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Abstract
This paper addresses a school bus routing problem formulated as a capacitated and time-constrained open vehicle routing 
problem with a heterogeneous fleet and single loads. This problem incorporates several realistic features, such as student 
eligibility, maximum walking distances, bus stop selection, maximum riding times, different types of buses, multistops, 
and bus dwell times. A heuristic algorithm based on an iterated local search approach is proposed for this problem. It deter-
mines the selection of bus stops from a set of potential stops, the assignment of students to the selected bus stops, and the 
routes along the selected bus stops. The main objectives are minimizing the number of buses used, the total student walking 
distance, and the total route journey time. Other aims are balancing route journey times between buses and minimizing the 
total number of empty seats. A set of 20 real-world problem instances are used to evaluate the performance of the algorithm. 
Results indicate that the algorithm finds high-quality solutions in very short amounts of computational time.

Keywords School bus routing · Vehicle routing · Heterogeneous fleet · Bus stop selection · Iterated local search · Heuristics

Introduction

The school bus routing problem (SBRP) is a combinato-
rial optimization problem that was first investigated over 4 
decades ago [25] and has since received a lot of attention 
within the scientific community (see the section “Related 
Work”). The problem relates to the organisation of school 
bus transportation services for students between their home 
addresses and schools.

School bus operations constitute a challenging task from 
both a logistics and financial perspective. Typically, an 
SBRP entails compiling a list of addresses of all students 

deemed eligible for school transportation, approving poten-
tial bus stops reachable by the students, determining the 
stops to be visited by the buses, assigning students to their 
respective bus stops, and designing routes that optimize 
operational efficiency without sacrificing school bus safety 
and service quality. These objectives are often conflicting in 
nature, since an improvement in the level of service quality 
can increase the cost of provision, and vice versa.

In various countries, school bus transportation forms part 
of the government’s administrative mechanism and is funded 
through taxation. Students who live at least a certain dis-
tance from the school they attend are entitled to free or sub-
sidized transport. In Malta, for example, school transport is 
provided free of charge to all kindergarten, primary, middle, 
and secondary state school students residing at least 1 km 
away from their school. Given the large amount of funds 
being invested in school bus transportation, it is critical for 
governments to minimize the total cost of these services.

An important objective is to minimize the number of 
buses, since this reduces their corresponding acquisition and 
driver employment costs. Another priority is to minimize 
operational costs by keeping route journey times as short as 
possible. This also promotes student well-being, particularly 
for younger children. In Wales, for example, a maximum 
45 and 60 min journey time is recommended for primary 
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and secondary school pupils, respectively. Moreover, gov-
ernments typically issue a policy concerning the maximum 
distance that students are expected to walk between their 
homes and designated bus stops. For instance, a walk of 
1.6 km is deemed reasonable in Wales.

In this paper, we focus on the single-school SBRP in 
which routes are constructed for each school separately. 
Mixed loads, i.e., students from different schools travelling 
on the same bus at the same time, are not considered, since 
these are usually not permitted in the locations under study. 
We dedicate our research to the morning problem, whereby 
students are picked up from bus stops and dropped off at 
school. A solution to the afternoon problem, whereby stu-
dents are picked up from school and dropped off at bus stops, 
is found by reversing the routes.

The remainder of the paper is organized as follows. The 
section “Related Work” presents a brief review of related 
work on the SBRP. The section “Problem Definition” then 
defines our SBRP, while the section “Algorithm Descrip-
tion” describes our heuristic algorithm for this problem. The 
section “Computational Experiments” describes the problem 
instances considered and our computational results. Finally, 
the section “Concluding Remarks and Suggestions” provides 
the concluding remarks and some suggestions for future 
work.

Related Work

The SBRP falls into the class of NP-hard vehicle routing 
problems (VRPs). According to Laporte et al. [21], VRPs 
aim to design optimal delivery/collection routes from one 
or more depots to a finite set of geographically scattered 
customers under a variety of side constraints. A common 
objective in VRPs is to minimize the total operating costs of 
the fleet of vehicles, while typical constraints include maxi-
mum capacity restrictions on vehicles [the capacitated VRP 
(CVRP)] and maximum time/distance restrictions on routes. 
A taxonomic review of the VRP and its variants is presented 
by Braekers et al. [8].

The CVRP first appeared over 6 decades ago in the seminal 
paper of Dantzig and Ramser [14]. In their reviews on SBRPs, 
both Park and Kim [26] and Ellegood et al. [19] observe that 
almost all their reviewed publications consider capacity con-
straints. Here, we take the same assumption but choose to 
allow for a heterogeneous fleet of buses consisting of several 
types of buses, with buses of the same type having the same 
capacity (as in [3, 12]). In [19, 26], only around 20% and 25%, 
respectively, of SBRP publications are noted to model a het-
erogeneous fleet (e.g., [24, 29, 36, 37]). Here, we do the same 
to extend the homogeneous fleet SBRP that we previously 
studied in [35] and to shift our research towards more realistic 

settings. The adaptation of our algorithm in [35] to heterogene-
ous fleets is the main contribution of this paper.

Another variant of the VRP proposed by Sariklis and Pow-
ell [31] is the open VRP (OVRP), in which routes do not start 
and end at a depot as in the classical VRP, but rather either 
start or end at a depot. Similar to [2], we model our SBRP as a 
capacitated and time-constrained OVRP. We do this since gov-
ernments put out the designed routes to public tender, and thus, 
buses are kept at bus garages owned by private companies and 
not at the school. According to [26] and [19], approximately 
66% and 35%, respectively, of SBRP publications include 
maximum riding time constraints (e.g., [11, 27]). They also 
observe that the majority of the publications on school bus 
routing also deal with the single-school SBRP (e.g., [13, 23, 
33]).

Desrosiers et al. [15] decompose the SBRP into five sub-
problems. In the first subproblem, data preparation, a network 
containing the schools, student residences, potential bus stop 
locations, and bus depots is constructed. Information on the 
number of students at each residence, the school destination 
of each student, and the types and number of buses available 
and their capacities are also specified. The second subproblem, 
bus stop selection, seeks to select a subset of bus stops from 
a set of potential bus stops and assign students to these stops. 
Ellegood et al. [19] remark that less than one-quarter of SBRP 
research tackles this subproblem (e.g., [6, 28, 34]). The third 
subproblem, route generation, is the core of the SBRP. It deals 
with building initial routes through construction methods such 
as insertion-based or savings-based heuristics and enhancing 
them via improvement methods such as metaheuristics and 
integer programming. The last two subproblems, school bell 
time adjustment and route scheduling, adjust the schools’ 
opening/closing times to allow buses to service multiple 
schools and establish chains of routes that can be executed by 
the same vehicle.

In this paper, we cover the first three subproblems stated 
above. For the bus stop selection and route generation 
subproblems, we employ the location-allocation-routing 
(LAR) strategy (as in [4, 5, 18]), in which bus stops are 
first selected, students are assigned to stops, and then, route 
generation follows. This strategy may lead to sub-optimal 
routes, since the bus stops selected in the former subproblem 
may not be best for the latter subproblem [7]. To address this 
issue, we therefore also include an operator that alters the 
selection of bus stops and the assignment of students, as dis-
cussed in the section “Generation of Alternative Solutions”.

Problem Definition

In our problem, we use parameter mw to indicate the maxi-
mum distance that students are expected to walk to a bus stop. 
We also use parameter me to specify the minimum walking 
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distance students should live from school to be eligible for 
school transportation. As in [22, 35], our SBRP can be rep-
resented via two set of vertices, V1 and V2 , and two sets of 
edges, E1 and E2 . The vertex set V1 consists of one school, 
v0 , and n potential bus stops v1, v2,… , vn , and the edge set 
E1 contains all n(n + 1) arcs (u, v) where u, v ∈ V1 and u ≠ v . 
Each edge (u, v) in the complete directed graph (V1,E1) is 
weighted by the shortest driving time t(u, v) from vertex u 
to vertex v. Meanwhile, the vertex set V2 consists of eligi-
ble student addresses, i.e., addresses that are within walk-
ing distance greater than me from the school. Each address 
w ∈ V2 has a corresponding number s(w) of students resid-
ing at that address and requiring transportation to the school 
under consideration. The second edge set E2 is the set 
{{w, v} ∶ w ∈ V2 ∧ v ∈ V1⧵{v0} ∧ d(w, v) ≤ mw} , where 
d(w, v) represents the shortest walking distance from address 
w to bus stop v.

It is assumed that the undirected bipartite graph 
(V2,V1⧵{v0},E2) has no isolated vertices. Otherwise, either an 
address has no bus stop within walking distance mw (and there-
fore a new bus stop must be added to V1 ), or a bus stop has no 
address within walking distance mw and can be removed from 
V1 . Moreover, a bus stop v ∈ V1⧵{v0} for which there exists 
an address w ∈ V2 with the single incident edge {w, v} shall be 
referred to as a compulsory stop. This is because such a stop 
v is the only stop within walking distance mw for students liv-
ing in address w. It must therefore be present in any solution.

A feasible solution to our SBRP is given by a set of routes 
R = {R1,R2,…} . An example is shown in Fig. 1. Each route 
R ∈ R uses one bus which needs to have adequate seating 
capacity for all the students boarding that route. (The issue of 
choosing a suitable capacity C(R) for route R will be consid-
ered at the end of this section.) This bus successively visits a 
subset of bus stops and terminates at the school v0 . The sub-
set of bus stops traversed by at least one route is denoted by 
V �
1
⊆ V1 ⧵ {v0} . This set should cover each address w ∈ V2 at 

least once, meaning that students in each address w will have 
at least one bus stop in V ′

1
 within walking distance mw . Such 

a covering shall be referred to as a complete covering of V2 , 
whereas a covering that does not satisfy this property is an 
incomplete covering of V2 . In addition, the total number s(R) of 
students boarding the bus on route R should not exceed some 
pre-defined maximum bus capacity Cmax , and the journey time 
t(R) of route R should not exceed the maximum journey time 
mt . These constraints can be expressed as follows:

(1)
⋃

R∈R

R = V �
1
,

(2)∀w ∈ V2, ∃ v ∈ V �
1
∣ {w, v} ∈ E2,

(3)s(R) ≤ Cmax ∀R ∈ R,

It is important to note that bus stops in V ′
1
 can feature in 

more than one route in R . For example, there may not be 
enough spare capacity in a bus to serve all students waiting 
at a bus stop v ∈ V �

1
 . In that case, bus stop v must be visited 

by more than one bus. Here, a bus stop occurring on more 
than one route in a solution is called a multistop. In VRP 
literature, this characteristic is referred to as the allowance 
of split deliveries [16, 17]. It is assumed that each student 
boarding at a multistop is only permitted to board one spe-
cific route serving that stop, since, otherwise, a bus stopping 
at that multistop may be too full to serve a subsequent stop 
in its route. Generally, students living in the same address 
(in particular siblings) are preferably assigned to the same 
route; however, in practice, one may encounter unavoidable 
cases where students from the same address are assigned to 
different routes.

The calculation of the journey time t(R) of route R ∈ R 
is composed of two components: the total bus travel time 
and the total bus dwell time. Each dwell time within a route 
captures the time spent servicing a designated bus stop; i.e., 
the time spent stopping the bus, opening the doors, boarding 
the students, and merging back into traffic. In our case, we 
estimate the dwell time at stop v in route R using the linear 
function d(v,R) = d1 + d2s(v,R) , where s(v, R) represents 
the number of boarding students at stop v onto route R, d2 
represents the boarding time per student, and d1 is a param-
eter which accounts for the remaining servicing time. Here, 
d1 and d2 are taken to be 15 and 5 s, respectively. Therefore, 
given a route R = (v1, v2,… , vl, v0) , the route journey time 
t(R) is given by

(4)t(R) ≤ mt ∀R ∈ R.

Fig. 1  A feasible solution with |R| = 2 , |V
1
| = 21 , |V �

1
| = 14 , and 

|V
2
| = 22 . Bus stops marked by * are not used in the solution. All 

other bus stops are in the set V ′
1
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where the first two terms give the total bus travel time and 
the last term gives the total bus dwell time.

The provision of school transportation involves high costs 
and is sometimes characterized by a shortage of buses. For 
instance, in September 2018, the Maltese Education Minis-
try was faced with the issue of having almost 1000 students 
without transport arrangements due to a lack of space on 
buses [30]. As previously mentioned, the primary objective 
of our SBRP is to identify an appropriate subset of bus stops 
V ′
1
 to minimize the number |R| of routes (buses) included 

in a solution. In our case, this is achieved by attempting 
to produce feasible solutions that use the lower bound of 
⌈
∑

w∈V2
s(w)∕Cmax⌉ routes needed to serve all students. Under 

the assumption of having enough buses of capacity Cmax to 
cater for all students, a solution satisfying constraints (1)–(3) 
and meeting this lower bound of |R| is always guaranteed, 
since multistops are allowed; however, any one of the routes 
could potentially violate the maximum riding time constraint 
(4). Thus, there may be cases where additional routes are 
needed.

In addition to minimizing the number of routes |R| , in 
this paper, we also aim to target service efficiency by mini-
mizing the total route journey time in a solution. Whenever 
multiple feasible solutions have the same minimum total 
route journey time, we also give preference to the one with 
the smallest discrepancy between the longest and shortest 
routes. This encourages equity of the service. Furthermore, 
we assign students to their closest stop in a selected subset 
of bus stops. In the future, we would like to incorporate 
the minimization of student walking distances into the cost 
function. This is not considered here, but is important for the 
effectiveness of the service.

At the end of the optimization process, one final task is 
to assign vehicles to the routes of a solution, such that the 
total number of empty seats is minimized. This is desirable, 
because larger buses typically consume higher amounts of 
fuel. Earlier, we mentioned that an adequate seating capacity 
is required for each route. In our case, each route is assigned 
to the smallest pre-defined bus capacity that is greater than 
or equal to the total number of students boarding that route. 
We follow this strategy, since, as we said before, govern-
ments usually construct the routes before putting them out to 
tender; hence, each bus type can be assumed to be available 
in an unlimited number. If buses of each type are limited 
in number, the problem of assigning buses to routes can be 
modelled as a minimum-weight maximum-cardinality bipar-
tite matching problem. The bipartition consists of a set of |R| 
vertices representing the routes in the solution, and a set of 
B vertices representing all available buses. A route vertex is 

(5)t(R) =

l−1∑

i=1

t(vi, vi+1) + t(vl, v0) +

l∑

i=1

(

d1 + d2s(vi,R)
)

,

then linked to a bus vertex if and only if its load is at most 
the capacity of the given bus. Such an edge is weighted by 
the difference between the bus capacity and the route load 
(i.e., the number of empty seats). The Hungarian algorithm, 
with worst-case complexity O(B3) , can then be used to find 
a matching that contains as many edges as possible and that 
has the minimum total weight.

Algorithm Description

Our heuristic algorithm for this problem employs the follow-
ing overall strategy. To begin, a subset of bus stops repre-
senting a complete covering is selected and a nearest-neigh-
bour heuristic is applied to construct an initial solution using 
a fixed number |R| of routes. As mentioned, |R| is initially 
taken to be the lower bound stated in the previous section.

Note that the initial assignment of stops to routes allows 
the violation of the maximum riding time constraints (4). A 
local search routine involving six improvement heuristics is, 
therefore, invoked on the initial solution to try shortening 
the routes without changing the current subset of bus stops. 
After this routine has been completed, a procedure is per-
formed whereby the current subset of selected bus stops is 
altered and the current solution is repaired. The local search 
routine is then re-applied. This entire process is repeated 
until a time limit is reached. If no solution satisfying (1)–(4) 
is achieved at this limit, then the number |R| of routes is 
increased by one and the algorithm is restarted.

Construction of Initial Solution

In our approach, the initial subset of bus stops V ′
1
 is selected 

as follows. First, all compulsory stops are added to V ′
1
 . The 

non-compulsory stops are then arranged in non-increasing 
order according to the number of currently uncovered 
addresses they serve. The stop with the largest such value is 
then added to V ′

1
 , breaking ties randomly. This ordering and 

selection procedure is repeated until a complete covering of 
V2 is obtained. Each address in V2 is then assigned to the 
closest bus stop in V ′

1
 . The assignment of addresses to stops 

determines the number sV �
1

(v) of boarding students at each 
stop v ∈ V �

1
 . It may also be the case that some stops have no 

boarding students, in which case they are removed from V ′
1
.

Next, each bus stop in V ′
1
 is assigned to one of the |R| 

routes, such that each bus is not overloaded. In our case, this 
assignment follows a parallel backward implementation of 
the nearest-neighbour constructive heuristic. To start, |R| 
empty routes are defined and the remaining capacity ci of 
each route Ri ∈ R is set to Cmax . The |R| closest stops to the 
school are then added at the front of the routes, one in each 
route. Closeness to school is measured by the dwell time at 



SN Computer Science            (2023) 4:74  Page 5 of 15    74 

SN Computer Science

the stop plus the shortest driving time from the stop to the 
school. To calculate the dwell time at stop v ∈ V �

1
 in route Ri , 

the minimum of ci and sV �
1

(v) is considered as there may be 
more than ci students boarding at stop v. In this case, a mul-
tistop is created, since the remaining sV �

1

(v) − ci students 
boarding at stop v will need to be assigned to a different 
route Rj . The remaining capacities ci are then updated 
accordingly. This iterative procedure of determining the 
closest stop to the most recently added stop in route Ri , add-
ing it to the front of the route and updating the remaining 
capacity ci , is repeated until all stops in V ′

1
 are assigned to a 

route. On completion, an initial solution R will have been 
generated and can be evaluated according to the cost func-
tion described presently.

Cost Function

Here, a candidate solution R = {R1,R2,…} is evaluated 
according to the cost function

where

This means that if a route R ∈ R satisfies (4), then its jour-
ney time is unaltered. On the other hand, if the journey time 
t(R) of route R exceeds mt , then this journey time is scaled 
up heavily via a penalty. The addition of the value 1 in the 
second case of (7) guarantees that two routes both with jour-
ney time of at most mt (and, therefore, a cost of at most 2mt ) 
are always preferred over a single route with a journey time 
exceeding mt.

Local Search Routine

As mentioned, the intention of our local search routine is 
to shorten the journey times of routes in a solution R while 
maintaining the satisfaction of (1)–(3). Note that this local 
search acts on a solution using a fixed subset of bus stops 
V ′
1
 . It uses a combination of three intra-route and three inter-

route local search operators, with the former being applied to 
any single route R1 ∈ R and the latter being applied to any 
pair of routes R1,R2 ∈ R . Without loss of generality, assume 
that R1 = (v1, v2,… , vl1 , v0) and R2 = (u1, u2,… , ul2 , v0) . The 
six operators considered are the following:

• Exchange: Choose two stops vi, vj in R1 , where 
1 ≤ i < j ≤ l1 , and swap their position.

• Two-Opt: Choose two stops vi, vj in R1 , where 
1 ≤ i < i + 3 ≤ j ≤ l1 , and invert sub-route vi,… , vj . 

(6)f (R) =
∑

R∈R

t�(R),

(7)t�(R) =

{
t(R) if t(R) ≤ mt,

mt + mt(1 + t(R) − mt) otherwise.

Cases j = i + 1 and j = i + 2 are special cases of the 
exchange operator and are thus excluded.

• Generalized Or-Opt: Choose stops vi, vj, vk in R1 , where 
1 ≤ i ≤ j ≤ l1 and ( 1 ≤ k < i or j + 1 < k ≤ l1 + 1 ). 
Remove sub-route vi,… , vj and insert it before stop vk , 
possibly also inverting the sub-route if this yields a 
better cost. If k = l1 + 1 , then the sub-route is inserted 
before school v0.

• Or-Exchange: Choose stops vi, vj in R1 , where 
1 ≤ i ≤ j ≤ l1 , and stop uk in R2 , where 1 ≤ k ≤ l2 + 1 . 
Remove sub-route vi,… , vj from R1 and insert it before 
stop uk in R2 , possibly also inverting the sub-route if 
this yields a better cost. If k = l2 + 1 , then the sub-route 
is inserted before school v0.

• Cross-Exchange: Choose stops vi1 , vj1 in R1 , where 
1 ≤ i1 ≤ j1 ≤ l1 ,  and stops ui2 , uj2  in R2 ,  where 
1 ≤ i2 ≤ j2 ≤ l2 .  Swap sub-routes vi1 ,… , vj1 and 
ui2 ,… , uj2 , possibly inverting either sub-route if this 
yields a better cost.

• Creating Multistops: If routes R1 and R2 satisfy 
t(R1) > mt and s(R2) < Cmax , then choose a stop vi in 
R1 , where 1 ≤ i ≤ l1 , for which s(vi,R1) ≥ 2 . If vi is not 
already in R2 , then insert a copy of vi into R2 before 
the stop uk , where 1 ≤ k ≤ l2 , (or school v0 ) which 
causes the smallest increase in t(R2) . Next transfer 
z = min{s(vi,R1) − 1,Cmax − s(R2)} students from the 
occurrence of stop vi in R1 to the occurrence of stop 
vi in R2 . Here, the value z gives the maximum number 
of students who can be transferred (hence, decreasing 
t(R1) as much as possible), such that both occurrences 
of vi have at least one boarding student and both routes 
R1 and R2 satisfy (3).

The neighbourhood sizes corresponding to the above oper-
ators are O(|V �

1
|2) , O(|V �

1
|2) , O(|V �

1
|3) , O(|V �

1
|3) , O(|V �

1
|4) , 

and O(|V �
1
|3) , respectively. These operators are the same as 

those used in [22, 35]. The exchange, two-opt and cross-
exchange operators are also used in a similar context in 
[12], while the generalized Or-opt and Or-exchange are 
extensions (in cases where i ≠ j ) of operators used in [12, 
33]. The creating multistops operator was first proposed 
in [22].

Note that the intra-route operators do not affect the total 
number of visited stops, the dwell time at each stop, or the 
total number of boarding students on a route. On the other 
hand, Or-exchange and cross-exchange moves can lead to 
a violation of the capacity constraints (3). Such moves are 
therefore not evaluated. Moreover, the two inter-route opera-
tors can result in duplicate stops in the same route, which 
are removed as follows. Without loss of generality, assume 
that sub-route vi,… , vj is being transferred from route R1 to 
route R2 and that one stop vh, i ≤ h ≤ j , is already present 
in R2 . Then, stop vh is removed from the sub-route and the 
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students boarding this occurrence of vh are all transferred to 
the occurrence of vh in R2.

Our local search routine follows the direction of steep-
est descent. In each iteration, all moves in the union of the 
six neighbourhoods are evaluated and the move giving the 
largest reduction in cost is performed. If multiple moves 
give the largest reduction in cost, the one which yields the 
smallest discrepancy between the longest and shortest routes 
in the solution is performed. Such a breakage of ties aims at 
balancing the journey times between buses. The local search 
routine terminates when a solution whose neighbourhoods 
contain no improving moves is reached.

Generation of Alternative Solutions

As noted, the subset of bus stops V ′
1
 is fixed during our local 

search routine. However, it may be the case that no solu-
tion R for a fixed subset V ′

1
 is feasible with respect to the 

maximum riding time constraints (4). In this case, altering 
V ′
1
 and re-running local search may lead to a better solution. 

For this reason, our algorithm also contains an operator that 
generates a new subset of bus stops V ′′

1
 , assigns students to 

these bus stops, and then creates a set of routes that use these 
stops. We designed four variants of the algorithm, which 
differ in the way they generate V ′′

1
 . These are the following: 

 I Generate V ′′
1

 from scratch (with no reference to previ-
ous iterations);

 II Generate V ′′
1

 from the subset V ′
1
 used in the previous 

iteration;
 III Generate V ′′

1
 from the most recent subset V ′

1
 that 

yielded a feasible solution with the lowest cost found 
so far;

 IV Generate V ′′
1

 via a trade-off between Variants II and 
III, whereby V ′′

1
 has a 50% chance of being generated 

according to Variant II and a 50% chance of being 
generated according to Variant III.

Note that in Variant III, the subset of stops generated in 
the previous iteration is used if no subset has yet yielded a 
feasible solution.

In Variant I, the generation of V ′′
1

 follows the same selec-
tion strategy as that discussed in the section “Construction 
of Initial Solution” and new routes are again produced via 
nearest-neighbour construction. For the remaining variants, 
the non-compulsory stops in V ′

1
 are identified and a random 

selection of these is removed. Assuming a total number � of 
non-compulsory stops, in our case, the number of removals 
is selected according to a Binomial distribution with param-
eters � and 3∕� , so that three stops are removed on average. 
Upon removal, if we have an incomplete covering of V2 , 
then additional stops are added to V ′

1
 . If all addresses not 

covered by the stops in V ′
1
 are covered by stops that were 

not originally in V ′
1
 , then, at each stage, a stop from the lat-

ter set of stops that serves the largest number of uncovered 
addresses is added, breaking ties randomly. If, on the other 
hand, some address is uncovered by the stops which were 
not originally in V ′

1
 , then at least one of the removed stops 

must be added back. The same selection strategy is applied 
in this case and the whole procedure is repeated until a new 
complete covering V ′′

1
 of V2 is achieved. Each address is then 

reassigned to the closest stop in V ′′
1

 . As before, stops with 
no addresses assigned to them are then removed from V ′′

1
.

Having determined a new subset of bus stops, repairs now 
need to be made to R , so that only bus stops in V ′′

1
 feature in 

the solution. To do this, all occurrences of stops in V ′
1
⧵V ′′

1
 

are first removed from R . For stops v ∈ V ��
1
∩ V �

1
 for which 

sV ��
1

(v) < sV �
1

(v) , sV �
1

(v) − sV ��
1

(v) students are removed from 
occurrences of v in R . If this results in an occurrence of v 
with no boarding students, then this occurrence is removed 
from R . For stops v ∈ V ��

1
∩ V �

1
 for which sV ��

1

(v) > sV �
1

(v) , an 
attempt is made to add students to occurrences of v in R . If 
not all sV ��

1

(v) − sV �
1

(v) students can be added, then a new 
occurrence of v must be added to R . Stops v ∈ V ��

1
⧵ V �

1
 must 

also be added to the solution. A new stop is inserted in a 
route having the lowest load, at the position which causes 
the least increase in the route journey time. If this insertion 
does not cater for all students boarding that stop, then the 
procedure is repeated.

Having repaired solution R (or generated completely new 
routes in the case of Variant I), the local search routine is 
then re-invoked. This repair-and-improve process is repeated 
until the time limit is reached.

Computational Experiments

A total of 20 real-world problem instances are considered 
here, as summarized in Table 1. The problem instances 
pertaining to the UK and Australia originate from [22] and 
can be downloaded at [9]. The remainder were generated by 
us and can be downloaded at [32]. Each problem instance 
was generated as follows. The location of a school was first 
identified and a number of random student addresses were 
selected within the school’s catchment area, but more than 
me km from the school. The number of students living at each 
address was generated randomly according to the following 
distribution: 1, 2, 3, and 4 with probabilities 0.45, 0.4, 0.14, 
and 0.01, respectively. This distribution approximates the 
relevant statistics in the locations considered. Potential bus 
stops were then identified through public records, such that 
each stop has at least one address within walking distance 
mw and each address has at least one stop within walking 
distance mw . The shortest driving times between each bus 
stop pair and shortest walking distances between each bus 
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stop and address pair were then determined using the Bing 
Maps Routes API.

Here, we assume that the maximum journey time 
mt = 2700 s (45 min) and that vehicles of different capaci-
ties are available, depending on the country of the problem 
instance under study.1 These capacities were selected by 
inspecting the fleet of vehicles of several school transport 
providers in the said locations.

Heuristic Algorithm Results

Our heuristic algorithm was coded in C++ and run on a 
3.6 GhZ 8-Core Intel Core i9 processor with 8GB RAM. 
Variants I to IV were run 25 times on each instance using a 
time limit of 5 min per run. Overall, we found that feasible 
solutions using the lower bound of ⌈

∑
w∈V2

s(w)∕Cmax⌉ routes 
were achieved in nineteen of the 20 instances in all runs. The 

only instance which required one additional route was the 
Bridgend instance. This is probably because the pairwise 
travel times have 25th, 50th, and 75th percentiles approxi-
mately equal to 9.4, 14.4, and 18.9 min, respectively. Since 
these percentiles are relatively high, there is a large chance 
of violating the maximum riding time constraints (4).

Table  2 displays summary statistics on the results 
achieved by our algorithm for heterogeneous fleets of buses. 
Columns 3 to 6 display the average number of iterations per-
formed by each algorithm variant. For the Suffolk instance, 
approximately 99.9%, 99.9%, 69%, and 81.3% of the itera-
tions performed in Variants I to IV, respectively, produced 
infeasible solutions, on average. For Cardiff, these percent-
ages were 12.6%, 45.6%, 25.5%, and 33.3%, while those for 
Bridgend were 13.8%, 6%, 0.1%, and 3.7%. Some infeasi-
ble solutions were also produced in Variants II and IV for 
Porthcawl (0.04% and 0.02%, respectively) and Variant I for 
Brisbane (0.005%, 1 iteration only). Constraints (1)–(4) were 
satisfied in all runs for all remaining 15 instances.

According to Table  2, Variant II performs the high-
est average number of iterations for all instances except 

 and Edinburgh-2. As expected, Variant I performs 
the lowest average number of iterations for all instances 
except Porthcawl. This is because this variant does not use 
information from previous iterations when altering the cur-
rent subset of bus stops. Hence, local search takes longer in 
each iteration as it operates on a newly constructed set of 

Table 1  Summary statistics 
for the 20 real-world problem 
instances, listed in increasing 
order of |V

1
|

The number S represents the total number of students, calculated as 
∑

w∈V
2

s(w) . Distances m
e
 and m

w
 are 

given in km

Location Country/State |V1| |V2| S m
e

m
w

Mġarr Malta 60 110 190 1.0 1.0
  Malta 86 98 171 1.0 1.0
Porthcawl Wales 153 42 66 3.2 1.6
Qrendi Malta 158 150 255 1.0 1.0
Suffolk England 174 123 209 4.8 1.6
Senglea Malta 186 158 266 1.0 1.0
Victoria Gozo 316 99 171 1.0 1.0
Pembroke Malta 322 200 335 1.0 1.0
Canberra ACT 331 296 499 4.8 1.0

  Malta 393 170 285 1.0 1.0

Valletta Malta 445 159 268 1.0 1.0
Birkirkara Malta 469 181 306 1.0 1.0
  Malta 518 192 321 1.0 1.0
Cardiff Wales 552 90 156 4.8 1.6
Milton Keynes England 579 149 274 4.8 1.6
Bridgend Wales 633 221 381 4.82 1.6
Edinburgh-2 Scotland 917 190 320 1.6 1.6
Edinburgh-1 Scotland 959 409 680 1.6 1.6
Adelaide South Australia 1188 342 565 1.6 1.6
Brisbane Queensland 1817 438 757 3.2 1.6

1 For locations in Malta, the available capacities (excluding the 
driver) are taken to be 8, 14, 16, 18, 20, 36, 44, and 53. Capacities 
higher than 53 are excluded, since very long buses and double-decker 
buses are not currently used in Malta for school transport due to 
unsuitable road infrastructure. For locations in the UK, the assumed 
capacities are 8, 12, 16, 23, 25, 27, 29, 33, 37, 39, 43, 45, 49, 51, 53, 
55, 57, 61, 63, 65, 70, 74, 78, and 80, while those for locations in 
Australia are 11, 13, 18, 21, 24, 28, 33, 35, 37, 39, 43, 45, 47, 49, 51, 
53, 55, 57, 59, 61, 65, 70, 78, and 80.
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routes. Another observation is that Variant IV performs a 
higher average number of iterations than Variant III for all 
instances except Cardiff. The reason for this is that 50% of 
the time, Variant IV uses the subset of bus stops from the 
previous iteration. In this case, local search takes a shorter 
time than when the subset corresponding to the best feasible 
solution is used, because fewer changes are made.

Boxplots displaying the 25 total journey times (in min) 
reached by each algorithm variant for each instance are dis-
played in Fig. 2. In each boxplot, the horizontal axis repre-
sents the total journey time, the endpoints of the whiskers 
represent the minimum and maximum of all journey times, 
the red box displays the variability between the 25 and 50th 
percentiles, and the grey box displays the variability between 
the 50 and 75th percentiles. Figure 2 indicates that the per-
formance varies significantly across variants for all instances 
except Mġarr. For the latter instance, all variants provided 
the same total journey time in all runs. Variants III and IV 
are seen to perform best for the majority of the instances.

To demonstrate that the results of the four algorithm vari-
ants are statistically significantly different, Kruskal–Wallis 
and post-hoc Bonferroni-adjusted pairwise comparison 
tests were performed. As expected, significant differences 
between the variants (all p values < 0.001 ) were revealed for 
all instances except . The pairwise comparison tests 
indicated that, for 16 instances, the total journey times of 
Variants I and II are significantly different at the 0.05 level 

of significance than those of Variants III and IV. Ten of these 
instances also saw a significant difference between Variants 
I and II. Two instances (Porthcawl and Edinburgh-2) saw 
significant differences between Variant III and all other vari-
ants, whereas the Cardiff instance saw significant differences 
between Variant II and all other variants.

Moving on to Table 3, Columns 5 to 8 display each 
instance’s best total journey time for Variants I to IV, respec-
tively. Each best total journey time corresponds to the end-
point of the left whisker in the boxplot (refer to Fig. 2). Each 
instance’s best reported result across all variants is displayed 
in bold and the number of runs giving that result is shown 
in brackets. According to the table, Variants I to IV produce 
the best reported results in 3, 4, 15, and 12 instances, respec-
tively. Variants I and II seem to be most appropriate for 
small-sized instances, Variant IV for small-to-moderately-
sized instances, while Variant III is more effective for large 
instances. Furthermore, Variants I to IV produced best total 
journey times that are at most 13.93%, 10.54%, 4.28%, and 
1.31%, respectively, worse than the best reported results. Our 
best reported result for eleven instances was achieved in only 
one run, whereas multiple runs reached the best reported 
result for the other nine instances. Some or all multiple runs 
for all the latter instances except Porthcawl and Edinburgh-2 
also have different corresponding subsets of bus stops. The 
total number of alternative subsets of bus stops is given in 
Column 4.

Table 2  Number of iterations 
performed by our algorithm

All figures are averaged across the 25 runs, rounded to the nearest integer, plus/minus the standard devia-
tion

Location |R| Variant I Variant II Variant III Variant IV

Mġarr 4    29,073 ± 69 75,839 ± 218 66,166 ± 233 69,455 ± 205
 4 16,408 ± 53 40,295 ± 152 35,578 ± 176 37,257 ± 176

Porthcawl 1 94,639 ± 346 99,574 ± 349 87,701 ± 2481 94,631 ± 3234
Qrendi 5 16,118 ± 23 52,394 ± 225 47,665 ± 1446 49,906 ± 178
Suffolk 3 4524 ± 24 11,086 ± 70 7610 ± 329 8180 ± 317
Senglea 6 16,421 ± 64 43,684 ± 248 40,566 ± 1292 42,074 ± 1268
Victoria 4 2211 ± 16 5066 ± 75 4383 ± 301 4616 ± 225
Pembroke 7 6594 ± 10 22,950 ± 69 20,075 ± 828 20,876 ± 757
Canberra 7 2452 ± 7 8851 ± 66 7552 ± 281 7670 ± 362

 6 4566 ± 38 18,381 ± 202 15,584 ± 797 16,624 ± 970

Valletta 6 5519 ± 40 19,850 ± 72 19,012 ± 356 19,419 ± 473
Birkirkara 6 4436 ± 21 18,185 ± 107 16,826 ± 474 17,014 ± 463

 7 2975 ± 10 10,419 ± 78 10,343 ± 290 10,731 ± 260
Cardiff 2 16,809 ± 55 26,543 ± 178 26,503 ± 104 26,503 ± 100
Milton Keynes 4 8919 ± 11 20,670 ± 59 19,722 ± 469 20,097 ± 382
Bridgend 6 4186 ± 18 12,163 ± 51 10,622 ± 110 11,053 ± 109
Edinburgh-2 4 5813 ± 20 5846 ± 20 5848 ± 25 5851 ± 22
Edinburgh-1 9 1848 ± 2 6637 ± 27 6384 ± 146 6463 ± 95
Adelaide 8 1825 ± 8 6127 ± 41 5754 ± 75 5866 ± 87
Brisbane 10 764 ± 3 3379 ± 36 3264 ± 35 3316 ± 42
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Column 2 of Table 3 gives the bus capacities assigned 
to the routes of the best reported result for each instance. 
The superscript displayed after each capacity indicates the 
required number of buses of that capacity. It must be pointed 
out that the capacity assignment of different solutions yield-
ing the best reported result is not necessarily the same. For 
example, the two solutions for the Senglea instance have dif-
ferent assignments; one uses one 14-passenger bus and five 
53-passenger buses, while the other uses one 18-passenger 
bus, one 44-passenger bus, and four 53-passenger buses. In 
such a case, the assignment which provides the lowest num-
ber of empty seats is presented. This number is displayed in 
Column 3 of Table 3.

Recall that our algorithm follows the steepest descent 
(SD) direction, meaning that the best improving move from 
all neighbourhoods is executed in each iteration. To evalu-
ate whether a change in this strategy would significantly 

affect the quality of the solutions obtained, the algorithm 
was altered, such that it follows a variable neighbourhood 
descent (VND) direction. Specifically, in each iteration, the 
first improving move from a randomly selected neighbour-
hood out of the six considered is executed. The process con-
tinues until all neighbourhoods do not contain improving 
moves. As expected, this alteration led to an increase in the 
average number of iterations performed by each algorithm 
variant for the majority of the instances. In fact, 18 of the 20 
instances saw a percentage increase ranging between 0.44 
and 124.88% for all four variants, implying that VND itera-
tions take less time on average. The Porthcawl and Edin-
burgh-2 instances again stand out from the rest, with the 
former having percentage increases in the range [− 0.30%, 
0.04%] and the latter in the range [− 1.45%, − 1.24%]. When 
the best total route journey times of the SD and VND strate-
gies were compared, it was observed that these were the 

Fig. 2  Boxplots displaying the performance of the variants on all 20 instances. The horizontal axis in each boxplot represents the total journey 
time (in minutes)
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same for eleven instances. For five instances (Pembroke, 
Canberra, Valletta, Birkirkara, and Brisbane), the VND’s 
best solution was worse by 0.02–1.86%. On the contrary, 
the Victoria, , Edinburgh-1, and Adelaide instances 
saw superior best solutions from the VND strategy by 
0.04–1.21%. In addition, a sign test was performed for each 
instance to determine whether the results of the two strate-
gies are statistically significantly different at the 0.05 level. 
Significant differences were found for seven instances, with 

 registering better results from VND, and Qrendi, 
Pembroke, Canberra, , Birkirkara, and Brisbane 
registering better results from SD. This suggests that, in our 
case, SD overall performs better than VND.

Mixed Integer Programming Results

An attempt was also made to improve each instance’s best 
reported result from our heuristic algorithm. For this pur-
pose, a mixed integer programming (MIP) model was for-
mulated for our SBRP, as shown in the appendix. This model 
was executed using Gurobi 9.1 with a run time limit of 2 h 
per instance.

For each instance, the best reported solution from the 
heuristic algorithm was provided as an initial solution. For 
instances with multiple best solutions, one solution was 
chosen randomly. Warm-starting the MIP in this way helps 
to speed up the convergence of branch-and-cut, which is 
the method used by Gurobi.

The MIP results are presented in Columns 9 to 11 of 
Table 3. Column 9 gives the total route journey time of 
the best incumbent solution found. Column 10 displays the 
percentage improvement between the best reported result 
from our heuristic algorithm and the best incumbent result. 
Finally, Column 11 gives the relative MIP optimality gap 
between the best incumbent result and the best-known 
lower bound on the optimal total route journey time.

We see that Gurobi was able to make improvements for 
seven instances and the percentage improvements of these 
range between 0.02 and 5.55%. On the other hand, Gurobi 
was not able to improve the heuristic algorithm solution 
of nine instances within the time limit. For the remaining 
four instances, the solver could not provide any results 
before the time limit was reached.

Comparison to Existing Benchmarks

Further experimentation on the performance of our heuris-
tic algorithm was carried out by applying it to a set of 100 
instances generated by Sales et al. [29]. In these instances, 
the sizes of V1 ⧵ {v0} and V2 range from 25 to 250 bus 
stops and from 500 to 5250 addresses (or students, as each 
address is assumed to correspond to one student). Six 

assumptions in [29] that differ from the ones we employ 
in this paper are the following: (i) routes are defined as 
cycles that start and end at the school, (ii) the heterogene-
ous fleet is limited in size, (iii) fixed costs are associated 
with bus usage which vary according to the bus capaci-
ties, (iv) driving distance is taken into account instead of 
driving time (hence, no bus dwell time is incorporated), 
(v) no maximum limit on the routes’ length is considered, 
and (vi) students are assigned to the stop, within maximum 
walking distance, that is closest to the school. Moreover, 
the objective in [29] is to minimize the sum of the total 
distance travelled by all buses and the fixed costs associ-
ated with the buses used.

In [29], the instances were tackled via a memetic algo-
rithm that we describe briefly. Initially, each student is 
assigned to a stop and the stops with at least one student 
are identified. An initial population of 100 solutions is con-
structed by randomly selecting the initial stop for each solu-
tion and then, at each step, appending a random stop from 
the three closest stops to the previously visited stop. Buses 
are then selected for each solution using the following strat-
egy. If there are k buses with capacities C1,C2,… ,Ck and 
fixed costs F1,F2,… ,Fk , then the bus i ∈ {1, 2,… , k} which 
minimizes (Ci − Di)Fi is selected, where Di is the highest 
accumulated number of students (following the order of 
the stops in the solution) not exceeding Ci . Subsequently, 
two parent solutions are selected through the binary tourna-
ment method, and the edge recombination crossover opera-
tor is applied to these solutions to create an offspring. Up 
to 50 attempts are made to improve the offspring via the 
lambda interchange local search procedure with � = 2 . If 
the offspring is better than the worse parent, then it replaces 
the latter in the population; if not, the offspring still has a 
2% chance of replacing the worse parent. This process is 
repeated for 5000 iterations.

The following are the changes that were made to our heu-
ristic algorithm to test it on the above-mentioned instances:

• The cost function (6) was changed as in [29]. In par-
ticular, we incorporated fixed bus costs and considered 
driving distances instead of driving times. The bus dwell 
times and maximum riding times were removed, and 
routes were also defined as cycles starting and ending 
at the school, rather than paths starting at a bus stop and 
ending at the school.

• Students were assigned to the stop, in a selected subset 
of bus stops, that is closest to the school, rather than to 
the one that is closest to their residence.

• Given that the fleet size is limited, to verify that an 
inter-route operator move is feasible, the capacities 
of the buses performing the two routes as well as the 
capacities of the unused buses were checked to see 
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Table 4  Average total cost, 
rounded to the nearest integer, 
achieved by our heuristic 
algorithm (HA) across 12 runs 
(3 runs per variant) versus 
average total cost achieved 
by Sales et al. [29]’s memetic 
algorithm (MA) across 10 runs

ID |V1| |V2| m
w

MAavg HAavg Gap (%) ID |V1| |V2| m
w

MAavg HAavg Gap 
(%)

1 26 500 5 4745 4475 − 5.69 51 151 3000 5 26,191 24,612 − 6.03
2 26 500 10 4442 4286 − 3.50 52 151 3000 10 25,195 24,092 − 4.38
3 26 500 15 4176 4062 − 2.74 53 151 3000 15 23,364 23,229 − 0.58
4 26 500 20 4012 3848 − 4.09 54 151 3000 20 22,056 22,135 0.36
5 26 500 25 3831 3808 − 0.59 55 151 3000 25 21,293 21,249 − 0.21
6 26 750 5 6630 6474 − 2.35 56 151 3300 5 28,763 27,113 − 5.74
7 26 750 10 6392 6120 − 4.26 57 151 3300 10 27,293 26,441 − 3.12
8 26 750 15 6017 5894 − 2.04 58 151 3300 15 25,614 25,325 − 1.13
9 26 750 20 5726 5615 − 1.94 59 151 3300 20 24,407 24,666 1.06
10 26 750 25 5446 5495 0.89 60 151 3300 25 23,244 23,554 1.33
11 51 1000 5 8806 8329 − 5.42 61 176 3500 5 30,482 28,577 − 6.25
12 51 1000 10 8788 8240 − 6.24 62 176 3500 10 28,368 27,355 − 3.57
13 51 1000 15 8127 7913 − 2.63 63 176 3500 15 26,737 26,834 0.36
14 51 1000 20 7698 7544 − 2.00 64 176 3500 20 25,812 25,834 0.09
15 51 1000 25 7279 7436 2.16 65 176 3500 25 24,674 25,627 3.86
16 51 1250 5 10,823 10,229 − 5.49 66 176 3675 5 32,212 30,307 − 5.91
17 51 1250 10 10,737 10,237 − 4.66 67 176 3675 10 30,103 29,161 − 3.13
18 51 1250 15 10,078 9698 − 3.77 68 176 3675 15 28,326 28,033 − 1.03
19 51 1250 20 9563 9331 − 2.43 69 176 3675 20 26,892 26,956 0.24
20 51 1250 25 8925 9309 4.30 70 176 3675 25 25,840 26,485 2.49
21 76 1500 5 13,492 12,755 − 5.46 71 201 4000 5 35,201 33,055 − 6.10
22 76 1500 10 12,767 11,973 − 6.22 72 201 4000 10 33,024 31,797 − 3.71
23 76 1500 15 12,066 11,795 − 2.24 73 201 4000 15 31,072 30,745 − 1.05
24 76 1500 20 11,114 11,189 0.68 74 201 4000 20 29,030 29,216 0.64
25 76 1500 25 10,662 10,738 0.71 75 201 4000 25 28,218 28,550 1.18
26 76 1725 5 15,418 14,815 − 3.91 76 201 4200 5 36,358 34,492 − 5.13
27 76 1725 10 14,573 13,795 − 5.34 77 201 4200 10 34,607 33,604 − 2.90
28 76 1725 15 13,545 13,504 − 0.30 78 201 4200 15 32,220 32,245 0.08
29 76 1725 20 12,899 12,903 0.03 79 201 4200 20 30,831 31,130 0.97
30 76 1725 25 12,184 12,734 4.52 80 201 4200 25 29,538 29,582 0.15
31 101 2000 5 17,496 16,510 − 5.64 81 226 4500 5 39,110 37,111 − 5.11
32 101 2000 10 16,960 16,103 − 5.05 82 226 4500 10 36,542 35,503 − 2.84
33 101 2000 15 15,761 15,354 − 2.58 83 226 4500 15 34,771 34,568 − 0.58
34 101 2000 20 14,825 14,783 − 0.28 84 226 4500 20 32,735 33,106 1.13
35 101 2000 25 14,278 14,540 1.83 85 226 4500 25 31,810 32,087 0.87
36 101 2300 5 20,565 19,433 − 5.50 86 226 4725 5 41,065 38,970 − 5.10
37 101 2300 10 18,966 18,160 − 4.25 87 226 4725 10 38,897 37,661 − 3.18
38 101 2300 15 17,932 17,557 − 2.09 88 226 4725 15 36,466 36,420 − 0.13
39 101 2300 20 17,188 17,138 − 0.29 89 226 4725 20 34,391 34,743 1.02
40 101 2300 25 16,559 17,336 4.69 90 226 4725 25 33,148 32,930 − 0.66
41 126 2500 5 22,199 21,077 − 5.06 91 251 5000 5 43,289 40,925 − 5.46
42 126 2500 10 20,502 19,706 − 3.88 92 251 5000 10 40,833 39,522 − 3.21
43 126 2500 15 19,725 19,356 − 1.87 93 251 5000 15 37,990 38,092 0.27
44 126 2500 20 18,326 18,459 0.72 94 251 5000 20 36,543 37,236 1.90
45 126 2500 25 17,699 18,106 2.30 95 251 5000 25 34,850 35,614 2.19
46 126 2750 5 24,498 23,177 − 5.39 96 251 5250 5 46,289 43,854 − 5.26
47 126 2750 10 22,911 21,946 − 4.21 97 251 5250 10 42,676 41,382 − 3.03
48 126 2750 15 21,643 21,411 − 1.07 98 251 5250 15 40,083 39,986 − 0.24
49 126 2750 20 20,544 20,540 − 0.02 99 251 5250 20 38,037 38,594 1.47
50 126 2750 25 19,429 19,163 − 1.37 100 251 5250 25 36,751 37,480 1.98
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whether there are two sufficient capacities for the new 
loads;

• The creating multistops operator was considered for any 
pair of distinct routes R1 and R2 , attempting each possible 
transfer amount z between 1 and the difference between 
the maximum of the capacity of the bus performing R2 
and the highest unused bus capacity, and the load of R2;

• In Variants II to IV, whenever the total number � of 
non-compulsory stops was positive and at most three, 
the parameters of the Binomially distributed number of 
removals were changed to � and 1∕� , and the solution 
alteration process was skipped whenever � = 0.

Table 4 displays the results achieved by our heuristic algo-
rithm as well as those achieved by Sales et al.’s [29] memetic 
algorithm. Note that the latter was run 10 times for each 
instance and average results are reported. Our results are 
averaged across 12 runs, with 3 runs per algorithm variant. 
The computational time allowed for each run of our algo-
rithm was selected as follows. First, instances for which an 
average computational time of fewer than 10 s was reported 
in [29] were run for 10 s. For the remaining instances, the 
average computational time reported in [29] was rounded up 
to the nearest 30 s and set as a time limit. This was done to 
have similar running times for comparison purposes.

We observe in Table 4 that the results obtained by 
our algorithm are very close to those obtained by the 
memetic algorithm, and sometimes better. The relative 
gaps between the results range between −6.25 and 4.69%. 
We have found better results for 68 of the 100 instances, 
with the largest improvements being seen for Instances 
61, 12, and 22. Our algorithm performs the worst in 
comparison with the memetic algorithm for Instances 
40, 30, and 20. Table 4 shows an overall pattern in the 
relative gaps achieved for different maximum walking 
distances mw . One can note that, in most cases, the rela-
tive gaps increase with an increase in mw . In fact, our 
algorithm always performs better for mw ∈ {5, 10} . For 
mw ∈ {15, 20, 25} , our algorithm performs better for 17, 
7, and 4 instances, respectively. This trend is likely to 
have occurred due to the different order of the bus stop 
selection and student assignment strategies. While our 
algorithm first selects bus stops and then assigns students 
to the stop closest to the school, the memetic algorithm 
performs the student assignments before the selection of 
the bus stops. Hence, for large mw , as Sales et al. have 
observed, the memetic algorithm “can concentrate stu-
dents at stops closer to the school”, thus reducing the total 
distance travelled by all buses.

Concluding Remarks and Suggestions

This paper has addressed a real-world SBRP that incor-
porates heterogeneous fleets and bus stop selection. This 
problem includes several important features, such as stu-
dent eligibility, maximum walking distances, maximum 
riding times, different types of buses, multistops (multiple 
buses visiting a single bus stop), and bus dwell times. A 
heuristic algorithm has been developed which encom-
passes the first three subproblems of the SBRP, as defined 
in Desrosiers et al. [15].

Our heuristic algorithm has been tested on a variety 
of real-world problem instances from Malta, the UK, and 
Australia, with sizes upwards of 1800 potential bus stops 
and 750 students. For all instances, the algorithm has suc-
cessfully found high-quality solutions in short amounts 
of computational time. A merit of our algorithm is that it 
can sometimes provide multiple subsets of bus stops that 
yield the same best total journey time. Indeed, here, we 
have determined alternative subsets for seven instances. 
From these alternative subsets, the most appropriate one 
can then be identified based on factors, such as bus depot 
locations, bus stop accessibility, and average student walk-
ing distance.

We have attempted to improve the best reported results of 
our heuristic algorithm through an MIP. An improvement, 
ranging between 1 and 197 s, has been found for seven of the 
20 best results. Higher improvements could potentially be 
obtained by allowing a longer time limit for each instance.

We have also applied our heuristic algorithm to 100 
instances generated by Sales et al. [29], with sizes up to 250 
potential bus stops and 5250 students. We have observed 
that our algorithm compares well with the memetic algo-
rithm presented in [29] and also provides better results for 
68 instances.

In the future, we would like to handle uncertainties in the 
bus travel times caused by factors such as weather condi-
tions and traffic congestion (e.g., [1, 10, 38]). Due to these 
uncertainties, solutions may no longer remain the best or 
even feasible, since, for example, students may arrive late for 
school. It is of interest to see how the solutions will change 
when we apply a robust optimization and/or a stochastic 
programming formulation to our SBRP. Another interesting 
future development is the incorporation of time windows for 
arrivals at schools and multi-tripping. In the latter, several 
routes, possibly pertaining to different schools, are linked, so 
that buses can perform multiple routes successively.

Table 4  (continued) Relative gaps between the two results are also presented for each instance



 SN Computer Science            (2023) 4:74    74  Page 14 of 15

SN Computer Science

Appendix

The following MIP model produces solutions consisting of 
cycles that start and end at the school. The arc from the 
school to the first bus stop in each route is then excluded. 
This is made possible by assuming that the driving time 
from the school to any stop is zero.

The decision variables of our model are as follows. 
Binary variable xuvR indicates whether route R ∈ R trav-
els from u to v, where u, v ∈ V1 and u ≠ v . Binary variable 
yvR indicates whether route R ∈ R visits v ∈ V1 . In addi-
tion, binary variable zwv indicates whether students in 
address w ∈ V2 walk to stop v ∈ V1⧵{v0} . Integer variable 
svR ∈ {0, 1,… ,Cmax} gives the number of students boarding 
route R ∈ R at stop v ∈ V1 ⧵ {v0} . Moreover, integer vari-
able lvR ∈ {0, 1,… ,Cmax} gives the total load of route R ∈ R 
just after visiting stop v ∈ V1⧵{v0} . Finally, the continuous 
variable tR ∈ [0,mt] specifies the total journey time of route 
R ∈ R . The MIP formulation is as follows:

(8)min
∑

R∈R

tR,

(9)s.t.
∑

u∈V1

xuvR = yvR∀v ∈ V1, R ∈ R,

(10)
∑

u∈V1

xvuR = yvR∀v ∈ V1, R ∈ R,

(11)yv0R ≥ yvR∀v ∈ V1 ⧵ {v0}, R ∈ R,

(12)

∑

v ∈ V1 ⧵ {v0}

d(w, v) ≤ mw

zwv = 1∀w ∈ V2,

(13)
∑

R∈R

yvR ≥ zwv∀v ∈ V1 ⧵ {v0}, w ∈ V2,

(14)
∑

w∈V2

s(w)zwv −
∑

R∈R

svR = 0∀v ∈ V1 ⧵ {v0},

(15)yvR ≤ svR∀v ∈ V1 ⧵ {v0}, R ∈ R,

(16)CmaxyvR ≥ svR∀v ∈ V1 ⧵ {v0}, R ∈ R,

(17)
luR + svR − Cmax(1 − xuvR) ≤ lvR∀u, v ∈ V1 | v ≠ v0, R ∈ R,

(18)
luR + svR + Cmax(1 − xuvR) ≥ lvR∀u, v ∈ V1 | v ≠ v0, R ∈ R,

Here, the objective function (8) minimizes the total journey 
time of all routes. Constraints (9)–(11) relate to stop and 
school visits. Specifically, (9) and (10) ensure that if route 
R ∈ R visits v ∈ V1 , then route R should enter and leave v 
exactly once. Next, (11) forces each route R ∈ R to visit 
school v0 whenever it visits at least one stop v ∈ V1⧵{v0} . 
Constraints (12)–(14) relate to student walks and pickups: 
(12) ensures that students living in each address w ∈ V2 
walk to exactly one stop within walking distance mw ; (13) 
ensures that no student walks to an unvisited stop; while 
(14) guarantees that the total number of students boarding 
at stop v ∈ V1 ⧵ {v0} is equal to the total number of students 
walking to that stop. Constraints (15)–(16) relate to student 
boardings. These force the number of students boarding 
route R ∈ R at stop v ∈ V1 ⧵ {v0} to be zero if route R does 
not visit stop v. If route R visits stop v, then (15) also updates 
the lower bound on the number of boarding students to one. 
In addition, Constraints (17)–(18) relate to route loads and 
also serve as subtour elimination constraints as proposed in 
[20]. Note that lv0R = 0 ∀R ∈ R . These guarantee that no 
route contains a subtour disconnected from school v0 and 
that each route load increases in accordance with the number 
of students boarding the bus on that route. In fact, if route 
R ∈ R goes from u ∈ V1 to stop v ∈ V1 ⧵ {u, v0} , then the 
load of route R immediately after visiting stop v is set equal 
to the load of route R just after visiting u plus the number of 
students boarding route R at stop v. Finally, (19) calculates 
the total journey time of each route R ∈ R.
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(19)

∑

u,v∈V1

t(u, v)xuvR +
∑

v∈V1⧵{v0}

(d1yvR + d2svR) = tR∀R ∈ R.
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