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Box A. Type-1 error rates. 

 

To preserve the structure of the original dataset, such as the existing relationship between UniEdu and 

avMSE or AOSW, we simulated SNPs directly in the Stage-I and Stage-II samples.  

 

(a) Type-1 error rate of Levene’s median test when testing for variance heterogeneity with the 

avMSE phenotype in the Stage-I sample.  

We simulated a biallelic SNP S with MAF in the range 0.05−0.50. We took the original avMSE 

phenotype and added a small value to create a new phenotype Y such that S had an association with Y 

that explained 1% of the variance in Y, but Y retained an almost identical distribution to avMSE. We 

regressed Y on the covariates sex, age, age-squared, genotyping array, and the first 10 PCs and then 

tested the residuals for variance heterogeneity between the (0, 1 or 2) genotype classes of S using 

Levene’s median test. Thus, S had a marginal effect but no GxE interaction effect, therefore this 

provided an assessment of the type-1 error rate for the variance heterogeneity analysis. We carried out 

the simulation with 5,000,000 replicates. 

 

(b) Type-1 error rate of Levene’s median test when testing for variance heterogeneity with the 

AOSW phenotype in the Stage-II sample.  

As above, we simulated a biallelic SNP S with MAF in the range 0.05−0.50. We modified the original 

AOSW phenotype to create a new phenotype Y such that S had an association with Y that explained 

1% of the variance in Y, but Y retained an almost identical distribution to AOSW. We regressed Y on 

the covariates sex, age, age-squared, genotyping array, and the first 10 PCs and then tested the 

residuals for variance heterogeneity by S using Levene’s median test. Thus, S had a marginal effect 

but no GxE interaction effect, therefore this provided an assessment of the type-1 error rate for the 

variance heterogeneity analysis. We carried out the simulation with 5,000,000 replicates. 

 

(c) Type-1 error rate of linear regression when testing for a SNP  UniEdu interaction with the 

AOSW phenotype in the Stage-II sample. 

We simulated a biallelic SNP S with MAF in the range 0.05−0.50 together with a binary variable E 

with the same prevalence as UniEdu to represent an independent environmental risk factor. We 

modified the original AOSW phenotype to create a new phenotype Y with an almost identical 

distribution to AOSW that had an association with S, an association with E, and an S  E interaction 

effect. The variance in Y explained by S, E and the S  E interaction were each approximately 1%. We 

then tested for a S  UniEdu interaction effect by fitting the model: 

 

𝐴𝑂𝑆𝑊 = 𝛽0 + 𝛽1𝑆 + 𝛽2𝑈𝑛𝑖𝐸𝑑𝑢 + 𝛽3𝑆 × 𝑈𝑛𝑖𝐸𝑑𝑢 + 𝛾𝐶 + 𝜀 (Eq. S1) 

Thus, S had a marginal effect, a GxE interaction effect with E, but no GxE interaction effect with 

UniEdu. Therefore Eq. S1 provided an assessment of the type-1 error rate for the GxE interaction test. 

We carried out the simulation with 5,000,000 replicates. 
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The results are presented in the QQ-plots above. Simulations (a) and (b) suggested appropriate control 

of the type-1 error rate for Levene’s test despite the non-normal distributions of avMSE and AOSW. 

Likewise, simulation (c) suggested excellent control of the type-1 error rate when testing for GxE 

interactions using linear regression despite the highly non-normal distributions of AOSW. 
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Box B. Validity of University education as an index of educational intensity 

 

The presence vs. absence of University education, coded via the binary variable UniEdu, served as the 

primary environmental exposure in this work. UniEdu was selected in preference to the discrete 

variable EduYears because the distribution of EduYears was highly non-normal and its measurement 

range was truncated, which may have impacted on the power and type-1 error rate of tests for a GxE 

interaction.  

University education in UK Biobank participants typically began at the age of 18 years-old, which is 

after the age that myopia usually developed. Hence, the use of UniEdu as an index of education 

attainment could be viewed as paradoxical as regards the time-ordering of exposure and outcome, 

when testing for a gene-by-education interaction that contributes to myopia development. 

However, as elegantly shown by Howe et al. [13], there is evidence that the causal effect of education 

on AOSW (a surrogate for refractive error and myopia) occurs throughout childhood. Thus, in line 

with Howe et al. [13] and previous GxE interaction studies of myopia [14, 15] we made the 

assumption that UniEdu and EduYears capture aspects of educational intensity. Thus, even though a 

SNP x education interaction may predispose a child to develop myopia and thus require spectacles at 

an early age, we argue that it is logical to test for a SNP x UniEdu interaction effect associated with 

the outcome AOSW under the assumption that attending University serves as a proxy for a relatively 

high level of educational intensity throughout childhood. 
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Box C. Validity of age-of-spectacles-wear (AOSW) as a surrogate for refractive error 

(avMSE) in GxE interaction tests 

 

The strongest evidence that AOSW is a valid surrogate for refractive error when testing for GxE 

interactions is that we observed a high correlation between the SNP  UniEdu interaction effect size 

𝛽𝐺×𝐸 for the trait AOSW in the Stage-II sample and the SNP  UniEdu interaction effect size for the 

trait avMSE in the Stage-I sample (Spearman  = 0.71, P = 9.48 x 10-5, for the 25 genome-wide 

significant vQTL variants; Figure 3A). Furthermore, the p-values from Levene’s test for AOSW in the 

Stage-II sample and the p-values from Levene’s test for avMSE in the Stage-I sample were also highly 

correlated (Spearman  = 0.58, P = 0.003). This correlation implies that sources of variance 

heterogeneity for the trait avMSE can be detected when using AOSW as a surrogate trait. More 

generally, the relationship between AOSW and refractive error is strong and direct (for those aged 

< 40 years-old, refractive error is typically the reason why individuals start wearing glasses) [16-19]. 

The two traits have a very high genetic correlation (rg = -0.97) [18]). In UK Biobank participants, a 

polygenic score for AOSW and a polygenic score for avMSE each explained approximately 7% of the 

variance in avMSE in an independent sample of participants [4]. Finally, there are several precedents 

for using AOSW as a validation phenotype for refractive error [7, 13, 20]. 
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Box D. Comparison of results of sensitivity analyses.  

Sensitivity analyses were carried out in which statistical adjustment for the marginal effect of UniEdu 

was or was not performed, prior to downstream analyses [11] or in which the refractive error in only 

the right eye was considered. The table below lists the number of variants identified in each step of 

the analysis for these analyses, which are labelled #1-4. The Venn diagrams display the degree of 

overlap for the variants identified in Step 1 (panel A) and in Step 2 (panel B).  

The original analysis presented in the main text (analysis #2) and all 3 sensitivity analyses resulted in 

the identification of the same 6 SNP  UniEdu interactions in the Stage-II sample.  

Analysis Phenotype 

in 

Steps 1 and 

2 

Adjust for 

UniEdu in 

Step 1 

(GWAS) 

Adjust for 

UniEdu in 

Step 2 

(Levene’s 

test) 

Step 1 

results: 

Number of 

independent 

loci 

P < 1e-04 

Step 2 

results: 

Number of 

vQTL loci 

(Bonferroni-

corrected) 

Step 3 results: 

Number of 

SNP  UniEdu 

interactions in 

Stage-II sample 

(Bonferroni-

corrected) 

#1 
avMSE in 2 

eyes 
- - 956 29 6 

#2 
avMSE in 2 

eyes 
- Yes 956 25 6 

#3 
avMSE in 2 

eyes 
Yes Yes 911 23 6 

#4 
MSE in 

Right eye 
- Yes 910 28 6 
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Box E. Supplementary Methods 

 

Participants, phenotype and environmental variables 

UK Biobank is a large prospective study examining the health and wellbeing of adults living in the 

United Kingdom (UK). The study had ethical approval from the National Health Service (NHS) 

Research Ethics Committee (Reference: 11/NW/0382). Signed and informed consent was obtained 

from all of the participants. Approximately 500,000 participants aged between 37 and 73 years 

attended a baseline assessment visit between 2006 – 2010 [1]. Data regarding educational attainment 

was collected using a structured interview during this baseline assessment. Participants were asked, 

“Which of the following qualifications do you have? (You can select more than one)”. Those who did 

not report having a University or college degree were also asked “At what age did you complete your 

continuous full-time education?” We derived two variables based on these responses. The binary 

variable UniEdu was used to indicate whether or not individuals had a University or college degree 

and the integer variable EduYears was used to classify the age at which the participants completed 

their full-time education [2]. Participants who reported a school-leaving age of less than 15 years were 

assigned an EduYears of 15 years, while those who reported leaving school after the age of 21 years 

and those who held a University or College degree were assigned an EduYears of 21 years [2]. An 

ophthalmic assessment was included in the UK Biobank baseline visit only towards the later stages of 

recruitment. Approximately 23% of the participants underwent the ophthalmic assessment [3]. The 

refractive error phenotype (avMSE) was calculated as the average value across both eyes of the 

spherical equivalent (sphere + 0.5  cylinder) refractive error from repeat autorefraction readings 

(Tomey RC 5000 instrument; Tomey GmbH Europe, Erlangen-Tennenlohe, Germany). All 

participants were asked their age-of-onset of spectacle (or contact lens) wear. We used this self-

reported age-of-onset of spectacle wear as a continuous variable, AOSW, to indirectly quantify 

participants’ refractive error, because of its known correlation with refractive error [4]. Blood samples 

were collected as part of the UK Biobank project. DNA was extracted and genotyped using either the 

UK BiLEVE Axiom array or the UK Biobank Axiom Array, as described [5]. Imputation was carried 

out with the IMPUTE4 program (https://jmarchini.org/software/), with a combined Haplotype 

Reference Consortium (HRC) reference panel and a merged UK10K/1000 Genomes phase 3 reference 

panel, as described [5]. 

 

A ‘Stage-I’ sample of unrelated participants of European ancestry with a valid avMSE information 

was selected (there were too few participants of non-European ancestry to study GxE interactions in 

other ancestry groups). Participants were excluded if they reported any of the following: cataracts, 

history of cataract surgery, corneal graft surgery, laser eye surgery, any other eye surgery in the last 4 

weeks, “serious eye problems” or “eye trauma”. In addition, individuals were excluded if their 

hospital records indicated a history of cataract surgery, eye surgery, retinal surgery or retinal 

detachment surgery. Participants were also excluded if they were from an assessment center that 

recruited 50 or fewer participants. Participants were classified as myopic if they had an 

avMSE  -0.50 D [6]. From amongst these participants, the maximal set of unrelated participants was 

chosen using the R package igraph [5], which resulted in a final sample size for the Stage-I sample of 

N = 88,334. A ‘Stage-II’ sample was selected comprising of European-ancestry participants who were 

unrelated to each other, unrelated to any person in the Stage-I sample, and who had information 

available for AOSW, UniEdu and EduYears. This provided a Stage-II sample of N = 252,838. 

Participants in the Stage-II sample were classified as myopic if they had an AOSW greater than 5 

years and less than or equal to 25 years [7]. 

 

Two-step screening strategy for identifying putative GxE interaction variants 

The first screening step (Figure 1A) was a standard GWAS for the phenotype avMSE in the Stage-I 

sample of N = 88,334 participants, using a linear regression analysis implement with BOLT-LMM 

[8]. Sex, age, age-squared, a binary indicator of the genotype array (UK BiLEVE Axiom or UK 

Biobank Axiom array) and the first 10 ancestry principal components (PCs) were included as 

covariates. For this and all of the other analyses undertaken, non-binary covariates were standardized 

to have a mean of zero and a standard deviation of one, in order to facilitate model fitting. Imputed 

https://jmarchini.org/software/
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genetic variants were included if they had a missing rate < 5%, a minor allele frequency (MAF) > 5% 

and a Hardy-Weinberg equilibrium test P > 1 x 10-6, which yielded approximately 7 million variants 

in total. Individuals with a missing genotype rate ≥ 2% were excluded. Independently associated 

SNPs in each region were selected by p-value-based clumping with PLINK [9] with a physical 

distance threshold of 500kb and a linkage disequilibrium (LD) r2 threshold of 0.01. We applied a 

lenient p-value threshold (P < 1 x 10-4) for association with avMSE to identify SNPs to take forward 

to the second screening step. This p-value threshold was arbitrarily chosen in a pre-specified analysis 

plan, to provide a balance between specificity and sensitivity. 

 

The second screening step (Figure 1B) was a variance heterogeneity analysis for the phenotype 

avMSE in the Stage-I sample (N = 88,334), using Levene’s median test implemented with the 

software package OSCA [10]. The 956 genetic variants independently associated with avMSE that 

were identified in step 1 were taken forward for testing in step 2. We first carried out a linear 

regression analysis in R for the outcome variable avMSE, with UniEdu, sex, age, age-squared, 

genotype array and the first 10 PCs as predictor variables. As reported by Zhang et al. [11], inclusion 

of UniEdu in this step avoids inflation of false-positives when later testing for SNP  UniEdu 

interactions. The avMSE residuals from this model were then used as the phenotype for Levene’s 

median test. A Bonferroni correction for multiple comparisons was applied to the alpha value for this 

test ( = 0.05/956 = 5.23  10-5). Applying Levene’s test required the use of “hard-called” genotypes. 

Bycroft et al. [5] reported that SNPs with MAF >5% in the UK Biobank study were imputed very 

accurately (imputation quality “INFO” metric >0.98). This meant that genotype uncertainty was 

unlikely to have adversely affected the results of Levene’s test. 

 

Gene-environment interaction tests 

Gene-environment interaction tests were performed in R [12]. To test if any of the N = 25 SNPs 

identified using the 2-step screening strategy had evidence of an interaction with educational 

attainment, we carried out a formal test for genotype  education interaction in the independent 

sample of participants from the Stage-II sample (N = 252,838). Specifically, we fit a linear regression 

model with an interaction term for each variant in turn, as follows: 

 

𝐴𝑂𝑆𝑊 = 𝛿0 + 𝛿1𝑆𝑁𝑃 + 𝛿2𝑈𝑛𝑖𝐸𝑑𝑢 + 𝛿3𝑆𝑁𝑃 × 𝑈𝑛𝑖𝐸𝑑𝑢 + 𝛾𝐶 + 𝜋 (Eq. S1) 

 

Where, AOSW is a n  1 vector of age-of-onset of spectacle wear values in the n participants in the 

Stage-II sample, SNP is a n  1vector of SNP genotypes (counts of the minor allele, coded 0, 1 or 2), 

UniEdu is a n  1 vector binary (0,1) variable indicating the absence or presence of University degree, 

C is a n  k matrix of covariates (age, age-squared, genotyping array, and the first 10 ancestry PCs; 

with non-binary covariates standardized to have a mean of zero and a standard deviation of one),  is a 

1  k vector of regression coefficients, and 𝜋 is a residual. 𝛿0 is an intercept, while 𝛿1, 𝛿2 and 𝛿3 are 

the regression coefficients for the marginal effect for the SNP, the marginal effect for UniEdu and the 

SNP  UniEdu interaction effect, respectively. A Bonferroni correction for multiple comparisons was 

applied to identify 𝛿3 terms showing evidence of association, using an alpha value for this test of  = 

0.05/25 = 0.002. 

 

Analogous linear regression models were fitted to test for genotype-by-EduYears interaction. 

However, as EduYears is a continuous exposure and its main effect on the outcome could be 

nonlinear, p-values and standard errors for all tests involving SNP  EduYears interactions were 

calculated using a robust Huber-White sandwich estimator (R package estimatr, available from 

https://github.com/DeclareDesign/estimatr): 

 

𝐴𝑂𝑆𝑊 = 𝛿0 + 𝛿1𝑆𝑁𝑃 + 𝛿2𝐸𝑑𝑢𝑌𝑒𝑎𝑟𝑠 + 𝛿3𝑆𝑁𝑃 × 𝐸𝑑𝑢𝑌𝑒𝑎𝑟𝑠 + 𝛾𝐶 +  (Eq. S2) 

 

Logistic regression models of the same form were applied to test for genotype-by-interaction effects 

associated with myopia status, for the outcome variable Myopic (1 = myopic, 0 = non-myopic). Linear 

https://github.com/DeclareDesign/estimatr
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regression tests for a SNP  UniEdu interaction and SNP  EduYears interaction of the same form 

were carried out for the avMSE, AOSW and Myopic phenotypes in the Stage-I sample. 

 

 

Gene-gene interaction tests 

SNP  SNP interaction tests were performed to examine if any pair of SNPs from amongst the 25 

SNPs identified using the 2-step screening strategy had evidence of a genotype  genotype 

interaction. A linear regression model with an interaction term was fitted for each pair of variants in 

turn, as follows: 

 

𝐴𝑂𝑆𝑊 = 𝛿0 + 𝛿1𝑆𝑁𝑃1 +  𝛿2𝑆𝑁𝑃2 + 𝛿3𝑆𝑁𝑃1 × 𝑆𝑁𝑃2 + 𝛾𝐶 + 𝜋 (Eq. S3) 

 

𝑎𝑣𝑀𝑆𝐸 = 𝛽0 + 𝛽1𝑆𝑁𝑃1 + 𝛽2𝑆𝑁𝑃2 + 𝛽3𝑆𝑁𝑃1 × 𝑆𝑁𝑃2 + 𝛾𝐶 + 𝜀 (Eq. S4) 

 

Where terms are defined as above. The avMSE phenotype was tested in the Stage-I sample and the 

AOSW phenotype was tested in the Stage-II sample. A Bonferroni correction for multiple comparisons 

was applied to identify 𝛿3 or 𝛽3 terms showing evidence of association, using an alpha value for this 

test of  = 0.05/300 = 0.00017 (accounting for a total of 2525 / 2 tests). 

 

Assessment of type-1 error rate and tests for gene-environment correlation 

We carried out simulations to assess the type-1 error rate of Levene’s median test when testing for 

variance heterogeneity with the avMSE phenotype in the Stage-I sample, and the type-1 error rate of 

linear regression when testing for a SNP  UniEdu interaction with the AOSW phenotype in the 

Stage-II sample. To test for gene-environment correlation, the following logistic regression model 

was fitted for each SNP: 

 

logit 𝑃(𝑈𝑛𝑖𝐸𝑑𝑢 = 1 | 𝑆𝑁𝑃, 𝐶)  = 𝜔0 + 𝜔1𝑆𝑁𝑃 +  𝛾𝐶 + 𝜀 (Eq. S5) 

 

As above, C is a n  k matrix of covariates (age, age-squared, genotyping array, and the first 10 

ancestry PCs),  is a 1  k vector of regression coefficients, and  is a residual. 𝜔0 is an intercept. The 

𝜔1 term quantifies the association between the SNP genotype and having a University degree. 
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Fig A. Manhattan plot of the results from the GWAS for refractive error (avMSE) in 

the Stage-I sample. The red horizontal line indicates the arbitrarily chosen p-value threshold (P < 1 

x 10-4) used to select SNPs to take forward to the next stage of the analysis.  
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Fig B. SNP genotype-by-

University education (GxE) 

interactions associated with age-

of-onset of spectacle wear 

(AOSW). University education 

(UniEdu) was coded as a binary 

exposure. The nearest gene to the SNP 

is indicated above the SNP rsID. Error 

bars are 95% confidence intervals. 

SNPs with significant GxE interaction 

effects (P < 0.05/25) are shown in 

red/blue. The SNP risk allele was 

defined as the myopia-predisposing 

allele in a marginal SNP effects 

analysis. 
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Fig C. Summary of the evidence for SNP  SNP interactions contributing to myopia development. Each tile indicates the statistical evidence 

(p-value) for a test of GxG interaction. Tests were carried out for the phenotype avMSE in the Stage-I sample and the phenotype AOSW in the Stage-II 

sample. A p-value of P < 0.00017 corresponds to a correction for 300 tests ( = 0.05/300, where 2525 / 2 = 300). 
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