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ABSTRACT

Tracking-by-regression is a new paradigm for online Multi-Object Tracking (MOT). It unifies detection

and tracking into a single network by associating targets through regression, significantly reducing

the complexity of data association. However, owing to noisy features from nearby occlusions and

distractors, the regression is vulnerable and unaware of the inter-object occlusions and intra-class

distractors. Thus the regressed bounding boxes can be wrongly suppressed or easily drift. Meanwhile,

the commonly used bounding box-based post-processing is unable to remedy false negatives and false

assignments caused by regression. To address these challenges, we present to leverage regression

tubes as input for the regression-based tracker, which provides spatial-temporal information to enhance

the tracking performance. Specially, we propose a novel tube re-localization strategy that obtains

robust regressions and recovers missed targets. A tube-based NMS (T-NMS) strategy to manage the

regressions at the tube level is also proposed, including a tube IoU (T-IoU) scheme for measuring

positional relation and tube re-scoring (T-RS) to evaluate the quality of candidate tubes. Finally,

a tube re-assignment strategy is further employed for robust cost measurement and to revise false

assignments using motion cues. We evaluate our method on benchmarks, including MOT16, MOT17,

and MOT20. The results show that our method can significantly improve the baseline, mitigate the

challenges of the regression-based tracker, and achieve very competitive tracking performance.

1. Introduction

Multi-object tracking (MOT) involves localizing objects in

each frame and temporally forming trajectories. MOT is one of

the core tasks in computer vision to facilitate scene understand-

ing and has various applications such as video surveillance, au-

tonomous vehicles, and human behavior analysis. However, it

remains challenging in crowded scenes with occlusions, dis-

tractors, low frame rates, and camera motions.

Due to the rapid progress in deep-learning-based object de-

tection, tracking-by-detection became the dominant paradigm

in MOT. It divides the MOT task into two separate steps: (i) lo-

calizing multiple objects in each frame and (ii) linking the iden-

tical objects across frames. Therefore, with the provided detec-

tions, MOT is formed as a data association problem. Specif-

ically, it aims to distinguish different targets by assigning a

∗∗Corresponding author: Tel.: +86-13892821999; fax: (029)88201658;

e-mail: hbji@xidian.edu.cn (Hong-bing Ji)

unique identity (ID) while keeping the ID consistent across the

temporal domain. Most previous works focus on extracting dis-

criminative features such as appearance features (Wojke et al.,

2017; Chen et al., 2018; Zhang et al., 2021), making motion

predictions (Zhou et al., 2020; Wu et al., 2021), and utilizing

the attention mechanism (Zhu et al., 2018; Guo et al., 2021;

Peng et al., 2020a). However, these methods can significantly

increase computational complexity since extra tracking-related

networks are typically employed.

The tracking-by-regression framework (Bergmann et al.,

2019) is proposed to reduce the complexity of data association

in MOT. By reusing the regression head of two-stage object de-

tectors Faster R-CNN (Ren et al., 2016), the existing tracks in

the previous frame are associated automatically with the targets

in the current frame, demonstrating promising tracking perfor-

mance while significantly reducing the complexity of data as-

sociation. Later works (Xu et al., 2020; Liu et al., 2020; Stadler

and Beyerer, 2021; Guo et al., 2021) take advantage of this new

framework for further improvements.
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Fig. 1. Noisy features from nearby cause typical false negatives and ID

switches in the tracking-by-regression paradigm. The dashed box repre-

sents the raw regressed result, which becomes invalid in the post-process.

Top row: The nearby targets with similar appearances introduce noisy

features. Therefore the dashed blue box drifts to a nearby target and is

eventually eliminated. Bottom row: The two boxes in white and green

contain mixed features of two targets, and representative features are con-

taminated as the two targets get closer, resulting in an ID switch. Different

box colors indicate different identities. Best viewed in color.

However, despite its simplicity, the regression-based track-

ing network is modified from an object detector, which relies

on the representative features of input targets for regression. As

in single object tracking (Li et al., 2018; Yuan et al., 2020) and

thermal infrared tracking (Liu et al., 2022), the learned global

semantic features are sensitive to all related semantic objects

and insensitive to similar objects of the same class. Therefore,

the regression-based multi-object tracker is unaware of inter-

object occlusions and intra-class distractors, working in an ID-

agnostic fashion. That is to say, the noisy features of occlusions

and distractors from nearby can easily cause target drift (see

Fig. 1) and missing targets, dramatically damaging the tracking

performance. Besides, the simple bounding boxes-based post-

processing procedure, such as Intersection-over-Union (IoU)

and non-maximum suppression (NMS), can easily lead to in-

correct relational measurements, ID switches (IDS), false posi-

tives (FP), and false negatives (FN) in crowded scenes. Mean-

while, the target identities are generally maintained with NMS

based on the confidence obtained from the regression network,

which only represents the quality of localization but not track-

ing and can not sufficiently reveal the quality of identity match-

ing. Therefore, in challenging cases with inter-object occlu-

sions and intra-class distractors, the original post-processing

procedure and confidence are not optimal for identity assign-

ment as occluded targets are often suppressed, and identities

are often mistakenly assigned. Moreover, the regression-based

trackers cannot recover the missed targets once lost.

In this paper, we mitigate these issues in the regression-based

trackers and enhance the MOT performance by leveraging re-

gression tubes instead of simple static boxes (see Fig. 2) as in-

put. The regression tubes constructed by consecutive bounding

boxes of individual tracks contain spatial-temporal information

(such as moving direction and speed) and have been proved to

be effective in MOT (Pang et al., 2020) and video object de-

tection (Kang et al., 2016; Tang et al., 2019). We improve the

performance of the regression-based tracker by regressing the

tubes to unleash the potential of the regression network in three

aspects. Firstly, we utilize regression tubes as input and pro-

pose a tube re-localization strategy that benefits regression by

incorporating spatial-temporal information extracted from the

formed tubes. It can effectively resolve the inaccurate regres-

sion problem in box-based regression by reusing discrimina-

tive features and recovering missed targets. Secondly, we pro-

pose a tube-based NMS (T-NMS) mechanism to process the

tubes by utilizing the information from the previous frame to

process regressed targets at the tube level. With T-NMS, we

can promote partly occluded targets to stay active and penal-

ize low-quality regressions, resulting in improved identity con-

sistency. Finally, in order to correctly measure the similarity

and assign the identity of targets with regression tubes, we pro-

pose a tube re-assignment strategy, which integrates the spatial-

temporal features and the motion cues to improve the tradi-

tional bounding box-based matching. We evaluate the proposed

method through extensive comparisons with existing state-of-

the-art trackers and apply our method to other regression-based

trackers. Both qualitative and quantitative results demonstrate

the effectiveness of our approach.

In summary, the main contributions of this paper are:

• We leverage the regression tubes as input to incorporate

the spatial-temporal information and propose a tube re-

localization strategy for better target localization and re-

covering missed targets.

• We propose a T-NMS mechanism that robustly processes

the tube regressions at the tube level and correctly scores

the associations by penalizing low-quality regressions.

• We propose a tube re-assignment strategy that integrates

the spatial-temporal features and motion cues of regression

tubes in similarity measuring to revise false assignments to

enhance the identity consistency of the tracking.

• Extensive experiments demonstrate that our method effec-

tively improves the performance of the regression-based

tracker, and the proposed tracker can obtain very competi-

tive tracking performance on MOT benchmarks.

2. Related Work

The existing MOT algorithms can be categorized into online

and offline methods. Future frames can be used for matching

globally in offline tracking. Therefore, offline methods are more

robust to occlusions and distractors in general. In contrast, only

previous and current frames are available for online methods,

which have a broader range in real-world applications but are

more vulnerable to occlusions and distractors. Here we focus

on online tracking where our work lies.

2.1. Tracking-by-detection

Most previous methods (Wojke et al., 2017; Chen et al.,

2018) utilize the tracking-by-detection (TBD) framework,

where off-the-shelf detectors provide the detections on each
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frame. and then MOT is formulated as a data association prob-

lem that links the detected objects with the existing tracks tem-

porarily. A common formalism is to build a graph for associ-

ations, where the nodes represent targets, and the edges repre-

sent relations of potential links. The appearance features (Wang

et al., 2020; Guo et al., 2021; Zhang et al., 2021) are widely

used for similarity measuring, and the additional ReID mod-

els (Wojke et al., 2017; Son et al., 2017) are often employed to

match re-appeared identities to form long trajectories. Besides,

Some methods adopt motion models, such as the Kalman fil-

ter (Wojke et al., 2017; Zhang et al., 2021), optical flow (Tang

et al., 2017), and motion prediction networks (Zhou et al., 2020;

Sadeghian et al., 2017; Wang et al., 2022), that incorporate tem-

poral features to make dynamic position predictions to compen-

sate for noisy detections. Some methods establish Recurrent

Neural Networks (Milan et al., 2017; Sadeghian et al., 2017;

Jain et al., 2020) to model complex motion patterns. More-

over, data association is also formulated as a graph optimization

problem in some methods (Li et al., 2022) and solved globally

with network flow (Schulter et al., 2017) and Multiple Hypoth-

esis Tracking (Kim et al., 2015) frameworks. Despite the supe-

rior performance, this separate pipeline impedes the TBD from

real-time utilization.

2.2. Joint-detection-and-tracking

The joint-detection-and-tracking (JDT) framework is pro-

posed to eliminate the gap between object detection and data

association, reuse backbone features, solve MOT end-to-end

with multi-task learning in a single network, and state-of-the-

art results are achieved. A unified framework is proposed by

(Feichtenhofer et al., 2017) to jointly perform detection and

tracking based on the detector R-FCN (Dai et al., 2016). JDE

(Wang et al., 2020) employs the detector YOLOv3 (Redmon

and Farhadi, 2018) by adding an appearance embedding branch,

resulting in detections and representative features of targets ob-

tained with shared backbone features. Likewise, the FairMOT

(Zhang et al., 2021) is built on top of the CenterNet (Zhou

et al., 2019) with an additional appearance embedding branch.

CTracker (Peng et al., 2020a) integrates object detection, fea-

ture extraction, and data association in an end-to-end frame-

work. The predictions of the same targets in consecutive frames

are obtained with chained boxes. Similarly, CenterTrack (Zhou

et al., 2020) is built based on the CenterNet with an added track-

ing offset prediction branch. DHN (Xu et al., 2020) proposes

a Deep Hungarian Net module that transforms the Hungarian

algorithm (Kuhn, 1955) to comply with the neural networks by

learning to assign the target identities and builds an end-to-end

MOT training framework. Although effective, these trackers are

all built upon existing detectors by adding tracking-related net-

works, which brings difficulties in training and increases the pa-

rameters of the network. On the contrary, our regression-based

tracker with regression tubes as input achieves very competitive

results without extra networks and training difficulties.

2.3. Tracking-by-regression

This stream works by regressing tracked targets from previ-

ous frames for associations by leveraging the regression net-

work of bounding box refinement. The data association is per-

formed without extra matching methods. Tracktor (Bergmann

et al., 2019) is an inspiring tracking-by-regression framework

that adapts the detector Faster R-CNN (Ren et al., 2016) into

a multiple object tracker by re-utilizing the regression head.

The existing tracks (represented as bounding boxes) are used

as inputs, and the identities of targets are assigned by box re-

gressions directly. This procedure eliminates the necessity of

the complex data association process, and some other meth-

ods follow this paradigm for further improvements. GSM (Liu

et al., 2020) proposes a novel graph representation to lever-

age the relations among objects to improve the robustness of

the similarity model. An occlusion handling strategy that mod-

els the relation between occluding and occluded tracks is pro-

posed in TMOH (Stadler and Beyerer, 2021) to improve the

track management of the regression-based tracker. The TMOH

outperforms the feature-based approaches without a separate

re-identification network. TADAM (Guo et al., 2021) utilizes

two attention modules that allow the tracker to focus more on

targets and suppress the influence of distractors nearby. More

discriminative features and accurate position predictions are ob-

tained. However, these methods ignore the spatial-temporal

features of tracks and cannot recover the missing targets. Our

method leverage the regression tubes as input, fully utilize the

spatial-temporal information provided by tubes and retrieve the

missing targets to boost the tracking performance.

2.4. Video object detection and MOT with Tubes

Video object detection is closely related to MOT without the

requirement of identity for each target. However, both tasks

face similar challenges, such as occlusions, camera motions,

and noisy detections. The tubes incorporating spatial-temporal

information and motion cues by stacking consecutive targets

are widely used in this field. A tubelet proposal network (Kang

et al., 2017) that combines object detection and object track-

ing is presented to generate tubelet proposals efficiently. The

tubes are generated by the object tracker and used for localiz-

ing objects. However, our method is different in that tubes are

generated from the regression instead of object proposal and

are intended for identity assignment. Seq-NMS (Han et al.,

2016) is a post-processing strategy that uses high-scoring ob-

ject detections to boost scores of weaker detections within the

same clip, similar to the proposed T-NMS in this paper. How-

ever, T-NMS processes the regression tubes based on scores of

matching pairs produced by a novel scoring strategy and reveals

the quality of candidate tubes. The average detection scores

are used in Seq-NMS, indicating the confidence of classifica-

tion. The tubes are employed in the field of MOT as well.

TubeTK (Pang et al., 2020) encodes spatial-temporal features

with bounding-tube, regresses bounding tubes for data associ-

ation, and processes tubes with Tube NMS. However, TubeTK

works offline, i.e., the tracking is performed with future frames

included for both bounding-tube regression and Tube NMS. An

additional IoU-based greedy algorithm is needed to complete

data association. However, our method differs because the pro-

posed modules in our method are tailored for regression tubes

and track in an online fashion.
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Fig. 2. Overview of the method pipeline. The red, blue, and yellow boxes represent existing tracks with different identities for each frame. The tracked

boxes across continuous frames on the frames It−1 and It form a tube set (illustrated by boxes connected via dashed lines), which is used as the input for

the proposed tube-based robust regression and association. The proposed method extends the tracks to the next frame It+1 with identities. This process is

conducted iteratively to the whole sequence. The figure is better viewed in color.

3. Proposed Method

In this section, we first give an overview of our method (Sec-

tion 3.1), then present its three key components in detail, in-

cluding tube re-localization (Section 3.2), T-NMS (Section 3.3),

and tube re-assignment (Section 3.4).

3.1. Overview

The existing regression-based tracker (Bergmann et al.,

2019) performs data association based on the regression pro-

cedure of the object detector Faster R-CNN (Ren et al., 2016).

Thus heavily depends on the quality of the representative fea-

tures for the regression head, i.e., the embeddings of existing

tracks on previous frames. Specifically, given as input the tracks

of the frame It represented by a box set Bt = {bt
1
, bt

2
, ..., bt

N
}, the

regression results of the frame It+1 are Rt+1
t = {pt

1
, pt

2
, ..., pt

N
}

with identities transferred from the previous frame by regres-

sion. We argue that this simple bounding-boxes-based data as-

sociation is not optimal and cannot robustly handle inter-object

occlusions and intra-class distractors since the regression is per-

formed based on the extracted semantic features. Thus it is ID-

agnostic and vulnerable. In order to take advantage of spatial-

temporal information to tackle the inter-object occlusions and

intra-class distractors, we propose to leverage regression tubes

as the primary input for robust regression and employ general

tube-based measuring and processing strategies for robust asso-

ciation in crowded scenes.

The overview of our method is shown in Fig. 2. Com-

pared with previous work (Bergmann et al., 2019) that only uti-

lized the bounding box on the frame It, the tracks on frame

It−1 are also employed to form the tube set Ut as the input

in our method. Each tube is formed by two boxes with the

same identity. The backbones of the siamese network share

the weights. To deal with inaccurate regressions and false as-

signments caused by inter-object occlusions and intra-class dis-

tractors, we propose a tube re-localization strategy to process

tube-based regressions (Section 3.2), resulting in more accu-

rate regressions and recovers targets of the frame It+1. We then

propose a novel tube-based NMS (T-NMS) (Section 3.3) to bet-

ter manage the regression tubes at the tube level with the pro-

posed tube IoU (T-IoU) and re-score the corresponding con-

fidences with tube re-scoring (T-RS) scheme. The re-scored

confidence is used in tube re-localization (Section 3.2) and tube

re-assignment (Section 3.4). The T-IoU is employed when mea-

suring the locality relationships between different tubes. Fi-

nally, we propose a tube re-assignment (Section 3.4) strategy

to accurately measure the similarity between different targets

and revise wrongly assigned identities. The costs of associat-

ing candidate tubes are refined by considering spatial-temporal

features and motion cues within tubes.

3.2. Tube Re-localization

The regression is performed based on the representative fea-

tures. Therefore, the regression is an identity-agnostic process

and unaware of inter-object occlusion and intra-class distrac-

tors. The noisy features from similar appearances and nearby

targets can easily damage the regression quality. Consequently,

the correct regressed results are often eliminated, and the iden-

tities become lost (see the top row in Fig. 1). Thus, one of the

drawbacks of the regression-based tracker is that the regression

is vulnerable to inter-class occlusions and intra-class distrac-

tors. Besides, regression is a one-to-one procedure. Therefore

it cannot recover missing targets once lost.

To deal with this, we take regression tubes as input and pro-

pose a novel tube re-localization strategy, incorporating spatial-

temporal features and historical information of tracked tubes

into regression. Better regressions are obtained by reusing

the discriminative features inside tubes from previous frames,

and missed targets are recovered simultaneously. Technically,

given N(t) existing tracks (hereafter referred to as N for sim-

plicity) of the frame It denoted as T t = {T t
1
,T t

2
, ...,T t

N
}, each

track contains a series of bounding boxes with the same iden-

tity. The boxes of N active tracks in frames It and It−1 are

Bt = {bt
1
, bt

2
, ..., bt

N
} and Bt−1 = {bt−1

1
, bt−1

2
, ..., bt−1

N
}. We uti-

lize N formed tubes Ut = {ut
1
, ut

2
, ..., ut

N
} as the input for re-

gression, where each tube ut
i

is formed by two boxes bt−1
i

and

bt
i

with the same identity of two consecutive frames. Note that

if no track in the previous frame is available, we duplicate the

bounding box in the current frame to form the input tube. Based

on this, we can regress Ut and obtain the initial regression re-
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sults R̃t+1
t = {p̃t

1
, p̃t

2
, ..., p̃t

N
} and R̃t+1

t−1
= {p̃t−1

1
, p̃t−1

2
, ..., p̃t−1

N
} of

two frames inside each tube.

To obtain the final regression boxes of each track at the frame

It+1, we need to process the regressed boxes from tubes of each

existing track to decide the final regression. The high video

frame rate assumption suggests that the regressed boxes with

large overlaps and similar geometric characteristics are more

likely to be the correct target for each track. Thus, on top of the

original regression results, we first coarsely match the regressed

boxes in the frame It+1 with the corresponding tracks on frame

It by minimizing the position cost to obtain the re-arranged re-

gression boxes Rt+1
t with re-assigned identities. A cost matrix

Cpos can be constructed by measuring the position cost when

linking box p̃t
j
in the frame It+1 to the existing tracked box bt

i
in

the frame It as:

C
i, j
pos = 1 − IoU(bt

i, p̃
t
j). (1)

Then the Hungarian algorithm (Kuhn, 1955) is employed for as-

signment. The assignment of identities for the regressed boxes

in R̃t+1
t−1

to previous existing tracks Bt−1 is performed similarly,

and we can obtain the re-arranged regression boxesRt+1
t−1

as well.

Ideally, it is expected that the two regressed boxes of the

same ID in Rt+1
t−1

and Rt+1
t are largely overlapped with each other

with a very similar appearance since each target has only one

position on each frame. Thus, we can obtain the final regres-

sions of each tube by measuring the overlaps on the same frame.

More specifically, assume there are N formed tubes Ut at the

frame It, two regressed box sets with the same assigned ID are

Rt+1
t =

{

pt
1
, pt

2
, ..., pt

N

}

and Rt+1
t−1
=
{

pt−1
1
, pt−1

2
, ..., pt−1

N

}

. The

corresponding confidence scores St+1
t−1

and St+1
t , are re-scored

with the tube re-scoring (T-RS) strategy (detailed in Section

3.3). Then we calculate the overlaps of boxes that point to

the same target at the frame It+1, and obtain the overlap set

Ot+1 =
{

ot+1
1
, ot+1

2
, ..., ot+1

N

}

, where ot+1
i
= IoU(pt

i
, pt−1

i
), which

is measured by the original bounding box-based IoU. A sig-

nificant overlap (larger than a pre-defined threshold η1) of two

boxes indicates high confidence in the regressed position. On

the contrary, a low overlap (smaller than a pre-defined thresh-

old η2) means the tube regresses to two different positions. The

box with the higher confidence is treated as the final regression

of the track, while the ones with lower confidence are likely to

be the recovered targets missed by the detector, which will be

treated the same as detections from D. By doing so, the final

regressed boxes Rt+1 = (rt+1
1
, rt+1

2
, ..., rt+1

N
) and the retrieved tar-

gets Et+1 = (et+1
1
, et+1

2
, ..., et+1

L
), and the corresponding scores,

St+1 and St+1
retr (obtained with the proposed T-RS) can be ob-

tained by merging the final regression results within each tube.

The tube re-localization is summarized in Alg. 1. The retrieved

targets Et+1 in the frame It+1 will be added to the provided de-

tection setDt+1 for further process.

The regression tubes contain discriminative spatial-temporal

features from previous frames, which have been verified ef-

fective by the active tracks up to the current. These dis-

criminative and accurate features are reused for regressing the

tracked tubes. Thus, the tube re-localization strategy is benefi-

cial in crowd scenes, where nearby targets and backgrounds can

severely contaminate the representative features. Moreover, the

targets missed by detectors or drift are also recovered. There-

fore, we employ the tubes for robust regression-based tracking

to eliminate the influence of inter-class occlusions and intra-

class distractors. The effectiveness and generalization of tubes

are proved in experiments.

Algorithm 1 Tube Re-localization

Input:

• TubesUt of existing tracks in frame It

Output:

• Regressions Rt+1 and corresponding confidences St+1 in

frame It+1

• Recovered targets Et+1 and corresponding confidence

St+1
retr in frame It+1

1: Obtain R̃t+1
t , R̃t+1

t−1
with tubesUt by regression;

2: Assign identities for (R̃t+1
t−1
,Bt−1) and (R̃t+1

t ,B
t) according

to the position cost in Eqn. 1;

3: Obtain the Rt+1
t−1

, Rt+1
t for each tube at frame It+1 based on

the positional relation within tube;

4: Obtain the (Rt+1,St+1) and (Et+1,St+1
retr) with T-RS based on

overlaps Ot+1 between different tubes;

5: Update provided detection setDt+1.

3.3. Tube-based NMS

To avoid redundant targets, NMS is often employed as post-

processing for identity management (Bergmann et al., 2019;

Stadler and Beyerer, 2021; Shuai et al., 2021). Typically, two

boxes are treated as pointing to the same target if they are

largely overlapped. The correct regression should have higher

confidence to survive, which helps to reduce false negatives and

ID switches. However, the score of a regressed box mainly

represents the confidence of localization, and it cannot well in-

dicate the tracking quality, thus often leading to false identity

assignments under frequent inter-object occlusions and intra-

class distractors. For example, when two boxes largely over-

lap, they are regarded as pointing to the same target (but actu-

ally not). Since the original NMS only measures the relation

of targets at the box level within the same frame, it ignores

the spatial-temporal information and historical relations. The

correct regressions may be mistakenly suppressed with a lower

score. Thus, the original box-based NMS is unsuitable for mea-

suring and matching the regression tubes, which can easily lead

to false negatives and ID switches of occluded and intersected

targets in crowded scenes.

To address this, we propose the T-NMS (including the tube

IoU and tube re-scoring), which is tailored for processing re-

gression tubes, to measure the positional relations between dif-

ferent targets and evaluate the confidence of the candidate tubes

at the tube level with spatial-temporal information considered.

The proposed tube IoU (T-IoU) coincides with regression tubes

and measures the overlaps of different targets by considering

the historical positional relations at tube level. More specifi-

cally, two regressed boxes in frame It+1 with different IDs have

an overlap measured by the original IoU(rt+1
i
, rt+1

j
), and their
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corresponding boxes within tubes in the previous frame It have

an overlap of ot
i, j
= IoU(bt

i
, bt

j
). The proposed T-IoU of the two

target tubes can be calculated as follows:

ot+1
i, j =

{

IoU(rt+1
i
, rt+1

j
) ot

i, j
< γ

0.5[IoU(rt+1
i
, rt+1

j
) + ot

i, j
] ot

i, j
≥ γ,

(2)

where γ is a pre-defined threshold for T-IoU. The T-IOU con-

siders positional relations of previous frames, which reveal the

states before current intersections. Thus it enables the tracker

to alleviate the influence of the inter-object occlusion by re-

ducing the actual overlaps between occluded targets and reliev-

ing those targets from being suppressed by the coarse decision-

making process. Therefore, by measuring with the proposed T-

IoU instead of the original IoU, the partly occluded targets with

lower scores could survive rather than being eliminated with

high overlaps, raising the recall and stability of tracking. The

examples can be found in Sec. 4.4. Note that the original IoU is

used when calculating the final regression within each tube in

the proposed tube re-localization since each target only has one

unique position at any single frame. And the proposed T-IoU is

employed for tube level measurement between different tubes

to reduce the false negatives and ID switches.

The proposed tube re-scoring (T-RS) is used to score the con-

fidence of the formed tubes in tube re-localization. This scor-

ing scheme is also used to evaluate the confidence of candi-

date tubes formed with boxes from regressions Rt+1 and exist-

ing tracks. In order to accurately reflect the quality of tracking,

we introduce Gaussian penalty functions to the original confi-

dence to discourage the difference of potentially associated tar-

gets similar to SOT (Yang et al., 2021). We define the relative

positional displacement of linked targets from the frame It to

frame It+1 as follows:

∆ct =

√

(∆ct
x)2 + (∆ct

y)2

ht + wt
, (3)

where ∆ct
x = |c

t
x − ct+1

x | and ∆ct
y = |c

t
y − ct+1

y | are the absolute

center displacement of the candidate tubes. Likewise, a relative

shape difference of linked tubes can be defined as:

∆st =
∆ht + ∆wt

ht + wt
, (4)

where ∆ht = |ht − ht+1| and ∆wt = |wt − wt+1| are the absolute

height and width differences, respectively. Consequently, the

refined scores of the candidate tubes can be computed by:

strack = sdet · e
−
∆c2

t

σ2
1 · e

−
∆s2

t

σ2
2 , (5)

where sdet denotes the original confidence obtained from the

regression network, the σ1 and σ2 are the Gaussian standard

deviation. We set σ2
1
= σ2

2
= 2.0 experimentally. The T-RS ac-

cords with the principle of tracking based on smooth movement

and proves to be effective in practice (see Section 4.4).

The proposed T-NMS well matches with tubes and improves

evaluation and processing of tracks, enabling the tracker to

manage the regression tubes within and among targets at the

tube level and obtain the candidate tubes for further assign-

ment. The missed and occluded targets are prevented from be-

ing mistakenly eliminated with T-NMS caused by inter-object

occlusion. To summarize, T-NMS promotes spatial-temporally

consistent tracks with accurate measurement and refined confi-

dence obtained by the proposed T-IoU and T-RS strategies.

3.4. Tube Re-assignment

The target identities are assigned by regression directly in

the original regression-based tracker (Bergmann et al., 2019),

greatly reducing the complexity of data association. However,

the success of this simple process is based on the assumption

of high frame rates and constant target velocity. When the as-

sumption breaks (such as low frame rates and large camera mo-

tions), inter-object occlusions and intra-class distractors vastly

increase, often leading to false assignments, ID switches, and

trajectory fragments. Therefore, it would be better if the tracker

is aware of false assignments and has the ability to revise them

to enhance identity consistency in crowded scenes.

The positional relation of bounding boxes is widely used for

measuring the similarity of linked targets in previous methods

(Wojke et al., 2017; Wang et al., 2020; Zhang et al., 2021).

This simple metric can cope with most targets correctly for

easy tracking scenarios. However, owing to the neglect of tem-

poral information and motion cues, this bounding box-based

metric is not optimal for handling complex scenes with occlu-

sions and intersections, resulting in false assignments and track

fragmentation. The matching cost of identity is calculated by

box-based measurement within each tube in Equ. 1. Therefore,

the corresponding identities are coarse and unreliable and need

to be re-assigned for better identity consistency. The location

and scale penalty regarding the size and position changes to re-

rank the candidate targets are widely used for smoothing tracks

(Yang et al., 2021; Li et al., 2018). Thus, we propose a tube

re-assignment strategy to evaluate the similarity of candidate

tubes in multi-object tracking scenarios, which can revise false

assignments and mitigate the issues of inter-object occlusions

and intra-class distractors.

Consider a set of existing tracks T t = {T t
1
,T t

2
, ...,T t

n}. Each

track is composed of a set of bounding boxes T t
i
= {bt

i
, bt−1

i
, ...},

and each box bt
i

is represented by {xt
1
, yt

1
, xt

2
, yt

2
}, i.e., top-left

and bottom-right coordinates. Regression results of tubes and

their confidence can then be obtained using the proposed tube

re-localization and T-NMS. The candidate tubes for potential

links between existing tracks and regressions are formed as in-

put for the tube re-assignment strategy. Each formed candidate

pair is also a tube. Therefore, the re-assignment procedure is

well matched with tubes and enables the tracker to perform at

the tube level with spatial-temporal information.

Unlike most bounding box-based methods that measure lo-

cally by overlaps, the tube re-assignment approach takes into

account extra information, including the size and displacement

of linked boxes within tubes. More specially, given both the

i-th existing track with position bt
i
= (xt

i,1
, yt

i,1
, xt

i,2
, yt

i,2
) in frame

It and the j-th regression rt+1
j
= (xt+1

j,1
, yt+1

j,1
, xt+1

j,2
, yt+1

j,2
) in frame

It+1, the center position, width, and height of the two boxes are

(ct
i,x
, ct

i,y
,wt

i
, ht

i
) and (ct+1

j,x
, ct+1

j,y
,wt+1

j
, ht+1

j
), respectively. Then the
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size cost of this formed candidate tube is defined as:

C
i, j

size
=
|ht

i
− ht+1

j
|

ht
i

+
|wt

i
− wt+1

j
|

wt
i

. (6)

Likewise, the displacement cost measures the normalized rela-

tive displacement of linked center positions as:

C
i, j

dis
=

√

(∆ct
x)2 + (∆ct

y)2

ht
i
+ wt

i

, (7)

where ∆ct
x = |c

t
i,x
− ct+1

j,x
| and ∆ct

y = |c
t
i,y
− ct+1

j,y
|. The shape cost

is the summation of the size cost and the displacement cost:

C
i, j

shape
= C

i, j

size
+C

i, j

dis
. (8)

The regression tubes contain temporal information and mo-

tion trails of tracks, which are vital for distinguishing inter-

sected targets. For challenging cases such as targets becom-

ing occluded while walking, the moving directions of targets

are generally different. Therefore, we utilize the motion in-

formation in regression tubes and propose a direction cost that

measures the difference between the movement of the candi-

date tubes. Specifically, for the i-th target, we construct a 6-

dimension direction vector as ot
i
= (ct

i,x
, ct

i,y
, xt

i,1
, yt

i,1
, xt

i,2
, yt

i,2
),

the elements of ot
i

denote horizontal, vertical centers, top-left,

and bottom-right coordinates. The direction cost between the

i-th existing track and the j-th candidate regression can be cal-

culated with the direction vector with formed tubes as:

C
i, j

dir
= 1 −

o
(t−1)→(t)

i
· o

(t)→(t+1)

i, j

∥o
(t−1)→(t)

i
∥ · ∥o

(t)→(t+1)

i, j
∥
, (9)

where o
(t−1)→(t)

i
= ot

i
− ot−1

i
and o

(t)→(t+1)

i
= ot+1

i
− ot

i
.

Identity consistency can be further enhanced by minimiz-

ing the combination of shape cost and the direction cost as

(Cshape + λ · Cdir), the λ is used to balance two losses. False

assignments can be revised and re-assigned by minimizing this

combined cost, and the identity consistency is enhanced si-

multaneously. This proposed fine-grained cost provides very

discriminative similarity measurements in distinguishing the

occluded and occluding targets, compensating for the weak-

ness of box-based evaluation and mitigating the influence of

inter-object occlusions and intra-class distractors. The tube re-

assignment strategy is summarized in Alg.2. Note that the pro-

posed tube re-assignment only considers potential associations

between the target and its neighbor candidate regressions whose

overlap is larger than a pre-defined threshold ξ. Easy cases can

be solved successfully with the original regression-based algo-

rithm, and a large re-assigning area will introduce unexpected

false assignments and computational burden. The unmatched

detections after tube re-assignment are initialized as new tracks.

4. Experiments

In this section, we evaluate our work by extensive ablations

and comparisons. We first present the evaluation datasets, met-

Algorithm 2 Tube Re-assignment

Input:

• Existing tracks T t in frame It

• Regression results Rt+1 in frame It+1

• Provided detectionsDt+1 in frame It+1

Output:

• Tracks T t+1 in frame It+1.

1: Filter the candidate targets to be re-assigned with overlaps

higher than ξ from the nearby;

2: Compute the shape cost Cshape;

3: Compute the direction cost Cdir;

4: Minimize (Cshape + λ ·Cdir) to re-assign the IDs.

rics, and implementation details. Then we demonstrate the ef-

fectiveness of the proposed tube re-localization, T-NMS, and

tube re-assignment by qualitative and quantitative ablation stud-

ies. Finally, we carefully compare our work with prior works to

demonstrate its superior performance and robustness.

4.1. Datasets and Metrics

We evaluate our work on three benchmark datasets: MOT16,

MOT17 (Milan et al., 2016), and MOT20 (Dendorfer et al.,

2020) from the MOTChallenge Benchmark. Both MOT16 and

MOT17 contain 7 sequences for training with publicly avail-

able ground truths and 7 sequences for online testing. How-

ever, MOT16 provides frame-wise box detections using DPM

(Felzenszwalb et al., 2009), while MOT17 gives more accurate

annotations from three detectors: DPM (Felzenszwalb et al.,

2009), Faster R-CNN (Ren et al., 2016), and SDP (Yang et al.,

2016). The newly released MOT20 contains 4 training and

testing sequences, and all the sequences are collected from ex-

tremely crowded scenes with frequent occlusions. To make fair

comparisons, we conducted all experiments with public detec-

tions to avoid the discrepancy introduced by detectors.

The widely used CLEAR MOT Metric (Bernardin and

Stiefelhagen, 2008) is adopted for evaluation. Specifically, met-

rics such as Multi-Object Tracking Accuracy (MOTA), Multi-

Object Tracking Precision (MOTP), False Positives (FP), False

Negatives (FN), ID switches (IDS), Most Tracked trajectories

(MT), Most Lost trajectories (ML), Fragmentation (FM), and

ID F1 Scores (IDF1) (Ristani et al., 2016) are assessed. The

two most important metrics are MOTA which evaluates track-

ing coverage, and IDF1, which describes the performance of

identity consistency.

4.2. Implementation Details

We take the Tracktor (Bergmann et al., 2019) as the baseline,

and our tracker is built on top of the detector Faster R-CNN

(Ren et al., 2016) with ResNet-50 (He et al., 2016) and FPN

(Lin et al., 2017) as backbones, which are pre-trained on Mi-

crosoft COCO (Lin et al., 2014). Then separately fine-tuned

on MOT17Det (Milan et al., 2016) and MOT20Det (Dendor-

fer et al., 2020) datasets, the former is used for evaluation on

MOT16/MOT17, and the latter is for MOT20. We only train

the network as a general detector, and the training strategy fol-

lows the baseline for a fair comparison. Our tracker follows
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the public protocol and does not initiate new tracks unless pro-

vided by the benchmark. All experiments are conducted with

RTX 2080 Ti with PyTorch. As for the parameters, in tube

re-localization, we decide the regressions with η1 = 0.9 and

η2 = 0.5. In the T-NMS, we set γ = 0.5 in Eqn. 2. We set

λ = 5 in tube re-assignment to balance two costs and ξ = 0.6

for filtering neighboring targets.

4.3. Target Re-localization

To incorporate spatial-temporal and motion information and

reuse discriminative features from previous frames for robust

regression, we propose to leverage regression tubes as input. In

this work, we utilize the shortest tube, i.e., a 2-frame tube across

two frames It−1 and It, as inputs to the regression network for

the frame It+1, which has been proved to be effective in MOT

(Zhou et al., 2020; Peng et al., 2020a) and video object detec-

tion (Tang et al., 2019). Intuitively, more discriminative infor-

mation could be used with longer tubes. However, this may also

introduce unexpected noisy features, especially in large camera

motion and crowded scenes. Moreover, the computational cost

increases with longer tubes as well.

We compare the tracking performances based on tubes with

different lengths. The results are shown in Tab. 1. It is ob-

vious that tubes with 2-frame lengths outperform the 1-frame

ones in MOTA and IDF1. The single static bounding boxes are

used as input in the 1-frame scenario. The performance of the 2-

frame tube also demonstrates the superiority of using tubes over

static bounding boxes as input for the regression-based tracker,

which provides discriminative features and incorporates tempo-

ral information and motion cues. Thus, the 2-frame tube can

achieve robustness in regression. More targets are retrieved

with regression tubes, leading to decreased FN, ML, and in-

creased MT for different detectors. Therefore, the influence of

inter-object occlusions and intra-class distractors are alleviated,

and the tracking performance is improved. However, with the

longer tubes, i.e., 3-frame, no noticeable improvement is ob-

served in MOTA, while the IDF1 drops and IDS increases in all

three detectors. We reckon that 3-frame tubes incorporate more

redundant and noisy features, increasing false positives and thus

damaging identity convergence. The superior performance of

2-frame tubes over 3-frame ones demonstrates that longer tube

is not optimal for regression-based tracker since they introduce

unexpected false positives and ID switches. Moreover, a longer

tube increases the computational burden inevitably. Therefore,

we utilize 2-frame tubes in our method.

To demonstrate the effectiveness and generalization of tubes

as input for regression with tube re-localization strategy, we ap-

ply the 2-frame regression tubes to Tracktor (Bergmann et al.,

2019) and DHN (Xu et al., 2020) in both public and private

protocols. The private protocol works by employing fine-tuned

models as the detector. The variants with regression tubes are

denoted as Tracktor† and DHN†. As shown in Tab. 2, sig-

nificant improvements are achieved in both public and private

settings for Tracktor and DHN, especially in the private setting,

where better detection results are provided, demonstrating the

superiority of regressing tubes for tracking. More significant

improvements in private protocol also show that high-quality

Table 1. Experiments on different lengths of tubes for regression. The re-

sults are obtained on MOT17 training datasets with public detections pro-

vided by DPM, Faster R-CNN, and SDP. The arrows here indicate the op-

timal trend of metrics.

Length MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓

DPM

1 frame 61.2 62.8 29.5 26.6 2114 41047 375

2 frames 61.7 64.6 29.7 26.0 2187 40403 443

3 frames 61.7 63.4 29.7 25.8 2258 40218 473

Faster R-CNN

1 frame 63.4 65.8 40.3 17.9 2382 38251 500

2 frames 64.1 67.1 40.8 17.3 2456 37366 519

3 frames 64.1 66.6 40.8 17.2 2475 37372 522

SDP

1 frame 72.7 69.0 46.2 13.6 2479 27658 523

2 frames 72.8 70.9 46.3 13.5 2573 27341 585

3 frames 72.9 69.9 46.3 13.4 2653 27185 598

Table 2. Experiments on the effectiveness of tubes as input. The results

are obtained on the MOT17 training dataset with detections provided by

Faster R-CNN. † indicates the variants with the tubes.

Method Mode MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓

Tracktor Public 61.9 64.7 35.3 21.4 323 42454 326

Tracktor† Public 63.5 66.2 40.5 17.9 2353 38198 484

Tracktor Privete 70.0 69.6 34.6 8.1 1354 31945 443

Tracktor† Privete 75.3 72.0 44.3 4.8 5853 21214 702

DHN Public 62.2 65.7 35.9 14.5 303 41840 272

DHN† Public 63.9 68.7 43.0 18.0 3325 36749 416

DHN Privete 70.1 69.2 43.2 7.7 600 32562 400

DHN† Privete 75.8 74.3 47.4 7.5 6859 19663 630

detection is the key to tracking. Although FP and IDS increased

with tubes, a much larger drop in FN and decrease in ML shows

that most retrieved targets are true positives and longer trajec-

tories are formed. Tab. 2 also verifies the generalization of tube

re-localization in boosting the performance of the regression-

based tracking framework.

Since the baseline tracker works in an ID-agnostic fashion

due to the unawareness of inter-object occlusions and intra-

class differences, the noisy features can damage the regression

quality. As shown in Fig. 3 top row, under camera motion,

the position of the same target on the adjacent frames differs

with low bounding box overlaps, thus introducing the nearby

noisy features and leading to inaccurate drift for the left tar-

get. As a result, the identities are wrongly assigned, resulting

in continuous ID switches. However, with the proposed tube

re-localization, as shown in the bottom row of Fig. 3, the re-

gression tubes are used as input, and discriminative features are

reused with historical positions considered, resulting in high-

quality regressions. Therefore, both targets are tracked cor-

rectly and continuously with consistent identities.

We conduct ablation experiments to prove the effectiveness

of each component of our method. As shown in Tab. 3, com-

pared with Baseline, the Baseline+TL makes a clear improve-

ment in MOTA and IDF1 with tube re-localization (TL), and

the number of FN decreases. Besides, compared with Base-

line+TA, the MOTA of Baseline+TA+TL increases by 0.9, the

FN decreases dramatically (by 1058), thus more targets are

tracked, and longer trajectories are formed with increased MT
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Table 3. Ablation studies of different components of the proposed method. The results are obtained on the MOT17 training dataset with public detectors

provided by Faster R-CNN. “TA”, “TN”, and “TL” stand for the proposed tube re-assignment, T-NMS, and tube re-localization, respectively.

Method MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓

Baseline 61.9 64.7 35.3 21.4 323 42454 326

Baseline+TA 63.0 66.3 39.7 18.0 2343 38669 482

Baseline+TN 63.4 66.2 40.3 17.9 2352 38241 488

Baseline+TL 63.5 66.2 40.5 17.9 2353 38198 484

Baseline+TN+TA 63.9 66.5 40.5 17.4 2445 37604 547

Baseline+TL+TA 63.9 66.8 40.8 17.4 2434 37611 536

Baseline+TL+TN 64.1 66.7 40.7 17.4 2454 37368 539

Baseline+TL+TN+TA (ours) 64.1 67.1 40.8 17.3 2456 37366 519

Fig. 3. Visualization of the qualitative results with tube re-localization.

The tracking results are obtained from frames 507, 509, 510, and 521 of

MOT17-13, which are captured with large camera motion. Different box

colors represent different identities. Top row: The tracking results without

tube re-localization. Bottom row: The results with tube re-localization by

regressing tubes to keep identity consistent with camera motion.

(by 1.1). The identity convergence is enhanced, proved by the

0.5 increase of IDF1. Similar results can be found by com-

paring Baseline+TN with Baseline+TL+TN. Likewise, com-

pared with Baseline+TN+TA, the Baseline+TL+TN+TA still

improves in MOTA (by 0.2) and IDF1 (by 0.6). Also, lower

FN represents that more targets are recovered and tracked, and

better trajectories are formed, as shown by increased MT and

decreased IDS. Therefore, we argue that the regression tubes

are optimal input for the regression-based tracker.

4.4. Tube-based NMS

The tube-based NMS (T-NMS) is intended for better process-

ing of regressions at the tube level to improve the robustness of

the tracker. T-NMS leverages the historical positions of tar-

gets inside the tubes to deal with inter-object occlusions and

enhance identity consistency. The T-IoU measures the overlaps

at the tube level by considering the positional relations of tubes.

For original NMS, if two targets are intersected with substantial

overlap, one of the targets would typically be suppressed with a

lower score. In contrast, by considering the historical status, we

lower the measured overlaps by considering the historical status

to make partly occluded targets active to reduce false negatives

and ID switches. Besides, the confidences of candidate tubes

are vital for identity assignments. The confidence re-scored

by T-RS improves data association quality as low-quality re-

gression is suppressed and less likely to survive. Thus false

Fig. 4. Visualization of the qualitative results with T-NMS (boxes of irrel-

evant targets are not shown for clarity). The results are from frames 278,

229, and 295 of sequence MOT17-02, and frames 728 and 729 of sequence

MOT17-12. Top row: The results without T-NMS. In (a), (b), and (c), the

correct regression at frame 292 (dashed green box) is eliminated by NMS.

In (d) and (e), the target at frame 729 is suppressed by NMS. Bottom row:

The results with T-NMS, where the target survives with the correct iden-

tity, and the partly occluded target is preserved.

assignments can be largely avoided. Tab. 4 demonstrates the

effectiveness of the proposed T-IoU and T-RS. Compared with

Baseline, the increased MOTA and decreased FN in the second

row demonstrate that T-IoU can keep more true positive targets

active, which would be suppressed by the original IoU mea-

surement. Meanwhile, from the third row of Tab. 4, IDF1 is

dramatically increased with T-RS, which verifies that T-RS can

revise false assignments with re-scored confidence and enhance

identity preservation. Further improvements can be achieved

with T-IoU and T-RS work together, i.e., the proposed T-NMS.

Fig. 4 shows two typical failure cases with false assignments

using the original confidence score and original IoU measure-

ment on the top row. The results of utilizing T-NMS are shown

in the bottom row. From the bottom row, it is clear that by uti-

lizing T-NMS, the false negatives and ID switches caused by

inter-object occlusions and intra-class distractors are resolved,

and longer and consistent tracks are formed.

Tab. 3 further demonstrates the effectiveness of the proposed

T-NMS. Compared with Baseline, Baseline+TN achieves

higher MOTA, IDF1, and MT, as well as lower FN and ML with

the proposed T-NMS (TN in table). Besides, Baseline+TL+TN

achieves higher MOTA (by 0.6) and IDF1 (by 0.5), lower FN

(by 830) compared with Baseline+TL. The proposed T-NMS

works parallel with tube re-localization to enhance tracking ro-

bustness by keeping more occluded targets alive with correct

identities. As a result, longer trajectories with high quality are
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Table 4. Ablations on different components of T-NMS. The results on MOT17-02 and MOT17-05. The former sequence is captured with occlusions and

target intersections. The latter sequence is recorded with low frame rates, camera motion, and frequent occlusion.

MOT17-02 MOT17-05

Method MOTA↑ IDF1↑ FP↓ FN↓ IDS↓ MOTA↑ IDF1↑ FP↓ FN↓ IDS↓

Baseline 43.9 46.2 62 10288 68 54.9 60.4 228 2713 181

Baseline+T-IoU 44.1 46.3 62 10260 66 54.9 60.6 229 2708 180

Baseline+T-RS 44.0 48.1 60 10288 62 54.9 61.0 248 2707 166

Baseline+T-NMS 44.2 48.5 61 10257 58 55.1 61.4 237 2702 154

Fig. 5. Visualization of the qualitative results with tube re-assignment. The

results are from frames 132, 142, 152, and 162 of sequence MOT17-01.

Top row: The results without tube re-assignment make identity associa-

tion with regression, resulting in ID switches when severe occlusions exist.

Bottom row: With tube re-assignment, the motion cues are considered.

Thus the identities are assigned correctly.

formed with increased MT (by 0.2). Similar enhanced perfor-

mance can be observed by comparing Baseline+TN+TA with

Baseline+TA. Likewise, compared with Baseline+TL+TA, the

proposed T-NMS can still help to keep more true positives alive

and increase the MOTA (by 0.2), reduce the FN (by 245), im-

prove the IDF1 by 0.3, and IDS reduced at the same time.

Therefore, the T-NMS is optimal for processing tubes for ro-

bust data association.

4.5. Target Re-assignment

The vulnerable box-based measurement cannot reasonably

reflect the relations between tubes, which often leads to ID

switches and fragmentations. A typical failure case of ID

switches is shown in the top row of Fig. 5. The proposed tube

re-assignment is designed by considering association metrics at

the tube level within the candidate tube to alleviate the influence

of inter-object occlusions and intra-class distractors.

As shown in Tab. 3, the proposed tube re-assignment

(TA) can boost the IDF1 when comparing Baseline with Base-

line+TA. Furthermore, compared with Baseline+TN and Base-

line+TL, both Baseline+TN+TA and Baseline+TL+TA could

boost the IDF1 by 0.3 and 0.6, and increase MT by 0.2 and

0.3, respectively. Likewise, compared with the method Base-

line+TL+TN, which already achieves good tracking perfor-

mance in MOTA, the IDF1 of Baseline+TL+TN+TA further

increases by 0.4 with the proposed tube re-assignment, and the

IDS decreases as well. The superior performance and improve-

ment demonstrate that the proposed tube re-assignment can re-

vise false assignments to re-assign identities correctly, form

longer trajectories of high quality, and enhance the identity con-

Table 5. Evaluate the effectiveness of bounding box refinement (BBR), cam-

era motion compensation (CMC), and Re-identification (ReID) for the pro-

posed method and baseline. Here we evaluate the public detections pro-

vided by Faster R-CNN on the MOT17 training set.

Method MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓

Tracktor w/o BBR 57.0 63.1 33.7 22.2 5003 42972 301

Tracktor w/o (CMC+ReID) 61.5 61.1 33.5 20.7 367 42903 1747

Tracktor w/o CMC 61.5 62.8 33.5 20.7 367 42903 921

Tracktor w/o ReID 61.9 64.1 35.3 21.4 323 42454 458

Tracktor 61.9 64.7 35.3 21.4 323 42454 326

Ours w/o BBR 57.3 64.4 39.9 19.8 8211 39423 352

Ours w/o (CMC+ReID) 62.0 62.3 37.9 17.8 2498 38318 1801

Ours w/o CMC 62.6 64.0 37.5 17.8 2502 38321 1200

Ours w/o ReID 63.7 64.7 41.2 17.4 2430 37607 708

Ours 64.1 67.1 40.8 17.3 2456 37366 519

sistency and stability of the tracker. The bottom row of Fig. 5

shows the case where the mistakenly assigned identities are re-

vised, and consistent trajectories are formed with the proposed

tube re-assignment.

4.6. Robustness analysis

The bounding box refinement is utilized in the regression-

based trackers (Bergmann et al., 2019; Guo et al., 2021; Stadler

and Beyerer, 2021) and other methods (Zhou et al., 2020; Shuai

et al., 2021), which aims to refine the noisy detections provided

by the benchmark. We evaluate the effectiveness of bounding

box refinement for the baseline tracker and our method. As

shown in Tab. 5, our method achieves competitive results with-

out bounding box refinement, improving the baseline counter-

part tracker in both MOTA and IDF1. Besides, camera mo-

tion compensation (CMC) is crucial for compensating cam-

era motion. Compared with the baseline method, our method

can better deal with large camera motion and enhance identity

consistency with the proposed tube-based regression and tube-

level process without CMC. Moreover, the ReID module is an

essential component for re-identifying the reappeared targets,

which is widely used in the previous state-of-the-art methods

(Bergmann et al., 2019; Wojke et al., 2017; Zhang et al., 2020)

and proved to be effective in dealing with long-term occlusions

and re-appeared targets. Tab. 5 also proves that our method

achieves superior results without the ReID module and sup-

presses the performance of the baseline with the ReID module.

Then we also analyze the robustness of our proposed tracker

in crowded scenes that is error-prone by visualizing the com-

parison with the baseline. We conduct the experiments and vi-

sualize examples on the MOT20 test datasets with public de-

tections for a fair comparison. The baseline method Tracktor is
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Fig. 6. Qualitative comparison results with the baseline and our method.

The tracking results are obtained from frames 1745, 1749, 1760, 1881, and

1894 of test sequence MOT20-04, recorded in a very crowded scene. Differ-

ent box colors represent different identities. Top row: The tracking results

of Tracktor. Bottom row: The results of our method.

based on the detector Faster R-CNN with ResNet (Ren et al.,

2016) and FPN (Lin et al., 2017) as the backbone network. The

Faster R-CNN is aware of the inter-class difference, such as the

difference between bicycles and pedestrians, but not the intra-

class difference, such as pedestrians with similar appearances

from nearby, thus is vulnerable to neighboring distractors of the

same class. Besides, it evaluates relations between targets with

original NMS at the bounding box level, and the confidence of

localization obtained from regression reveals the quality of de-

tection instead of tracking. Therefore the baseline tracker can

easily lead to false negatives, false positives, and ID switches.

Therefore, we utilize the tubes for regression, and process the

targets on the tube level with T-NMS and tube-related metrics.

We visualize extremely crowded cases from MOT20 test se-

quences obtained from the Tracktor and our method in Fig. 6

and Fig. 7. In the top row of Fig. 6, the target with the white

hat is lost in frame 1749, retrieved in frame 1760, and lost again

in frame 1881, leading to false negatives. In contrast, this tar-

get can be tracked continuously despite being largely occluded

in our method. Similar results can be found in Fig. 7. Com-

pared with the results obtained with Tracktor in the top row, our

method (bottom row) can significantly reduce the number of FN

and ID switches and enhance identity preservation. Therefore,

by leveraging the regression tubes, our tracker can mitigate the

influence of inter-object occlusions and intra-class distractors,

reduce the false negatives and ID switches, recover the lost tar-

gets and revise false assignments.

4.7. Benchmark Comparison

We extensively evaluate our method by comparing it with

the published state-of-the-art (SOTA) methods on multiple

benchmark datasets on MOTChallenge Benchmark, including

MOT16, MOT17, and MOT20. We adopt the best-performing

settings on MOT17 training sets and test on MOT benchmarks

with public detections for fair comparisons. We consider only

public methods which are comparable to our tracker.

The results are detailed in Tab. 6. Our method achieves

very competitive results with public detections. In particu-

lar, our method outperforms the baseline Tracktor in terms of

Fig. 7. Qualitative comparison results with the baseline and our method.

The tracking results are obtained from frames 532, 552, 559, and 582 of test

sequence MOT20-08, which is captured with frequent occlusions. Different

box colors represent different identities. Top row: The tracking results of

Tracktor. Bottom row: The results of our method.

MOTA and IDF1 in all three benchmark datasets. The state-

of-the-art performance on MOT20 demonstrates the superiority

of using regression tubes in dealing with extremely crowded

scenes. Compared with methods that are developed from the

tracking-by-regression paradigm, including GSM (Liu et al.,

2020), DHN (Xu et al., 2020), TADAM (Guo et al., 2021),

and TMOH (Stadler and Beyerer, 2021), our method ranks

second-best among them that only behind TMOH in MOT16

and MOT17, and achieves the best in MOT20. An occlusion

handling strategy that models the relation between occluding

and occluded tracks are proposed in TMOH. The inactive tracks

are regressed along with the active ones in TMOH. However,

our tracker surpasses TMOH in MOT20, showing the advan-

tage of employing tubes for regression in extremely crowded

scenes. Besides, as shown in Tab. 7, our method runs faster than

TMOH because of fewer computation burdens. Our tracker ex-

cels DHN, GSM, and TADAM in MOTA and IDF1, although

all of them utilize extra association-related networks. Since our

method can retrieve missed targets and keep partly occluded

targets active, it tends to have higher FP and IDS. Besides, our

method achieves the best performance in terms of FN and ML

among them, showing that more true positives are recovered

and tracked, and longer trajectories are formed.

Compared with other state-of-the-art methods, ArTIST

(Saleh et al., 2021) proposes a stochastic autoregressive mo-

tion model that learns the distribution of trajectories, which can

inpaints a tracklet in the presence of occlusion and noisy detec-

tion. However, our method still excels in IDF1 on MOT17 and

MOT20, which shows the effectiveness of our method in en-

hancing identity consistency. SiamMOT (Shuai et al., 2021)

is the current state-of-the-art tracker in MOT17, which inte-

grates the SOT tracker (Li et al., 2018) into Faster R-CNN to

form a unified network. The SiamMOT assigns each target a

SOT tracker and actively tracks the target once the detector ob-

serves. SiamMOT tracks in an ID-aware fashion, thus signifi-

cantly overcoming the weakness of the detector. In contrast, our

method tracks in an ID-agnostic way with limited information

provided by the detectors. However, the state-of-the-art per-

formance on MOT20 demonstrates that our method is capable

of dealing with highly crowded scenes with frequent occlusions
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Table 6. Comparisons with state-of-the-art methods on MOT16, MOT17, and MOT20 datasets with public detections. The ”✓” represents the online

method, and the ”%” denotes the offline method. The best result of each metric is highlighted in bold.

MOT16

Method Mode MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓

STRN (Xu et al., 2019) ✓ 48.5 53.9 17.0 34.9 9038 84178 747

Tracktor++ (Bergmann et al., 2019) ✓ 54.4 52.5 19.0 36.9 3280 79149 682

DHN (Xu et al., 2020) ✓ 54.8 53.4 19.1 37.0 2955 78765 645

Tracktor++v2 (Bergmann et al., 2019) ✓ 56.2 54.9 20.7 35.8 2394 76844 617

GSM (Liu et al., 2020) ✓ 57.0 58.2 22.0 34.5 4332 73573 475

MPN (Brasó and Leal-Taixé, 2020) % 58.6 61.7 27.3 34.0 4949 70252 354

TADAM (Guo et al., 2021) ✓ 59.1 59.5 - - 2540 71542 529

TMOH (Stadler and Beyerer, 2021) ✓ 63.2 62.5 27.0 31.0 3122 63376 635

Ours ✓ 62.2 60.9 27.0 28.1 5930 62049 854

MOT17

FAMNet (Chu and Ling, 2019) ✓ 52.0 48.7 19.1 33.4 14138 253613 3072

DHN (Xu et al., 2020) ✓ 53.7 53.8 19.4 36.6 11731 247447 4792

TPM (Peng et al., 2020b) % 54.2 52.6 22.8 37.5 13739 242730 1824

Tracktor++v2 (Bergmann et al., 2019) ✓ 56.3 55.1 21.1 35.3 8866 235449 1987

GSM (Liu et al., 2020) ✓ 56.4 57.8 22.2 34.5 14379 230174 1485

MPN (Brasó and Leal-Taixé, 2020) % 58.8 61.7 28.8 33.5 17413 213594 1185

TADAM (Guo et al., 2021) ✓ 59.7 58.7 - - 9676 216029 1930

CenterTrack (Zhou et al., 2020) ✓ 61.5 59.6 26.4 31.9 14076 200672 2583

TMOH (Stadler and Beyerer, 2021) ✓ 62.1 62.8 26.9 31.4 10951 201195 1897

ArTIST (Saleh et al., 2021) ✓ 62.3 59.7 29.1 34.0 19611 191207 2062

SimaMOT (Shuai et al., 2021) ✓ 65.9 63.3 34.6 23.9 18098 170955 3040

Ours ✓ 61.8 60.4 29.1 27.6 21903 190938 2953

MOT20

SORT (Bewley et al., 2016) ✓ 42.7 45.1 16.7 26.2 27521 264696 4470

Tracktor++v2 (Bergmann et al., 2019) ✓ 52.6 52.7 29.4 26.7 6930 236680 1648

ArTIST (Saleh et al., 2021) ✓ 53.6 51.0 31.6 28.1 7765 230567 1531

TADAM (Guo et al., 2021) ✓ 56.6 51.6 - - 39407 182520 2690

MPN (Brasó and Leal-Taixé, 2020) % 57.6 59.1 38.2 22.5 16953 201384 1210

TMOH (Stadler and Beyerer, 2021) ✓ 60.1 61.2 46.7 17.8 38043 165899 2342

Ours ✓ 61.1 58.9 48.7 17.3 33108 166170 2192

Table 7. Experiments on the running speed of different methods on the

MOT16, MOT17, and MOT20 test sets. The larger the running speed (in-

dicated by Hz), the faster the tracker is.

Dataset TMOH TPM Tracktor GSM ArTIST DHN Ours

MOT16 0.7 0.8 1.6 7.6 4.5 1.6 1.2

MOT17 0.7 0.8 1.5 8.7 4.5 4.9 1.2

MOT20 0.6 - 1.2 - 1.0 - 0.8

and small targets. The results also prove the generalization abil-

ity of our method since the two test scenes of MOT20 never ap-

pear in the training set. Thus, we argue that the performance of

the regression-based tracker can be considerably improved by

regressing and processing tubes.

4.8. Discussion

Our method exploits the regression tubes as base inputs for

the regression-based tracker. It reuses the discriminative fea-

tures inside the tubes to eliminate the influence of inter-object

occlusions and intra-class distractors and recover missed tar-

gets. However, there is still plenty of room for improvement.

Fig. 8 shows some typical failure cases of our tracker. The

top figures are selected from the test sequence MOT17-03, and

the bottom ones are from MOT17-06. For the top row, the

lamp strongly influences representative features of targets pass-

ing by. Therefore, ID switches are caused in Fig. 8(b) and Fig.

8(d), which are captured from frames 357 and 686. Similarly,

in the bottom row, the sequences are captured at a low frame

rate, where the positions of the same target in the consecutive

frames have comparatively small overlaps, and noisy features

from nearby are introduced. The bottom row shows that the

reused features are contaminated under continuous occlusion,

even using regression tubes as input. As a result, the identities

of targets are mistakenly assigned, as shown in Fig. 8(f) and

Fig. 8(h). Therefore, the intense illumination and low frame

rate are two challenges for our method.

We also compare the running speed of different methods in

different MOT benchmarks. As shown in Tab. 7, our method

runs slower than baseline since we employ the tubes instead

of bounding boxes for regression, more bounding boxes are

employed, and extra spatial-temporal information is included

for tube processing and similarity calculation. Moreover, our

tracker runs faster than TMOH in all three datasets. Our fu-

ture work is to improve the running speed and efficiency of our

method to make it more suitable for real-time utilization.

5. Conclusion

In this work, we proposed to leverage the regression tube

as input to address the natural limitations of the tracking-by-

regression paradigm for the multi-object tracking. Our method

can effectively reuse the discriminative features and spatial-

temporal information provided by tubes in dealing with inter-

object occlusions and intra-class distractors in crowded scenes.

We introduced the tube re-localization strategy, which regressed

the tubes of existing tracks to handle inaccurate regressions and

recover missed targets. We then presented the T-NMS to mea-
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Fig. 8. Typical failure cases. Top row: typical failure cases of ID Switches

from sequence MOT17-03 caused by illumination changes. Bottom row:

typical failure cases of ID Switches from sequence MOT17-06 caused by

low frame rate and occlusion. The failure cases are highlighted with red

arrows. Different colors represent different identities.

sure and process the tracks at the tube level, which provided

an accurate local evaluation between targets, maintained partly

occluded targets stay active, and enhanced the consistency of

target identities. Benefiting from the improved regressions and

re-scored tube confidences, we applied a tube re-assignment

strategy that accurately measured the cost of candidate tubes to

revise false assignments for robust data association and boosted

tracking performance. The results showed that very competi-

tive results are obtained with tubes, which are optimal for the

regression-based tracker.
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