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MMPosE: Movie-induced Multi-label Positive
Emotion Classification through EEG Signals

Xiaobing Du, Xiaoming Deng, Hangyu Qin, Yezhi Shu, Fang Liu, Guozhen Zhao, Yu-Kun Lai, Cuixia Ma,

Yong-Jin Liu, Senior Member, IEEE, and Hongan Wang, Senior Member, IEEE

Abstract—Emotional information plays an important role in various multimedia applications. Movies, as a widely available form of

multimedia content, can induce multiple positive emotions and stimulate people’s pursuit of a better life. Different from negative

emotions, positive emotions are highly correlated and difficult to distinguish in the emotional space. Since different positive emotions

are often induced simultaneously by movies, traditional single-target or multi-class methods are not suitable for the classification of

movie-induced positive emotions. In this paper, we propose TransEEG, a model for multi-label positive emotion classification from a

viewer’s brain activities when watching emotional movies. The key features of TransEEG include (1) explicitly modeling the spatial

correlation and temporal dependencies of multi-channel EEG signals using the Transformer structure based model, which effectively

addresses long-distance dependencies, (2) exploiting the label-label correlations to guide the discriminative EEG representation

learning, for that we design an Inter-Emotion Mask for guiding the Multi-Head Attention to learn the inter-emotion correlations, and (3)

constructing an attention score vector from the representation-label correlation matrix to refine emotion-relevant EEG features. To

evaluate the ability of our model for multi-label positive emotion classification, we demonstrate our model on a state-of-the-art positive

emotion database CPED. Extensive experimental results show that our proposed method achieves superior performance over the

competitive approaches.

Index Terms—Multi-channel EEG; positive emotions; affective computing; multi-label classification; Transformer encoder

✦

1 INTRODUCTION

MOVIES enable people to experience emotions through
hearing and vision, thereby generating sensory plea-

sure. “It is only in the mysterious equations of love that any
logic or reasons can be found.” When John Nash confided
in his wife at the Nobel Prize ceremony, we are all deeply
touched by the pure love, steadfast companionship and
respect for science in the story told by the movie A Beautiful
Mind. As this example shows, movies are created with the
intended purpose to evoke an emotional response of the
viewer. As stated in [1], “Movies dazzle us, entertain us,
educate us, and delight us”.
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Movies may induce emotion through cognitive causality,
for instance, cognitively appreciating injustice tends to give
rise to anger, while loss tends to lead to sadness [2]. Accord-
ing to the concept of mood1 management proposed by [3],
almost all movie selections are designed for the outcome of
pleasure or increased positive effects. Even horror movies
can be chosen for the same purpose, like enjoying the
pleasure of releasing or resolving from the tension. Movies
can bring short-term effects to the viewer, and promote
people’s long-term changes in behaviors and characteris-
tics [4]. According to the B. L. Fredrickson’s broaden-and-
build theory of positive emotion [5], one’s positive emotion
can be multiplied into an upward spiral, and human beings
are able to transform current positive emotions into posi-
tive resources for future needs during hard times. So the
positive emotions have certain positive effects on human
life, which may not only help identify our role models and
mentors, but also help raise the character strengths. The
positive emotions induced by movie can stimulate people’s
pursuit of a better life, including but not limited to building
their own characters, emphasizing self-acceptance, and im-
proving current life satisfaction [6]. Therefore, it has great
relevance to explore the positive emotions and emotional
cognition perceived by the viewer while watching movies.

In our study, we pay attention to positive emotions due
to their unique cognitive functions. Different from negative
emotions, positive emotions are highly correlated and in-
distinguishable in the emotional space [7], [8]. Moreover,
plots in the movie have a temporal continuity, so that the

1. “Emotion” and “mood” are often used interchangeably. The
“mood” here is the same as “emotion”.
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Fig. 1. Given EEG signals captured during movie watching as input, our TransEEG model predicts the evoked multiple positive emotions for each
movie clip. Here, we use a clip from the movie A Beautiful Mind to show the procedure of analyzing movie-induced positive emotions. Five positive
emotions were evoked by this movie clip, and their intensities changed dynamically over time as shown by the plotted curves.

multiple co-occurring emotions with potential correlations
are always induced in viewers. Therefore, the traditional
single-label emotion classification model (i.e., assigning one
label to a movie clip) is oversimplified and not suitable
for fine-grained discrete positive emotion analysis. In this
paper, we recognize the movie-induced positive emotions
by formulating the problem as a multi-label classification
task. Furthermore, multi-label classification, which aims to
identify coexisting subsets of emotions present in movie
clips (e.g., entertainment, respect and pride), has gained
widespread attention due to its wide range of potential
applications, such as personalized movie recommendation,
movie retrieval, and human robot interaction, etc. In this
paper, we propose a novel TransEEG model which is built
based on the Transformer structure to accomplish multi-
label positive emotion classification.

Traditionally, positive emotions are associated with one
expression, i.e. the Duchenne smile [9], which is charac-
terized by the increased activity in zygomatic major and
orbicularis oculi muscles. However, recent studies have
shown that positive emotions are not necessarily associated
with smiles. And Campos et al. [7] examined the expressive
display patterns of eight positive emotions and found that
amusement, joy, contentment, love, and pride resulted in
smiles that varied in intensity, whereas awe and interest
did not result in smiles. Therefore, it is challenging for
positive emotion recognition based on multimedia con-
tent [10]. Although existing facial expression recognition
methods [11], [12] in the field of computer vision can achieve
outstanding performance, significant difficulties still exist
for recognizing fine-grained positive emotions through the
facial expressions of viewers or characters in a movie.

In recent years, many studies have been attempted to ad-
dress whether discrete positive emotions can be differenti-

ated via related emotional responses [13]. Moreover, several
works have shown that positive emotions can be associated
with divergent patterns of physiological activities [14], and
electroencephalography (EEG) signals have been shown to
be effective for recognizing discrete positive emotions [8],
[15], [16], [17], [18]. Therefore, we recognize positive emo-
tions induced by movie via viewer’s brain activities (i.e.,
EEG signals) in this paper, which is validated on the state-of-
the-art Chinese Positive Emotion Database (CPED) [18]. This
database consists of effective positive emotion-inducing ma-
terials (i.e., movie clips) and biological signals (i.e., EEG sig-
nals) collected by eliciting emotions during watching movie
clips. Each EEG trial in the database is annotated with a
binary label vector of length 9, corresponding to the state of
9 positive emotions (i.e., Friendship, Romance, Tenderness,
Respect, Pride, Awe, Gratitude, Amusement, and Craving).
Specifically, 0/1 in the binary label vector means that the
emotion is absent/present in the movie clip. Moreover, these
9 discrete positive emotions have been proved to be the most
commonly experienced feelings in daily life, and could be
identified effectively via EEG signals [8], [16], [17], [18].

Recognizing positive emotions from the perspective of
predicting the viewer’s physiological response to a movie
can be a testbed for movie emotion analysis. In practice,
many research areas, including human-computer interac-
tion, automated labeling systems and personalized movie
recommendation systems, would benefit a lot if modern
artificial intelligence systems had the ability to effectively
understand the positive emotions conveyed by movie con-
tents. Recent studies on EEG-based emotion recognition
have been developed, and the deep neural networks are
superior in extracting EEG emotion-relevant features. More-
over, the representative neural networks include Convolu-
tional Neural Networks (CNN) [19], Graph Convolutional
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Neural Network (GCN) [20], Long Short-Term Memory
(LSTM) [21], and attention mechanism [22] have demon-
strated that learning the spatial correlation and temporal
dependencies of channels is essential for extracting dis-
criminative EEG features. Especially, Transformer [23] is
a self-attention based architecture with the ability to es-
tablish long-distance dependencies, which emerged as the
preferred model in sequential data processing. In this paper,
to effectively learn the long-distance sequential correlation
of EEG channels and temporal dependencies, we design
our model based on the multi-layer Transformer structure.
The main contributions of our work can be summarized as
follows:

• We propose a Transformer-based model TransEEG
to address the multi-label positive emotion classi-
fication task. The spatial-temporal encoding mod-
ule is designed based on the dual-stream parallel
Transformer encoders to extract the spatial-temporal
EEG features. Specifically, the spatial encoder learns
the inter-channel correlations and the temporal en-
coder captures the temporal dependencies of a time
sequence of EEG channels. Afterwards, the spatial-
temporal EEG features can be obtained by integrat-
ing the outputs of the two Transformer encoders.

• Exploiting the label-label correlations to assist in
extracting discriminative emotion-relevant features.
An Inter-Emotion Mask is designed based on the co-
occurrence of emotions in the training set to guide
label-label correlation modeling in Transformer. Af-
ter that, the representation-label correlation matrix
is generated and utilized to generate the attention
scores focusing on EEG features. And the attention
mechanism attempts to refine the emotion-relevant
EEG representations.

• The TransEEG learns the discriminative EEG repre-
sentation by capturing spatial-temporal information
and leveraging the label-label correlations. Extensive
experiments indicate that our method achieves com-
petitive performance against other classical multi-
label classification approaches and the state-of-the-
art deep neural networks in the field of EEG based
emotion recognition.

TransEEG is proposed to predict the multi-label posi-
tive emotions induced by movies from multi-channel EEG
signals. Our work shows that it is a successful attempt to
effectively recognize positive emotions induced by movies
through viewers’ physiological responses. An example is
illustrated in Fig. 1.

2 RELATED WORK

Our work is related to several research areas, including
emotion models and discrete positive emotions, multi-label
emotion classification, EEG-based emotion recognition and
long sequence modeling.

2.1 Emotion Models and Discrete Positive Emotions

Emotion models have been widely studied in psychology,
and there are generally two basic models [8], [17], [22],
[24]: dimensional models and discrete models. Dimensional

models describe emotion states in a 2D or 3D continuous
space, such as the classic valence-arousal (VA) model or the
valence-arousal-dominance (VAD) model. Discrete models
on the other hand describe emotion states using a limited
number of basic emotions. If dimensional models are used
to characterize positive emotions, it is difficult to distinguish
them from each other due to high correlations [25], i.e., their
coordinates in continuous space are very close and clustered
in a small region. Therefore, discrete models are preferred to
describe positive emotions.

Many studies have been proposed to use discrete
models to categorize different positive emotions, mostly
based on subjective reports [26], [27]. For example, Wat-
son et al. [28] introduced ten positive emotions using the
well-established Positive Affect and Negative Affect Scale
(PANAS). Fredrickson [26] presented another set of ten pos-
itive emotions, which were suggested to be representative
of the emotions in daily life. Zhang et al. [18] employed
movie clips to elicit sixteen discrete positive emotions and
these emotions were further categorized into four main
emotion categories (Empathy, Fun, Creativity and Esteem)
in CPED [18]. In this paper, we adopt the state-of-the-art
CPED database, since it is the first standardized video-
based positive emotion database. After emotion clustering,
we select nine most representative positive emotion cate-
gories. Specifically, Tenderness, Gratitude and Romance are
selected from Empathy, Amusement and Friendship from
Fun, Awe and Craving from Creativity, and Respect and
Pride from Esteem.

2.2 Multi-label Emotion Classification

The multi-label classification (e.g., the positive emotion
subset can be predicted to occur in one movie clip) is
desired in many areas of research [29], especially in the field
of affective computing. For example, in the area of video
emotion recognition, Zhang et al. [30] proposed a multi-
modal seq2set (MMS2S) approach to address the challenge
in multi-label emotion detection in video clips. Kostiuk et
al. [31] extended the CAL500 database by including music
videos, and tried to address the classification problem of
multi-label emotions in music videos. For text sentiment
analysis, Fei et al. [32] presented a latent emotion memory
(LEM) network to learn the latent emotion distribution and
recognize multi-label emotions in a sentence. Aiming at
facial expression recognition, Li and Deng [33] proposed
a new deep manifold learning network to learn discrimi-
native features of multi-label expressions. Moreover, Zhang
et al. [34] focused on multi-modal emotion recognition in a
multi-label scenario.

In recent years, works on positive emotion analysis have
received much attention, since the related studies have
shown that positive emotions have significant effects on
human life [6], [26] and can help people cope with negative
events [35]. Furthermore, recognizing positive emotions via
viewer’s EEG signals has also been investigated [8], [16],
[17], [18]. For instance, Hu et al. [16] used EEG spectral
powers to classify the discrete positive emotions. More-
over, they further reported recognizable discrete positive
emotions using the functional Near-Infrared Spectroscopy
(fNIRS) signal [8]. Zhao et al. [17] adopted linear and non-
linear models to recognize four positive emotion categories
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using EEG power features. However, the above studies
are based on single-label classification methods, which per-
forms coarse-grained positive emotion classification with
fewer positive emotion categories. Furthermore, to the best
of our knowledge, it is barely investigated to design a deep
learning model based on a multi-label classification task to
analyze fine-grained positive emotions by EEG signals.

Moreover, compared to movie emotion recognition
based on multimedia content [36], [37], the advancement
of work on movie emotion analysis via viewer’s physio-
logical signals [38], [39], [40], [41] provides a foundation
for studies on movie induced positive emotion recognition.
However, few relevant studies on movie-induced positive
emotions have been conducted in the multimedia emotion
analysis community, as the accurate classification of discrete
positive emotions is a significant challenge for single-label
classification methods. Therefore, in this paper, we employ
a multi-label classification method to address the challenge
of movie-induced positive emotions analysis.

2.3 EEG-based Emotion Recognition

EEG can faithfully reflect different emotions by directly
capturing brain activities via the electrodes attached to the
scalp. Moreover, processing EEG signals with high tempo-
ral resolutions is a reliable way to identify real emotions.
Many methods have been proposed to deal with EEG-based
emotion recognition [21], [22], [24], in which deep learning
models achieved the superior results. Several representative
deep models are as follows. Zheng and Lu [42] have at-
tempted to apply the Deep Belief Network (DBN) to extract
high-level emotional features, and the results demonstrate
that deep models can extract highly effective EEG features.
Ma et al. [43] proposed a multimodal residual LSTM (MM-
ResLSTM) network to capture the temporal information for
enhancing multimodal emotion recognition task with EEG
and other physiological signals. Du et al. [21] designed an
efficient deep neural network to enhance the emotion recog-
nition performance by learning the correlation between EEG
channels. Jia et al. [22] proposed a novel spatial-spectral-
temporal based attention 3D dense network to use different
EEG features and the discriminative local patterns among
features for emotion recognition. Learning the spatial corre-
lation between channels and extracting EEG spatial features
has received significant attention at present. Specifically,
Song et al. [20] proposed a novel dynamic graph convo-
lutional neural network (DGCNN) to learn the functional
relation between each pair of two channels, and Zhang et
al. [44] designed a sparse DGCNN model to improve the
DGCNN by applying a sparseness constraint on the weight
graph.

Although above works have demonstrated the impor-
tance to learn the relationship between EEG channels and
temporal dependencies for emotion recognition, few works
can encode EEG signals from spatial and temporal dimen-
sions simultaneously. In this paper, we strengthen the EEG
emotion recognition method by simultaneously encoding
EEG signals in spatial-temporal space, and construct our
model based on the Transformer encoder structure that has
a prominent ability to model long sequence data.

2.4 Long Sequence Modeling

Transformer [23] is a self-attention based network struc-
ture, which has the outstanding ability to address long-
distance dependencies in natural language processing and
computer vision, such as the BERT [45] and ViT [46]. Due
to the superiority of the multi-head attention mechanism
for long-distance dependency learning, Transformer-based
approaches have also been proposed for processing EEG
signals recently. Wang et al. [47] proposed a Transformer-
based model to hierarchically extract the discriminative
spatial features from the electrode level to the brain re-
gion level. Guo et al. [48] combined depthwise convolution
and Transformer encoders to explore the dependencies of
emotion recognition on each EEG channel. Sun et al. [49]
constructed multiple Transformer-based models for motor
imaginary EEG classification by learning the correlation of
time series signals.

The studies mentioned above have shown that Trans-
former is a powerful model to extract discriminative EEG
features. Nevertheless, they ignored combining spatial and
temporal encoding of EEG data to learn more discriminative
features. In this paper, to better model the long-distance
sequential correlation of EEG channels and temporal depen-
dencies, we construct our model based on the multi-layer
Transformer structure.

3 THE PROPOSED TRANSEEG MODEL

3.1 Overview

Our deep neural network architecture for movie-induced
multi-label positive emotion classification, called TransEEG,
mainly consists of three key modules (see Fig. 2): Spatial-
temporal encoding module, Label correlation learning module,
and Correlation-guided representation learning module. The
spatial-temporal encoding module and the label correla-
tion learning module are both built upon the multi-layer
Transformer encoder structure. The spatial encoder utilizes
the effective multi-head attention in Transformer to learn
the inter-channel correlations of the input EEG channel
sequence. We also adopt the temporal encoder to learn the
key temporal features of time-sequential EEG data (Sec-
tion 3.3.2). Moreover, we design an Inter-Emotion Mask
based on the emotion label co-occurrence in the training
set to learn label-label correlation (Section 3.3.3). Then,
we use the correlation guided EEG representation learning
module to extract emotion-relevant features by leveraging
the spatial-temporal EEG features as well as the learned
representation-label correlations (Section 3.3.4).

3.1.1 The Motivation of Inter-Emotion Mask

Related studies have shown that there are certain corre-
lations existing among positive emotions [16], [17], [18].
Correspondingly, positive emotions in the CPED database
are also correlated with each other. An example is shown
in Fig. 3, in which the Pearson correlations were calculated
in the 9 positive emotion categories corresponding to the
movie clip of An interview with Qian Xuesen. Therefore, it
is crucial to investigate how to leverage the label-label cor-
relations for the multi-label positive emotion classification
procedure. In this paper, we capture label-label correlations
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Fig. 2. The framework of our proposed TransEEG model, which is based on the Transformer encoder structure. Our model consists of three main
modules: the Spatial-temporal encoding module, the Label correlation learning module, and the Correlation guided representation learning module.
The spatial-temporal encoding module extracts the spatial features OXC

and the temporal features OXS
, and the spatial-temporal EEG features R

can be obtained by concatenating spatial and temporal features. The label correlation learning module learns the label correlation representation L

under the guidance of the Inter-Emotion Mask MER. To focus on emotion-related features with the attention mechanism, the representation-label
correlation matrix G was first generated by simply multiplying R by L. Then the attention score vector α is calculated from G. Subsequently, the

correlation guided representation R
′

is generated from the dot product of R and α. Finally, R
′

is used to predict positive emotion labels.

through multi-head attention in the Transformer to guide
the EEG representation learning.

Furthermore, masks in the Transformer are applied to
mask unattended elements in self-attention [45], [50], [51],
which are flexible and convenient to be designed. In this
paper, we design an Inter-Emotion Mask based on the
co-occurrence of emotions in the training dataset to en-
hance label-label correlation learning in multi-head atten-
tion. Since the attention mechanism can assist in focusing
more on the relevant features, an attention score vector is
also learned from the representation-label correlation matrix
to refine the emotion-relevant EEG features. Specifically,
for the aims of obtaining attention score vector, we in-
tegrate spatial-temporal representation and label correla-
tions to construct the representation-label correlation matrix.
Eventually, an attention score vector is achieved, and the
correlation guided representation is successively calculated
for positive emotion classification.

3.1.2 Problem Formulation

Given a training set X = {(Xi, Yi)}ni of multi-label positive
emotion classification data, where Xi ∈ X is the i-th in-
stance consisting of the power spectral density (PSD) of the
sequential EEG signals [18] and Yi ⊆ Y is its corresponding

labels, and Y represents the label space. In this paper, the
multi-label positive emotion classification task aims to learn
a predictive function f to predict a subset of the possible
labels for an instance. Specifically, Xi ∈ R

T×N×D where
T is the length of the time series of an instance, and we
set T = 30 in our experiments. N is the number of EEG
channels, which is 30 according to the used EEG recording
device. D = 5 is the dimension of the extracted PSD features
on a single channel through a sliding window.

Specifically, a sequence of EEG channels of length N
is composed of the PSD features of all channels XC

i =
{ci,1, ci,2, ..., ci,n, . . . , ci,N}, which is the input for the spa-
tial encoding module, and ci,N ∈ R

dc represents the
PSD features of the N -th channel in i-th instance, and
dc = 150 is the feature dimension. Moreover, an input
EEG time sequence of length T can be represented as
XS

i = {si,1, si,2, ..., si,t, . . . , si,T }, where si,T ∈ R
ds de-

notes the PSD features of the T -th time step in i-th in-
stance, and ds = 150 is the feature size. Denote Yi =
{y1i , y2i , ..., yki , ..., yli} to be the label space with l labels (l
is the number of positive emotion categories, and set to
9 in this paper), where yki ∈ {0, 1} means that the k-th
emotion ek is irrelevant (i.e. yki = 0) or relevant (i.e. yki = 1)
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Fig. 3. An illustration of the correlations among 9 positive emotions that
occurred in the movie clip from An interview with Qian Xuesen in the
CPED database. Correlations are visualized in color: blue represents
higher correlation, and red represents lower correlation or negative
correlation.

to the instance Xi. Compared to single-label classification
where only one label is associated with Xi, the multi-label
positive emotion prediction function can be formulated as
f : X → 2Y , which assigns a subset of possible class labels
Y to an instance Xi, where 1 ⩽ |Y | ⩽ l. The Inter-Emotion
Mask MER can be represented as MER ∈ R

l×l, and a
sequence of emotion label embedding of length l can be
represented as E = {e1, e2, ..., el} ∈ R

l×dl where dl = 300
is the dimension of the emotion word embedding encoded
by GloVe [52].

After we obtain the EEG spatial-temporal features R and
the label correlation representation L, the representation-
label correlation matrix G can be calculated by multiplying
R by L. Afterwards, the attention score vector α calculated
from G is used to multiply by the spatial-temporal features

R to gain the correlation guided representation R
′

. Thereby
multi-label positive emotion prediction function can be up-

dated to f : R
′ → 2Y , which aims to enforce the model

to accurately predict the relevant labels for each training
instance by minimizing the loss function.

3.2 Time-Frequency EEG Features

EEG PSD is one of the most widely used EEG features in
EEG-based emotion recognition [18], [42], [53]. In CPED
database, the PSD features extracted from multi-channel
EEG signals are provided for our spatial-temporal encod-
ing module as input handcraft EEG features. Specifically,
the short-time Fourier transform (STFT) is used to extract
classical PSD features using a 2-seconds sliding Hamming
window with a 50% overlap across the five sub-frequency
bands, i.e., δ band (1-3Hz), θ band (4-7Hz), α band (8-13Hz),
β band (14-30Hz), and γ band (31-50Hz). There are a total
of 30 channels2 of the recorded EEG signals, while the PSD
features are captured every 1 time step on 5 frequency bands

2. The 30 electrodes are selected from a 32-electrode Neuroscan Quik-
Cap (https://compumedicsneuroscan.com/products/caps/quik-cap/)
according to the international 10–20 system. The remaining two elec-
trodes are used as reference electrodes.

and the dimension of the feature input to the temporal
encoder is also 150 (150 = D ×N ). Moreover, the length of
the time sequence in an instance is 30, thus the size of PSD
feature input to the spatial encoder is 150 (150 = D × T ).

In our work, we organize PSD features according to
channel sequence and time sequence simultaneously to fa-
cilitate the extraction of spatial-temporal EEG features via
the spatial-temporal encoding module.

3.3 Model Architecture

Since each layer of the multi-layer Transformer encoder
used in this work has the same network structure, we briefly
describe the general procedure of data processing within
the first layer of a Transformer encoder. In this paper, we
utilize the Transformer encoder to capture the sequential
dependencies from a sequence of EEG data Xi.

3.3.1 Preliminary Knowledge

To enable the Transformer encoder to exploit the sequen-
tial relationship of the EEG data, we append the absolute
position information of the sequential data to Xi. And
consequently the input (i.e. Xp

i ) of the Transformer encoder
is obtained, which can be formulated as:

X
p
i = Xi + PEpos (1)

where PEpos denotes the positional encodings. Although
many positional encoding functions are available, we choose
the popularly used sine and cosine functions of different fre-
quencies to encode the position information [54]. Thereafter,
we omit the subscript i in X

p
i for the sake of simplicity.

Then we elaborate on the two key sub-layers of Trans-
former encoder, namely a multi-head attention layer (MHA)
and a simple position-directed fully connected feed-forward
network (FFN). The multi-head attention is achieved by k
self-attentions, which able to attend to information from
different representation sub-spaces at different positions.
Please refer to [54] for more details. In the process, an input
sequence Xp ∈ R

N×d can be projected to query matrix
Q ∈ R

N×dk , key matrix K ∈ R
N×dk and value matrix

V ∈ R
N×dv . Note that dk = dv = d in this paper. The

outputs of all k heads are then concatenated and projected
to Oa, which is the output of multi-head attention layer
with the same size as Xp. The formulation can be briefly
represented as:

MHA(Q,K,V) = Concat(head1, head2, ..., headk)W
o (2)

headi = Attention(QW
q
i ,KWk

i ,VWv
i ) (3)

Attention(Q,K,V) = softmax(
(QKT )√

dk
)V (4)

where W
q
i ∈ R

dk×d
′

k , Wk
i ∈ R

dk×d
′

k , Wv
i ∈ R

dv×d
′

v and

Wo ∈ R
kd

′

v
×dv are the linear project matrices. Here we use

6 parallel attention heads, and set d
′

k = dv
′ = d/k.

After the multi-head attention layer, a feed-forward net-
work layer is applied to each position separately. The feed-
forward network layer consists of two linear transforma-
tions with a ReLU activation in between. Thus the procedure
of feed-forward network can be formulated as:

FFN(O
′

a) = max(0,O
′

aW1 + b1)W2 + b2 (5)
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Fig. 4. The structure diagram of spatial-temporal encoding module and
label correlation learning module.The left of each block in this diagram
is the type of layers and the right is the dimension of its output tensor.

where W1, b1, W2 and b2 are the learnable parameters.
There is a LayerNorm after each multi-head attention layer
and feed-forward network layer, and both LayerNorms are

residual connected. The output of LayerNorm (i.e. O
′

a) can
be obtained by:

O
′

a = LayerNorm(Oa +Xp) (6)

The output O1 of the first layer of Transformer encoder can
be calculated by:

O1 = LayerNorm(FFN(O
′

a) +O
′

a) (7)

Afterwards, O1 acts as the input of the second layer of the
Transformer encoder. By analogy, we can obtain the final
output OX ∈ R

N×d of multi-layer Transformer encoder.

3.3.2 Spatial-Temporal Encoding Module

We leverage both spatial and temporal information to learn
an effective spatial-temporal EEG representation. We de-
sign a spatial-temporal encoding module to extract spatial-
temporal features, and the features are provided as input
to discriminative emotion-relevant EEG feature learning.
Moreover, the spatial-temporal encoding module consists
of two sub-modules: the spatial encoder and the temporal
encoder, and its structure is shown in Fig. 4(a).

Spatial Encoder utilizes the Transformer encoder to cap-
ture spatial dependencies from the sequence of EEG chan-
nels. The input data of the spatial encoder is XC

i ∈ R
N×dc .

After the positional encoding process, multi-head attention
in the spatial encoder models the long-distance interactions
between channels. Following the multi-layer Transformer
processing, we can obtain the output feature OXC

∈ R
N×dc

of spatial encoder, which acts as the EEG spatial encoding.

Temporal Encoder aims to learn the temporal dependen-
cies of EEG time series data, and XS

i ∈ R
T×ds denotes the

inputs of a time sequence. After the multi-layer Transformer
processing through multi-head attention and feed-forward
network, the output OXS

∈ R
T×ds of temporal encoder is

the ultimate EEG temporal encoding.

Spatial-Temporal Encoding can be obtained by concate-
nating OXC

and OXS
.

R = linear(Concat(OXC
,OXS

)) (8)

where R ∈ R
N×dst , which denotes the spatial-temporal

encoding of EEG signals, and dst = ds = dc. After that,
R is used for learning the correlation guided representation
based on the representation-label correlation matrix in the
next procedure.

3.3.3 Label Correlation Learning Module

Since emotions with stronger correlation tend to have more
similarities in their emotional experience, we adopt the
co-occurrence of positive emotions in the movie clips as
inter-emotion correlations. In this paper, we propose a label
correlation learning module based on Transformer encoder
structure to further learn the correlations between emotions.
The architecture details of this module are shown in Fig. 4
(b). Furthermore, to facilitate multi-head attention in Trans-
former encoder to learn the dependencies between labels,
we design a novel Inter-Emotion Mask according to the
emotion co-occurrence matrix.

Inter-Emotion Mask is designed for the masked multi-
head attention in Transformer (see Fig. 2), and it aims
to mask the unattended emotions in self-attention. The
Inter-Emotion Mask is constructed according to the inter-
emotion correlation matrix P, and the dependencies of
emotion labels can be represented by p(ei|ej) (i.e., the
conditional probability of the occurrence of the emotion ei
with ej .). To construct P, we firstly calculate the number
of occurrences of emotion pairs to obtain the co-occurrence
matrix M ∈ R

l×l, where Mi,j denotes the number of co-
occurrences of ei and ej . Then, we calculate the correlation
matrix P = {Pi,j} ∈ R

l×l based on the emotion co-
occurrence matrix M = {Mi,j}. The matrix item Pi,j can
be calculated as:

Pi,j =
Mi,j

ni
(9)

where ni denotes the number of occurrences of ei in the
training set.

To avoid noise caused by the distribution of co-
occurrences and faint emotion correlations, we constructed
an improved correlation matrix I = {Ii,j} by thresholding
the correlation matrix P. Therefore, the improved correla-
tion matrix can be formulated as:

Ii,j =

{

0, if pi,j<τ

1, if pi,j ≥ τ
(10)
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where τ is a threshold parameter to determine whether the
correlation between two emotions is preserved. Based on P

and the prior knowledge of the co-occurrence of positive
emotions in movie clips, we observe that the inter-emotion
correlation can be indicated when Pi,j is greater than 0.4.
We further choose τ = 0.4, 0.5, and 0.6 for comparisons,
and τ = 0.5 leads to the optimal performance as shown in
Table 1. Therefore, τ is set to 0.5 in our experiments.

TABLE 1
Results of TransEEG with τ = 0.4, 0.5, 0.6 on the main metrics. “HL”,
“OE”, “RL” are Hamming Loss, One-error, Ranking Loss respectively.
“↓” indicates the smaller the better. “↑” indicates the larger the better.

HL↓ OE↓ RL↓ mAP↑ Micro-F1↑
τ = 0.4 0.360 0.720 0.278 0.510 0.600
τ = 0.5 0.356 0.719 0.277 0.513 0.619

τ = 0.6 0.360 0.719 0.279 0.510 0.603

Specifically, the element Ii,j = 1/0 denotes the pres-
ence/absence of correlation between ei and ej . Then the
Inter-Emotion Mask can be calculated by:

MERi,j =

{

0, if Ii,j = 1

−∞, if Ii,j = 0
(11)

where MER = {MERi,j} ∈ R
l×l.

Label-label correlation learning focuses on modeling
the emotion dependencies via applying masked multi-
head attention to a sequence of emotion word embed-
dings. Therefore, the informative emotion word embedding
E ∈ R

l×dl is used as input to the Transformer. Before being
fed to the masked multi-head attention layer, the emotion
embedding matrix E is projected to query Q, key K, and
value V matrices by an unbiased linear projections. With
the designed MER, the self-attention scores in each “head”
of masked multi-head attention is calculated by:

Attention(Q,K,V,MER) = softmax(
QKT +MER√

dk
)V (12)

Under the guidance of Inter-Emotion Mask, the label
correlation learning module outputs the label representa-
tion incorporating information about emotion dependen-
cies, which is represented as OE . Therefore, the output of
the multi-layer Transformer is projected via linear projec-
tion:

L = linear(OE) (13)

After that, L is utilized to generate the representation-label
correlation matrix.

3.3.4 Correlation Guided Representation Learning Module

The EEG discriminative representation can be learned by
leveraging both the spatial-temporal EEG features and label-
label correlations. To refine the emotion-relevant EEG fea-
tures, our model calculates a weighted sum of the EEG
features by constructing an attention vector α:

α = tanh(softmax(G)),G = RLT (14)

where G ∈ R
n×l is the representation-label correlation ma-

trix, which is calculated by multiplying the spatial-temporal
EEG features R with the label representation L.

Correlation Guided Representation Learning generates

the discriminative EEG representation R
′ ∈ R

N×d by apply-
ing the attention score vector α to all sequences of spatial-
temporal EEG features R:

R
′

= R · α (15)

3.3.5 Classifier Learning

The multi-label positive emotion categories can be predicted

by feeding the EEG representation R
′

to the classifier, where
we apply the sigmoid function to linear projections of the
emotion-related EEG representation for classification:

p = sigmoid(R
′

Wc + bc) (16)

where Wc ∈ R
d×l and bc ∈ R

l are learnable parameters
of the linear projection layer, and p is the positive emotion
distribution. The sigmoid function is selected for multi-label
classification as it can deal with non-exclusive labels.

To learn the mapping of multi-label positive emotion

classification model from R
′

to 2Y , we use the binary cross-
entropy loss function to measure probabilistic errors in the
multi-label positive emotion classification task:

LBCE = −1

l

l
∑

i=1

[yilog(pi) + (1− yi)log(1− pi)] (17)

where yi represents the ground truth label of ei, and pi

denotes the predicted probability of the corresponding emo-
tion.

3.4 Training Objective

Algorithm 1 summarizes the detailed training procedure of
our TransEEG model. Although we use a five-fold cross-
validation strategy to train the model, we will illustrate our
method using a single split of the training set and test set
for the sake of simplification. Denote X = [XS ,XT ] to be
the entire data with XS as a set of training data and XT as a
set of test data, and denote YS to be the ground truth label
set associated with XS .

3.4.1 Implementation Details

We train our TransEEG on NVIDIA GTX TITAN X GPU, and
the optimal hyperparameters are selected after extensive
experimental comparisons as follows. The Adam optimizer
is used to optimize our model with a batch size of 64. The
maximum training epoch is set to 20. The learning rate is
initially set to 1e-3 and then decayed to 0.1 of the previous
learning rate every 5 epochs according to a learning rate
decay strategy. We also employed dropout in the linear
layer, position encoder and Transformer encoder, and the
dropout ratio is set to 0.5. The weight decay is set to 1e-4 to
prevent over fitting. Our spatial-temporal encoding module
and label correlation learning module are designed based
on a 2-layer Transformer encoder, with 6 “heads” in multi-
head attention sub-layer and the hidden dimension of feed-
forward network sub-layer is 1,024.
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Algorithm 1 Training of TransEEG

Input:
1: Training data set XS with the corresponding ground-

truth label set YS ;
2: The channel sequence of EEG feature XC and the tem-

poral sequence of EEG feature XS ;
3: The emotion word embedding sequence E and the

emotion co-occurrence matrix M;
4: The threshold τ for binarizing emotion correlation ma-

trix P;
5: The hyper-parameters, such as learning rate r, dropout

pd, weight decay w, etc.
Output:

The optimal emotion prediction probability vector p.
6: Initializing the model parameters θ = {θST , θLC θCR}.
7: The spatial-temporal encoding module learns the

spatial-temporal EEG features R, and the parameters
of the spatial-temporal encoding module can be repre-
sented as θST .

8: Furthermore, the label correlation learning module fo-
cuses on modeling the label-label correlations, and out-
puts the label presentation L. The parameters of the
label correlation learning module can be represented as
θLC .

9: Based on spatial-temporal EEG features R and label cor-
relation representation L, the correlation guided repre-
sentation learning module aims to generate discrimina-

tive EEG representation R
′

by calculating the attention
score vector α from the representation-label correlation
matrix G.

10: Obtaining the emotion prediction probability vector p
through Eq. 16.

11: Calculating the loss function by Eq. 17.
12: Using XS and YS to update the parameters of TransEEG

by gradient back-propagation:
θST ← θST − r ∂LBCE

∂θST
, θLC ← θLC − r ∂LBCE

∂θLC
;

θCR ← θCR − r ∂LBCE

∂θCR
;

13: Go to step 2, until the iterations satisfy the predefined
algorithm convergence condition.

4 EXPERIMENTS

To evaluate the effectiveness of our proposed method for
multi-label positive emotion classification based on EEG
signals, we conduct extensive experiments on a newly pro-
posed positive emotion EEG database named CPED [18]
with validated positive emotion-inducing movie clips.

4.1 Database and Protocols

CPED Database. The positive emotion EEG database con-
sists of effectively validated emotion-inducing materials
(movie clips) and biological signals (EEG signals). The
CPED database consists of 22 movie clips under the 15
positive emotion categories. After clustering analysis, 9
movie clips with best induction effect under each main
emotion category in CPED were selected for the present
study, and the corresponding 9 positive emotions are the
movie induced positive emotions analyzed in this paper.
Furthermore, the 9 emotion categories (Tenderness, Grat-
itude, Romance, Amusement, Friendship, Awe, Craving,
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Fig. 5. Here, we use a clip from the movie A Beautiful Mind to show the
rating score of emotion categories and the procedure of the ground-truth
label annotation during participants watching the clip. Seven positive
emotions were evoked (Since the rating score 1 means “not at all”
according to [18], we assume that the corresponding emotion category
does not appear in the video clip.) by this movie clip. The figure clearly
shows the corresponding rating scores of emotion and the multi-label
positive emotion ground-truth labels to the movie clip.

Respect, and Pride) are consistent with theoretical expecta-
tions [26] and are supported by existing research [16], [27].
And these discrete positive emotions have been considered
to be the most commonly experienced emotions in daily life
and could be identified based on EEG responses [16], [17],
[18].

According to the international 10-20 system, EEG signals
were recorded through 32 electrodes (two of which were
reference electrodes) while 312 Chinese subjects watched 9
movie clips of 1-3 minutes in length. Afterwards, a bandpass
filter with a frequency range of 1.0-45.0Hz was applied to
EEG signals. We firstly decompose an EEG channel into
5 frequency bands, including the δ band (1-3Hz), the θ
band (4-7Hz), the α band (8-13Hz), the β band (14-30Hz)
and the γ band (31-45Hz). Then we extracted PSD fea-
tures from each EEG channel using STFT with a 2-seconds
sliding Hamming window with 50% overlap across the
five sub-frequency bands. Therefore, the PSD dimension of
five sub-frequency bands in a channel extracted through a
sliding window is 5. Consequently, we can obtain the time-
frequency domain features for each instance (where the time
sequence length is 30, the number of channels is 30 and the
feature dimension is 5).

Furthermore, PSD features from multi-channel EEG data
are available for fulfilling our task. In our experiments,
we train our method by minimizing the loss of multi-
label classification. Therefore, we annotate the ground-truth
emotion labels corresponding to the EEG data with respect
to the participants’ ratings. The procedure of label anno-
tation is shown in Fig. 5. For each trial, participants rated
emotional scores on a 9 point scale (1 = “not at all”, 9
= “extremely” [18]). The scores represent the intensity of
the emotions that appear in the corresponding movie clips.
For instance, a participant rated an emotion category as 1,
which indicates that this emotion category did not appear
in the movie clip. For each EEG trial, an annotation of the
EEG recording with 9 discrete positive emotion labels was
assigned. Specifically, the ground-truth label annotation is a
binary vector, where 0/1 indicates the absence/presence of
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the corresponding emotion in the movie clip. Thus, based
on the scoring of multiple labels, the ground-truth labels
Y = {y1, y2, . . . , yi, . . . , yl} and yi = 0/1 are available, as
shown in Fig. 5.

Experiment Protocols. Based on the CPED positive emo-
tion database, we conducted experiments with a subject-
independent five-fold cross-validation strategy to evaluate
the performance of EEG-based multi-label positive emo-
tion classification method. Specifically, the five-fold cross-
validation is adopted to obtain stable and reliable models.
In this paper, we follow the subject-independent principle to
divide the data into five groups according to the number of
subjects, and for each trial we select one of the five groups
as the test data and the other groups as the training data.
Furthermore, in order to investigate the impact of each
module in our model, we conducted the ablation studies
based on the variants of our proposed model.

4.2 Baseline and Evaluation Metrics

We compare our method with several representative multi-
label learning algorithms [29]. 1) Problem transforma-
tion methods including first-order approach Binary Rele-
vance (BR) [55] and high-order approach Classifier Chains
(CC) [56] which transform the task of multi-label learning
into the task of binary classification, second-order approach
Calibrated Label Ranking (CLR) [57] which transforms
the task of multi-label learning into the task of label rank-
ing, and another high-order approach Random k-labelsets
(RKL) [58] which transforms the task of multi-label learn-
ing into the task of multi-class classification. 2) Algorithm
adaptation method ML-kNN [59], which tackles the multi-
label classification problem by adapting popular machine
learning techniques to deal with multi-label data directly.

The methods mentioned above have achieved remark-
able performance in the field of multi-label classification and
are mainly based on traditional machine learning methods.
However, our proposed approach is based on deep models,
and to be impartial, we adopt DBN [60] and DGCNN [20],
which are two deep learning methods with significant per-
formance in the field of EEG-based emotion recognition, as
comparative models. The performance of all these methods
are shown in Table 2.

To evaluate the performance of the multi-label classi-
fication task, we adopted eight widely used multi-label
metrics after thorough consideration. Following the previ-
ous work [29], [61], [62], we employed Hamming Loss,
One-error, Ranking Loss, mAP and Micro-F1 as the main
metrics, while the Micro-accuracy, Micro-precision and
Micro-recall are also reported as reference. Additionally, we
also report the Macro-based metrics to quantitatively assess
the experimental performance from a different evaluation
perspective. The detailed metric definitions can be found
in [29]. For Hamming loss, One-error and Ranking loss,
the smaller the values the better the performance (↓). For
the other metrics, the bigger the values the better the perfor-
mance (↑).

4.3 Experimental Results

4.3.1 Results of multi-label classification prediction

Table 2 shows the comparison results on CPED database,
and the performance rank of each method comes after the

measure values. Since eight measures are utilized in the
experiments, the average ranks are shown at the bottom of
each row.

Our TransEEG method presents the best performance
of the main metrics. Compared to the traditional multi-
label classification model, our TransEEG method decreases
by 0.4% on hamming loss compared with Calibrated Label
Ranking and improves by 10.9% on mAP over the Random
k-labelsets. In addition, our TransEEG achieves 0.719 on
OneError, which is 0.8% better than the best existing method
of DGCNN. As for the comparison with deep learning
methods DBN and DGCNN, TransEEG achieves the best
performance in all evaluation metrics except the Micro-R.
The DBN model achieves a result of 1.0 on the Micro-R
evaluation metric, but TransEEG can only achieve 0.659.
However, our TransEEG still ranks 2nd in terms of results in
Micro-R. In experiments we expect both Micro-P and Micro-
R to be as high as possible. Although DBN achieves the
highest result of 1.0 in Micro-R, but the result in Micro-P
was merely 0.434, while our model achieves superior results
in both Micro-P and Micro-R metrics. However, even though
Classifier Chain achieves the best performance amongst all
traditional classification methods on the evaluation metrics
Micro-F1 and Micro-P, it is worth noting that our TransEEG
is no less impressive and achieves the 2nd ranking. We also
provide the rank-based metrics in Table 2 to quantify the
prediction performance, and our proposed TransEEG shows
the best performance. Specifically, TransEEG decreases the
Ranking Loss by 0.3% compared with DGCNN.

In summary, TransEEG performs the best overall, and
achieves significant results compared to existing deep mod-
els which only learn the EEG representation without con-
sidering the correlation between labels. Therefore, to some
extent, it shows the superiority of our model in discrimina-
tive EEG representation learning by capturing rich spatial-
temporal information and exploiting label correlations.

Fig. 6 shows the Macro-based metrics to quantify the
assessment of experimental performance from different
evaluation perspectives. It is obvious that Our TransEEG
achieves the best performance on mAP, so our method is
more robust in multi-label positive emotion classification.
In addition, TransEEG achieves superior results on Macro-A
and Macro-R, respectively. We observe that the performance
of our method on Macro-P and Macro-F1 is slightly inferior
to DBN. As the Macro-P metric measures the average of
precision over all categories, unbalanced data distribution
can reduce the results. Therefore, our method is slightly
influenced by the rare positive categories in the database ac-
cording to experimental results. As shown in Fig. 7, the pos-
itive emotions are imbalanced in CPED, which is similar to
the previous emotional databases. The Friendship, Romance
and Amusement emotion categories account for a relatively
small proportion of the database, and is approximately one-
third of the amount of Respect emotion respectively. To
address the data unbalance issue on the multi-label positive
emotion classification task, we plan to expand the database
in the future work.

4.3.2 Results of Ablation Studies

In order to understand the effect of each module in
TransEEG, we report the results on CPED using the variant
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TABLE 2
Comparison results of different multi-label classification methods on CPED. Note that Micro-A, Micro-P, Micro-R denote Micro-accuracy,

Micro-precision, Micro-recall, respectively. “Average Rank” is calculated at the end of each column to demonstrate the overall performance, as
each metric is a reflection on a certain aspect. “↓” indicates the smaller the better. “↑” indicates the larger the better.

Criterion
Traditional Models Deep Models Ours

BR CC CLR RKL ML-KNN DBN DGCNN TransEEG
Hamming Loss↓ 0.360(2) 0.365(4) 0.360(2) 0.366(5) 0.372(6) 0.566(7) 0.364(3) 0.356(1)

OneError↓ 0.822(4) 0.822(4) 0.822(4) 0.822(4) 0.821(3) 0.727(2) 0.727(2) 0.719(1)
Ranking Loss↓ 0.532(5) 0.502(3) 0.532(5) 0.529(4) 0.577(6) 0.280(2) 0.280(2) 0.277(1)

mAP↑ 0.399(4) 0.391(5) 0.399(4) 0.404(3) 0.345(6) 0.503(2) 0.503(2) 0.513(1)
Micro-F1↑ 0.590(6) 0.630(1) 0.590(6) 0.602(4) 0.572(7) 0.605(3) 0.595(5) 0.619(2)
Micro-A↑ 0.639(2) 0.634(4) 0.639(2) 0.633(5) 0.627(6) 0.434(7) 0.636(3) 0.644(1)
Micro-P↑ 0.600(4) 0.717(1) 0.600(4) 0.643(3) 0.575(6) 0.434(7) 0.578(5) 0.644(2)
Micro-R↑ 0.581(4) 0.562(7) 0.581(4) 0.569(6) 0.571(5) 1.000(1) 0.620(3) 0.659(2)

Average Rank 3.875(4) 3.645(3) 3.875(4) 4.250(5) 5.625(6) 3.875(4) 3.125(2) 1.375(1)

TABLE 3
Ablation study results of the variant models on CPED database. Note that Micro-A, Micro-P, Micro-R denote Micro-accuracy, Micro-precision,

Micro-recall, respectively. The meanings of “↑”, “↓” and “Average Rank” are the same as Table 2.

Criterion
The Variant Models Ours

LSTMEEG TransEEGw/o Temporal TransEEGw/o Spatial TransEEGw/o LR TransEEG

Hamming Loss↓ 0.372(4) 0.358(2) 0.360(3) 0.360(3) 0.356(1)
mAP↑ 0.483(5) 0.509(3) 0.508(4) 0.510(2) 0.513(1)

Micro-F1↑ 0.595(5) 0.604(4) 0.607(2) 0.606(3) 0.619(1)
Micro-A↑ 0.621(5) 0.643(2) 0.641(3) 0.640(4) 0.644(1)
Micro-P↑ 0.623(5) 0.643(2) 0.641(3) 0.640(4) 0.644(1)
Micro-R↑ 0.600(5) 0.607(4) 0.627(2) 0.626(3) 0.659(1)

Average Rank 4.833(4) 2.833(2) 2.833(2) 3.167(3) 1.000(1)

Fig. 6. The performance of different models on Mean Average Precision
and Macro-based metrics. Note that mAP, Macro-A, Macro-P, Macro-
R denote Mean Average Precision, Macro-Accuracy, Macro-precision,
Macro-recall and Macro-F1, respectively.

models by removing each module. In this section, we adopt
Hamming Loss, mAP, Micro-F1, Micro-A, Micro-P and
Micro-R as the evaluation metrics.

We evaluate our model from three perspectives. Firstly,
to demonstrate whether the Transformer encoder module
is superior to the LSTM module in terms of learning se-
quential dependencies, we replace the spatial encoder in
TransEEGw/o Temporal with the LSTM for learning channel
dependencies, and the variant model is denoted as LST-
MEEG. Secondly, we evaluate the effectiveness of model-
ing long-distance dependencies among EEG channels and
validate that temporal dependencies learning is effective in

Fig. 7. Positive emotions distribution in CPED.

extracting discriminative features. Thus, we remove the spa-
tial encoder and temporal encoder from our TransEEG sepa-
rately, and get two variant models TransEEGw/o Spatial and
TransEEGw/o Temporal from our TransEEG model. Thirdly,
to evaluate the effect of label-label correlation in emotion-
relevant EEG representation learning, we remove the label
correlation learning module from our TransEEG and get the
variant model TransEEGw/o LR. We conduct experiments
based on the above variant models, and the results of
ablation studies are shown in Table 3.

(1) Transformer vs. LSTM: With our Transformer en-
coder modules, TransEEG has made a significant improve-
ment on mAP metric compared to LSTMEEG method.
TransEEGw/o Temporal extracts the spatial features from
multi-channel EEG signals, and compared to LSTMEEG,
the experimental results indicate that the ability of learning
sequential dependent information is superior to LSTM.
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(2) Spatial & Temporal modeling: From the overall
results of ablation studies, we argue that characteristics of
Transformer encoder to settle long-distance dependencies
among EEG channels and between temporal sequences can
assist in capturing more meaningful features. What’s more,
comparing the results of TransEEGw/o Spatial and TransEEG,
we can observe that TransEEG achieves a significant im-
provement on all the metrics. It shows that the information
complementary of spatial correlation and the temporal de-
pendencies in EEG signals are both essential and crucial for
discriminative EEG representation learning.

(3) Label-label correlation: Without the module of la-
bel correlation learning, the correlation guided represen-
tation learning process in TransEEGw/o LR is also omit-
ted. The EEG representation for multi-label classifica-
tion in TransEEGw/o LR is the spatial-temporal encoding.
Compared with the results of TransEEGw/o LR, TransEEG
achieves the superior results, especially there is a 1.3%
improvement on the Micro-F1 metric.

By comparing the results of ablation studies, our
TransEEG model achieves the best performance over all the
evaluation metrics.

5 CONCLUSION, LIMITATIONS AND FUTURE WORK

In this paper, we propose a novel movie-induced multi-label
positive emotion classification method named TransEEG
through viewers’ EEG signals. Our method exploits the cor-
relation guided EEG representation for emotion classifica-
tion by integrating the spatial-temporal EEG encoding with
the label-label (i.e. inter-emotion) correlations. Specifically,
we employed the Transformer encoder to extract the EEG
spatial-temporal features and learn the inter-emotion corre-
lations with the help of an Inter-Emotion Mask we designed.
Comparative experiments demonstrate the superiority of
our TransEEG method over the representative multi-label
classification methods and the EEG-based emotion recog-
nition neural models.

The perspective of analyzing movie induced multi-label
positive emotions through the viewer’s multi-channel EEG
signals is a new task, which can be regarded as a successful
attempt for the studies of movie induced positive emotion
analysis in affective computing community. Due to the con-
comitant nature of positive emotion categories, the multi-
label positive emotion analysis method is more suitable for
movie-induced positive emotion recognition. Moreover, it is
of great significance to utilize the inter-emotion correlations
in the process of positive emotion analysis.

While undertaking this work, we have identified some
limitations in our current study and found several directions
for future improvement. Firstly, through the analysis of
experimental results we found that the performance on
Macro-based metrics is undesirable, which indicates that
our method does not achieve ideal performance in identify-
ing each emotion category exactly, due to the data imbalance
issue. We will address the issue by expanding the EEG
data to guarantee a balanced database. Meanwhile, we will
attempt to adjust the loss function by penalizing the mis-
classified minority class, i.e., adding a penalty coefficient to
the misclassified minority class samples to make the model

more sensitive to them and thereby be able to identify the
minority class samples more effectively.

Secondly, the EEG signals in CPED were recorded
through 32 electrodes, according to the international 10-
20 system. The EEG equipment employed demands a strict
laboratory environment, so it limits the application of EEG-
based positive emotion analysis in the real world. In recent
years, the portable and stable EEG devices have been further
developed, increasing the feasibility of conducting large-
scale experiments in real-world applications. The number
of electrodes in portable EEG devices is relatively small,
so it is relevant for future work to explore the location
of electrodes for efficient recognition of positive emotions.
Meanwhile, improving the stability and scalability of our
method enables to promote the popularity of applications.

Finally, there are many other factors that influence movie
induced positive emotions, such as movie genres, movie
aesthetic highlights, and viewer’s personality. This will en-
able us to take multimodal information into account for
investigating multi-label positive emotions in future work,
not only in terms of viewers’ physiological responses but
also with respect to movie genres and movie aesthetics.
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