 
a combination of genetic and environmental factors, and 
the genetic component exploits the genetic relatedness 
between patients.

Applying PHENIX to the deeply phenotyped UK-
based Oxford Discovery cohort [4, 6], we identify a small 
number of axes underlying individual Parkinson’s dis-
ease patient phenotypic variation that explain the vari-
ation in the much larger number of clinically-observed 
phenotypes. We demonstrate the universality of these 

axes of phenotypic variation amongst Parkinson’s dis-
ease patients by independently deriving similar axes in 
all three deeply phenotyped cohorts, namely Tracking 
UK cohort [2], the UK Oxford Discovery cohort [4, 6] 
and lastly the US Parkinson’s Progression Markers Initia-
tive (PPMI) cohort that has a different clinical structure 
from the UK cohorts. We show that this reproducibility 
is not achieved by other commonly-used dimensionality-
reduction methods and the utility of a genetic compo-
nent. Finally, we demonstrate that the most influential 
phenotypic axis was associated with the genetic risk of 
Alzheimer’s disease and microglia-specific gene expres-
sion, suggesting Parkinson’s disease patients with a high 
genetic risk for Alzheimer’s disease are more likely to 
develop an aggressive form of Parkinson’s disease includ-
ing dementia symptoms.

Methods
Clinical cohorts
Oxford Discovery cohort
We considered 842 Parkinson’s disease cases from the 
Oxford Discovery cohort [4, 6]. Individuals were required 
to have at least 90% chance of Parkinson’s disease accord-
ing to UK-Parkinson’s disease brain bank criteria, no 
alternative diagnosis and disease duration less than 
3.5 years. All patients had a clinical assessment repeated 
every eighteen months and have been already described 
[4, 6]. Phenotype data were collected for over a hun-
dred clinical attributes, affecting autonomic, neurologi-
cal and motor phenotypes (Additional file 1: Fig S1) and 
described in the Additional file  2: Table  S1. Genotype 
data were generated using the Illumina HumanCoreEx-
ome-12 v1.1 and Illumina InfiniumCoreExome-24 v1.1 
SNP arrays. To access to the clinical data of the Oxford 
Discovery cohort [4, 6], researchers must apply to the 
Oxford Parkinson’s Disease Centre (OPDC).

Tracking UK Parkinson’s study
We considered 1807 Parkinson’s disease cases from 
the Tracking UK Parkinson’s cohort, which was already 
described in detail by Malek et al. [2] Genotype data were 
generated using the Illumina Human Core Exome array. 
To access to the clinical data of the Tracking UK cohort, 
researchers must contact Dr Donal Grosset (donaldgros-
set@gmail.com).

Parkinson’s Progression Markers Initiative cohort
The PPMI cohort (http:// www. ppmi- info. org) was already 
described in detail (including the PPMI protocol of 
recruitment and informed consent) by Marrek et al. [10]. 
We downloaded data from the PPMI database on January 
2021 in compliance with the PPMI Data Use Agreement. 
We considered 472 newly-diagnosed Parkinson’s disease 

http://www.ppmi-info.org
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subjects: subjects with a diagnosis of Parkinson’s disease 
for two years or less and who are not taking Parkinson’s 
disease medications. We used the baseline (t = 0) (Addi-
tional file 2: Table S2) and the follow-up of clinical assess-
ments. We excluded any individual with > 5% of missing 
data (437 individuals included). Participants have been 
genotyped using the NeuroX chip [11, 12]. PPMI data are 
available to the research community on the PPMI web-
site: www. ppmi- info. org.

Clinical score of severity at diagnosis and progression
The major difference between both UK cohorts and 
the PPMI cohort [10] is that the UK patients are older 
and already under medication during the recruitment 
(Table 1).

As the clinical measures can be confounded by differ-
ences in disease stage and medication status, an estimate 
of the disease severity at diagnosis as well as a measure 
of disease progression for each individual was derived 
with linear mixed effect models (LMM) by adjusting for 
different covariates. LMMs were chosen as they handle 
longitudinal data, i.e. non-independent data, allow for 
missing values and a flexible modelling of time, and can 
estimate individual trends [13]. For PPMI [10], Oxford 
Discovery [4, 6] and Tracking UK  [2]. longitudinal data 
for several clinical tests was available (Tables S1 and 
S2). The clinical tests are recoded such that higher val-
ues indicate worse performance (multiplied by − 1) and 
standardised. For each clinical test, we fitted a LMM. 
We consider an intercept and the time since diagnosis 
as random effects such that for each individual we get 
an estimate for the severity at diagnosis and the pro-
gression respectively. We further included sex (categori-
cal), education years (standardised), and age at diagnosis 
(standardised) as fixed effects. Our final model can be 
described as: clinical_assessment ~ 1 + C(sex) + educa-

tion_years + age_at_diagnosis + time_since_diagno-
sis + (1 + time_since_diagnosis | subject_id). In both 
cohorts, clinical tests were performed both medicated 
and not medicated (Additional file 1: Fig S2). We there-
fore include an additional fixed effect indicating medi-
cation usage (categorical). Inclusion criteria are having 
less than 5% of missing data and at least two visits for a 
clinical test (decided for each clinical test individually) 
and having no missing information for the random and 
fixed effects. For PPMI 472 subjects with a median of 12 
visits spanning over a mean of 5.59 years after diagnosis 
are included and for Oxford Discovery 876 subjects with 
a median of 4 visits spanning over a mean of 4.38 years 
after diagnosis are included. The goodness of fit was esti-
mated as the  R2 (e.g. for UPDRS III Additional file 1: Fig 
S3 or Additional file 2: Table S3). We noted that are not 
perfectly normally distributed as illustrated in Additional 
file 1: Fig S4. Nevertheless, we did not observe a signifi-
cant improvement of goodness after box-blot data trans-
formation so that it meets the assumption of normality. 
While we applied linear mixed models here, we acknowl-
edge the current debate over whether linear or non-linear 
mixed models best model the data [14, 15]. Individual 
estimates for disease severity at diagnosis and disease 
progression can be extracted from the random effects. 
These measures are used for further analyses. The LMMs 
were fitted with pymer4 0.7.1and the model comparison 
was done with scikit-learn 0.23.2.

Genotype: quality control and imputation
Quality control was carried out independently using 
PLINK v1.9 [16]. Imputation of unobserved and miss-
ing variants was carried out separately for each cohort 
(Supplemental Material).

Table 1 Comparison of the patient’s clinical profile in the three cohorts at recruitment

Cohort

Discovery (N = 876) Tracking (N = 1725) PPMI (N=472)

Mean Std Mean Std Mean Std

Under medication (fraction) 0.87 0.34 0.9 0.3 0.06 0.24

UPDRS I 8.75 5.02 9.21 5.35 6 4.6

UPDRS II 8.66 5.96 9.72 6.48 6.46 4.66

UPDRS III 26.46 11.3 22.85 12.3 20.74 9.72

Age (years) 67.17 9.31 67.21 9.08 61.47 9.82

Age at diagnostic (years) 65.93 9.35 65.87 9.07 61.02 9.8

Disease duration (years) 1.24 0.94 1.34 0.9 0.76 0.57

Number of clinical visits 3.61 1.17 3.59 1.04 11.14 3.58

Male (fraction) 0.64 0.48 0.65 0.48 0.65 0.48

http://www.ppmi-info.org
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Phenotypic axis
Our continuous measures of severity are based on a 
multiple phenotypes mixed model (MPMM) approach 
named PHENIX (PHENotype Imputation eXpediated) 
which includes genetic relationships between individuals 
and was designed to impute missing phenotypes [9]. To 
impute missing phenotypes, PHENIX reduces the varia-
tion within a cohort to a smaller number of underlying 
factors that are then used to predict individual miss-
ing values. Here, we exploit the identification of these 
underlying factors as providing the latent axes of patient 
variation which underlie a larger number of clinically 
observed phenotypes (Fig. 1A). The outcome is that the 
many clinical phenotypes (sometimes missing for some 
individuals) of each individual are represented through, 
i.e. their variances may be well explained by, a smaller 
number of underlying latent variables of phenotypic vari-
ation, which we name herein as phenotypic axes.

PHENIX [9] employs a Bayesian multiple-phenotype 
mixed model (MPMM), where the correlations between 
clinical phenotypes (Y) are decomposed into a genetic 
and a residual component with the following model: 
Y = U + e, where U represents the aggregate genetic 
contribution (whole genotype) to phenotypic variance 
and e is idiosyncratic noise. As the estimation of maxi-
mum likelihood covariance estimates can become com-
putationally expensive with an increasing number of 
phenotypes, PHENIX uses a Bayesian low-rank matrix 
factorization model for the genetic term U such that: 
U = Sβ, in which β is can be used to estimate the genetic 

covariance matrix between phenotypes and S represents 
a matrix of latent components that each follow ~ N (0,G) 
where G is the Estimate of Relatedness Matrix from 
genotypes. The resulting latent traits (S) are used here as 
phenotypic axes, each representing the severity of a num-
ber of non-independent clinical phenotypes. The details 
to run PHENIX and extract the phenotypic axes are given 
in the Supplemental Material.

Risk‑guided phenotypic axis
We derived a risk-guided phenotypic axis by replac-
ing the whole-genotype-relatedness genetic component 
in our MPMM by the genetic relatedness focused upon 
a specific disease/trait (Fig.  1B). To calculate a disease-
relatedness matrix, we recalculated relatedness between 
individuals using only those genetic variants (after prun-
ing) with a genome-wide association study (GWAS) 
association < 0.05, and repeated at < 0.1, with a given 
human complex trait. For different complex human 
traits with GWAS results publicly available (Additional 
file 2:Table S4), we calculated a disease relatedness gen-
otypic similarity matrix between patients that we used 
subsequently to derive phenotypic axes (Additional file 1) 
We determined statistical significance associated with 
any increase in the phenotypic variation explained by 
the new, risk-guided, phenotypic axes by deriving phe-
notypes with random SNPs sets matching the number of 
SNPs (after pruning) with p-value < 0.05 (or < 0.01). We 
calculated an empirical p-value by comparing the pheno-
typic variation explained by the risk-guided, phenotypic 

Fig. 1 Identifying the underlying phenotypic axes using a Bayesian Mixed Model that incorporates genetic similarity. a Schematic representation 
of the approach used to capture the latent axes of clinical variation in deeply phenotyped cohorts. The method (PHENIX) was initially developed to 
impute missing observations (e.g. phenotype A) according to other available observations (here B). This approach also exploits genetic relationships 
where phenotypic heritability can be used to increase imputation accuracy. Here, we identify the relationship (diagonal blue) derived by PHENIX, 
herein named phenotypic axis, to capture the clinical variation. b Workflow of the analyses performed here. In each of the three cohorts, we 
independently derived the phenotypic axes associated with the baseline clinical variation and the phenotypic axes associated with the clinical 
progression. We also derived the phenotypic axes by exploiting the full genotype available or, instead by selecting the genotype in a subset of loci 
associated with a specific disorder
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axes with the phenotypic variation explained by random 
SNPs’ phenotypic axes.

Conditional risk‑guided phenotypic axis type association 
analysis
To evaluate whether the subset of genetic variants associ-
ated with a specific disease that influences a phenotypic 
axis overlap with those influencing another disease, we 
performed GWA conditional analysis with multi-trait-
based conditional and joint analysis (mtCOJO) [17]. We 
recalculated the genetic similarity with the summary 
GWA statistic of a trait conditioned for those of another 
trait and derived the new conditional risk-guided pheno-
typic axis. After this conditional analysis, we then exam-
ined whether the proportion of the phenotypic variance 
explained decreased or not: a decreasing proportion sug-
gests that overlapping genetic variants of the two traits 
were associated with the same phenotypic axis.

Cell type association analysis
With the same approach and dataset described by Agar-
wal et  al. (2020) [18], we examined the intersection 
between Substantia nigra (SN) cell type-specific gene 
expression patterns and the genetics influencing the phe-
notypic axes to identify disease-relevant cell types in the 
brain. We performed these cell type association analyses 
using MAGMA [19].

Microglia‑specific module analysis
We used the same approach and the same dataset as 
Agarwal et  al. (2020) [18]. Briefly, a microglia-specific 
protein–protein interaction (PPI) network is built by 
identifying PPIs between genes highly expressed in the 
SN microglia. We then identified modules of highly inter-
connected genes in a microglia type-specific PPI network 
using the “cluster_louvain” function in “igraph” R package 
[20]. To functional annotate each module, we performed 
Gene Ontology (GO) enrichment analysis with topGO R 
Bioconductor package [21] by testing the over-represen-
tation of GO biological processes (GO BP) terms within 
the module gene sets using Fisher’s test. rrvgo R Biocon-
ductor package [22] was used to summarise the top 100 
enriched GO BP terms into a smaller number of repre-
sentative terms.

Results
Three continuous measures capture 75% of the clinical 
variation
Examining first a cohort of 842 Parkinson’s disease 
patients (Oxford Discovery cohort [4, 6]) which had 
been genotyped and phenotypically characterised with 
40 clinical assessments (Additional file  2: Table  S1), 
we applied the PHENIX MPMM method to identify 

underlying latent continuous phenotypic axes that 
could account for the observed clinical variation. Each 
phenotypic axis reflected a number of co-varying 
observed clinical assessments. Three phenotypic axes 
explained more than 75% of the clinical variation, spe-
cifically Axes 1, 2 and 3 explained 39.6%, 28.7% and 
6.8% of the variation respectively (Fig. 2 and Additional 
file  1: Fig S5). To examine whether similar phenotypic 
axes are obtained in different deeply phenotyped Par-
kinson’s disease cohorts, we derived phenotypic axes 
within an independent cohort of 1807 Parkinson’s dis-
ease individuals from the Tracking UK cohort [2] that 
had made similar clinical observations to the Oxford 
Discovery cohort [4, 6]. We found significant Pearson’s 
correlation coefficients between each cohort’s first 
three phenotypic axes: Axis 1 r = 0.92 (p = 3 ×  10−13), 
Axis 2 r = 0.89 (p = 4 ×  10−11), Axis 3 r = 0.72 
(p = 5 ×  10−6) (Fig.  2). Nevertheless, a major concern 
was that the identification of the same phenotypic axes 
might, at least in part, be due to the very similar struc-
ture of the clinical phenotyping between the two UK 
cohorts. To address this, we examined the independent 
US-based PPMI cohort [10] consisting of 439 sporadic 
Parkinson’s disease individuals that had been clinically 
phenotyped following a substantially different proto-
col to the UK cohorts. After deriving phenotypic axes 
in the PPMI cohort [10], we found significant similari-
ties between the first three phenotypic axes derived for 
both Oxford Discovery [4, 6] and PPMI [10] cohorts: the 
coefficients of determination (R^2) between three first 
axes across different categories of clinical phenotypes 
from each cohort were: Axis1: 0.665 (p = 0.048), Axis 
2: 0.914 (p = 0.003) and Axis 3: 0.754 (p = 0.025) (Fig. 3 
and Additional file  1: Fig S6). By deriving phenotypic 
axis in three cohorts by using only UPDRS I, II, III and 
MOCA, four clinical measures systematically recorded 
in each cohort, we found significant similarities 
between the two first phenotypic axes derived in three 
cohorts: correlation between phenotypic axis vs clini-
cal measure between Oxford Discovery cohorts (x-axis) 
vs others cohorts r = 0.92 95% [0.81–0.97]. These con-
sistent similarities in the axes of phenotypic variation 
independently derived for each of three different Par-
kinson’s disease cohorts demonstrates the universality 
of these axes of phenotypic variation amongst Parkin-
son’s patients. Finally, by comparing PHENIX with 
other methods of dimensionality reduction for the UK/
US cohort comparisons, specifically principal compo-
nent analyses (PCA), multidimensional scaling (MDS) 
and independent component analysis (ICA), only the 
phenotypic dimensions discovered by the genetically-
guided MPMM model, PHENIX, were significantly cor-
related between both cohorts. Hence, no other method 



Page 6 of 15Sandor et al. Genome Medicine          (2022) 14:129 

was able to identify similar axes of phenotypic variation 
across UK and US Parkinson’s disease cohorts (Fig. 3).

Each phenotypic axis represents a distinct set of clinical 
features
To interpret the clinical relevance of each phenotypic 
axis, we examined the correlation between individual 
clinical features and the phenotypic axes (Table  2 and 
Additional file  1: Fig S2 and Additional file  1: Fig S7). 
We observed that each phenotypic axis corresponded 
to a subset of clinical features, differing in both extents 
and directions of severity. Axis 1 represented wors-
ening non-tremor motor phenotypes, anxiety and 
depression accompanied by a decline of the cognitive 
function (Table  2). Worsening anxiety and depression 
were also features of Axis 2, in addition to increasing 
the severity of autonomic symptoms and increasing 

motor dysfunction. Axis 3 was associated with general 
motor symptom severity including rigidity, bradyki-
nesia and tremor of the whole body independently of 
non-motor features. The contribution of different phe-
notypes to these axes was therefore highly variable. 
Specific aspects of motor dysfunction were important 
factors in defining the majority of axes. Anxiety and 
depression were also relatively important features, but 
only for axes explaining the largest amounts of varia-
tion. Conversely, cognitive impairment was associated 
only with Axis 1. However, this observation must be 
weighted by the fact that cognitive impairment/demen-
tia is reported at a later disease stage and thus features 
less in recently diagnosed cases.

Although each phenotypic axis is associated with a 
distinct set of clinical features, they are not independ-
ent but instead strongly correlated (Additional file 1: Fig 

Fig. 2 Similar phenotypic axes are obtained in two deeply phenotyped Parkinson’s disease cohorts. Results were consistent in two independent 
cohorts (842 Oxford Discovery and 1807 Tracking UK patients). Examination of these two separate Parkinson’s disease cohorts, using an independent 
derivation of the phenotypic axes in each, showed significant correlations between each cohort’s first three axes. Correlations between the axes 
from each cohort are Axis 1 r = 0.92 (p = 3 ×  10–13), Axis 2 r = 0.89 (p = 4 ×  10−11), and Axis 3 r = 0.72 (p = 5 ×  10−6). The correlation coefficient 
(x‑axis) between each axis derived in each cohort (light: Oxford Discovery vs dark: Tracking UK) and each clinical observation (y‑axis) is shown. We 
represented six major categories of Parkinson’s disease symptoms by the colour of the bar plots. These categories include anxiety and depression, 
the autonomic system, cognitive functions, the motor system, the olfactory system and sleep disorders. The Unified Parkinson’s Disease Rating Scale 
(UPDRS) is a comprehensive 50‑question assessment of both motor and non‑motor symptoms associated with Parkinson’s. It includes four parts: (I) 
non‑motor experiences of daily living (II) motor experiences of daily living (III) motor examination (IV) motor complications
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S8). We find no significant relation between the pheno-
typic axes and principal components of genetic ancestry 
(Methods) suggesting that the phenotypic axes are not 
biased by the population structure (Fig S9, Additional 
file 2 :Table S5). However, as previously reported, gender 
influences clinical symptoms [4] and we also observe a 
significant association between gender and Axis 2 (Table 
S5, p = 4.5 ×  10−5).

To assess to what extent the phenotypic axes might be 
affected by the number of clinical observations, within 
the Oxford Discovery cohort [4, 6] we compared the phe-
notypic axes built on all clinical features with phenotypic 
axes generated with incomplete sets of randomly-selected 
clinical features. We observed a strong correlation 
(r > 0.8) between each of the two first phenotypic axes 

built with as few as 50% of the clinical variables and their 
respective original phenotypic axes, suggesting that these 
two axes are extremely robust in terms of the numbers 
of clinical variables considered (Additional file 1: Fig S9). 
Finally, the agreement of these phenotype axes with pre-
viously observed correlations provides further support 
for underlying biological themes, but their reinterpreta-
tion as robust continuous traits likely provides a more 
realistic approximation of how the underlying biology 
contributes, as opposed to a clustering-based cut-off for 
a phenotype. Specifically, the unimodal distribution of 
patients along these phenotypic axes (Additional file  1: 
Fig S10 and S11) suggests here that the development of 
continuous measures is more appropriate than clustering 
according to an arbitrary threshold.

Fig. 3 Other methods fail to align between different but deeply phenotyped UK and US Parkinson’s disease cohorts. We compared the ability 
of different dimensionality reduction methods (independent component analysis (ICA), multidimensional scaling (MDS), principal component 
analysis (PCA) and phenotypic axis based on the PHENIX multiple phenotype mixed model) to phenotypically align two deeply phenotyped 
Parkinson’s disease cohorts, specifically the Oxford Discovery (842 individuals) and PPMI (439 sporadic Parkinson’s disease) cohorts. The x‑axis 
and y‑axis represent the correlation coefficient between each continuous variable with clinical observation associated with a specific symptom 
category in Oxford Discovery and PPMI cohort, respectively. Each column panel and colour of points (“Axis”) represents the dimension level of each 
underlying dimension. All points on the diagonal would represent a perfect phenotypic alignment of both cohorts. We examined the relationship 
between correlation derived from both cohorts by performing a linear regression: R^2 and p correspond to the coefficient of determination and the 
p‑value respectively. Only the dimensions discovered by the MPMM model, PHENIX, show a significant relationship between both cohorts: MPMM 
phenotypic axes (R2 = 0.86, p = 2 ×  10−8), MDS (R2 = 0.11, p = 0.18), ICA (R2 = 0.17, p = 0.16) and PCA (R.2 = 0.31, p = 0.06)
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Table 2 Correlation between each axis and each clinical phenotypic measure
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The integration of genetic relationships improves 
the capture of the clinical symptoms
The PHENIX MPMM approach employed here to derive 
phenotypic axes exploits the genetic relatedness between 
individuals derived from genotypic similarity to further 
decompose random effects into kinship effects between 
individuals. In its original application to imputing miss-
ing phenotypes, PHENIX outperforms other imputation 
approaches when the heritability  (h2) of a phenotype 
increased [9]. Similarly, when randomly removing and 
re-imputing 10% of observed data, the quality of the 
imputation of Parkinson’s disease clinical assessments 
was in general better when considering the genetic relat-
edness between individuals as compared to excluding 
this information (Additional file  1: Fig S12), suggest-
ing that phenotypic axes better capture Parkinson’s dis-
ease heterogeneity when including genetic information. 
Moreover, we found a higher agreement between the 
phenotypic axes derived by integrating the genetic rela-
tionship between patients of different cohorts than when 
the phenotypic axes were derived ignoring the genetic 
relationships (Additional file  1: Fig S13). Specifically, 
the coefficient of determination reflecting the agree-
ment between the axes derived from Oxford Discovery 
[4, 6] and those derived from the PPMI [10] cohorts were 
from Axis 1 to 3, respectively: 0.665 (p = 0.048), 0.914 
(p = 0.003) and 0.754 (p = 0.025) when including the 
genetic similarity between patients as compared to 0.604 
(p = 0.069), 0.908 (p = 0.003) and 0.001 (p = 0.991) with-
out. Together, these findings demonstrate that includ-
ing genetic relationships between patients enhances the 
resulting phenotypic axes’ ability to reproducibly capture 
Parkinson’s disease clinical variation.

A high Alzheimer’s genetic score increases the risk 
of developing a more severe Parkinson’s form
To better understand the genetic risk factors influenc-
ing the phenotypic axis, we replaced the pairwise patient 
overall genotypic similarity matrix in the MPMM with 
a similarity matrix based only on regions of the genome 
associated with a specific complex human trait/disease. 
For example, replacing the overall genetic similarity with 
how similar people are in their genetic risk for diabetes or 
depression. We then rederived the phenotypic axes using 
the new metric of genetic similarity and compared the 
proportion of phenotypic variation explained by the new 
phenotypic axes, derived from different disease risks, to 
the original phenotypic axes that were derived using the 

entire genotype (Methods). Unexpectedly, the pheno-
typic axes derived using Parkinson’s disease genetic risk 
performed no better than the original phenotypic axes, 
while axes derived using the genetic risk for Alzhei-
mer’s disease or the risk for inflammatory bowel disease, 
ulcerative colitis significantly outperformed, i.e. captured 
more patient phenotypic variation than, the original prin-
cipal phenotypic Axis 1 (Fig. 4A and Additional file 1: Fig 
S14-15). Although UC and inflammatory bowel disease 
share a common genetic aetiology [23], we find no evi-
dence that the same risk variants influence Alzheimer’s 
disease, suggesting that two distinct molecular aetiolo-
gies underlie phenotypic Axis 1. Specifically, we see no 
significant reduction in the variance explained by the axis 
calculated using Alzheimer’s disease genetics variants 
conditioned on ulcerative colitis or inflammatory bowel 
disease genetics variants (Additional file 1: Fig S16). The 
APOE locus is one of the major risk loci in Alzheimer’s 
disease, but we found no evidence that Parkinson’s dis-
ease individuals carrying one of two APOE ε4 alleles have 
a significantly higher phenotypic Axis 1 score suggesting 
that the APOE locus is not a major risk locus influenc-
ing Parkinson’s disease clinical presentation (Additional 
file 1: Fig S17).

Our results imply that Parkinson’s disease patients with 
high genetic risk for Alzheimer’s disease, but except-
ing APOE, are more likely to develop a more aggressive 
form of Parkinson’s disease that includes dementia symp-
toms as indicated by Axis 1, which represents worsening 
non-tremor, motor phenotypes, anxiety and depression 
accompanied by a decline in cognitive function (Table 2 
and Fig. 2). We tested this hypothesis in the PPMI cohort 
[10] and found a significant relationship between phe-
notypic Axis 1 and the cerebrospinal fluid (CSF) Aβ1-
42 level (r2 = 0.43, p = 0.007), an Alzheimer’s-associated 
biomarker strongly associated with future conversion 
to dementia, but no correlation was observed with total 
Tau, phosphorylated Tau or Alpha-Synuclein levels 
(p > 0.05). Parkinson’s disease patients with a high score 
for phenotypic Axis 1 had a significantly lower CSF level 
Aβ1–42 [24, 25] (Fig. 4B).

To identify the pathways underlying the genetics of this 
major clinical axis, we conducted a meta-analysis for the 
genome-wide association study (GWAS) summary sta-
tistic of 4,211,937 variants across 3088 individuals from 
three cohorts (Oxford Discovery [4, 6], Tracking UK  [2] 
and PPMI [10]) (Method). In line with Alzheimer’s dis-
ease risk genetics rather than Parkinson’s disease, we 

Table 2 (continued)
A high score for a clinical measure indicates more ( +) or less (-) issue for the patient.

The correlation coefficient under and above |0.25| are indicated in gray or blue/red respectively

Red and blue cells indicates when a high phenotypic axis score are associated with more and less clinical issues for the patient respectively.
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found an association between Phenotypic Axis 1 risk 
variants and both the SN and cortex microglia-specific 
genes, which indicates that neuro-inflammation plays a 
key role in the development of a more aggressive form 
of Parkinson’s disease (Fig.  4A). Again, following the 
approach of Agarwal et al. [18] we examined the intersec-
tion of genetic risk and microglia-specific functions by 
identifying highly connected modules of microglia-spe-
cific genes whose proteins interacted (Methods) and then 
used MAGMA to associate these functional modules 
with different genetic risks. Modules were then anno-
tated with GO terms and corrected for the microglial 
gene expression background. The genetic risk influenc-
ing both Alzheimer’s disease and phenotypic Axis 1 con-
verge to microglia-specific gene Module 2 (Bonferroni 

adjusted p-value for the number of modules Alzheimer’s 
disease p = 0.038 – Axis 1 p = 0.042), expressing pro-
teins involved in phagocytosis and regulation of immune 
response (Fig. 5B).

As for Alzheimer’s disease, we also found a metabolic 
influence on the Parkinson’s disease phenotype. We 
observe that patients with a history of high cholesterol or 
a history of heart failure, stroke and/or heart attack score 
significantly higher only on phenotype Axis 1 than those 
without these histories (Additional file  1: Fig S18). We 
also observe a significant positive correlation between 
patient BMI and only their Phenotypic Axis 1 severity 
score (r = 0.22; p = 3.8e − 06; Additional file 1: Fig S19).

Fig. 4 A high Alzheimer’s disease genetic risk increases the Parkinson’s disease severity risk. a The most influential Axis (Axis 1) is associated with 
the genetic risk of Alzheimer’s disease The proportion of phenotypic variation explained by the first phenotypic axis derived using these different 
disease risks (we considered here genome‑wide association (GWA) p‑value < 0.1) as compared to the original phenotypic axes or exceeding 
significantly the original phenotypic axis 1 derived using the entire genotype (black horizontal line) or random SNP set respectively (black horizontal 
line) within Oxford Discovery cohort The colour represent the category of traits: neurodegenerative, neuropsychiatric, metabolic, autoimmune and 
anthropometric. b The Axis 1 is specifically associated with a biomarker strongly associated with future conversion to dementia In the PPMI cohort, 
PD patients with higher score for the Phenotypic axis 1 (x‑axis), have significant lower CSF level Aβ1–42 (y‑axis), a biomarker strongly associated 
with future conversion to dementia. c The Axis 1 is associated with rapid form of Parkinson’s disease. Boxplot comparing the accuracy of PHENIX to 
predict the progression of different clinical phenotypes with a general relatedness genetics matrix (blue vs a genetic relatedness matrix calculated 
by using Alzheimer’s disease’s genetics variants with GWA p < 0.05 (yellow) in the Oxford Discovery, Tracking UK and PPMI cohort
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A higher Alzheimer’s genetic risk increases the risk 
to develop a faster progressing form of Parkinson’s
In the Oxford Discovery [4, 6], Tracking UK [2], and PPMI 
[10] cohorts, we used their available repeated clinical 
evaluations to measure individual variation in disease 
progression. For each clinical phenotype, we derived a 
progression measure noting that the interval and span 
of clinical follow-ups varied between the three cohorts 
(Methods): on average 3.6, 3.6, 11, spanning 4.37, 4.08, 
and 5.58  years in the Oxford Discovery [4, 6], Tracking 
UK [2] and PPMI [10] cohort, respectively. The aver-
age interval between visits was 20, 19 and 6  months in 
the Oxford Discovery [4, 6], Tracking UK [2] and PPMI 
[10] cohort, respectively. We derived the longitudinal 
phenotypic axes by using the progression measure of 
each clinical phenotype. We identified a primary axis 
explaining 76%, 72% and 78% of the clinical progres-
sion in the Oxford Discovery [4, 6], Tracking UK [2] and 
PPMI [10] cohorts, respectively. This axis was firstly cor-
related with UPDRS III clinical scores for motor symp-
toms (r2

ppmi = 0.83 & r2
Tracking = 0.74, r2

Discovery = 0.66) 
and with MOCA scores for the cognitive dysfunc-
tions (r2

ppmi = 0.69 & r2
Tracking = 0.65, r2 Discovery = 0.69). 

Phenotypically, this axis was significantly similar in three 
cohorts (Oxford Discovery/PPMI r2 = 0.68, p = 0.04; 
Oxford Discovery/Tracking UK r2 = 0.90, p = 3 ×  10−4, 
Tracking UK/PPMI r2 = 0.70, p = 0.03) (Additional file 1: 
Fig S20). A key feature of PHENIX is the ability to impute 
missing data and thus potentially predict individual dis-
ease progression. Using known clinical progression 
and baseline clinical symptoms of 80% of patients from 
each cohort, we calculated the accuracy for predicting 
the progression measure of a clinical phenotype, given 
the baseline clinical features, by predicting the pro-
gression measures in the 20% of patients excluded and 
repeated this random exclusion and prediction 1000 
times (Additional file  1: Fig S21). Accuracy for predict-
ing the progression of cognitive dysfunction was better 
(Oxford Discovery MOCA test, r2 = 0.42, Tracking UK 
r2 = 0.40, PPMI r2 = 0.49), than predicting the progres-
sion of motor symptoms (UPDRS III Oxford Discovery: 
r2 = 0.16, Tracking UK: r2 = 0.29, r2 Discovery = 0.16). We 
noted that changes in olfactory function, i.e., changes in 
Sniffin-16 item odour identification scores in the Oxford 
Discovery cohort, showed the highest predictive accuracy 
(r2 = 0.72) when estimating deliberately left-out clinical 

Fig. 5 The most influential Parkinson’s disease clinical axis involves genetic pathways associated with neuroinflammation. a Identification of 
substantia nigra (SN) cell types associated with Parkinson’s disease, Alzheimer’s disease, inflammatory bowel disease and ulcerative colitis. To identify 
the associations between genetic risk variants of different complex traits and cell types SN, we used the MAGMA gene set analysis (one‑sided 
positive two‑sample t‑test). The heatmap colours give different degrees of significance * and ** indicate nominally significant p (< 0.05) and q 
value (Bonferroni correction for the number of cell types tested) respectively. b Microglia‑specific pathways associated with the genetic risk of the 
phenotypic Axis 1, Alzheimer’s disease, inflammatory bowel disease (IBD) and ulcerative colitis. Gene Ontology (GO) enrichment for substantia 
nigra (SN) microglia protein–protein interaction (PPI) genes modules. We tested the convergence of disease genetic risk at a functional level across 
SN microglia‑cell specific PPI gene modules using MAGMA gene set analysis (one‑sided positive two‑sample t‑test); * and ** indicate nominally 
significant p‑value (< 0.05) and q value (Bonferroni correction for the number of PPI modules tested), respectively. The top representative GO 
biological process (BP) terms are shown for modules. The size of circles represents ‑log(p) for GO enrichment with Fisher’s test; colours correspond 
to different modules
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follow-up measures. In accordance with previous studies, 
this suggests that hyposmic Parkinson’s disease patients 
exhibit a worse clinical progression as compared to nor-
mosmic patients [26]. Instead of a general genotypic 
relatedness matrix, using one calculated with only Alz-
heimer’s disease genetic risk loci significantly improved 
the accuracy for predicting clinical progression (Oxford 
Discovery: p = 0.017, Tracking UK: p = 0.003, PPMI: 
p = 0.04, Fig. 4D). This longitudinal phenotypic axis was 
significantly correlated with Axis 1 reported above that 
captures baseline clinical presentations (Oxford Dis-
covery (r2 = 0.31, p < 2.2e−16), Tracking UK (r2 = 0.48, 
p = 4.12e−14), PPMI (r2 = 0.36, p = 4.12e−14)), indicating 
that Axis 1 is further associated with rapid progression 
of multiple clinical symptoms (Additional file 1: Fig S22). 
All these observations together indicate that genetic risk 
of Alzheimer’s disease could aid as a prognostic marker 
for Parkinson’s disease presentation and progression.

Discussion
Understanding how and why the clinical presentations 
of each patient affected by the same disorder vary is a 
critical challenge in medicine. We demonstrate a novel 
approach to quantifying diverse Parkinson’s disease 
patient phenotypes using a continuous scale to derive 
phenotype axes. By applying our approach to three 
independent and deeply phenotyped cohorts, we dem-
onstrate the universality of these axes of phenotypic 
variation amongst Parkinson’s disease patients. We also 
show that these axes are robustly derived when reduc-
ing the number of clinical features considered and, unlike 
other dimensionality reduction methods, the genetically-
guided PHENIX MPMM approach is the only method 
tested here that is able to identify the same phenotypic 
axes underlying Parkinson’s disease patient variation 
between individuals from all three cohorts (Figs. 2 and 3).

Our approach was able to identify clinical variation 
that appears relevant to previously-defined categorical 
Parkinson’s disease subtypes. Anxiety and depression are 
highly correlated in Parkinson’s disease patients, both of 
which are correlated with Axes 1 and 2 [27]. Rigidity and 
bradykinesia are also linked, possibly due to shared phys-
iology [28], and varied in the same direction along Axis 3. 
Lawton et al. reported five Parkinson’s disease subgroups, 
by using the same Oxford Discovery cohort [4, 6] but fol-
lowing a k-means clustering approach [6]. We examined 
the distribution of phenotypic axis scores across these 
five Parkinson’s disease subgroups (Additional file 1: Fig 
S10) and noted that the 5th subgroup of patients, charac-
terised by severe motor, non-motor and cognitive disease, 
with poor psychological well-being clinical symptoms, 
were systematically associated with high severity score 
for all three of our phenotypic axes. Inversely, the first 

Parkinson’s disease subgroup characterised by mild 
motor and non-motor disease (group affected by fewer 
clinical symptoms) displayed a low severity score for our 
three phenotypic axes. Furthermore, we observed that 
the individuals of subgroups 4 and 5, characterised by 
poor psychological well-being, had high severity scores 
for phenotypic axis 2, the axis most associated with 
depression and anxiety symptoms. More recently, using 
both UK cohorts Lawton et al. (2018) reported four Par-
kinson’s disease subgroups. The subgroups with the best 
and worst clinical symptoms, clusters 2 and 3 associ-
ated with normal/to better and worst clinical symptoms 
respectively, showed corresponding variation along the 
phenotypic axes reported here (Additional file  1: Fig 
S23). These observations demonstrate some consistency 
between subgroups defined with k-means and our phe-
notypic axis severity score, but the continuous unimodal 
distribution of patients along the phenotypic axis does 
not support the existence of phenotypically distinct clus-
ters of patients.

The phenotypic axes identified were robust in terms of 
the number of clinical features considered and enable the 
alignment of patients from different cohorts with differ-
ent clinical phenotyping structures. The corollary is that 
PHENIX did not require the variable selection common 
in Parkinson’s disease clustering approaches, and it can 
also guide clinicians in determining which clinical assess-
ments are essential to capture Parkinson’s disease hetero-
geneity. Deep phenotyping is burdensome to both patient 
and clinician and many of the measures exploited here 
are compound scores summarising aspects of function-
ing. Further work identifying the minimally burdensome 
observations that enable robust scoring of patients along 
these phenotypic axes would facilitate their utility and 
adoption across the Parkinson’s disease clinical commu-
nity, bringing increased power to the discovery of influ-
encing factors. Furthermore, the alignment of phenotypic 
axes across all Parkinson’s cohorts enabled a multi-cohort 
GWA meta-analysis of each phenotypic axis. Although 
no individual loci reached genome-wide significance 
(Additional file 1: Fig S24-S25), the universality of these 
axes provides a means to significantly increase power 
for future meta-analyses (Additional file 1: Fig S24-S25). 
Finally, we demonstrated here that the MPMM approach 
can be readily extended to include longitudinal data to 
determine the phenotypic axes associated with disease 
progression while simultaneously dealing with missing 
data, which is a common problem in longitudinal studies.

The phenotypic axes have multiple applications in Par-
kinson’s disease precision medicine. We found that Par-
kinson’s disease patients who carry a high genetic risk 
load for Alzheimer’s disease are at higher risk of a more 
clinically aggressive Parkinson’s disease form including 
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dementia symptoms. Parkinson’s disease patients with 
a high score for the Phenotypic Axis 1 had significantly 
lower CSF level Aβ1–42. This fits well with the previ-
ous observation that the fastest cognitive decline is with 
those with low CSF Aβ1-42 at diagnosis [29, 30]. This low 
level may correspond to PD patients affected in the same 
time by AD: It was reported ~ 40% of all patients with 
Lewy body disorders (LBD) [31] have sufficient amy-
loid plaque and tau tangle pathology for a concomitant 
Alzheimer’s disease diagnosis at autopsy and that lower 
Aβ1-42 levels are predictive of increasing cerebral Alz-
heimer’s disease and both α-synuclein pathology [32]. 
While CSF α-synuclein levels might increase as a result of 
more intense neurodegeneration in PD [33], we did not 
observe that Axis 1, the axis most associated with sever-
ity and progression, was significantly associated with this 
CSF biomarker. As obtaining CSF biomarkers is inva-
sive, our phenotypic axis could form part of a less inva-
sive approach to predicting PD patients most at risk for 
dementia.

Similar to Alzheimer’s disease onset risk but different 
to Parkinson’s disease onset risk [18, 34], the genetics 
influencing this phenotypic axis were in genomic regions 
enriched for microglia-expressed genes (Fig.  4A), sug-
gesting that neuroinflammation plays a key role in the 
development of a more aggressive form of Parkinson’s 
disease. One proposition of these findings is that Parkin-
son’s disease progression could be significantly modified 
by repurposed Alzheimer’s disease-targeting therapies in 
some patients.

Limitations
Our method is potentially applicable to other disorders. 
However, the collection of cohorts of deeply pheno-
typed patients for PD is unique amongst neurodegen-
erative disorders. The wealth of these cohorts for PD is 
particularly noteworthy and nothing comparable has yet 
been developed for other dementia disorders such as AD 
or frontotemporal dementia (FTD), placing PD at the 
cutting edge of research to identify factors underlying 
neurodegenerative disease/progression. This approach 
can be also to higher dimensional datasets such brain 
imaging or single cell expression dataset. However, our 
method makes some number of assumptions such as the 
phenotype being normally distributed and heritable. As 
a linear mixed model has been fitted to longitudinal data 
from all patients, the performance to predict progression 
may be overestimated. However, we noted the perfor-
mance to predict disease progression was more accurate 
when using a genotypic relatedness matrix calculated 
with only Alzheimer’s disease genetic risk loci instead 
of the overall genotypic relatedness. Finally, the applica-
tion of this approach requires technical expertise and the 

manipulation of the large genetic dataset necessitating 
high-performance computation. However, it is certainly 
feasible to implement an accessible and secure plat-
form whereby available clinically-measured phenotypes 
and the relevant genotypic information of Parkinson’s 
patients could be entered and the phenotypic axes values 
returned, along with relevant longitudinal predictions to 
support clinical advice/intervention.

Conclusions
The universal axes identified have the potential to accel-
erate our understanding of how Parkinson’s disease 
presents in individual patients, providing robust and 
objective quantitative traits through which patients may 
be appropriately compared and underlying disease-mod-
ifying mechanisms understood. This will lead ultimately 
to appropriately targeted therapeutic strategies delivered 
on an individualised basis. We believe the applications of 
this approach extend far beyond Parkinson’s disease.
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