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ABSTRACT

Tracking-by-regression is a new paradigm for online Multi-Object Tracking (MOT). It uni es detection

and tracking into a single network by associating targets through regression, signi cantly reducing
the complexity of data association. However, owing to noisy features from nearby occlusions and
distractors, the regression is vulnerable and unaware of the inter-object occlusions and intra-class
distractors. Thus the regressed bounding boxes can be wrongly suppressed or easily drift. Meanwhile,
the commonly used bounding box-based post-processing is unable to remedy false negatives and false
assignments caused by regression. To address these challenges, we present to leverage regression
tubes as input for the regression-based tracker, which provides spatial-temporal information to enhance
the tracking performance. Specially, we propose a novel tube re-localization strategy that obtains
robust regressions and recovers missed targets. A tube-based NMS (T-NMS) strategy to manage the
regressions at the tube level is also proposed, including a tube IoU (T-loU) scheme for measuring
positional relation and tube re-scoring (T-RS) to evaluate the quality of candidate tubes. Finally,

a tube re-assignment strategy is further employed for robust cost measurement and to revise false
assignments using motion cues. We evaluate our method on benchmarks, including MOT16, MOT17,
and MOT20. The results show that our method can signi cantly improve the baseline, mitigate the
challenges of the regression-based tracker, and achieve very competitive tracking performance.

1. Introduction unique identity (ID) while keeping the ID consistent across the
temporal domain. Most previous works focus on extracting dis-

Multi-object tracking (MOT) involves localizing objects in - criminative features such as appearance features (Wojke et al.,
each frame and temporally forming trajectories. MOT is one 0b317- chen et al.. 2018: Zhang et al., 2021), making motion

the core tasks in computer vision to facilitate scene “nderSta”?)'redictions (Zhou et al., 2020; Wu et al., 2021), and utilizing
ing and has various applications such as video surveillance, ave attention mechanism (Zhl; et al. 2018° Guo et al. 2021

tonomous vehicles, and human behavior analysis. However, ﬁeng et al., 2020a). However, these methods can signi cantly

remains challenging in crowded scenes with occlusions, dispcrease computational complexity since extra tracking-related
tractors, low frame rates, and camera motions. networks are typically employed.

Due to the rapid progress in deep-learning-based object de- . i
tection, tracking-by-detection became the dominant paradigm 'N€ tracking-by-regression framework (Bergmann et al,
in MOT. It divides the MOT task into two separate steps: (i) lo- 2019) IS proposc_ad to reduce th_e complexity of data association
calizing multiple objects in each frame and (ii) linking the iden- N MOT. By reusing the regression head of two-stage object de-
tical objects across frames. Therefore, with the provided deted€ctors Faster R-CNN (Ren et al., 2016), the existing tracks in
tions, MOT is formed as a data association problem. Specif.t-he previous frame are associated automatically with the targets

ically, it aims to distinguish dierent targets by assigning a " the current frame, demonstrating promising tracking perfor-
mance while signi cantly reducing the complexity of data as-

sociation. Later works (Xu et al., 2020; Liu et al., 2020; Stadler
Corresponding author: Teh:86-13892821999; fax: (029)88201658; and Beyerer, 2021; Guo et al., 2021) take advantage of this new
e-mail: hbji@xidian.edu.cn  (Hong-bing Ji) framework for further improvements.




Fig. 1. Noisy features from nearby cause typical false negatives and ID
switches in the tracking-by-regression paradigm. The dashed box repre-
sents the raw regressed result, which becomes invalid in the post-process.
Top row: The nearby targets with similar appearances introduce noisy
features. Therefore the dashed blue box drifts to a nearby target and is
eventually eliminated. Bottom row: The two boxes in white and green
contain mixed features of two targets, and representative features are con-
taminated as the two targets get closer, resulting in an ID switch. Dierent
box colors indicate di erent identities. Best viewed in color.
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aspects. Firstly, we utilize regression tubes as input and pro-
pose a tube re-localization strategy that bene ts regression by
incorporating spatial-temporal information extracted from the
formed tubes. It can eectively resolve the inaccurate regres-
sion problem in box-based regression by reusing discrimina-
tive features and recovering missed targets. Secondly, we pro-
pose a tube-based NMS (T-NMS) mechanism to process the
tubes by utilizing the information from the previous frame to
process regressed targets at the tube level. With T-NMS, we
can promote partly occluded targets to stay active and penal-
ize low-quality regressions, resulting in improved identity con-
sistency. Finally, in order to correctly measure the similarity
and assign the identity of targets with regression tubes, we pro-
pose a tube re-assignment strategy, which integrates the spatial-
temporal features and the motion cues to improve the tradi-
tional bounding box-based matching. We evaluate the proposed
method through extensive comparisons with existing state-of-
the-art trackers and apply our method to other regression-based
trackers. Both qualitative and quantitative results demonstrate
the e ectiveness of our approach.

In summary, the main contributions of this paper are:

However, despite its simplicity, the regression-based track-
ing network is modi ed from an object detector, which relies
on the representative features of input targets for regression. As
in single object tracking (Li et al., 2018; Yuan et al., 2020) and
thermal infrared tracking (Liu et al., 2022), the learned global
semantic features are sensitive to all related semantic objects
and insensitive to similar objects of the same class. Therefore, ~
the regression-based multi-object tracker is unaware of inter-
object occlusions and intra-class distractors, working in an ID-
agnostic fashion. That is to say, the noisy features of occlusions _
and distractors from nearby can easily cause target drift (see
Fig. 1) and missing targets, dramatically damaging the tracking
performance. Besides, the simple bounding boxes-based post-
processing procedure, such as Intersection-over-Union (loU)
and non-maximum suppression (NMS), can easily lead to in-
correct relational measurements, ID switches (IDS), false posi-

" We leverage the regression tubes as input to incorporate

the spatial-temporal information and propose a tube re-
localization strategy for better target localization and re-
covering missed targets.

We propose a T-NMS mechanism that robustly processes
the tube regressions at the tube level and correctly scores
the associations by penalizing low-quality regressions.

We propose a tube re-assignment strategy that integrates
the spatial-temporal features and motion cues of regression
tubes in similarity measuring to revise false assignments to
enhance the identity consistency of the tracking.

Extensive experiments demonstrate that our methed-e

tively improves the performance of the regression-based
tracker, and the proposed tracker can obtain very competi-
tive tracking performance on MOT benchmarks.

tives (FP), and false negatives (FN) in crowded scenes. Mean-
while, the target identities are generally maintained with NMS
based on the con dence obtained from the regression network,
which only represents the quality of localization but not track-
ing and can not suciently reveal the quality of identity match-
ing. Therefore, in challenging cases with inter-object occlu-2, Related Work
sions and intra-class distractors, the original post-processing

procedure and con dence are not optimal for identity assign- The existing MOT algorithms can be categorized into online
ment as occluded targets are often suppressed, and identiti§gd o ine methods. Future frames can be used for matching
are often mistakenly assigned. Moreover, the regression-basggbpallyin o ine tracking. Therefore, oine methods are more
trackers cannot recover the missed targets once lost. robust to occlusions and distractors in general. In contrast, only
In this paper, we mitigate these issues in the regression-bas@g@evious and current frames are available for online methods,
trackers and enhance the MOT performance by leveraging revhich have a broader range in real-world applications but are
gression tubes instead of simple static boxes (see Fig. 2) as ifmore vulnerable to occlusions and distractors. Here we focus
put. The regression tubes constructed by consecutive boundirg online tracking where our work lies.
boxes of individual tracks contain spatial-temporal information
(such as moving direction and speed) and have been proved
be e ective in MOT (Pang et al., 2020) and video object de-
tection (Kang et al., 2016; Tang et al., 2019). We improve the Most previous methods (Wojke et al., 2017; Chen et al.,
performance of the regression-based tracker by regressing t2018) utilize the tracking-by-detection (TBD) framework,
tubes to unleash the potential of the regression network in threghere o -the-shelf detectors provide the detections on each

¥ Tracking-by-detection
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frame. and then MOT is formulated as a data association prolwork of bounding box re nement. The data association is per-
lem that links the detected objects with the existing tracks temformed without extra matching methods. Tracktor (Bergmann
porarily. A common formalism is to build a graph for associ- et al., 2019) is an inspiring tracking-by-regression framework
ations, where the nodes represent targets, and the edges repteat adapts the detector Faster R-CNN (Ren et al., 2016) into
sent relations of potential links. The appearance features (Waray multiple object tracker by re-utilizing the regression head.
et al., 2020; Guo et al., 2021; Zhang et al., 2021) are widelyT'he existing tracks (represented as bounding boxes) are used
used for similarity measuring, and the additional RelD mod-as inputs, and the identities of targets are assigned by box re-
els (Wojke et al., 2017; Son et al., 2017) are often employed tgressions directly. This procedure eliminates the necessity of
match re-appeared identities to form long trajectories. Besideshe complex data association process, and some other meth-
Some methods adopt motion models, such as the Kalman leds follow this paradigm for further improvements. GSM (Liu
ter (Wojke et al., 2017; Zhang et al., 2021), optical ow (Tang et al., 2020) proposes a novel graph representation to lever-
etal., 2017), and motion prediction networks (Zhou et al., 2020age the relations among objects to improve the robustness of
Sadeghian et al., 2017; Wang et al., 2022), that incorporate tenthe similarity model. An occlusion handling strategy that mod-
poral features to make dynamic position predictions to comperels the relation between occluding and occluded tracks is pro-
sate for noisy detections. Some methods establish Recurreppsed in TMOH (Stadler and Beyerer, 2021) to improve the
Neural Networks (Milan et al., 2017; Sadeghian et al., 2017frack management of the regression-based tracker. The TMOH
Jain et al., 2020) to model complex motion patterns. More-outperforms the feature-based approaches without a separate
over, data association is also formulated as a graph optimizatiae-identi cation network. TADAM (Guo et al., 2021) utilizes
problem in some methods (Li et al., 2022) and solved globallytwo attention modules that allow the tracker to focus more on
with network ow (Schulter et al., 2017) and Multiple Hypoth- targets and suppress the in uence of distractors nearby. More
esis Tracking (Kim et al., 2015) frameworks. Despite the supediscriminative features and accurate position predictions are ob-
rior performance, this separate pipeline impedes the TBD frontained. However, these methods ignore the spatial-temporal

real-time utilization. features of tracks and cannot recover the missing targets. Our
method leverage the regression tubes as input, fully utilize the
2.2. Joint-detection-and-tracking spatial-temporal information provided by tubes and retrieve the

The joint-detection-and-tracking (JDT) framework is pro- missing targets to boost the tracking performance.

posed to eliminate the gap between object detection and data _ _ .
association, reuse backbone features, solve MOT end-to-er&d4. Video object detection and MOT with Tubes

with multi-task learning in a single network, and state-of-the- ;.. object detection is closely related to MOT without the
art results are achieved. A unied framework is proposed by

(Feichtenhofer et al., 2017) to jointly perform detection andrequwement of identity for each target. However, both tasks

tracking based on the detector R-FCN (Dai et al., 2016). JD ce similar challenges, such as occlusions, camera motions,

nd noisy detections. The tubes incorporating spatial-temporal

;Vr\]/grl]:%rizg:"Zggé?{)egﬂ?gs;22 de;::::c\e(ce);cégg d(iEe%rrT;% rﬁformation and motion cues by stacking consecutive targets
o ) Y 9 bpea 9 re widely used in this eld. A tubelet proposal network (Kang

resulting in detections and representative features of targets oD-

tained with shared backbone features. Likewise, the FairMO tal,, 2017) that combines object detection and object track-

) . Ing is presented to generate tubelet proposalsiently. The
(Zhang et al., 2021) is built on top of the CenterNet (Zhou . .
et al., 2019) with an additional appearance embedding brancﬁ:bes are generated by the object tracker and used for localiz

) i i g objects. However, our method is drent in that tubes are
CTracker (Eeng et al,, 2020a) Integrates object detection, fe enerated from the regression instead of object proposal and
ture extraction, and data association in an end-to-end fram

K Th dicti fth i tsi tive f are intended for identity assignment. Seg-NMS (Han et al.,
e o e G010 & postprocessing sttegy that ses igh corg cb-
etal., 2020) is built based on the CenterNet with an added trac ect detections to boost scores of weaker detections within the

) . ame clip, similar to the proposed T-NMS in this paper. How-
::ngeseLE:lez:(r:ig%aner?rrf:c.iull:)ekltlr\:a(txtlrjaﬁts%l'r’rnzsotzhoe) Erljfoasﬁjﬁver, T-NMS processes the regression tubes based on scores of
p 9 9 matching pairs produced by a novel scoring strategy and reveals

algor!thm (Kuh_n, 1955) to co_mply_vylth the “e‘.”a' networks bythe quality of candidate tubes. The average detection scores
learning to assign the target identities and builds an end-to-eng

o . re used in Seqg-NMS, indicating the con dence of classi ca-
Al bl pon exising detectors by ading tracking-related net O e ubes are employed i the eld of MOT as well
works, which brings di culties in training and increases the pa- TgbeTK (Pgng et al., 2020) encodes .spat|al-temporal featureg
rametérs of the network. On the contrary, our regression-baseW I.th bounding-tube, regresses bounding tubes for data associ-
tracker with regression tl..lbeS as input ach,ieves very competitiv% on, anql Processes tubeg le[h Tube NMS. However, TubeTK
. . o works o ine, i.e., the tracking is performed with future frames

results without extra networks and training diulties.

included for both bounding-tube regression and Tube NMS. An
additional loU-based greedy algorithm is needed to complete
data association. However, our methodetis because the pro-

This stream works by regressing tracked targets from previposed modules in our method are tailored for regression tubes
ous frames for associations by leveraging the regression netnd track in an online fashion.

2.3. Tracking-by-regression
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Fig. 2. Overview of the method pipeline. The red, blue, and yellow boxes represent existing tracks with dirent identities for each frame. The tracked
boxes across continuous frames on the framd$  and I! form a tube set (illustrated by boxes connected via dashed lines), which is used as the input for
the proposed tube-based robust regression and association. The proposed method extends the tracks to the next fréfifewith identities. This process is
conducted iteratively to the whole sequence. The gure is better viewed in color.

3. Proposed Method posed tube IoU (T-loU) and re-score the corresponding con-

dences with tube re-scoring (T-RS) scheme. The re-scored

In this section, we rst give an overview of our method (Sec- con dence is used in tube re-localization (Section 3.2) and tube

tion 3.1), then present its three key components in detail, inre-assignment (Section 3.4). The T-loU is employed when mea-
cluding tube re-localization (Section 3.2), T-NMS (Section 3.3),suring the locality relationships between drent tubes. Fi-

and tube re-assignment (Section 3.4). nally, we propose a tube re-assignment (Section 3.4) strategy
to accurately measure the similarity betweenedéent targets
3.1. Overview and revise wrongly assigned identities. The costs of associat-

- . ing candidate tubes are re ned by considering spatial-temporal
The existing regression-based tracker (Bergmann et aIfEatures and motion cues within tubes.

2019) performs data association based on the regression pro-
cedure of the object detector Faster R-CNN (Ren et al., 2016). L
Thus heavily depends on the quality of the representative fea>-2- 11UP€ Re-localization
tures for the regression head, i.e., the embeddings of existing The regression is performed based on the representative fea-
tracks on previous frames. Speci cally, given as input the trackgures. Therefore, the regression is an identity-agnostic process
of the framel' represented by a box sBt = fb}; bl; :::;;b{ g the  and unaware of inter-object occlusion and intra-class distrac-
regression results of the frant&* areR{** = fp!; p};:::;pl,g  tors. The noisy features from similar appearances and nearby
with identities transferred from the previous frame by regrestargets can easily damage the regression quality. Consequently,
sion. We argue that this simple bounding-boxes-based data attie correct regressed results are often eliminated, and the iden-
sociation is not optimal and cannot robustly handle inter-objectities become lost (see the top row in Fig. 1). Thus, one of the
occlusions and intra-class distractors since the regression is pefrawbacks of the regression-based tracker is that the regression
formed based on the extracted semantic features. Thus it is IDs vulnerable to inter-class occlusions and intra-class distrac-
agnostic and vulnerable. In order to take advantage of spatiaters. Besides, regression is a one-to-one procedure. Therefore
temporal information to tackle the inter-object occlusions andt cannot recover missing targets once lost.
intra-class distractors, we propose to leverage regressims To deal with this, we take regression tubes as input and pro-
as the primary input for robust regression and employ generalose a novel tube re-localization strategy, incorporating spatial-
tube-based measuring and processing strategies for robust astemporal features and historical information of tracked tubes
ciation in crowded scenes. into regression. Better regressions are obtained by reusing
The overview of our method is shown in Fig. 2. Com- the discriminative features inside tubes from previous frames,
pared with previous work (Bergmann et al., 2019) that only uti-and missed targets are recovered simultaneously. Technically,
lized the bounding box on the framé the tracks on frame given N(t) existing tracks (hereafter referred to Msfor sim-
I 1 are also employed to form the tube $¢t as the input plicity) of the framel' denoted a§ ' = fT};T5;::;THg each
in our method. Each tube is formed by two boxes with thetrack contains a series of bounding boxes with the same iden-
same identity. The backbones of the siamese network shatidy. The boxes ofN active tracks in frames! and 1! ! are
the weights. To deal with inaccurate regressions and false a8' = fb!;b};::;bigand Bt * = bt &b, 1;::;bi tg We uti-
signments caused by inter-object occlusions and intra-class difze N formed tubedU' = ful;u}; ::;;uygas the input for re-
tractors, we propose a tube re-localization strategy to proceggession, where each tubis formed by two boxe$! * and
tube-based regressions (Section 3.2), resulting in more accbt with the same identity of two consecutive frames. Note that
rate regressions and recovers targets of the fidimeWe then  if no track in the previous frame is available, we duplicate the
propose a novel tube-based NMS (T-NMS) (Section 3.3) to bethounding box in the current frame to form the input tube. Based
ter manage the regression tubes at the tube level with the pren this, we can regress' and obtain the initial regression re-
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sultsRI*! = fpy; p; i Phgand Iiﬂ = fp) 4P, Pl tgof  severely contaminate the representative features. Moreover, the
two frames inside each tube. targets missed by detectors or drift are also recovered. There-
To obtain the nal regression boxes of each track at the framd®re; we employ the tubes for robust regression-based tracking
11, we need to process the regressed boxes from tubes of ea(ghehml_nate the in uence_of inter-class occlus_lon_s and intra-
existing track to decide the nal regression. The high videoClass dlstra_ctors. T_he ectiveness and generalization of tubes
frame rate assumption suggests that the regressed boxes wiff Proved in experiments.
large overlaps and similar geometric characteristics are more
likely to be the correct target for each track. Thus, on top of theflgorithm 1 Tube Re-localization
original regression results, we rst coarsely match the regressed Input:

boxes in the framé*! with the corresponding tracks on frame " TubesU ! of existing tracks in framé!

I by minimizing the position cost to obtain the re-arranged re-  Output:

gression boxe&!*! with re-assigned identities. A cost matrix " Regression&'*! and corresponding con denc&*! in
Cpos can be constructed by measuring the position cost when frame|t+!

linking box 13, in the framel ™! to the existing tracked bab} in ~ Recovered target&*! and corresponding con dence
the framel' as: Sttt in framelt*?

1: ObtainR{**, Ri*1 with tubesU ! by regression;
2: Assign identities for Ri*};B' ) and R{**; B") according

: : : to the position cost in Eqn. 1;
Then the Hungarian algorithm (Kuhn, 1955) is employed for as- X '
J g ( ) Py Obtain theR"1, RI*! for each tube at framg*! based on

signment. The assignment of identities for the regressed boxes" H o tll’ It thi _
in R*! to previous existing trackB! ! is performed similarly, the positional relation within tube;

and we can obtain the re-arranged regression le%éas well. ~ # Obtain the R**; S'*%) and €"%; S;¢) with T-RS based on
L overlapsO™! between dierent tubes;
Ideally, it is expected that the two regressed boxes of the 5. Update provided detection sBf*?.

same ID inRE*} andR{*! are largely overlapped with each other
with a very similar appearance since each target has only one
position on each frame. Thus, we can obtain the nal regres-
sions of each tube by measuring the overlaps on the same fran®3. Tube-based NMS
More speci cally, assume there ai formed tubedJ ! at the T id redund NMS is of loved
framelt,,{wo regressgd box sets with the same assigned ID are 0 avoid redun an_t targets, IS often employed as post—.
RFL = ptoptoopt andRYL = ptlptLoeept 1 The  Processing for identity management (Bergmann et.al., 2019;
t pl’_pZ’ Py tl +lp1 ’p2+l’ Py Stadler and Beyerer, 2021; Shuai et al., 2021). Typically, two
corresponding con dence scor&;”; and St are re-scored  poyes are treated as pointing to the same target if they are
with the tube re-scoring (T-RS) strategy (detailed in Sectiong ey overlapped. The correct regression should have higher
3.3). Then we calculate the f)verlaps of boxes that point tQ 4 gence to survive, which helps to reduce false negatives and
the same target at the franté”, and obtain the overlap set |5 gwitches. However, the score of a regressed box mainly
Ot = off;0yt 0Nt , whereo™t = loU(p}; pf %), which  represents the con dence of localization, and it cannot well in-
is measured by the original bounding box-based loU. A sigqicate the tracking quality, thus often leading to false identity
ni cant overlap (larger than a pre-de ned thresholg) of two  5ssignments under frequent inter-object occlusions and intra-
boxes indicates high con dence in the regressed position. Og|ass distractors. For example, when two boxes largely over-
the contrary, a low overlap (smaller than a pre-de ned threshigp they are regarded as pointing to the same target (but actu-
old 2) means the tube regresses to twoatent positions. The  gjly not). Since the original NMS only measures the relation
box with the higher con dence is treated as the nal regressioryf targets at the box level within the same frame, it ignores
of the track, while the ones with lower con dence are likely to the spatial-temporal information and historical relations. The
be the recovered targets missed by the detector, which will bgorrect regressions may be mistakenly suppressed with a lower
treated the same as detections frbm By doing so, the nal  gcore. Thus, the original box-based NMS is unsuitable for mea-
regressed boxeR™* = (ri"};rit; i riit) and the retrieved tar- - uring and matching the regression tubes, which can easily lead

getsE™! = (e )" ef"), and the corresponding scores, g false negatives and 1D switches of occluded and intersected
S*! and Sigj; (obtained with the proposed T-RS) can be 0b-targets in crowded scenes.
tained by merging the nal regression results within each tube. T4 address this, we propose the T-NMS (including the tube
The tube rg-localization is su_mmarized in Alg. 1. Th(_a retrieved oy and tube re-scoring), which is tailored for processing re-
targetsE"™* in the framel ** will be added to the provided de- gressjon tubes, to measure the positional relations between dif-
tection seD*** for further process. ferent targets and evaluate the con dence of the candidate tubes
The regression tubes contain discriminative spatial-temporait the tube level with spatial-temporal information considered.
features from previous frames, which have been veri ed ef-The proposed tube loU (T-loU) coincides with regression tubes
fective by the active tracks up to the current. These disand measures the overlaps of dient targets by considering
criminative and accurate features are reused for regressing thige historical positional relations at tube level. More speci -
tracked tubes. Thus, the tube re-localization strategy is bene eally, two regressed boxes in frarti&! with di erent IDs have
cial in crowd scenes, where nearby targets and backgrounds can overlap measured by the original 16f¢;rt*1), and their

Cibs=1 lou(hl; pl): @)
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corresponding boxes within tubes in the previous frdhiave  tube level and obtain the candidate tubes for further assign-

an overlap obi‘.j = loU(b; b‘j). The proposed T-loU of the two ment. The missed and occluded targets are prevented from be-

target tubes can be calculated as follows: ing mistakenly eliminated with T-NMS caused by inter-object
( N t occlu_sion. To summarize, T-NMS promotes spatial-temporally
ol = lou(r; ik ) 0 < @) consistent tracks with accurate measurement and re ned con -
W7 0B[lou(rt ity + ol oy dence obtained by the proposed T-loU and T-RS strategies.

where is a pre-de nt_ad thresholq for T-loU. The T—IOU €ON- 3 4 Tube Re-assignment
siders positional relations of previous frames, which reveal the
states before current intersections. Thus it enables the tracker The target identities are assigned by regression directly in
to alleviate the in uence of the inter-object occlusion by re- the original regression-based tracker (Bergmann et al., 2019),
ducing the actual overlaps between occluded targets and reliegreatly reducing the complexity of data association. However,
ing those targets from being suppressed by the coarse decisidfi€ success of this simple process is based on the assumption
making process. Therefore, by measuring with the proposed Tf high frame rates and constant target velocity. When the as-
loU instead of the original loU, the partly occluded targets withSUmption breaks (such as low frame rates and large camera mo-
lower scores could survive rather than being eliminated witt{ions), inter-object occlusions and intra-class distractors vastly
high overlaps, raising the recall and stability of tracking. Theincrease, often leading to false assignments, ID switches, and
examples can be found in Sec. 4.4. Note that the original loU i&ajectory fragments. Therefore, it would be better if the tracker
used when calculating the nal regression within each tube iriS aware of false assignments and has the ability to revise them
the proposed tube re-localization since each target only has of@ €nhance identity consistency in crowded scenes.
unique position at any single frame. And the proposed T-loU is The positional relation of bounding boxes is widely used for
employed for tube level measurement betweeretént tubes measuring the similarity of linked targets in previous methods
to reduce the false negatives and ID switches. (WO]ke et al., 2017; Wang et al., 2020; Zhang et al., 2021)
The proposed tube re-scoring (T-RS) is used to score the corliS Simple metric can cope with most targets correctly for
dence of the formed tubes in tube re-localization. This scor-82SY tracking scenarios. However, owing to the neglect of tem-
ing scheme is also used to evaluate the con dence of candPOral information and motion cues, this bounding box-based
date tubes formed with boxes from regressigfid and exist- metnc is n_ot optlmgl for handl_mg _complex scenes with occlu-
ing tracks. In order to accurately re ect the quality of tracking, SIONS and mtersectmns, res_,ultmg in fal_se as_sug_nments and track
we introduce Gaussian penalty functions to the original con - Tagmentation. The matching cost of identity is calculated by
dence to discourage the dirence of potentially associated tar- P0%-based measurement within each tube in Equ. 1. Therefore,
gets similar to SOT (Yang et al., 2021). We de ne the relativeth® correqundlng identities are coarse and unreliable and need
positional displacement of linked targets from the frarheo to be re-assigned for better identity consistency. The location

framelt*! as follows: and scale pen_alty regarding the _size and position changes tore-
q rank the candidate targets are widely used for smoothing tracks
)2 t)2 (Yang et al., 2021; Li et al., 2018). Thus, we propose a tube
(c)*+( ¢ . P ot :
c = W; (3) re-assignment strategy to evaluate the similarity of candidate

tubes in multi-object tracking scenarios, which can revise false
assignments and mitigate the issues of inter-object occlusions
\)%nd intra-class distractors.

Consider a set of existing tracRs' = fT}; T};:::;T\g Each
track is composed of a set of bounding boXés= fb; bf 1;::g

where ¢ = jc, ciljand ¢ =jd, o 'jare the absolute
center displacement of the candidate tubes. Likewise, a relati
shape dierence of linked tubes can be de ned as:

|

_ht+owh @ and each bo?bit is reprgsented b?x‘;y‘l;'xtz;y‘zg i.e., top-left
T Thiewt and bottom-right coordinates. Regression results of tubes and
their con dence can then be obtained using the proposed tube
where h' =jht h*jand w' = jw' w*!jare the absolute re-localization and T-NMS. The candidate tubes for potential
height and width dierences, respectively. Consequently, thelinks between existing tracks and regressions are formed as in-
re ned scores of the candidate tubes can be computed by:  put for the tube re-assignment strategy. Each formed candidate
2 2 pair is also a tube. Therefore, the re-assignment procedure is
7 o3 (5) well matched with tubes and enables the tracker to perform at
' the tube level with spatial-temporal information.

where sy denotes the original con dence obtained from the Unlike most bounding box-based methods that measure lo-

regression network, the; and » are the Gaussian standard cally by overlaps, the tube re-assignment approach takes into

deviation. We set 2 = 2 = 2:0 experimentally. The T-RS ac- account extra information, including the size and displacement

cords with the principle of tracking based on smooth movemen@f linked boxes within tubes. More specially, given both the

and proves to be ective in practice (see Section 4.4). i-th existing track with positiol; = (X;;¥; X.,;}.,) in frame
The proposed T-NMS well matches with tubes and improved' and thej-th regression|™* = (x{'1;y{'; x5y, in frame

evaluation and processing of tracks, enabling the tracker té*!, the center position, width, and height of the two boxes are

manage the regression tubes within and among targets at tie,; ¢i,; wi; h) and (:ﬁ.jxl; c‘j;*yl;wtj”; ht*1), respectively. Then the

Strack = Sdet €



size cost of this formed candidate tube is de ned as: Algorithm 2 Tube Re-assignment
. L . Input:
t t+1 +1
b= i h + i Wi, (6) " Existing tracksT ! in framel*
size hlt Wt :

i " Regression resul®™?! in framel*!

A i i t+1 t+1
Likewise, the displacement cost measures the normalized rela- Provided detection® ™ in framel

tive displacement of linked center positions as: Output:
q "~ TracksT "1 in framel 1.
- m 1: Filter the candidate targets to be re-assigned with overlaps
lj|]s = 7 higher than from the nearby;
hf +w 2: Compute the shape c®Bthaps

h P g P A “1 The sh 3: Compute the direction co€lj;
where ¢, =jc., cijand ¢ =jc, c;j. The shapecost , winimize (Conape+  Cuir) to re-assign the IDs.

X ) ,
is the summation 0# the size cost and the displacement cost:

ci =ci +chl. 8) . . :
shape ~ “size = Tdis ®) rics, and implementation details. Then we demonstrate the ef-

The regression tubes contain temporal information and mofectiveness of the proposed tube re-localization, T-NMS, and
tion trails of tracks, which are vital for distinguishing inter- tube re-assignment by qualitative and quantitative ablation stud-
sected targets. For challenging cases such as targets becdfs: Finally, we carefully compare our work with prior works to
ing occluded while walking, the moving directions of targetsdémenstrate its superior performance and robustness.
are generally dierent. Therefore, we utilize the motion in- ,
formation in regression tubes and propose a direction cost thdt1- Datasets and Metrics
measures the derence between the movement of the candi- We evaluate our work on three benchmark datasets: MOT16,
date tubes. Speci cally, for theth target, we construct a 6- MOT17 (Milan et al., 2016), and MOT20 (Dendorfer et al.,
dimension direction vector a}# = (Cit;x; Cit;y; Xit;l;yit;l; Xit;z;yit;z)' 2020) from th(.E MOTChallenge Benchmark. .Both MQT].G and
the elements o6t denote horizontal, vertical centers, top-left, MOT17 contain 7 sequences for training with publicly avail-
and bottom-right coordinates. The direction cost between th@ble ground truths and 7 sequences for online testing. How-
i-th existing track and th¢-th candidate regression can be cal- €ver, MOT16 provides frame-wise box detections using DPM

culated with the direction vector with formed tubes as: (Felzenszwalb et al., 2009), while MOT17 gives more accurate
' ' annotations from three detectors: DPM (Felzenszwalb et al.,

. oft 1O gt (+1 2009), Faster R-CNN (Ren et al., 2016), and SDP (Yang et al.,

Car =1 ©) 2016). The newly released MOT20 contains 4 training and

Kt D O 10 @D

! h testing sequences, and all the sequences are collected from ex-
€M 1 O (1) _ 41 ot tremely crowded scenes with frequent occlusions. To make fair

where, =0 o “ando =0 Oi- comparisons, we conducted all experiments with public detec-

dentity consistency can be further enhanced by MINIMIZ3i5ns to avoid the discrepancy introduced by detectors.

ing the combination of shape cost and the direction cost as The widely used CLEAR MOT Metric (Bernardin and
(Cshapet  Car), the s used to balance two losses. '.:alseStiefelhagen, 2008) is adopted for evaluation. Speci cally, met-
assignments can be re"'S?d an_d re-ass_|gned by minimizing th}?cs such as Multi-Object Tracking Accuracy (MOTA), Multi-
combined cost, and the identity consistency is enhanced Sbbject Tracking Precision (MOTP), False Positives (FP), False

multaneously. This proposed ne-grained cost provides VeryNegatives (FN), ID switches (IDS), Most Tracked trajectories

dlsclntrjmzatlvz S|m|lla(;!ty Teasm:rements n dt'.St'n?u'Sj[Emg the MT), Most Lost trajectories (ML), Fragmentation (FM), and
occluded and occluding targets, compensating 1or the Wealiy, £y geqreg (IDF1) (Ristani et al., 2016) are assessed. The
ness of box-based evaluation and mitigating the in uence o

inter-obiect usi d intra-cl distract The tub wo most important metrics are MOTA which evaluates track-

INter-object occiusions and intra-class distractors. 'he tibe re’fhg coverage, and IDF1, which describes the performance of
assignment strategy is summarized in Alg.2. Note that the pro@entity consistency
posed tube re-assignment only considers potential associations '

between the target and its neighbor candidate regressions whoi_%_

overlap is larger than a pre-de ned thresholdEasy cases can .
be solved successfully with the original regression-based algo- We take the Trathqr (Bergmann etal., 2019) as the baseline,
nd our tracker is built on top of the detector Faster R-CNN

rithm, and a large re-assigning area will introduce unexpecte .
9 gning P %en et al., 2016) with ResNet-50 (He et al., 2016) and FPN

Implementation Details

false assignments and computational burden. The unmatchegd

detections after tube re-assignment are initialized as new tracks:" ©t al., 2017) as backbones, which are pre-trained on Mi-
9 crosoft COCO (Lin et al., 2014). Then separately ne-tuned

on MOT17Det (Milan et al., 2016) and MOT20Det (Dendor-
4. Experiments fer et al., 2020) datasets, the former is used for evaluation on
MOT16/MOT17, and the latter is for MOT20. We only train
In this section, we evaluate our work by extensive ablationghe network as a general detector, and the training strategy fol-
and comparisons. We rst present the evaluation datasets, mdbws the baseline for a fair comparison. Our tracker follows



the public protocol and does not initiate new tracks unless pro- ) ) )

ided by the benchmark. All experiments are conducted wit Table 1. Experiments on di erent lengths of tubes for regression. The re-
viaea by e : p ) l‘l‘.ults are obtained on MOT17 training datasets with public detections pro-
RTX 2080 Ti with PyTorch. As for the parameters, in tube vided by DPM, Faster R-CNN, and SDP. The arrows here indicate the op-
re-localization, we decide the regressions with= 0:9 and timal trend of metrics.

2 = 0:5. In the T-NMS, we set = 0:5in Egn. 2. We set

Length MOTA' IDF1" MT" ML # FP# FN# IDS#

= 5in tube re-assignment to balance two costs ard0:6 S
for Itering neighboring targets. Tframe 61.2 628 2905 266 2114 41047 375
2 frames 61.7 64.6 29.7 26.0 2187 40403 443
3 frames 61.7 63.4 29.7 25.8 2258 40218 473

_ At Faster R-CNN

4.3. Target Re-localization 1 frame 63.4 65.8 40.3 17.9 2382 38251 500
. . . . . 2 frames 64.1 67.1 40.8 17.3 2456 37366 519
To incorporate spatial-temporal and motion information and  3fames 641 666 408 172 2475 37372 522

reuse discriminative features from previous frames for robust i SDP
regression, we propose to leverage regression tubes as input. Injjame 2T 039 462 136 248 2T 52
this work, we utilize the shortest tube, i.e., a 2-frame tube across_3 frames 72.9 69.9 463 134 2653 27185 598

two framesl' * andl!, as inputs to the regression network for
the framel ™!, which has been proved to be ective in MOT
(Zhou et al., 2020; Peng et al., 2020a) and video object detec-
tion (Tang et al., 2019). Intuitively, more discriminative infor- Table 2. Experiments on the eectiveness of tubes as input. The results
mation could be used with Ionger tubes. However, this may alsére obtal_ned or; Fhe'MOT17 traln!ng datgset with detections provided by
. . . . aster R-CNN.Y indicates the variants with the tubes.
introduce unexpected noisy features, especially in large camera
motion and crowded scenes. Moreover, the computational cost Method ~ Mode MOTA IDF1" MT" ML# FP¢ FN# IDS#
increases with longer tubes as well.  Trackor Publc 635 662 405 170 23 ooe dod

We compare the tracking performances based on tubes with Tracktor  Privete 700  69.6 346 8.1 1354 31945 443
di erent lengths. The results are shown in Tab. 1. Itis ob- _Tracklo? Privete 753 720 443 48 5853 21214 702
vious that tubes with 2-frame lengths outperform the 1-frame DHN Public 622 657 359 145 303 41840 272

. . . . DHNY Public 63.9 68.7 43.0 18.0 3325 36749 416

ones in MOTA and IDF1. The single static bounding boxes are pun Privete  70.1 69.2 432 7.7 600 32562 400
used as input in the 1-frame scenario. The performance of the 2- DHN” ___ Privete 758 743 474 7.5 6859 19663 630
frame tube also demonstrates the superiority of using tubes over
static bounding boxes as input for the regression-based tracker,
which provides discriminative features and incorporates tempo-
ral information and motion cues. Thus, the 2-frame tube casfletection is the key to tracking. Although FP and IDS increased
achieve robustness in regression. More targets are retrievédith tubes, a much larger drop in FN and decrease in ML shows
with regression tubes, leading to decreased FN, ML, and inthat most retrieved targets are true positives and longer trajec-
creased MT for dierent detectors. Therefore, the in uence of tories are formed. Tab. 2 also veri es the generalization of tube
inter-object occlusions and intra-class distractors are alleviatede-localization in boosting the performance of the regression-
and the tracking performance is improved. However, with theédased tracking framework.
longer tubes, i.e., 3-frame, no noticeable improvement is ob- Since the baseline tracker works in an ID-agnostic fashion
served in MOTA, while the IDF1 drops and IDS increases in alldue to the unawareness of inter-object occlusions and intra-
three detectors. We reckon that 3-frame tubes incorporate mordass di erences, the noisy features can damage the regression
redundant and noisy features, increasing false positives and thgsality. As shown in Fig. 3 top row, under camera motion,
damaging identity convergence. The superior performance dhe position of the same target on the adjacent frameersdi
2-frame tubes over 3-frame ones demonstrates that longer tuléth low bounding box overlaps, thus introducing the nearby
is not optimal for regression-based tracker since they introduceoisy features and leading to inaccurate drift for the left tar-
unexpected false positives and ID switches. Moreover, a longeget. As a result, the identities are wrongly assigned, resulting
tube increases the computational burden inevitably. Therefordén continuous ID switches. However, with the proposed tube
we utilize 2-frame tubes in our method. re-localization, as shown in the bottom row of Fig. 3, the re-

To demonstrate the @ctiveness and generalization of tubesgression tubes are used as input, and discriminative features are
as input for regression with tube re-localization strategy, we apreused with historical positions considered, resulting in high-
ply the 2-frame regression tubes to Tracktor (Bergmann et alquality regressions. Therefore, both targets are tracked cor-
2019) and DHN (Xu et al., 2020) in both public and private rectly and continuously with consistent identities.
protocols. The private protocol works by employing ne-tuned We conduct ablation experiments to prove the&iveness
models as the detector. The variants with regression tubes aoé each component of our method. As shown in Tab. 3, com-
denoted as Tracktorand DHN. As shown in Tab. 2, sig- pared with Baseline, the BaseliEL makes a clear improve-
ni cant improvements are achieved in both public and privatement in MOTA and IDF1 with tube re-localization (TL), and
settings for Tracktor and DHN, especially in the private settingthe number of FN decreases. Besides, compared with Base-
where better detection results are provided, demonstrating tHme+TA, the MOTA of Baseling TA+TL increases by 0.9, the
superiority of regressing tubes for tracking. More signi cant FN decreases dramatically (by 1058), thus more targets are
improvements in private protocol also show that high-qualitytracked, and longer trajectories are formed with increased MT




Table 3. Ablation studies of di erent components of the proposed method. The results are obtained on the MOT17 training dataset with public detectors
provided by Faster R-CNN. “TA", “TN”, and “TL” stand for the proposed tube re-assignment, T-NMS, and tube re-localization, respectively.

Method MOTA' IDF1" MT" ML# FP# FN# IDS#

Baseline 61.9 64.7 35.3 21.4 323 42454 326
Baseline- TA 63.0 66.3 39.7 18.0 2343 38669 482
Baseling TN 63.4 66.2 40.3 17.9 2352 38241 488
Baseline-TL 63.5 66.2 40.5 17.9 2353 38198 484
Baseling TN+TA 63.9 66.5 40.5 17.4 2445 37604 547
Baseline TL+TA 63.9 66.8 40.8 17.4 2434 37611 536
Baseline TL+TN 64.1 66.7 40.7 17.4 2454 37368 539
Baseline- TL+TN+TA (ours) 64.1 67.1 40.8 17.3 2456 37366 519

(a) 278 (b) 292 (c) 295

Fig. 4. Visualization of the qualitative results with T-NMS (boxes of irrel-
evant targets are not shown for clarity). The results are from frames 278,
229, and 295 of sequence MOT17-02, and frames 728 and 729 of sequence
Fig. 3. Visualization of the qualitative results with tube re-localization. MOT17-12. Top row: The results without T-NMS. In (a), (b), and (c), the
The tracking results are obtained from frames 507, 509, 510, and 521 of correct regression at frame 292 (dashed green box) is eliminated by NMS.
MOT17-13, which are captured with large camera motion. Di erent box In (d) and (e), the target at frame 729 is suppressed by NMS. Bottom row:
colors represent di erent identities. Top row: The tracking results without The results with T-NMS, where the target survives with the correct iden-
tube re-localization. Bottom row: The results with tube re-localization by tity, and the partly occluded target is preserved.

regressing tubes to keep identity consistent with camera motion.

(a) 507 (b) 509 (¢) 510 (d) 512

(by 1.1). The identity convergence is enhanced, proved by thassignments can be largely avoided. Tab. 4 demonstrates the
0.5 increase of IDF1. Similar results can be found by com® ectiveness of the proposed T-loU and T-RS. Compared with
paring BaselineTN with Baseline-TL+TN. Likewise, com- Baseline, the increased MOTA and decreased FN in the second
pared with BaselineTN+TA, the Baseline TL+TN+TA still row demonstrate that T-loU can keep more true positive targets
improves in MOTA (by 0.2) and IDF1 (by 0.6). Also, lower active, which would be suppressed by the original loU mea-
FN represents that more targets are recovered and tracked, afi¢fement. Meanwhile, from the third row of Tab. 4, IDF1 is
better trajectories are formed, as shown by increased MT arféf@matically increased with T-RS, which veri es that T-RS can
decreased IDS. Therefore, we argue that the regression tubgise false assignments with re-scored con dence and enhance

are optimal input for the regression-based tracker. identity preservation. Further improvements can be achieved
with T-loU and T-RS work together, i.e., the proposed T-NMS.
4.4. Tube-based NMS Fig. 4 shows two typical failure cases with false assignments

The tube-based NMS (T-NMS) is intended for better processUSing the original con dence score and original loU measure-
ing of regressions at the tube level to improve the robustness #fent on the top row. The results of utilizing T-NMS are shown
the tracker. T-NMS leverages the historical positions of tariN the bottom row. From the bottom row, it is clear that by uti-
gets inside the tubes to deal with inter-object occlusions an#zing T-NMS, the false negatives and ID switches caused by
enhance identity consistency. The T-loU measures the Ove”a‘j,@ter-object occlusions and intra-class distractors are resolved,
at the tube level by considering the positional relations of tubesnd longer and consistent tracks are formed.

For original NMS, if two targets are intersected with substantial Tab. 3 further demonstrates theestiveness of the proposed
overlap, one of the targets would typically be suppressed with &-NMS. Compared with Baseline, Baseli#iEN achieves
lower score. In contrast, by considering the historical status, waigher MOTA, IDF1, and MT, as well as lower FN and ML with
lower the measured overlaps by considering the historical statube proposed T-NMS (TN in table). Besides, Basetiie+TN

to make partly occluded targets active to reduce false negativehieves higher MOTA (by 0.6) and IDF1 (by 0.5), lower FN
and ID switches. Besides, the con dences of candidate tubefpy 830) compared with Baselim@L. The proposed T-NMS
are vital for identity assignments. The con dence re-scoredvorks parallel with tube re-localization to enhance tracking ro-
by T-RS improves data association quality as low-quality rebustness by keeping more occluded targets alive with correct
gression is suppressed and less likely to survive. Thus falséentities. As a result, longer trajectories with high quality are
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Table 4. Ablations on di erent components of T-NMS. The results on MOT17-02 and MOT17-05. The former sequence is captured with occlusions and
target intersections. The latter sequence is recorded with low frame rates, camera motion, and frequent occlusion.

| MOT17-02 | MOT17-05
Method MOTA" IDF1" FP# FN# IDSH MOTA" IDF1" FP# FN# IDS#
Baseline 43.9 46.2 62 10288 68 54.9 60.4 228 2713 181
Baseling-T-loU 44.1 46.3 62 10260 66 54.9 60.6 229 2708 180
Baseline T-RS 44.0 48.1 60 10288 62 54.9 61.0 248 2707 166
Baseling T-NMS 44.2 48.5 61 10257 58 55.1 61.4 237 2702 154

Table 5. Evaluate the e ectiveness of bounding box re nement (BBR), cam-
era motion compensation (CMC), and Re-identi cation (RelD) for the pro-
posed method and baseline. Here we evaluate the public detections pro-
vided by Faster R-CNN on the MOT17 training set.

Method MOTA" IDF1" MT" ML# FP#¢ FN# IDS#
Tracktor wo BBR 57.0 63.1 33.7 222 5003 42972 301
Tracktor wo (CMC+RelD)  61.5 611 335 20.7 367 42903 1747
Tracktor wo CMC 615 628 335 20.7 367 42903 921
Tracktor wo RelD 619 641 353 214 323 42454 458
(a) 132 (b) 142 (©) 152 (d) 162 Tracktor 61.9 64.7 353 21.4 323 42454 326
Ours wo BBR 57.3 64.4 39.9 19.8 8211 39423 352
Ours wo (CMC+RelD) 62.0 62.3 379 17.8 2498 38318 1801
Fig. 5. Visualization of the qualitative results with tube re-assignment. The Ours wo CMC 62.6 64.0 375 17.8 2502 38321 1200
results are from frames 132, 142, 152, and 162 of sequence MOT17-01.  Ours wo RelD 63.7 64.7 412 174 2430 37607 708
Top row: The results without tube re-assignment make identity associa- ~ _9urs 641 671 408 17.3 2456 37366 519

tion with regression, resulting in ID switches when severe occlusions exist.
Bottom row: With tube re-assignment, the motion cues are considered.
Thus the identities are assigned correctly.

sistency and stability of the tracker. The bottom row of Fig. 5

I - shows the case where the mistakenly assigned identities are re-
formed with increased MT (by 0.2). Similar enhanced perfor-_. ; . . .
mance can be observed by comparing Basellé+TA with vised, and consistent trajectories are formed with the proposed

Baseling-TA. Likewise, compared with Baselin@L+TA, the tube re-assignment.
proposed T-NMS can still help to keep more true positives aIive4
and increase the MOTA (by 0.2), reduce the FN (by 245), im- . - . .
prove the IDF1 by 0.3, and IDS reduced at the same time, The bounding box re nement is ut|I.|zed in the regre§5|on—
Therefore, the T-NMS is optimal for processing tubes for ro_based trackers (Bergmann etal., 2019; Guo etal., 2021 §tadler
bust data association. and Beyerer, 20_21) a_nd other methods _(Zhou et gl., 2020; _Shual
et al., 2021), which aims to re ne the noisy detections provided
by the benchmark. We evaluate theeetiveness of bounding
box re nement for the baseline tracker and our method. As
The vulnerable box-based measurement cannot reasonalsitown in Tab. 5, our method achieves competitive results with-
re ect the relations between tubes, which often leads to IDout bounding box re nement, improving the baseline counter-
switches and fragmentations. A typical failure case of IDpart tracker in both MOTA and IDF1. Besides, camera mo-
switches is shown in the top row of Fig. 5. The proposed tubgion compensation (CMC) is crucial for compensating cam-
re-assignment is designed by considering association metrics eta motion. Compared with the baseline method, our method
the tube level within the candidate tube to alleviate the in uencecan better deal with large camera motion and enhance identity
of inter-object occlusions and intra-class distractors. consistency with the proposed tube-based regression and tube-
As shown in Tab. 3, the proposed tube re-assignmerievel process without CMC. Moreover, the RelD module is an
(TA) can boost the IDF1 when comparing Baseline with Base-essential component for re-identifying the reappeared targets,
line+TA. Furthermore, compared with BaseliiEN and Base- which is widely used in the previous state-of-the-art methods
line+TL, both Baseline TN+TA and BaselineTL+TA could  (Bergmann et al., 2019; Wojke et al., 2017; Zhang et al., 2020)
boost the IDF1 by 0.3 and 0.6, and increase MT by 0.2 an@nd proved to be esctive in dealing with long-term occlusions
0.3, respectively. Likewise, compared with the method Baseand re-appeared targets. Tab. 5 also proves that our method
line+TL+TN, which already achieves good tracking perfor- achieves superior results without the RelD module and sup-
mance in MOTA, the IDF1 of BaselinrdL+TN+TA further  presses the performance of the baseline with the RelD module.
increases by 0.4 with the proposed tube re-assignment, and theThen we also analyze the robustness of our proposed tracker
IDS decreases as well. The superior performance and improv@ crowded scenes that is error-prone by visualizing the com-
ment demonstrate that the proposed tube re-assignment can parison with the baseline. We conduct the experiments and vi-
vise false assignments to re-assign identities correctly, forrsualize examples on the MOT20 test datasets with public de-
longer trajectories of high quality, and enhance the identity contections for a fair comparison. The baseline method Tracktor is

.6. Robustness analysis

4.5. Target Re-assignment



Fig. 7. Qualitative comparison results with the baseline and our method.
The tracking results are obtained from frames 532, 552, 559, and 582 of test
sequence MOT20-08, which is captured with frequent occlusions. Derent
box colors represent di erent identities. Top row: The tracking results of
Tracktor. Bottom row: The results of our method.

Fig. 6. Qualitative comparison results with the baseline and our method.
The tracking results are obtained from frames 1745, 1749, 1760, 1881, and
1894 of test sequence MOT20-04, recorded in a very crowded scene. Bi-
ent box colors represent di erent identities. Top row: The tracking results
of Tracktor. Bottom row: The results of our method.

based on the detector Faster R-CNN with ResNet (Ren et alMOTA and IDF1 in all three benchmark datasets. The state-
2016) and FPN (Lin et al., 2017) as the backbone network. Thef-the-art performance on MOT20 demonstrates the superiority
Faster R-CNN is aware of the inter-class elience, such as the 0f using regression tubes in dealing with extremely crowded
di erence between bicycles and pedestrians, but not the intracenes. Compared with methods that are developed from the
class di erence, such as pedestrians with similar appearancéeacking-by-regression paradigm, including GSM (Liu et al.,
from nearby, thus is vulnerable to neighboring distractors of th&020), DHN (Xu et al., 2020), TADAM (Guo et al., 2021),
same class. Besides, it evaluates relations between targets withd TMOH (Stadler and Beyerer, 2021), our method ranks
original NMS at the bounding box level, and the con dence ofsecond-best among them that only behind TMOH in MOT16
localization obtained from regression reveals the quality of deand MOT17, and achieves the best in MOT20. An occlusion
tection instead of tracking. Therefore the baseline tracker cahandling strategy that models the relation between occluding
easily lead to false negatives, false positives, and ID switche&nd occluded tracks are proposed in TMOH. The inactive tracks
Therefore, we utilize the tubes for regression, and process thge regressed along with the active ones in TMOH. However,
targets on the tube level with T-NMS and tube-related metrics.our tracker surpasses TMOH in MOT20, showing the advan-
We visualize extremely crowded cases from MOT20 test setage of employing tubes for regression in extremely crowded
quences obtained from the Tracktor and our method in Fig. &cenes. Besides, as shownin Tab. 7, our method runs faster than
and Fig. 7. In the top row of Fig. 6, the target with the white TMOH because of fewer computation burdens. Our tracker ex-
hat is lost in frame 1749, retrieved in frame 1760, and lost agai§els DHN, GSM, and TADAM in MOTA and IDF1, although
in frame 1881, leading to false negatives. In contrast, this tardll of them utilize extra association-related networks. Since our
get can be tracked continuously despite being largely occlude@nethod can retrieve missed targets and keep partly occluded
in our method. Similar results can be found in Fig. 7. Com-targets active, it tends to have higher FP and IDS. Besides, our
pared with the results obtained with Tracktor in the top row, ourmethod achieves the best performance in terms of FN and ML
method (bottom row) can signi cantly reduce the number of FNamong them, showing that more true positives are recovered
and ID switches and enhance identity preservation. Therefor@nd tracked, and longer trajectories are formed.
by leveraging the regression tubes, our tracker can mitigate the Compared with other state-of-the-art methods, ArTIST
in uence of inter-object occlusions and intra-class distractors(Saleh et al., 2021) proposes a stochastic autoregressive mo
reduce the false negatives and ID switches, recover the lost taion model that learns the distribution of trajectories, which can

gets and revise false assignments. inpaints a tracklet in the presence of occlusion and noisy detec-
tion. However, our method still excels in IDF1 on MOT17 and
4.7. Benchmark Comparison MOT20, which shows the esctiveness of our method in en-

hancing identity consistency. SiamMOT (Shuai et al., 2021)
We extensively evaluate our method by comparing it withis the current state-of-the-art tracker in MOT17, which inte-
the published state-of-the-art (SOTA) methods on multiplegrates the SOT tracker (Li et al., 2018) into Faster R-CNN to
benchmark datasets on MOTChallenge Benchmark, includinform a uni ed network. The SiamMOT assigns each target a
MOT16, MOT17, and MOT20. We adopt the best-performingSOT tracker and actively tracks the target once the detector ob-
settings on MOT17 training sets and test on MOT benchmarkserves. SiamMOT tracks in an ID-aware fashion, thus signi -
with public detections for fair comparisons. We consider onlycantly overcoming the weakness of the detector. In contrast, our
public methods which are comparable to our tracker. method tracks in an ID-agnostic way with limited information
The results are detailed in Tab. 6. Our method achieveprovided by the detectors. However, the state-of-the-art per-
very competitive results with public detections. In particu-formance on MOT20 demonstrates that our method is capable
lar, our method outperforms the baseline Tracktor in terms obf dealing with highly crowded scenes with frequent occlusions
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Table 6. Comparisons with state-of-the-art methods on MOT16, MOT17, and MOT20 datasets with public detections. TheX™ represents the online
method, and the "%"” denotes the o ine method. The best result of each metric is highlighted in bold.

MOT16
Method Mode MOTA IDF1" MT" ML# FPH# FN# IDS#
STRN (Xu et al., 2019) X 48.5 53.9 17.0 34.9 9038 84178 747
Tracktorr+ (Bergmann et al., 2019) X 54.4 52.5 19.0 36.9 3280 79149 682
DHN (Xu et al., 2020) X 54.8 53.4 19.1 37.0 2955 78765 645
Tracktor+v2 (Bergmann et al., 2019) X 56.2 54.9 20.7 35.8 2394 76844 617
GSM (Liu et al., 2020) X 57.0 58.2 22.0 34.5 4332 73573 475
MPN (Bras and Leal-Taik, 2020) % 58.6 61.7 27.3 34.0 4949 70252 354
TADAM (Guo et al., 2021) X 59.1 59.5 - - 2540 71542 529
TMOH (Stadler and Beyerer, 2021) X 63.2 62.5 27.0 31.0 3122 63376 635
Ours X 62.2 60.9 27.0 28.1 5930 62049 854

MOT17
FAMNet (Chu and Ling, 2019) X 52.0 48.7 19.1 33.4 14138 253613 3072
DHN (Xu et al., 2020) X 53.7 53.8 19.4 36.6 11731 247447 4792
TPM (Peng et al., 2020b) % 54.2 52.6 22.8 37.5 13739 242730 1824
Tracktorr+v2 (Bergmann et al., 2019) X 56.3 55.1 211 35.3 8866 235449 1987
GSM (Liu et al., 2020) X 56.4 57.8 222 345 14379 230174 1485
MPN (Bra® and Leal-Taik, 2020) % 58.8 61.7 28.8 335 17413 213594 1185
TADAM (Guo et al., 2021) X 59.7 58.7 - - 9676 216029 1930
CenterTrack (Zhou et al., 2020) X 61.5 59.6 26.4 31.9 14076 200672 2583
TMOH (Stadler and Beyerer, 2021) X 62.1 62.8 26.9 314 10951 201195 1897
ArTIST (Saleh et al., 2021) X 62.3 59.7 29.1 34.0 19611 191207 2062
SimaMOT (Shuai et al., 2021) X 65.9 63.3 34.6 23.9 18098 170955 3040
Ours X 61.8 60.4 29.1 27.6 21903 190938 2953

MOT20
SORT (Bewley et al., 2016) X 42.7 45.1 16.7 26.2 27521 264696 4470
Tracktorr+v2 (Bergmann et al., 2019) X 52.6 52.7 29.4 26.7 6930 236680 1648
ArTIST (Saleh et al., 2021) X 53.6 51.0 31.6 28.1 7765 230567 1531
TADAM (Guo et al., 2021) X 56.6 51.6 - - 39407 182520 2690
MPN (Bra and Leal-Taik, 2020) % 57.6 59.1 38.2 22.5 16953 201384 1210
TMOH (Stadler and Beyerer, 2021) X 60.1 61.2 46.7 17.8 38043 165899 2342
Ours X 61.1 58.9 48.7 17.3 33108 166170 2192

. . . rate, where the positions of the same target in the consecutive
Table 7. Experiments on the running speed of dierent methods on the f h ivel I | d isv f
MOT16, MOT17, and MOT20 test sets. The larger the running speed (in- rames have comparatively small overlaps, and noisy features

dicated by Hz), the faster the tracker is. from nearby are introduced. The bottom row shows that the
reused features are contaminated under continuous occlusion,
Dataset TMOH TPM Tracktor GSM ArTIST DHN Ours even using regression tubes as input. As a result, the identities
MOT16 0.7 0.8 1.6 7.6 4.5 1.6 1.2 ft t istak [ . d h in Fi 8(f d
MOTIT 0708 = 57 7E I of targets are mistakenly assigned, as shown in Fig. (f) an
MOT20 0.6 - 12 - 1.0 - 08 Fig. 8(h). Therefore, the intense illumination and low frame

rate are two challenges for our method.
We also compare the running speed ofatient methods in
di erent MOT benchmarks. As shown in Tab. 7, our method
and small targets. The results also prove the generalization abiluns slower than baseline since we employ the tubes instead
ity of our method since the two test scenes of MOT20 never apef bounding boxes for regression, more bounding boxes are
pear in the training set. Thus, we argue that the performance @mployed, and extra spatial-temporal information is included
the regression-based tracker can be considerably improved iyr tube processing and similarity calculation. Moreover, our

regressing and processing tubes. tracker runs faster than TMOH in all three datasets. Our fu-
ture work is to improve the running speed andogency of our
4.8. Discussion method to make it more suitable for real-time utilization.

Our method exploits the regression tubes as base inputs for
the regression-based tracker. It reuses the discriminative fe&: Conclusion
tures inside the tubes to eliminate the in uence of inter-object
occlusions and intra-class distractors and recover missed tar- In this work, we proposed to leverage the regression tube
gets. However, there is still plenty of room for improvement.as input to address the natural limitations of the tracking-by-
Fig. 8 shows some typical failure cases of our tracker. Theegression paradigm for the multi-object tracking. Our method
top gures are selected from the test sequence MOT17-03, anckn e ectively reuse the discriminative features and spatial-
the bottom ones are from MOT17-06. For the top row, thetemporal information provided by tubes in dealing with inter-
lamp strongly in uences representative features of targets passbject occlusions and intra-class distractors in crowded scenes.
ing by. Therefore, ID switches are caused in Fig. 8(b) and FigWe introduced the tube re-localization strategy, which regressed
8(d), which are captured from frames 357 and 686. Similarlythe tubes of existing tracks to handle inaccurate regressions and
in the bottom row, the sequences are captured at a low franm@cover missed targets. We then presented the T-NMS to mea-
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