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Abstract

Myopia most often develops during school age, with the highest incidence in countries with

intensive education systems. Interactions between genetic variants and educational expo-

sure are hypothesized to confer susceptibility to myopia, but few such interactions have been

identified. Here, we aimed to identify genetic variants that interact with education level to con-

fer susceptibility to myopia. Two groups of unrelated participants of European ancestry from

UK Biobank were studied. A ‘Stage-I’ sample of 88,334 participants whose refractive error

(avMSE) was measured by autorefraction and a ‘Stage-II’ sample of 252,838 participants

who self-reported their age-of-onset of spectacle wear (AOSW) but who did not undergo

autorefraction. Genetic variants were prioritized via a 2-step screening process in the Stage-I

sample: Step 1 was a genome-wide association study for avMSE; Step 2 was a variance het-

erogeneity analysis for avMSE. Genotype-by-education interaction tests were performed in

the Stage-II sample, with University education coded as a binary exposure. On average, par-

ticipants were 58 years-old and left full-time education when they were 18 years-old; 35%

reported University level education. The 2-step screening strategy in the Stage-I sample pri-

oritized 25 genetic variants (GWAS P < 1e-04; variance heterogeneity P < 5e-05). In the

Stage-II sample, 19 of the 25 (76%) genetic variants demonstrated evidence of variance het-

erogeneity, suggesting the majority were true positives. Five genetic variants located near

GJD2, RBFOX1, LAMA2, KCNQ5 and LRRC4C had evidence of a genotype-by-education

interaction in the Stage-II sample (P < 0.002) and consistent evidence of a genotype-by-edu-

cation interaction in the Stage-I sample. For all 5 variants, University-level education was

associated with an increased effect of the risk allele. In this cohort, additional years of educa-

tion were associated with an enhanced effect of genetic variants that have roles including

axon guidance and the development of neuronal synapses and neural circuits.
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Author summary

Myopia (short-sightedness) is a refractive error that typically develops during childhood.

Uncorrected myopia causes blurred distance vision. Myopia is also associated with a

range of eye disorders, making it a leading cause of irreversible visual impairment in older

age. About 80% of children in East Asia develop myopia during school-age; in the West

the corresponding figure is about 30%. Genetics, insufficient time spent outdoors, and

years spent in education are risk factors for myopia. Genetics studies have identified more

than 450 genetic variants associated with an increased risk of myopia. However, very few

genetic variants have been found that confer an increased risk of myopia specifically in

individuals exposed to higher levels of lifestyle risk factors. Here, we leverage statistical

features expected for variants with gene-environment interaction effects and harness the

large sample size of UK Biobank, to identify 5 genetic variants that confer a progressively

increased risk of myopia in individuals who spent increasing years in education. Two of

the variants replicate findings reported in East Asian cohorts, while the other 3 variants

are novel. This work provides insight into the biological pathways through which genes

and lifestyle interact to cause myopia.

Introduction

Myopia (short-sightedness) is a refractive error caused by a mismatch between the focal and

axial lengths of the eye. Myopia currently affects 22% of the world population and its preva-

lence is increasing, especially in recent birth cohorts [1,2]. Individuals with myopia are at

greater risk of ocular pathologies such as glaucoma, myopic maculopathy and retinal detach-

ment [2,3]. Refractive errors have a significant economic, societal and healthcare impact due

to the requirement of sight tests, corrective aids or surgery, and the associated increased risk of

blindness and sight impairment [4].

Refractive errors are highly heritable. To date, genome-wide association studies (GWAS)

have identified more than 450 genetic variants associated with refractive error [5,6]. Pathway

analysis of these gene variants has highlighted a diverse range of functions, signaling pathways

and cellular processes involving many different retinal cell types, as well as the structure and

function of the extracellular matrix. Environmental factors such as years spent in education,

excessive near work, and less time outdoors are also associated with myopia [7–12]. Typically,

genetic and lifestyle risk factors for refractive error have been studied separately, with few stud-

ies directly assessing the contribution from gene-environment (GxE) interaction effects [13–

15].

A standard GWAS tests for an association between the genotype of single nucleotide poly-

morphisms (SNPs) and themean level of a phenotype. By contrast, a ‘variance heterogeneity’

analysis tests for SNPs that exhibit a difference in phenotype variance across genotypes (Fig 1).

Most SNPs with GxE interaction effects are expected to be variance heterogeneity quantitative

trait loci (‘vQTLs’) [16]. Notably, information about each participant’s level of exposure to the

relevant environmental risk factor is not required to perform a variance heterogeneity analysis;

only genotype and phenotype information is required. A variance heterogeneity analysis can

be used as a screening step to prioritize SNPs for further assessment for GxE interaction

effects, which reduces the multiple testing burden and loss of statistical power associated with

testing vast numbers of variants [16–19]. Here, we adopted a 2-step genome-wide screening

strategy, comprising of a standard GWAS analysis followed by a variance heterogeneity
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analysis, to enrich for SNPs with an above-average likelihood of involvement in a GxE interac-

tion associated with refractive error. We then assessed the prioritized SNPs for genotype-by-

education interaction effects.

Fig 1. Two-step screening strategy for selecting SNPs likely to be involved in a GxE interaction. The graphs provide schematic illustrations of SNPs without

(left) and with (middle and right) GxE interactions, using education as an exemplar environmental exposure. A: Standard GWAS analysis will detect effects

averaged across environments for the population (black dashed line). Thus, a standard GWAS analysis will detect SNPs that do not have GxE interaction effects

(left panel) but it will also detect SNPs that do have GxE interaction effects (middle panel) unless the SNP effects cancel out in different environments (right

panel). B: SNPs involved in GxE interactions are expected to exhibit variance heterogeneity for each genotype, which is depicted as differences in height of the

green arrows (middle and right panels) whereas variance heterogeneity is not expected for a SNP with no GxE interaction (left panel).

https://doi.org/10.1371/journal.pgen.1010478.g001
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Results

Analyses were performed in 2 independent samples of UK Biobank participants (Table 1): a

‘Stage-I’ sample (N = 88,334) with known refractive error (avMSE) and a ‘Stage-II’ sample

(N = 252,838) with known age-of-onset of spectacle wear (AOSW). On average, participants

were 58 years-old (range 40–73 years) and left full-time education at age 18 years (range 13–26

years). Approximately one third of participants had undergone University-level education

(coded as a binary variable, UniEdu). The sample size was approximately 3-fold larger for the

Stage-II sample than the Stage-I sample due to autorefractor measurements only being per-

formed in the later stage of UK Biobank recruitment.

Overview of the two-step strategy for selecting variants involved in GxE

interactions

A 2-step screening strategy in the Stage-I sample, with avMSE as the phenotype-of-interest,

was used to select a set of genetic variants with above-average likelihood of involvement in a

GxE interaction (Fig 1). Step 1 was a standard GWAS for refractive error, testing for a SNP-

phenotype ‘marginal effect’. SNPs with GxE interaction effects are expected to show a marginal

effect association unless the direction of effect of the SNP reverses at different levels of the

environmental exposure (Fig 1A). After ‘clumping’ SNPs in high linkage disequilibrium (LD)

to identify independently associated variants, the GWAS identified 956 SNPs with suggestive

evidence of association with avMSE at the liberal threshold of P< 1 x 10−4 (S1 Table and Fig A

in S1 Text). Step 2 was a test for variance heterogeneity, which is also an expected feature of

many of the SNPs involved in a GxE interaction (Fig 1B). Of the 956 independently associated

SNPs identified from Step 1, there were 25 variants (3%) with evidence of variance heterogene-

ity for avMSE (variance heterogeneity P< 5 x 10−5; Bonferroni correction for 956 tests). Simu-

lations confirmed that the variance heterogeneity test (Levene’s median test) maintained the

correct type-I error rate under the test conditions, despite the non-normal distributions of

avMSE (Box A in S1 Text). Details of the 25 variants identified by the 2-step screening strategy

are presented in Table 2.

Confirmation of variance heterogeneity in the Stage-II sample

The 25 variants identified using the 2-step screening strategy in the Stage-I sample were exam-

ined for evidence of variance heterogeneity in the Stage-II sample for the outcome AOSW. Sev-

enty six percent of the variants (19 out or 25) displayed evidence of variance heterogeneity in

the Stage-II sample (Levene’s test, P< 0.05; Table 2), which was a higher proportion than

expected by chance (binomial test, P = 2.52 x 10−20) and suggested that the majority of the 25

vQTL were true positive findings. Simulations suggested Levene’s test maintained the correct

Table 1. Demographic characteristics of the Stage-I and Stage-II samples. Values are means (standard deviations

in paratheses).

Trait Stage-I sample (N = 88,334) Stage-II sample (N = 252,838)

Female (proportion) 0.53 0.55

Age (years) 57.7 (7.9) 58.2 (7.5)

Age leaving education (years) 18.3 (2.5) 18.0 (2.5)

UniEdu (proportion) 0.37 0.32

AOSW (years) 32.4 (16.9) 31.6 (17.0)

Myopic (proportion) 0.34 0.38

avMSE (D) -0.25 (2.67) -

https://doi.org/10.1371/journal.pgen.1010478.t001
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type-1 error rate for the AOSW phenotype, despite its highly non-normal distribution (Box A

in S1 Text).

GxE interaction between genetic variants and educational attainment

Given prior work linking education and myopia, we examined if any of the 25 vQTL identified

in the 2-step screening strategy displayed genotype-by-education interaction effects. Obtaining

a University degree was taken as an index of relatively high educational intensity during child-

hood: the validity of this index of educational exposure is discussed in Box B of S1 Text. The

validity of AOSW as a surrogate phenotype for refractive error when testing for gene-by-edu-

cation interaction effects is discussed in Box C in S1 Text. The GxE interaction test results are

presented in Figs 2 and 3, Tables 3 and S2. Six variants, nearby the genes TOX, GJD2, LAMA2,

RBFOX1, KCNQ5 and LRRC4C, had evidence of a genotype × UniEdu interaction in the Stage-

II sample after accounting for multiple testing (P< 0.002; Bonferroni correction for 25 tests).

Similar results were obtained when considering the interaction between genotype × EduYears
(the age of completing full-time education) (P< 0.002 for all 6 variants; S2 Table). For all 6

variants, additional years spent in education was associated with an increased impact of the

Table 2. Genetic variants significantly associated with variance in refractive error (variance heterogeneity). Levene’s median test p-values are given for the tests car-

ried out in the Stage-I sample and the Stage-II sample. Variants are ranked by p-value in the Stage-I sample. Novel genes are indicated; a citation is given for genes previ-

ously implicated in myopia development. The effect allele is the allele associated with a more myopic refractive error in a linear regression test for the marginal effect of the

variant.

Variant Nearest Gene CHR POS EA NEA FreqEA P-value (Stage-I sample) P-value (Stage-II sample) Novel

rs634990 GJD2 15 35006073 C T 0.492 1.18E-17 1.37E-09 [34]

rs11602008 LRRC4C 11 40149305 T A 0.17 9.31E-16 1.57E-14 [70]

rs12193446 LAMA2 6 129820038 A G 0.904 1.32E-15 3.08E-28 [70]

rs1550094 PRSS56 2 233385396 G A 0.304 9.03E-11 3.83E-06 [71]

rs9911460 FAAP100 17 79538841 T A 0.477 5.68E-10 1.29E-39 Yes

rs7744813 KCNQ5 6 73643289 A C 0.588 1.59E-09 7.34E-10 [71]

rs7188859 RBFOX1 16 7460426 C T 0.365 6.91E-09 9.59E-17 [39]

rs10917958 NMNAT1P2 1 164214985 T C 0.234 2.06E-08 1.40E-05 Yes

rs368893443 ACTN2 13 100690003 AAGAG A 0.454 3.07E-07 3.85E-08 Yes

rs6979354 SP4 7 21417963 T C 0.555 1.71E-06 1.40E-02 Yes

rs12450368 CDRT15 17 14138507 C T 0.409 4.03E-06 3.42E-04 [5]

rs13181905 EBF1 5 158492279 A C 0.436 6.28E-06 3.51E-02 [72]

rs11033093 SLC1A2 11 35381495 G C 0.103 7.18E-06 9.98E-01 Yes

rs2980823 TCIM 8 40148843 G T 0.582 9.54E-06 4.83E-01 Yes

rs36005291 TOX 8 60179048 CA C 0.655 1.24E-05 2.20E-06 [71]

rs418092 GPX6 6 28533946 T C 0.333 1.30E-05 3.60E-02 [5]

rs2607006 SGF29 16 28576017 C T 0.414 1.48E-05 8.89E-01 Yes

rs9518096 GGACT 13 101223109 C T 0.481 1.74E-05 3.00E-06 [5]

rs77483535 THAP6 4 76312573 T C 0.302 2.48E-05 3.67E-01 Yes

rs435555 SLC52A1 17 4947305 T C 0.556 2.83E-05 1.03E-03 Yes

rs34720604 KLHL1 13 70190188 T TA 0.729 3.40E-05 5.62E-01 Yes

rs869422 ZMAT4 8 40723970 A G 0.794 3.67E-05 2.20E-12 [71]

rs1868289 GRIN2A 16 10215813 T G 0.678 3.84E-05 2.79E-02 [73]

rs7678123 CFAP299 4 81372405 C G 0.284 4.25E-05 5.89E-06 Yes

rs10637890 CDKN3 14 54779523 T TCT 0.375 4.57E-05 6.71E-01 [5]

Abbreviations: CHR = Chromosome; POS = Genomic position for GRCh37; EA = Effect allele; NEA = Non-effect allele; FreqEA = Allele frequency of effect allele.

https://doi.org/10.1371/journal.pgen.1010478.t002
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SNP risk allele, consistent with education compounding genetic predisposition to myopia (Fig

2 and S2 Table).

The effect size of the genotype × UniEdu interaction was highly correlated between the

Stage-I and Stage-II samples for the 25 variants (Spearman ρ = 0.71, P = 9.5 x 10−5). Full results

of tests for genotype × UniEdu and genotype × EduYears interactions for the phenotypes

avMSE, AOSW andMyopic in the Stage-I and Stage-II samples are presented in Figs 3 and B in

S1 Text and S2 Table. For 5 of the 6 lead GxE variants (all those except rs36005291 nearby the

TOX gene) there was independent evidence for a SNP × UniEdu and/or SNP × EduYears inter-

action in the Stage-I cohort (Table 3 and Fig 3).

Statistical evidence for the presence of a GxE interaction can be heavily dependent on the

choice of measurement scale of the phenotype [20,21]. Therefore, as a sensitivity analysis, we

examined if the above interactions were specific to the chosen measurement scale (an additive-

Fig 2. Genetic variants with evidence of genotype-by-education interactions. Results are presented for a range of outcome traits, for tests of the interaction

between SNP genotype and education level. Education level is coded as eitherUniEdu (panels A, C, E & G) or EduYears (panels B, D, F & H). Panels A & B:

Linear regression analysis for the outcome avMSE in the Stage-I sample. Panels C & D: Linear regression analysis for the outcome age-of-onset of spectacle

wear (AOSW) in the Stage-II sample. Panels E & F: Logistic regression analysis for the outcomeMyopic (calculated based on avMSE) in the Stage-I sample.

Panels G & H: Logistic regression analysis for the outcomeMyopic (calculated based on AOSW) in the Stage-II sample. The nearest gene to the SNP is indicated

above the SNP rsID. Error bars are 95% confidence intervals. The SNP risk allele was defined as the myopia-predisposing allele in a marginal effects analysis.

https://doi.org/10.1371/journal.pgen.1010478.g002
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Fig 3. Summary of the evidence for SNP genotype-by-education interactions contributing to myopia development. Each tile indicates the

statistical evidence (p-value) for a test of GxE interaction. Genetic variants are listed by row on the y-axis. Tests for different phenotypes

(avMSE, AOSW orMyopic) and different indices of education (UniEdu or EduYears) are listed by column on the x-axis. Note that all GxE tests

in the Stage-II sample will be correlated, all GxE tests in the Stage-I sample will be correlated, but that the tests in the Stage-II sample are

independent of those in the Stage-I sample.

https://doi.org/10.1371/journal.pgen.1010478.g003
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scale) by performing logistic regression analyses (on the log-odds scale) in the Stage-II sample

for the ‘myopia case-control status’ phenotype. Of the 6 variants examined, 5 retained evidence

of a genotype × UniEdu interaction (P< 0.05 for all variants except KCNQ5 variant

rs7744813) and all 6 retained evidence of a genotype × EduYears interaction (P< 0.05) when

tested for an association with myopia case-control status (Figs 2 and 3 and S2 Table). Addi-

tional sensitivity analyses confirmed that the results were robust to whether statistical adjust-

ment for UniEdu was or was not performed [19] in Step 1 and Step 2 (Box D in S1 Text).

For non-normally distributed traits such as refractive error, SNPs with marginal effects

may also be associated with the trait variance (a ‘mean-variance relationship’). Heteroskedastic

linear mixed models (HLMMs) have been developed to detect variance heterogeneity after

accounting for such a relationship [22–24]. Pozarickij et al. [25] reported a HLMM-based

GWAS analysis for refractive error in the UK Biobank sample, which yielded 14 independent

variants with genome-wide significant evidence of variance heterogeneity (P< 5 x 10−8; see

Table 3.4 of [25] for details). All 6 of the variants with significant genotype × education

Table 3. Genotype-by-UniEdu (GxE) interaction tests for AOSW in the Stage-II sample and for avMSE in the Stage-I sample. Results shown for the 25 variants with

evidence of variance heterogeneity for avMSE in the Stage-I sample. Variants are ranked by p-value for the GxE interaction test in the Stage-II sample. The effect allele is

the allele associated with a more myopic refractive error in a linear regression test for the marginal effect of the variant.

Variant Nearest gene CHR POS EA NEA FreqEA SNP x UniEdu interaction for AOSW SNP x UniEdu interaction for avMSE
BETA 95% C.I. P-value BETA 95% C.I. P-value

rs36005291 TOX 8 60179048 CA C 0.655 -0.630 (-0.839 to -0.422) 3.21E-09� -0.024 (-0.078 to 0.029) 3.78E-01

rs634990 GJD2 15 35006073 C T 0.492 -0.569 (-0.765 to -0.373) 1.32E-08� -0.071 (-0.121 to -0.021) 5.63E-03

rs12193446 LAMA2 6 129820038 A G 0.904 -0.887 (-1.219 to -0.554) 1.74E-07� -0.130 (-0.215 to -0.044) 2.91E-03

rs7188859 RBFOX1 16 7460426 C T 0.365 -0.417 (-0.623 to -0.211) 7.49E-05� -0.067 (-0.120 to -0.014) 1.38E-02

rs7744813 KCNQ5 6 73643289 A C 0.588 -0.375 (-0.577 to -0.173) 2.76E-04� -0.038 (-0.090 to 0.014) 1.49E-01

rs11602008 LRRC4C 11 40149305 T A 0.17 -0.477 (-0.739 to -0.214) 3.68E-04� -0.049 (-0.117 to 0.019) 1.54E-01

rs1550094 PRSS56 2 233385396 G A 0.304 -0.290 (-0.503 to -0.077) 7.69E-03 -0.046 (-0.100 to 0.009) 1.02E-01

rs12450368 CDRT15 17 14138507 C T 0.409 -0.236 (-0.448 to -0.024) 2.94E-02 -0.015 (-0.070 to 0.039) 5.86E-01

rs34720604 KLHL1 13 70190188 T TA 0.729 0.245 (0.023 to 0.467) 3.08E-02 -0.006 (-0.063 to 0.052) 8.50E-01

rs13181905 EBF1 5 158492279 A C 0.436 -0.220 (-0.421 to -0.019) 3.21E-02 -0.032 (-0.083 to 0.020) 2.31E-01

rs869422 ZMAT4 8 40723970 A G 0.794 -0.217 (-0.460 to 0.026) 8.03E-02 -0.100 (-0.163 to -0.038) 1.65E-03

rs1868289 GRIN2A 16 10215813 T G 0.678 -0.175 (-0.386 to 0.036) 1.04E-01 -0.026 (-0.080 to 0.029) 3.56E-01

rs2607006 SGF29 16 28576017 C T 0.414 -0.153 (-0.359 to 0.053) 1.46E-01 -0.025 (-0.078 to 0.027) 3.48E-01

rs11033093 SLC1A2 11 35381495 G C 0.103 -0.232 (-0.555 to 0.091) 1.59E-01 0.027 (-0.056 to 0.110) 5.21E-01

rs7678123 CFAP299 4 81372405 C G 0.284 -0.152 (-0.370 to 0.066) 1.73E-01 -0.017 (-0.074 to 0.039) 5.42E-01

rs10917958 NMNAT1P2 1 164214985 T C 0.234 -0.131 (-0.363 to 0.101) 2.68E-01 0.021 (-0.038 to 0.081) 4.85E-01

rs6979354 SP4 7 21417963 T C 0.555 0.092 (-0.111 to 0.294) 3.76E-01 -0.030 (-0.082 to 0.022) 2.54E-01

rs368893443 ACTN2 13 100690003 AAGAG A 0.454 0.087 (-0.111 to 0.285) 3.91E-01 -0.006 (-0.057 to 0.045) 8.27E-01

rs9518096 GGACT 13 101223109 C T 0.481 0.073 (-0.124 to 0.270) 4.66E-01 -0.012 (-0.063 to 0.038) 6.30E-01

rs418092 GPX6 6 28533946 T C 0.333 0.062 (-0.147 to 0.270) 5.63E-01 0.012 (-0.042 to 0.065) 6.72E-01

rs10637890 CDKN3 14 54779523 T TCT 0.375 -0.058 (-0.263 to 0.147) 5.81E-01 -0.013 (-0.066 to 0.040) 6.25E-01

rs77483535 THAP6 4 76312573 T C 0.302 0.059 (-0.163 to 0.281) 6.01E-01 -0.008 (-0.064 to 0.049) 7.94E-01

rs9911460 FAAP100 17 79538841 T A 0.477 -0.036 (-0.234 to 0.161) 7.19E-01 -0.044 (-0.095 to 0.006) 8.55E-02

rs2980823 TCIM 8 40148843 G T 0.582 0.026 (-0.174 to 0.226) 8.00E-01 0.029 (-0.022 to 0.081) 2.67E-01

rs435555 SLC52A1 17 4947305 T C 0.556 -0.023 (-0.222 to 0.175) 8.18E-01 -0.022 (-0.072 to 0.029) 4.03E-01

�GxE interaction test P < 0.002 in the Stage-II sample.

Abbreviations: CHR = Chromosome; POS = Genomic position for GRCh37; EA = Effect allele; NEA = Non-effect allele; FreqEA = Allele frequency of effect allele;

BETA = Regression coefficient for the interaction term (units for outcome AOSW: years per copy of the risk allele in those with vs. without a University degree; units for

outcome avMSE: D per copy of the risk allele in those with vs. without a University degree); CI = Confidence interval.

https://doi.org/10.1371/journal.pgen.1010478.t003

PLOS GENETICS Education interacts with genetic variants to confer susceptibility to myopia

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010478 November 17, 2022 8 / 20

https://doi.org/10.1371/journal.pgen.1010478.t003
https://doi.org/10.1371/journal.pgen.1010478


interaction effects in the Stage-II sample were among the 14 variants identified using HLMM

by Pozarickij et al. (or were in high LD with one of these 14 variants).

The above tests for genotype-by-education interaction effects were performed under the

assumption that SNPs had additive effects. This meant, for example, that the change in pheno-

type expected for individuals with a University education would be shifted by an amount β3 in

those with 1 copy of the SNP effect allele and by 2β3 in those with 2 copies of the effect allele

(see Eq 1 and Eq 2 inMethods). We previously observed that the LAMA2 lead variant effect

allele may act recessively rather than additively [26]. Since dominant or recessive genetic vari-

ants tested using an additive model can give rise to spurious evidence of a GxE interaction

[24], we explored if the genotype-by-UniEdu interactions of the TOX, GJD2, LAMA2,

RBFOX1, KCNQ5 and LRRC4C variants were robust to the choice of model specification. As

shown in Table 4 and Fig 4, the most parsimonious model was an additive model for all of the

variants, except for LAMA2, which was better fit by a recessive model. However, the evidence

for a genotype-by-UniEdu interaction was still evident for the LAMA2 variant under a reces-

sive model, suggesting the evidence for interaction effects did not arise as a result of genetic

model misspecification.

Exclusion of gene-environment correlation

SNPs directly associated with both educational attainment and refractive error could poten-

tially yield spurious GxE interaction test findings, via ‘gene-environment correlation’ (rGE)

[21,27]. Dudbridge and Fletcher [27] describe examples of the conditions under which rGE

can lead to significant GxE interaction effects despite the genetic marker used in the GxE test

having no causal effect on the outcome trait, while Dick et al. [21] discuss approaches for test-

ing GxE interactions in the presence of rGE. As shown in Table 5, the only variant with evi-

dence of an rGE effect was LRRC4C variant, rs11602008. This SNP had a weak association

with UniEdu (OR = 1.017; P = 0.034). Thus, the data did not support rGE effects as an explana-

tion for the interaction effects observed in the current study.

Tests for gene-gene interaction

Variance heterogeneity is an expected feature for genetic variants involved in GxG interac-

tions, as well as those involved in GxE interactions [16]. Therefore, each of the 300 possible

pairs of SNPs from amongst the 25 SNPs with evidence of variance heterogeneity was tested

for a genotype-by-genotype interaction with the avMSE phenotype in the Stage-I sample and

Table 4. Tests for genotype-by-education interaction when allowing for dominance effects. Linear regression analyses were performed for the AOSW phenotype in

the Stage-II sample for genotype-by-UniEdu interactions when the SNP effect allele was coded as additive (0, 1 2), fully dominant (0, 1, 1) or fully recessive (0, 0, 1). The

effect allele is the allele associated with a more myopic refractive error in a linear regression test for an additive marginal effect of the variant.

Variant Nearest

gene

EA NEA Additive model

GxE P-value

Dominant model

GxE P-value

Recessive model

GxE P-value

Additive model

-2�logLik

Dominant model

-2�logLik

Recessive model

-2�logLik

rs36005291 TOX CA C 3.21E-09� 6.11E-04 6.42E-09 2072926� 2073001 2072947

rs634990 GJD2 C T 1.32E-08� 3.76E-06 3.25E-06 2119565� 2119614 2119580

rs12193446 LAMA2 A G 1.74E-07 2.55E-01 6.30E-08� 2119444 2119644 2119443�

rs7188859 RBFOX1 C T 7.49E-05� 1.39E-03 9.04E-04 2061642�� 2061706 2061721

rs7744813 KCNQ5 A C 2.76E-04� 5.66E-05 3.16E-02 2050158� 2050203 2050168

rs11602008 LRRC4C T A 3.68E-04� 3.36E-04 1.77E-01 2101306� 2101339 2101385

� Indicates the result for the most parsimonious model.

Abbreviations: EA = Effect allele; NEA = Non-effect allele; GxE = Gene-by-Environment interaction term in model; logLik = log likelihood.

https://doi.org/10.1371/journal.pgen.1010478.t004
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with the AOSW phenotype in the Stage-II sample. Only one pair of SNPs had evidence of a

GxG interaction after accounting for multiple testing (P< 0.05/300). This was the interaction

between rs12193446 × rs7744813, nearby the LAMA2 and KCNQ5 genes, which was strongly

associated with AOSW in the Stage-II sample (P = 6.31 x 10−5; Fig C in S1 Text). However,

Fig 4. Modeling genotype-by-education interactions when allowing for dominance effects. The plots illustrate the relationship between SNP genotype,

exposure to University education (UniEdu) and the AOSW phenotype in the Stage-II sample when SNP genotypes were coded as either numeric (i.e. assuming

additive effects; panel A) or categorical (allowing for dominant or recessive effects; panel B).

https://doi.org/10.1371/journal.pgen.1010478.g004

Table 5. Gene-environmental correlation (rGE) between genetic variants and University education in the Stage-II sample. SNPs were tested using logistic regression.

The effect allele is the allele associated with a more myopic refractive error in a linear regression test for the marginal effect of the variant. The frequency of the effect allele

is reported in participants who did or did not attend University (UniEdu = Yes/No).

Variant Nearest gene EA NEA FreqEA UniEdu = Yes FreqEA UniEdu = No Odds ratio 95% C.I. P-value

rs36005291 TOX CA C 0.656 0.654 0.992 (0.979 to 1.004) 0.195

rs634990 GJD2 C T 0.492 0.492 1.002 (0.990 to 1.015) 0.691

rs12193446 LAMA2 A G 0.905 0.904 0.991 (0.971 to 1.012) 0.392

rs7188859 RBFOX1 C T 0.363 0.366 0.988 (0.976 to 1.001) 0.067

rs7744813 KCNQ5 A C 0.587 0.588 1.003 (0.991 to 1.016) 0.606

rs11602008 LRRC4C T A 0.171 0.169 1.017 (1.001 to 1.034) 0.034

Abbreviations: EA = Effect allele; NEA = Non-effect allele; FreqEA = Allele frequency of effect allele; C.I. = confidence interval.

https://doi.org/10.1371/journal.pgen.1010478.t005
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there was no evidence of an interaction associated with avMSE for this pair of SNPs in the

Stage-I sample (P = 0.97).

Discussion

This work identified 25 genetic variants associated with a difference in refractive error variance
across genotypes, after accounting for multiple testing. Of these 25 variants, 19 also exhibited

evidence of variance heterogeneity in association with AOSW in an independent sample, con-

firming them as bona fide vQTL. Consistent with the expectation that refractive error vQTL

would be enriched for variants with GxE interaction effects, 6 genetic variants had evidence of

genotype-by-education interaction effects associated with AOSW in the Stage-II sample, after

accounting for multiple testing. For 5 of the 6 variants, which were located nearby the genes

GJD2, LAMA2, RBFOX1, KCNQ5 and LRRC4C, there was independent evidence of a geno-

type-by-education interaction associated with refractive error in the Stage-I sample. For all

variants, greater exposure to education was associated with an increased effect size for the

myopia-predisposing risk allele, consistent with evidence that education is a causal risk factor

for myopia [10–12,28]. Variants in 2 of the 5 genes with robust evidence of a GxE interaction,

GJD2 and RBFOX1, have previously been reported to be involved in gene-by-education inter-

actions influencing myopia [14]. The 3 remaining genes identified here (LAMA2, KCNQ5 and

LRRC4C) are novel GxE interaction discoveries. The 25 genetic variants associated with refrac-

tive error variance are also promising candidates for involvement GxG interactions. However,

the evidence for GxG interactions in the current samples was limited, with a single pair of vari-

ants displaying evidence of an interaction in the larger Stage-II sample but not in the smaller

Stage-I sample (Fig C in S1 Text).

The role of GxE interactions in myopia has recently been reviewed [29]. The current work

brings the number of independently replicated gene-by-education interactions for myopia to 3

(ZMAT4, GJD2 and RBFOX1). In a meta-analysis of five studies from Singapore, Fan et al. [14]

reported that GJD2 variant rs524952 and RBFOX1 variant rs17648524 (both in perfect LD with

the variants in GJD2 and RBFOX1 studied here) were associated with a greater risk of myopia

in individuals from a high vs. low education stratum. The gene-by-education interaction effect

size for these two variants was larger in the East Asian cohorts studied by Fan et al. [14] than

the current UK-based sample (βG×E� -0.25 D in the Fan et al. study vs. βG×E� -0.07 D in the

current study), consistent with prior findings that GxE effects on myopia are larger in East

Asians [15]. Several other genes have also been associated with gene-by-education interactions

affecting refractive error: TRPM1,MMP2, SHISA6, DNAH9, ZMAT4, SFRP1, AREG, GABRR1,

PDE10A, APLP2, DLX1, BICC1 and A2BP1 [5,14,15,30–33]. Of these genes, only ZMAT4 was

located nearby the 25 variants selected by our 2-step screening protocol. In the current analy-

sis, rs869422 in ZMAT4 displayed evidence of an interaction with UniEdu and EduYears in the

Stage-I sample (Fig 3; UniEdu: βG×E = -0.10 D, P = 1.65 x 10−3; EduYears: βG×E = -0.17 D,

P = 3.77 x 10−3) and with EduYears in the Stage-II sample (βG×E = -0.07 years, P = 1.65 x 10−3),

however the genotype × UniEdu interaction test in the Stage-II sample was non-significant

(P = 0.08). This illustrates the challenge of detecting GxE interaction effects in myopia

development.

GJD2 is one of the most intensively studied myopia-susceptibility genes [34–36]. GJD2
encodes the neuronal gap junction protein connexin-36 (Cx36), which is thought to play a role

in ON-bipolar cell signaling and cone-driven OFF pathways in the retina [35,37,38]. Loss-of-

function mutations in connexin-36 in a Zebrafish model inhibit eye growth and diminish the

electroretiniogram B-wave amplitude [35]. RBFOX1 encodes a member of the Fox-1 family,

which regulate tissue-specific alternative splicing. As well as refractive error [39], RBFOX1
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polymorphisms are associated with blood pressure [40], allergy [41] and lung cancer [42].

Presently, it is unclear how Fox-1 proteins confer susceptibility to myopia. KCNQ5 encodes

the ‘potassium voltage-gated channel subfamily Q member 5’ protein, which forms M-type

potassium channels in the inner and outer plexiform layers, rod and cone photoreceptors, and

the RPE of the primate retina [43]. In a guinea pig myopia model, retinal Kcnq5 gene and pro-

tein expression were down-regulated [44]. In adult twins, KCNQ5 variant rs2840795 was asso-

ciated with electroretiniogram B-wave responses [45]. However, rs2840795 is in weak LD (r2 =

0.03) with the strongest myopia-predisposing variants in the region, rs7744813. LAMA2
encodes the alpha-2 laminin subunit. Laminin is a major component of basement membranes

that has multiple roles, including the attachment of cells to the matrix [46]. LAMA2 variant

rs12193446 is associated with refractive error early in life and then progressively through child-

hood [47], consistent with children’s duration of exposure to education. LRRC4C encodes ‘leu-

cine rich repeat containing 4C’, also known as netrin-G ligand-1 (NGL1). Netrins are axon

guidance molecules related to laminin, highly expressed in the central nervous system during

embryological development, which attract or repel axons to guide them to their correct target.

Netrin-G1 is an atypical netrin, being diffusible rather than tethered to the cell membrane.

NGL1 binds intracellularly with PSD-95, a postsynaptic scaffolding protein, and extracellularly

with netrin-G1. This protein complex is thought to control the development of distinct popu-

lations of neuronal synapses and neural circuits [48]. Other LRRC4C variants are associated

with developmental disorders such as autism [49]. Lrrc4c knockout mice display hyperactivity

and anxiety-like behaviors [48,49].

We used Levene’s median test to assess variance heterogeneity, since previous work has

demonstrated this test maintains good control of the type-1 error rate for non-normally dis-

tributed phenotypes, of which avMSE and AOSW are examples [17,50]. One potential limita-

tion of Levene’s test is that it cannot incorporate covariates, however we addressed this issue

by first regressing the phenotype on covariates and then applying Levene’s test to the residuals

(although we note that this approach may be biased for variants that are correlated with covari-

ates [51]). Moreover, for any trait with a non-normal distribution, there will be a relationship

between the mean and the variance of the trait [24]. Genetic variants associated with the vari-

ance of a trait purely as a consequence of such a general mean-variance relationship are

unlikely to provide mechanistic insight into GxE interactions. Hence, several statistical tests

designed to detect residual variance heterogeneity (‘dispersion’) not accounted for by a general

mean-variance relationship have been developed [22–24]. Unfortunately, these tests can pro-

duce a high false-positive rate for non-normally distributed phenotypes [18] and it has been

shown that trait transformation invariably leads to false positives in simulations where SNPs

only affect the mean of the phenotype, regardless of the variance heterogeneity test used [18].

Together, these findings suggest there is no ideal method for detecting vQTL for non-normally

distributed phenotypes. Nevertheless, in preliminary work [25] in which we applied the het-

eroskedastic linear model described by Young et al. [24], the 6 variants nearby TOX, GJD2,

LAMA2, RBFOX1, KCNQ5 and LRRC4C demonstrated genome-wide significant dispersion

effects, i.e. variance heterogeneity not accounted for by a general mean-variance relationship.

One route through which education may influence refractive error is increased near work

and accommodation. Children typically show a small deficit (‘lag’) of accommodation, com-

pared to the level required to focus precisely. The accommodative lag theory of myopia devel-

opment proposes the hyperopic defocus on the retina accompanying accommodative lag acts

as a physiological signal for increased axial elongation [52]. However, evidence for the

accommodative lag theory is mixed [52–55] and other aspects of the near visual environment

have been put forward to explain the link between near work and myopia [56–58]. Educational

activities typically take place indoors. Since insufficient time outdoors is an established risk
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factor for myopia [9,59,60], exposure to education may also serve as a proxy for time spent

indoors.

Strengths of the current study include the large sample size, the use of highly standardised

methods for assessing phenotypes and risk factors, and the exclusion of gene-environment

correlation effects. Limitations of the study were that autorefraction was not carried out on all

UK Biobank participants, which reduced the sample size for the Stage-I sample, and that–in

order to maintain high statistical power–attention was focused on a set of 25 variants enriched

for myopia-associated GxE interaction effects. This approach would have excluded variants

that did not have both a marginal effect and a variance heterogeneity association with refrac-

tive error, such as variants with ‘cross-over’ type GxE interaction effects in which the genetic

effect cancels out under different environmental conditions (right panel of Fig 1). A further

limitation was that the participants were adults 50–60 years of age from the UK. There has

been a steady increase in years spent in education in many parts of the world over the past few

decades. Therefore, studying gene-environment interactions in individuals who have more

recently undergone their education or those in countries with more intensive education sys-

tems may be beneficial in detecting the full impact of GxE interactions in contemporary

populations.

In summary, we identified 25 genetic variants with evidence of variance heterogeneity in

their association with refractive error. Nineteen of the 25 variants also demonstrated evidence

of variance heterogeneity for AOSW in an independent sample. These vQTLs are strong candi-

dates for having either GxE or GxG interaction effects and, indeed, genetic variants located

near the GJD2, LAMA2, RBFOX1, KCNQ5 and LRRC4C genes were associated with a progres-

sively increasing risk of myopia as the number of years of schooling rose. Three of these gene-

education interaction findings were novel (those implicating LAMA2, KCNQ5 and LRRC4C),

while the remaining two supported interactions identified previously in cohorts from East

Asia. More research is needed to understand the biological pathways through which these 5

variants act, and how they interact with the effect of near work, intensive education, or insuffi-

cient time outdoors (for which education may be a proxy).

Methods

Ethics statement

The UK Biobank study had ethical approval from the United Kingdom National Health Ser-

vice (NHS) Research Ethics Committee (Reference: 11/NW/0382). Signed and informed con-

sent was obtained from all of the participants.

Full details of the methods are provided in S1 Text. Unless stated otherwise, all tests were

performed in R [61].

Participants, phenotype and environmental variables

Analyses were performed on data from participants in UK Biobank, a prospective study exam-

ining the health and wellbeing of 500,000 adults aged 40–70 years-old living in the United

Kingdom [62]. Baseline assessment visits occurred between 2006–2010. Information about

education level and age of completing full-time education were obtained from a questionnaire.

The binary variable UniEdu was used to indicate whether individuals had a University or col-

lege degree. The variable EduYears was used to classify the age at which the participants com-

pleted their full-time education [11]. Participants self-reported their age-of-onset of spectacle

wear (AOSW) [63], which was coded as a continuous phenotype. An ophthalmic assessment

was introduced into UK Biobank only towards the later stages of recruitment; approximately

23% of participants were assessed [64]. The refractive error phenotype (avMSE) was calculated
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as the average spherical equivalent of both eyes from non-cycloplegic autorefraction. DNA

extraction, genotyping and imputation were performed as described [65]. A ‘Stage-I’ sample of

unrelated participants of European ancestry (N = 88,334) with information for avMSE, Uni-
Edu and EduYears was selected. Participants were classified as myopic if they had an avMSE�
-0.50 D [66]. A Stage-II sample of European-ancestry participants (N = 252,838) was selected

who were unrelated to each other, unrelated to any person in the Stage-I sample, and who had

information available for AOSW, UniEdu and EduYears. (Under this classification scheme,

participants who did not wear spectacles, and therefore did not report an AOSW, were not

included in the Stage-II sample). Participants in the Stage-II sample were classified as myopic

if they had an AOSW greater than 5 years and less than or equal to 25 years [67]. There were

too few participants of non-European ancestry to study GxE interactions in other ancestry

groups.

Two-step screening strategy for identifying putative GxE interaction

variants

Step 1 was a standard GWAS for the phenotype avMSE in the Stage-I sample (Fig 1A), imple-

mented with BOLT-LMM [68]. Sex, age, age-squared, a binary indicator of the genotype array

(UK BiLEVE Axiom or UK Biobank Axiom array) and the first 10 ancestry principal compo-

nents (PCs) were included as covariates. Approximately 7 million imputed genetic variants

with a minor allele frequency>5% were tested. Independently associated SNPs were selected

by clumping with PLINK [69]. SNPs associated with avMSE at the lenient threshold of P< 1 x

10−4 were taken forward to Step 2, which was a variance heterogeneity analysis for the pheno-

type avMSE in the Stage-I sample (Fig 1B) using Levene’s median test, implemented with

OSCA [17] and following the approach recommended by Zhang et al. [19]. In total, 956 SNPs

were taken forward to Step 2. A Bonferroni correction for multiple comparisons was applied

(α = 0.05/956 = 5.23 × 10−5). In the absence, worldwide, of a study cohort of comparable size

to UK Biobank with data available for avMSE and high-density genotypes, confirmation of the

variance heterogeneity findings in the Stage-I sample were sought by performing Levene’s test

for the trait AOSW in the Stage-II sample. Consideration of the validity of AOSW as a surro-

gate phenotype for refractive error when testing for gene-by-education interaction effects is

discussed in Box C in S1 Text.

Gene-environment interaction tests

For each of the 25 SNPs identified by the 2-step screening protocol, linear regression models

with an interaction term were fitted in the Stage-I sample (Eq 1) and the Stage-II sample (Eq
2):

avMSE ¼ b0 þ b1SNPþ b2UniEduþ b3SNP� UniEduþ gC þ ε ð1Þ

AOSW ¼ d0 þ d1SNPþ d2UniEduþ d3SNP� UniEduþ gC þ p ð2Þ

Where, avMSE and AOSW are n × 1 vectors of refractive error and age-of-onset of spectacle

wear values in the n participants in the Stage-I sample and Stage-II sample, respectively. SNP is

a n × 1 vector of genotype counts (0, 1 or 2), UniEdu is a n × 1 vector binary (0,1) variable for

University level education, C is a n × kmatrix of covariates (age, age-squared, genotyping

array, and the first 10 ancestry PCs), γ is a 1 × k vector of regression coefficients, and ε and π
are residuals assumed to be normally distributed. β0 is an intercept, while β1, β2 and β3 are the

regression coefficients for the main effect for the SNP, the main effect for UniEdu and the SNP

× UniEdu interaction effect, respectively (likewise, for δ0, δ1, δ2 and δ3). Linear regression
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models of the same form, but with robust standard errors, were also fitted to test for genotype-

by-EduYears interactions associated with either avMSE or AOSW.

Analogously, logistic regression models of the same form to Eq 1 and Eq 2 above were

applied to test for genotype-by-education interaction effects associated with the outcome vari-

ableMyopic (1 = myopic, 0 = non-myopic). Simulations were used to confirm that the type-1

error rate of the genotype-by-education test for the AOSW phenotype was well-controlled

under the test conditions, despite the non-normal distribution of AOSW and in the presence

of GxE interactions not involving education (Box A in S1 Text).

Gene-gene interaction tests

SNP × SNP interaction tests were performed to examine if any pair of SNPs from amongst the

25 SNPs identified using the 2-step screening strategy had evidence of a genotype × genotype

interaction. A linear regression model with an interaction term was fitted for each pair of vari-

ants in turn, as follows:

avMSE ¼ b0 þ b1SNP1þ b2SNP2þ b3SNP1� SNP2þ gC þ ε ð3Þ

AOSW ¼ d0 þ d1SNP1þ d2SNP2þ d3SNP1� SNP2þ gC þ p ð4Þ

Where terms are defined as above. The avMSE phenotype was tested in the Stage-I sample

and the AOSW phenotype was tested in the Stage-II sample. A Bonferroni correction for mul-

tiple comparisons was applied to identify δ3 or β3 terms showing evidence of association, using

an alpha value of α = 0.05/300 = 0.00017 (accounting for a total of 25×25 / 2 tests).

Gene-environment correlation tests

To test for gene-environment correlation, the following logistic regression model was fitted:

logit PðUniEdu ¼ 1jSNP;CÞ ¼ o0 þ o1SNPþ gC þ ε ð5Þ

Where, ω0 is an intercept and ω1 quantifies the association between the SNP genotype and

having a University degree.

Sensitivity analyses

We carried out simulations to assess the type-1 error rate of Levene’s median test for variance

heterogeneity with the avMSE phenotype in the Stage-I sample and with the AOSW phenotype

in the Stage-II sample, as well as the type-1 error rate of linear regression when testing for a

SNP × UniEdu interaction with the AOSW phenotype in the Stage-II sample.

Supporting information

S1 Table. Summary statistics for the 956 SNPs independently associated with refractive

error in the GWAS for avMSE in the Stage-I sample.

(XLSX)

S2 Table. Marginal effect genetic association tests and genotype-by-UniEdu and genotype-

by-EduYears interaction tests for refractive error-related phenotypes (avMSE, AOSW, and

Myopic) in the Stage-I sample and Stage-II sample.
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(AOSW) as a surrogate for refractive error (avMSE) in GxE interaction tests. Box D in S1
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Fig A in S1 Text. Manhattan plot of the results from the GWAS for refractive error (avMSE)
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tions associated with age-of-onset of spectacle wear (AOSW). Fig C in S1 Text. Summary of
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