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Abstract

The focus of this research is the development of a novel physics-based

variational multiscale formulation and its computer implementation for

modelling diffuse directional microcrack growth and localised macrocrack

propagation in a general class of quasi-brittle solids, the so-called cemen-

titious composites. For this task, Micromechanics-based formulations at

the material scale, previously developed at Cardiff University, have been

improved to cope with deformation localisation objectively, by using Fi-

nite Elements with embedded strong discontinuities at the macroscale.

The newly coupled numerical scheme seeks to enable a robust and ef-

ficient multiscale fracture propagation framework, which avoids remesh-

ing. The framework predicts deformation and stress response at the ho-

mogenised bulk and predicts the propagation of macrocracks until fail-

ure is attained. In this context, failure is modelled as a consequence of

progressive macroscopic softening with feedback from microscale material

deterioration. This Micromechanics-enhanced nonlinear Finite Element

framework with embedded strong discontinuities has been implemented

into the in-house Fortran code Cardinal. In combination with an existing

Matlab post-processor, interfaces have been coded between Cardinal and

the open-source visualisation toolkit Paraview. In this way, meshes for

representative problems were generated and display effectively.

Finally, validation of the computational framework has been carried out

by comparisons of numerical predictions against experimental data of

benchmark-type Boundary Value Problems (BVPs) in unreinforced con-

crete specimens, under various mechanical actions including combined

shear and normal deformation upon macrocrack nucleation.

https://www.paraview.org




Research Highlights

Key features of the new specialised finite elements are summarised below:

• The method for failure analysis of cement-based materials and struc-

tures has been derived using a multiscale variational principle

and aims to preserve a minimum energy solution in the homogenised

system with macro-discontinuities in every global incremental itera-

tive step, while remeshing is avoided;

• A Smooth-Unloading-Reloading (SUR) method has been used at the

macrocrack level, while traction continuity is enabled weakly along

macrocracks, to allow good convergence characteristics of the new

multiscale finite element method. This SUR method employs element-

wise tangents from the unloading-reloading branch which remain pos-

itive definite;

• Strategies to provide good computational efficiency have been tai-

lored. These are twofold:

– Reduction of computational consumption at the homogenised

constitutive level is attained by using directional integration

rules for micromechanical solids, and

– Reduction of global degrees of freedom to a minimum is achieved

by using an element-wise quasi-static condensation scheme, which

ensures that only the nodal macroscopic displacement field is

solved in every global incremental iterative step.
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Chapter 1

Introduction

“Truth . . . is much too complicated to allow anything but approximations.”
John von Neumann 1903 − 57

Hungarian-born American mathematician and computer pioneer

1.1 Motivation

The behaviour of cementitious materials, and more generally quasi-brittle materials,

has been investigated extensively over the last four decades, in efforts to understand

and capture numerically the mechanisms underlying fracture and failure. The first

attempt to understand abrupt failure from rigorous first principles is attributed to

Griffith (1921). In his pioneering work, an expression to predict critical stresses, for

catastrophic crack growth, was estimated based on a minimisation of the potential

energy in a cracked solid. The main contribution of Griffith lies in the realization that

fracture at macroscopic level may be affected by processes at smaller length scales,

especially for cracks of length equivalent to a few times the representative molecular

length scale. In his representation of the total potential energy, Griffith considered the

surface tension arising from unbalanced molecular attraction, which is exerted on par-

ticles adjacent to the crack edge upon fracture. Nowadays, the failure of quasi-brittle

materials is widely acknowledged to be a consequence of microfractures coalescing

into macroscopic cracks (Mazars, 1986; Ortiz, 1988). From a phenomenological point

of view, micro and macro fracture manifest as a descending load carrying capacity

during ongoing deformation, which is typically referred as the strain-softening re-

sponse. An example of the so-called strain-softening response is depicted in Figure

1.1, where a one-dimensional bar is subjected to uniaxial extension.
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1.1. Motivation

Figure 1.1: One-dimensional bar, corresponding to a quasi-brittle material, subjected
to uniaxial extension: geometry and boundary conditions (left), (typical) load carry-
ing capacity vs. displacement (right).

This descending branch of the structural response (in load vs. displacement space)

poses numerical challenges when implemented in a Finite Element program (Bažant,

1976; Crisfield, 1982; De Borst, 1987), such as strong mesh dependency of the response

and numerical breakdown of iterative solvers, in addition to the complexities involved

in the development of appropriate (constitutive-level) material laws for quasi-brittle

solids. Furthermore, the widely acknowledged multiscale nature of the response of

cementitious composites (Van Mier, 1984) presents additional theoretical challenges

at the constitutive-level, since macroscopic constitutive schemes do not have sufficient

accuracy, and adding multiscale mechanics components brings often prohibitive com-

putational demand. These challenges mean that this research branch has remained

active amongst the Computational Mechanics community for several decades.

The ideal computational technique for modelling the non-linear behaviour of con-

crete would incorporate components to model fracture across multiple scales, to allow

an adequate prediction of the structural-level response till failure, and would be mod-

est in computational demand to allow engineering predictions on standard computers.

The aim of this PhD research is to develop a specialised Finite Element framework for
modelling the fracture response of cementitious materials, which couples a multiscale
constitutive formulation with computational techniques for fracture propagation.

A short discussion on the scope of such formulation and outline of this thesis is

provided in the next sections.

Chapter 1. Introduction 2



1.2. Scope of the thesis

1.2 Scope of the thesis

The current thesis was developed within the Resilient Materials for life project, with

acronym RM4L, funded by the Engineering and Physical Sciences Research Council

(EPSRC) from the United Kingdom. The main purpose of the EPSRC-funded project

lies in the development of the next generation of smart-responsive-sustainable concrete

materials to be incorporated into the UK civil infrastructure. The achievement of this

goal requires further understanding of multiscale fracture processes in concrete.

This thesis describes research on computational tools for the numerical prediction

of Micromechanics-based material degradation and macrocrack propagation within

cementitious materials. Therefore, the challenge of capturing strain-softening objec-

tively, as described previously, is the focus of this study. The chosen remedy, to

cope with fracture across scales in concrete, brings together Finite Elements with

embedded strong discontinuities (EFEM) (Freeman et al., 2020; Oliver et al., 2003;

Simo et al., 1993) and Micromechanical constitutive formulations (Jefferson and Ben-

nett, 2010, 2007; Mihai and Jefferson, 2011). Particularly, variational principles of

minimum energy consumption have been used for coupling these model components

seamlessly.

The work described in this thesis was conducted simultaneously with other nu-

merical and experimental studies within the RM4L project. Therefore, the numerical

formulations of this study were implemented in the in-house Fortran code Cardinal.

Formulations at the element-level were first implemented in Mathcad, and tested

using meshes of up to three elements. This first Mathcad implementation eased ver-

ification of the Fortran code, which was designed for use in large-scale Boundary

Value Problems (BVPs). The Fortran implementation in Cardinal enabled the sim-

ulations presented in the chapter of numerical examples, which presents a series of

experimental validations of the numerical model.

In addition to an existing Matlab pre and post processor, the author devel-

oped interfaces between Cardinal and the open-source visualisation toolkit Paraview

(https://www.paraview.org/), as well as an additional pre-processor in C++ to

allow re-ordering of elements in generated meshes. This allowed meshes for more

complex geometries to be generated efficiently and the results displayed effectively.
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1.3. Outline of the thesis

1.3 Outline of the thesis

Ch. 1. Introduction.

A brief introduction highlights the challenges on modelling cementitious com-

posites and quasi-brittle materials, using the Finite Element Method with a

focus to capture deformation localisation. In addition, the scope and outline of

the thesis is presented.

Ch. 2. Literature Review: Micromechanics & quasi-brittle fracture.

The literature review describes the essential concepts and techniques for mod-

elling failure and micromechanical behaviour in quasi-brittle solids. A research

gap, which is discussed in this chapter, is identified on methods to couple Mi-

cromechanics and Finite Elements with embedded strong discontinuities.

Ch. 3. Micromechanics & variational mechanics of quasi-brittle fracture.

This chapter describes mechanical concepts at micro and macro-scale which

compose the new fracture model, namely, (i) a Micromechanics material model,

and (ii) an EFEM approach. The EFEM model is based on a variational princi-

ple of minimum energy. The author’s implementation of these micro and macro

models are tested for simple BVPs, and briefly discussed for compatibility.

Ch. 4. Variationally-consistent coupling of Micromechanics & EFEM.

This chapter describes the multiscale coupling of the new micromechanical

EFEM model and shows the computational strategies for the linearisation of the

multiscale non-linear system. Also potential challenges in obtaining tangents

for the coupled system are addressed. Also, numerical strategies for macrocrack

tracking, robust implementation and other numerical details are presented.

Ch. 5. Numerical examples of multiscale quasi-brittle fracture.

At first, a theoretical calibration of the mulsticale model at the element level is

presented. Secondly, the model as presented in previous chapters is calibrated

and validated against experimental data. Emphasis is given to features acquired

by the new multiscale EFEM to reproduce fracture in realistic BVPs, where no

notch is present, under combined normal and shear mechanical actions.

Ch. 6. Conclusions & future directions.

Finally, some conclusions and recommendations for future work are given. In

addition, the limitations of the numerical framework proposed in this study are

discussed.
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1.4. Research dissemination

1.4 Research dissemination
This research has been used to draft a journal paper. In addition, several conference

and workshop presentations have been prepared throughout this PhD as shown here.

Drafted Journal paper:

1. Azua-Gonzalez, C.X., Mihai, I., Jefferson, A.D., Variational Micro-to-Macro

Embedded Strong Discontinuity FEM (VM2EFEM) for seamless micro-diffuse and macro-

localised quasi-brittle fracture: A new efficient and robust multiscale method is proposed

for fracture propagation in quasi-brittle materials, which avoids remeshing and provides a

minimum energy solution. The method uses embedded strong discontinuities (EFEM) at

the macroscale and a directional homogenisation scheme at the bulk domain, which allows

a seamless modelling of diffuse directional microcracking and macrocracking. Traction con-

tinuity along propagating macrocrack surfaces is preserved, while macrocrack degrees of

freedom are quasi-statically condensed. A smooth unloading reloading method is used at

the macrocrack level to ensure global tangents in a Newton-Raphson scheme remain positive

definite. Directional homogenisation rules coupled with EFEM provide a modest computa-

tional cost, while accuracy is found adequate to capture the fracture process zone. The new

numerical model is validated against a series of experimental tests in concrete structures.

Conference Proceedings:

2. Azua-Gonzalez, C.X., Mihai, I., Jefferson, A.D. (2021), Coupled Micromechan-

ics - embedded strong discontinuity model for quasi-brittle fracture: a variational appraisal.

UKACM conference 2021, Loughborough. doi.org/10.17028/rd.lboro.14587497.v1.

3. Azua-Gonzalez, C.X., Mihai, I., Jefferson, A.D. (2020), Micromechanics-driven

variational method for diffuse-to-localised fracture in quasi-brittle solids. 14th World

Congress on Computational Mechanics - ECCOMAS conference. doi: 10.23967/wccm-

eccomas.2020.200

4. Azua-Gonzalez, C.X., Mihai, I., Jefferson, A.D. (2019), A combined Microme-

chanics Strong Discontinuity approach for modelling distributed and localised fracture in

cementitious materials. UKACM conference 2019, London. Open access to Proceedings at:

http://ukacm.org/wp-content/uploads/proceedings/.

Posters, talks and other presentations:

5. Azua-Gonzalez, C.X., Mihai, I., Jefferson, A.D. (2021), Variational Micro/Macro-

mechanics Method for fracture and damage prediction, presented in pitch competition at

Winter Materials simulation Workshop H2020 DRIVEN, virtual event launched by Luxem-

bourg University on Jan 26-29th 2021.
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1.5. Starting point of research and original contribution

6. Azua-Gonzalez, C.X., Mihai, I., Jefferson, A.D. (2019), A combined Micromechan-

ics Strong-Discontinuity approach for modelling failure of cementitious materials, presented

at Materials Modelling Workshop, Cardiff University on June 11th 2019.

7. Azua-Gonzalez, C.X., Mihai, I., Jefferson, A.D. (2018), Numerical modelling of

diffuse and localised cracking in cementitious composite materials , 2nd SARCOS COST -

RILEM Doctoral course, Skopje - Ohrid, Macedonia 2 - 7 Sept 2018.

1.5 Starting point of research and original contri-

bution

Two-scale mechanical components, namely (i) the micromechanical formulations at

the constitutive level, and (ii) the EFEM formulation at the element level, which are

presented consistently in Chapter 3 from their original form in the literature (Freeman

et al., 2020; Jefferson and Bennett, 2010; Jefferson and Freeman, 2022; Jefferson and

Bennett, 2007), were suggested as a starting point of research by the supervisory team

to the author. The author coded these separately to study their compatibility, at first

in Mathcad, and then into the in-house code Cardinal using Fortran programming.

Therefore, the implementations that were used to present simulation results from

Chapter 3 onwards correspond to those of the author.

Before the start of this research, such numerical components mentioned in the

previous paragraph had never been coupled together. The author proposed a form

of seamless coupling of the two-scale components in Chapters 4 to 5, which enables

a multiscale fracture response of cementitious composites that preserves a minimum

energy solution at the element level.

Other relevant attempts in the literature (Zhao et al., 2018) do not introduce

element-based macrocrack dofs, and therefore use EFEM concepts that degenerate

into a simple smeared micromechanics model, as opposed to the newly proposed rig-

orous variational treatment and simultaneous coupling of quasi-statically condensed

macrocrack dofs and micromechanically-driven bulk behaviour (Azua-Gonzalez et al.,

2019, 2020, 2021).
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Chapter 2

Literature review: Micromechanics
& quasi-brittle fracture
“A hypothetical theory is necessary, as a preliminary step, to reduce the expression of the

phenomena to simplicity and order before it is possible to make any progress in framing an
abstractive theory.”

William Rankine 1820 − 72
Scottish engineer and pioneer of Thermodynamics theory and Mechanics

2.1 Focus of literature study
This chapter describes an overview of Mechanical theories in terms of material mod-

elling and fracture propagation in quasi-brittle solids, at first separately, and then as

a multiscale coupling problem. The focus of the study is threefold:

• Section 2.2: Micromechanical constitutive models and scale-bridging material

modelling frameworks are described. Attention is provided to approaches which

have been or could be coupled with numerical techniques for fracture propaga-

tion in quasi-brittle solids, with emphasis on cementitious composites,

• Section 2.3: A brief description is presented for numerical techniques used for

solving the mechanical response of solids with evolving discontinuities such as

cracks. Focus is given to fracture modelling techniques with strong discontinu-

ities (Freeman et al., 2020; Jefferson and Freeman, 2022; Oliver et al., 2006),

• Section 2.4: Advanced micro-macro fracture models from the literature are de-

scribed with focus on Finite Elements with strong discontinuities, such as those

based on the addition of new dofs (Belytschko et al., 1988; Xu and Needle-

man, 1994), and on element-based condensation of fracture dofs such as EFEM

(Oliver et al., 2006) among others.

A research gap has been identified on multiscale methods that couple Continuum

Micromechanics and an EFEM approach, and this is discussed in concluding remarks

in Section 2.5.
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2.2. Micromechanical constitutive homogenisation

2.2 Micromechanical constitutive homogenisation

Macroscopic material modelling approaches often result incapable of reproducing key

micro-mechanisms in composites (Jefferson and Bennett, 2007). Examples of such

popular theories are the well-known Flow theory of Plasticity (Koiter, 1953; Prager,

1949) and Damage Mechanics (Fonseka and Krajcinovic, 1981; Krajcinovic and Fon-

seka, 1981). These theories are primarily based on phenomenological assumptions,

and these are not sufficient for modelling appropriately the behaviour of cementitious

composites (Jefferson and Bennett, 2010, 2007).

Micromechanical models are multiscale and mechanistic in nature, and use fewer

phenomenological assumptions than comparable macro-models. These models aim to

estimate the macroscopic response of a fundamental material volume or RVE using

length-scale bridging strategies, a.k.a. homogenisation procedures.

The following paragraphs present a brief description of various groups of microme-

chanical models which are used for modelling cementitious composites.

2.2.1 Constitutive frameworks based on mixture theory

The theory of mixtures is a micromechanical approach that is used to devise the

homogenised response of a continuum comprised of various phases. A major period

of growth in the field lies in the decades between 1950s to 1990s, with prominent

contributions such as Eshelby (1957, 1959); Hashin and Shtrikman (1961); Mori and

Tanaka (1973); Nemat-Nasser et al. (1996), among others. In this regard, Hill es-

tablished the principles of Continuum Micromechanics by obtaining the homogenised

response of a continuum composite.

The micro to macro scale transition for a mixture of continuum-based micro-

constituents is typically governed by the Hill-Mandel condition (see e.g. Geers et al.

(2017)). This postulate establishes that the energetics from each of the micro-

constituents must be transferred to the corresponding homogenised material point

in the macroscale:

1

| |Ω| | ·
∫
Ω

𝝈m : 𝛿𝜺m𝑑Ω = �̄� : 𝛿𝜺 (2.1)

where | |Ω| | stands for the elementary volume being homogenised, �̄� and 𝜺 are the

stress and strain at the macroscale, and 𝝈m and 𝜺m stand for micro stress and strain.

Chapter 2. Literature review: Micromechanics & quasi-brittle fracture 8



2.2. Micromechanical constitutive homogenisation

Various studies have been presented in the literature regarding the use of the the-

ory of mixtures with application to concrete modelling, by coupling homogenisation

principles and other material modelling theories which are illustrated further in the

following sections.

2.2.1.1 Micro-plane constitutive models for quasi-brittle solids

The microplane models (Bažant, 1984; Bažant and Prat, 1988a,b; Ožbolt and Bažant,

1992) may be considered as the models that popularised the use of micromechani-

cal principles for modelling the effective response of concrete and more generally

cohesive-frictional geo-materials. Bažant (1984) recalled directional mechanics prin-

ciples acknowledging its previous use in crystallographic materials (Taylor, 1938).

Microplane models assume the change in macroscopic strain-energy per unit volume

of a material point is the average of the change of strain-energy per unit volume occur-

ring in microscopic zones where microcracks are distinctively aligned with preferential

planes, the so-called microplanes defined by the (unit) normal vector r (‖r‖ = 1). The

macroscopic strain-energy density is then obtained by numerical integration over the

surface of a unit hemisphere
∑

1/2, i.e. in a discrete number of microplane directions

r𝑖 as illustrated in Figure 2.1 and expressed in Equation 2.2.
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(a) Integration on a unit hemisphere
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(b) RVE: Cementitious composite

Figure 2.1: Micromechanical principles used for homogenisation in microplane models
(Bažant, 1984)
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2.2. Micromechanical constitutive homogenisation

𝝈 : δ𝜺 ≈ 1

4𝜋

(
2

∬
∑

1/2

(
𝒔 : δ𝒆

)
𝑠𝑖𝑛(ϕ)δϕδθ︸          ︷︷          ︸

δS

)
(2.2)

where the micro-planes, each one perpendicular to the corresponding unit normal

r, are expected to behave through independent stress-strain laws, though assumptions

are common, that the microplane stress 𝒔 or strains 𝒆 are used in the form of the

resolved components of their macroscopic fields (𝝈,𝜺) for computational purposes.

Microplane models, e.g models by Bažant and Prat (1988b); Di Luzio and Cusatis

(2013); Lale and Cusatis (2021), have been shown to capture the response of concrete

materials. Some examples of the performance of calibrated micro-planes models are

presented in Figure 2.2.

Figure 2.2: Validation of micro-plane models as published in Bažant and Prat (1988b),
using monotonic uniaxial compression tests by Hognestad et al. (1955).

The latest version of micro-plane models is the so-called M7 (Bazant et al., 2022),

which has been recently compared with other modern models that use standard Fi-

nite Elements through a crack band approach, as well as against the predictions of

advanced numerical discretisation techniques such as phase-field (PF)(Miehe et al.,

2010c) and peridynamic models (PD)(Hashim et al., 2020; Silling and Askari, 2005).

The M7 model performed very well against some poor behaviour of PF and PD model

responses. A point has been made in Bazant et al. (2022), that the predictive ca-

pability of a numerical framework can be limited by the accuracy of the coupled

constitutive law no matter how advanced and robust the underlying numerical tech-

nique for fracture propagation is.
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2.2. Micromechanical constitutive homogenisation

2.2.1.2 Mixture theory and plasticity-damage for quasi-brittle solids

In the literature, the mixture theory has been coupled to plasticity-damage consti-

tutive modelling strategies. This class of micromechanical models use various degra-

dation techniques to represent the response of microcracking and its interaction with

that of the aggregate phase in a cementitious composite.

Ortiz (1985) proposed to use the theory of mixture to model micro and macro in-

teractions in concrete and more generally quasi-brittle materials during fracture and

subsequent failure. In particular, the proposed constitutive framework was able to

capture some inelastic features of the behaviour of concrete materials. This frame-

work employed averaging principles, with the aim of capturing the overall mechanical

response of the mixture of a cementitious matrix enclosing an aggregate phase. Some

of the degradation mechanisms included in the model are illustrated in Figure 2.3.
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Figure 2.3: Solid phases in concrete leading to a splitting mechanism under compres-
sion, with matrix-based microcracking development parallel to the load direction over
the mixture of cement matrix and aggregate, reproducible by the theory of mixtures
Ortiz (1985).

Ortiz (1985) proposed to consider the role of microcracks as a mechanism of ma-

terial damage in the matrix, by adding a mechanics-based measure of additional ma-

terial flexibility, and by considering the duality mortar-aggregate in concrete using

the theory of mixtures:

Mixture-theory: ¤𝝈 =
Ω𝑎
Ω
· ¤𝝈𝑎 + Ω𝑚

Ω
· ¤𝝈𝑚

Homogeneous strain transfer: ¤𝜺 = ¤𝜺𝑎 = ¤𝜺𝑚
Homogenised rate constitutive equation: ¤𝝈 =

[
Ω𝑎
Ω
· 𝑫 (T)𝑎 + Ω𝑚

Ω
· 𝑫 (T)𝑚

]
: ¤𝜺

 (2.3)
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2.2. Micromechanical constitutive homogenisation

where Ω ≡ Ω𝑎 ∪ Ω𝑚 stands for a Representative Volume Element (RVE) of ag-

gregate (·)𝑎 and cement-based matrix (·)𝑚 mixture, 𝝈 is the Cauchy stress, 𝜺 is the

overall strain of the mixture (which is considered as uniform over the mixture).

The constitutive relation upon homogenisation (Ortiz, 1985; Tenchev and Purnell,

2005) has been found to reproduce the behaviour of concrete in compression and to

estimate its decreased strength in tension under monotonic conditions as illustrated

in Figure 2.4.

Figure 2.4: Prediction of concrete behaviour employing mixture theory as published
by Ortiz (1985). The model is calibrated for monotonic uniaxial tests by Bresler and
Bertero (1979).

2.2.1.3 Mixture theory and Micromechanics of defects in solids

The use of micromechanical analytical solutions for micro-defects embedded within

a classical continuum constitutive approach, were first presented by Andrieux et al.

(1986), and in a more general sense by Pensée et al. (2002). The latter, presented

a three-dimensional framework of the preceding method by Andrieux et al. (1986)

for modelling a cracked solid with sets of aligned dilute penny-shaped microcracks.

In this framework, the crack density parameter (Budiansky and O’Connell, 1976)

controls local damage in each sets of families of microcracks, and the macroscopic

free energy of the material borrows the homogenisation concept of the microplane

models (Bažant, 1984). In addition, Micromechanics-informed continuum damage

theories have been developed at Cardiff University (Jefferson and Bennett, 2010,

2007), similar to those of Andrieux et al. (1986); Pensée et al. (2002), though with a

focus to replicate damage-induced inelastic response in concrete materials subjected
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2.2. Micromechanical constitutive homogenisation

to both tensile and combined shear-compressive loading paths. A simple sketch of

micromechanical constituents are elucidated in Figure 2.5.
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Figure 2.5: Micro-constituents in an RVE within the framework of Micromechanical
consitutive models aided by micro-defect theory: two-phase composite model by Jef-
ferson and Bennett (2010, 2007)(left), single-phase composite model Andrieux et al.
(1986); Pensée et al. (2002)(right).

The problem of homogenisation of a cracking solid with a single set of meso-cracks

(or microcracks depending on what is the length-scale of reference), has been shown

to be solvable by splitting the overall (resolved) strain 𝜺 into an elastic part and a

contribution from the micro-defects (Nemat-Nasser et al., 1996; Pensée et al., 2002).

Without the loss of generality and for the sake of illustration, it is assumed in the

following expression that the microcracking set is aligned with one of the Cartesian

axes (Pensée et al., 2002):

Elastic: 𝜺𝑒 = 𝑫−1𝑒 : 𝝈
Micromechanical: 𝜺𝑚1 = 𝛽𝑐𝑘𝑚 ·

(
n𝑚1 ⊗ n𝑚1

)
+

(
𝛾𝑐𝑘𝑚 ⊗ n𝑚1

) 𝑠 }
(2.4)

where (·)𝑒 stands for the elastic part, (·)𝑚1 is the inelastic part induced due to the

presence of a penny-shaped microcrack set 𝑚1 with microcrack-plane normal n𝑚1 ,

𝑫𝑒 is the isotropic elasticity tensor of the uncracked solid, 𝛽𝑐𝑘𝑚 is a scalar variable
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2.2. Micromechanical constitutive homogenisation

representing the microcrack normal opening, and 𝛾𝑐𝑘𝑚 stands for a sliding component

which read as follow in Equation 2.5.

Normal opening component: 𝛽𝑐𝑘𝑚 = 𝒩𝑚1

∫
𝜕Γ+𝑚
[𝑢𝑛]𝜕Γ𝑚𝑑𝑆

Sliding component: 𝛾𝑐𝑘𝑚 = 𝒩𝑚1

∫
𝜕Γ+𝑚

(
[u]𝜕Γ𝑚 − [𝑢𝑛]𝜕Γ𝑚 · n𝑚1

)
𝑑𝑆

}
(2.5)

where the operation
(
n𝑚1 ⊗ n𝑚1

) 𝑠
= n𝑚1 ⊗ n𝑚1 has been used as an identity in

Equation 2.4 for simplification, the operator (·)𝑠 stands for the computation of the

symmetric part and (·) ⊗ (·) denotes the outer product, [u]𝜕Γ𝑚 is the microcrack

opening displacement, 𝒩𝑚1 = ℱ𝑚1/𝑎3 represents the number of microcracks per unit

volume, and equals the ratio of the microcrack density parameter ℱ𝑚1 to the cube

of the microcrack radius 𝑎. The model by Pensée et al. (2002) has been successfully

validated for the response of rocks as illustrated in Figure 2.6.

Figure 2.6: Validation of micromechanics-aided constitutive model by Andrieux et al.
(1986); Pensée et al. (2002) for Sandstone from Vosges (France), experimental data
by Charlez (1993).

Regarding Micromechanical models developed at Cardiff, some of these have been

upgraded to consider rough contact in microcracking sets. This type of mechanical

component has been (and is still) ignored in almost all other Micromechanical models

available in the literature. These enhanced micromechanical models are good in

capturing the biaxial failure envelope of cementitious solids, and this is illustrated in

Figure 2.7 (Jefferson and Bennett, 2010). In this figure the biaxial response of concrete

is validated against experimental data by Kupfer et al. (1969). Without venturing

into computational aspects, a derivation of a simpler version of this Micromechanical

model is presented in the next chapter in Section 3.2.
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2.2. Micromechanical constitutive homogenisation

Figure 2.7: Validation of concrete biaxial response predicted by Micromechanics
model (Jefferson and Bennett, 2010) against experimental data (Kupfer et al., 1969).

This range of micromechanical models has proved to predict successfully the mul-

tiaxial strain-softening response in cementitious materials, as a consequence of di-

lute microcracking (Van Mier, 1984), without the necessity to run through time-

consuming computational material homogenisation techniques such as 𝐹𝐸2 methods

Desrues et al. (2019); Feyel and Chaboche (2000). Although direct representation of

microdefects and microconstituents is avoided in Micromechanical constitutive models

for computational efficiency, these micromechanical models (Jefferson and Bennett,

2010, 2007) can capture phenomena occurring at smaller length scales. The addition

of mechanisms such as post-peak volumetric dilation in microcracking sets (Jefferson

and Bennett, 2007) or extension into two-phase homogenisation schemes (Jefferson

and Bennett, 2010), improves the accuracy of the model although without much over-

head cost since this model avoids multi-grid homogenisation. This type of response

is achieved with a unique parameter set, and with a reduced number of phenomeno-

logical assumptions in contrast to traditional macroscopic models.

N.B.: This PhD research has made use of this type of micromechanical formulations
in Section 2.2.1.3 for modelling cementitious materials, e.g. (Jefferson and Bennett,
2010, 2007; Mihai and Jefferson, 2011), due to their computational efficiency and
good mechanistic reproduction of phenomena at lower length-scales.
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2.2.2 Discrete modelling frameworks for quasi-brittle media

Discrete modelling approaches aim to use connected elements and contact-particle

mechanics frameworks at the RVE level, to simulate the response of quasi-brittle

materials such as concrete, rocks and strain-softening soils. In order to categorise

some of these numerical schemes through similarities, the following branches can be

mentioned:

• Lattice methods employing inter-connected spring-beam networks:

These models aim to reduce the complexity of a continuum by representing

it with rigid-body-interconnected lattices, e.g. generating equivalent mechan-

ical systems comprised of beams. Common assumption is to remove failed

elements to reproduce fracture (Bolander and Saito, 1998; Bolander and Suku-

mar, 2005; Garboczi and Day, 1995; Schlangen and Garboczi, 1996, 1997). Key

constituents of such models are illustrated with an example of a typical RVE

domain in Figure 2.8.

• Contact/Particle mechanics-based Lattice methods: These models can

enclose i) Distinct Element Methods (DEM), originally developed for geomate-

rials (such as rocks and soils) (Borja and Wren, 1995; Cundall, 1988; Cundall

and Strack, 1979; Hentz et al., 2004; Wren and Borja, 1997), ii) Lattice - Dis-

crete Particle FEM methods (LDPFEM) for modelling cement-based materials,

based on the use of spherical/ellipsoidal/polyhedral particles that can interact

through contact as a lattice framework (e.g. Cusatis et al. (2011)). Some au-

thors have proposed combined numerical schemes within standard multi-scale

Finite Element frameworks (Nitka et al., 2011; Rousseau et al., 2008), or regu-

larized multiscale frameworks (Desrues et al., 2019; Miehe et al., 2010a).

• Bond-based and State-based Peridynamics: Peridynamics was proposed

as an alternative to classical Continuum Mechanics (Silling and Askari, 2005).

This methodology avoids the use of continuous spatial gradients opposed to

standard FEM analysis, by postulating that a particle interacts with other par-

ticles even beyond the closest neighbourhood, which is defined as the ‘horizon’.

This eases the modelling of evolving discontinuities without additional numeri-

cal treatment. Bond-based Peridynamics, which was the original form of Peridy-

namics, presented constraints on the way constitutive formulations were linked

to the underlying numerical framework, and therefore, other variants were cre-

ated, i.e. State-based Peridynamics, which can be ordinary or non-ordinary

(Hashim et al., 2020).
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Figure 2.8: Illustration of a lattice-type RVE consisting of connected spring-beams:
elastic response to external action (left), local lattice failure (right).

Although the simplicity of the computational schemes in lattice methods would

seem attractive to model cement-based materials across scales in a coupled Lattice-

FEM scheme, issues like the need to generate adequate random interconnected spring-

beam networks, to render an unbiased response to fracture with respect to mesh

distribution (Bolander and Sukumar, 2005; Schlangen and Garboczi, 1996), would

still need to be solved at the lower lenght-scale. In addition, the nested system of

equations for such coupled system, i.e. a Lattice FEM x FEM nested system, would

resemble an 𝐹𝐸2 method, which could then demand a very high computational power

(Mosby and Matouš, 2016).

2.2.3 Computational material homogenisation of heteroge-
neous media

Computational homogenisation schemes are used to model heterogeneous media em-

ploying nested computations in combination with volume averaging schemes across

scales (Feyel and Chaboche, 2000; Kouznetsova et al., 2002; Terada et al., 2000).

A sketch of the typical multi-grid nature of micro-to-macro nested BVPs to enable

the analysis of composites, as employed in computational material homogenisation

schemes, is illustrated within a particular example of a composite-based solid beam

in Figure 2.9.

Although the initial developments on computational homogenisation schemes were

commonly acknowledged to be unable to predict deformation localisation across scales

(Geers et al., 2017), some recent literature shows efforts to extend the method to frac-

ture problems, see e.g. Coenen et al. (2012); Karamnejad et al. (2017); Karamnejad

and Sluys (2014); Nguyen et al. (2011); Xu et al. (2021).
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Figure 2.9: Boundary Value Problem (BVP) considering a solid beam composed of
heterogeneous material. The sketch elucidates the flexibility of multi-grid compu-
tational multiscale homogenisation procedures towards the macroscale analysis of a
range of composites.

2.3 Numerical techniques for fracture propagation

In the past, macroscopic-based constitutive models for quasi-brittle materials imple-

mented in a Finite Element framework led to numerical issues such as excessive mesh

dependency of the structural response in BVPs (Bažant and Oh, 1983), and numerical

instabilities related to the negative tangent as a result of strain softening (Bažant,

1976; Crisfield, 1982). Many authors have proposed strategies to alleviate these nu-

merical issues in FEM-based implementations. These strategies have increased in

number after the leading contributions of Bažant and Oh (1983); Cedolin and Bažant

(1980), who developed the so-called crack band approach, and non-local theories

(Bažant and Pijaudier-Cabot, 1988; Pijaudier-Cabot and Bažant, 1987). Some of

these other theories are now considered below.

i Embedded localisation band FEM (Belytschko et al., 1988; Haghighat and

Pietruszczak, 2016; Pietruszczak and Mróz, 1981), and embedded weak/strong

discontinuity approaches (Armero and Linder, 2009; Freeman et al., 2020;

Jirásek, 2000; Oliver et al., 2003; Raina and Linder, 2015; Simo et al., 1993):

Models that use the notion of a deformation band of finite thickness to model

displacement jumps or cracking-induced strains;
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ii Gradient-enhanced plasticity and damage models (De Borst and Mühlhaus,

1992; De Borst and Verhoosel, 2016; Peerlings et al., 1996; Sluys et al., 1993):

Models that use the notion of diffuse Continuum damage and often introduce an

additional damage-related variable and associated governing equation;

iii Micropolar continuum theory (De Borst, 1991; Mühlhaus and Vardoulakis,

1987; Neuner et al., 2020): These models use the notion of couple stresses due

to additional rotational degrees of freedom to represent a generalised continua,

which extends the original work of Cosserat and Cosserat (1909) by introducing

a length scale parameter;

iv Meshless methods applied to static and dynamic fracture (Belytschko

et al., 1995, 1994; Hashim et al., 2020; Silling and Askari, 2005): Methods such

as the Element-free Galerkin Finite Elements (EFG-FE) make use of general in-

terpolations such as least square based methods, which do not use the traditional

notion of element-wise discretisation;

v The Extended Finite Element Method (XFEM) (Agathos et al., 2016;

Belytschko and Black, 1999; Bordas et al., 2007; Moës et al., 1999): These meth-

ods introduce displacement discontinuities and nodal enrichments to enhance the

strain field in (i) elements cut by the discontinuities, as well as in (ii) elements

containing the crack front;

vi Phase field approaches for smeared crack propagation (Giambanco and

La Malfa Ribolla, 2019; Miehe et al., 2010c; Nguyen et al., 2020; Verhoosel and

de Borst, 2013): These models use an additional set of governing equations to

represent the diffuse nature of crack propagation by using an associated phase-

field variable. Although there are similarities with gradient-based models, they

require very fine meshes;

vii Configurational force based fracture models (Bird et al., 2022; Gurtin and

Podio-Guidugli, 1996; Kaczmarczyk et al., 2017; Miehe et al., 2007): Models that

use configurational forces to drive crack propagation that is associated with a

Griffith’s criterion to enforce maximum local dissipation at the evolving crack tip.

2.3.1 Brief comparison of fracture models

Some relevant computational aspects of various categories of fracture methods are

considered in the Table 2.1. Here the type of ‘efficiency’ reported partly disregards

important aspects of error analysis such as the order of convergence to a true so-

lution due to higher order interpolation (Oden and Reddy, 2010), and only focuses

on the iterative convergence rate of the algorithm. It seems that most publications
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concentrate in proving a method works for a few types of numerical examples, while

efficiency and error analysis is often left to stages where the method is very developed

and has become popular. In this regard, the degree of interpolations is not included

in Table 2.1.

Table 2.1: Overview of fracture modelling methods: computational aspects

Method
extra dofs /
int. variables

efficiency mesh-based
length
parameter

Embedded
discontinuity
FEM (Linder
and Armero,
2007; Oliver
et al., 2003)

X
element-wise
crack dofs
enrichment
(Oliver et al.,
2006)

X
order ∈
(1.0, 2.0)

X
element-level
differential
operators
(Simo et al.,
1993)

X
(constant)
fracture band
width (Armero
and Linder,
2009)

Non-local
(Pijaudier-
Cabot and
Bažant, 1987),
gradient-based
continuum

X
scalar variable
2nd gradient
(De Borst and
Mühlhaus,
1992)

X

order ≈ 2.0

X
element
imbrication
can occur
(Bažant et al.,
1984)

X
(constant)
scalar, which
controls
localisation
spatially

Micro-polar
continua
(Mühlhaus and
Vardoulakis,
1987)

X
rotation dofs
are added De
Borst (1991)

X

order ≈ 2.0

X
element nodes
can rotate,
aside to
translation

X
Shear band
thickness De
Borst (1991)

Mesh-free FEM
for fracture
(Belytschko
et al., 1994)

X
though large
number of
points often
required

X

order ≈ 2.0

X
domains of
influence
depend on
weighting

X
space-grading
constants
(Belytschko
et al., 1995)

Node-enriched
FEM (XFEM)
(Belytschko and
Black, 1999)

X
near-crack
enriched dofs
(Belytschko
and Black,
1999)

X
order ∈
(1.0, 2.0)

X
minimal
remeshing
(Moës et al.,
1999)

X
crack-tip
characteristic
length (Moës
et al., 1999)

Phase field
methods for
fracture (Miehe
et al., 2010c)

X
phase field
(Verhoosel
and de Borst,
2013)

X

order ≈ 2.0

X
no element
imbrication

X
smeared crack
length-scale
(Miehe et al.,
2010c)
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The methods present in Table 2.1 have different merits, disadvantages, complexi-

ties and areas of applicability. These are considered below:

• On additional dofs and internal variables in fracture methods:

Only the Mesh-free Galerkin type of methods (EFG-FEM) may be considered

naturally able to represent cracks without the inclusion of enrichment degrees of

freedom. Due to the meshless nature of the method, growing cracks are modelled

simply by extending the existing free surfaces as an artifice to represent the loss

of interaction between points at either side of a propagating crack (Belytschko

et al., 1995, 1994). On the other hand, it has been reported that a large number

of integration points (nodal locations which float without depicting connectivity

of elements) is needed to represent cracks accurately (Belytschko et al., 1994).

An alternative to this is adaptive Discontinuous Galerkin discretisations (Bird

et al., 2022), which are able to adapt the mesh at the inter-element bound-

aries to enable a new crack path. Other methods require additional degrees of

freedom to cope with discontinuities, either in i) a (semi) direct form (Linder

and Armero, 2007; Oliver et al., 2003; Simo et al., 1993) by adding dofs to the

standard displacement field (e.g. nodal enrichment to account for displacement

jumps and crack-tip enrichment with asymptotic fields (Belytschko and Black,

1999), or by adding Cosserrat’s rotational degrees of freedom (Mühlhaus and

Vardoulakis, 1987)), or in ii) an indirect form by accounting for the spatial

localisation of deformation through weighting functions (Pijaudier-Cabot and

Bažant, 1987) or a diffusive type representation of macroscopic damage employ-

ing the second gradient of a damage/plasticity/crack-phase scalar variable (De

Borst, 1991; Miehe et al., 2010c; Sluys et al., 1993).

• On algorithmic efficiency of fracture methods:

Hereby, it is acknowledged that overall computational costs shall be also taken

into account when analysing computational efficiency; nonetheless, it is recog-

nised from the literature of development of fracture methods, that computa-

tional cost is rarely reported. Some exceptions can occur, e.g. for problems

with high computational demand such as 𝐹𝐸2-based multiscale fracture meth-

ods (Desrues et al., 2019). On the other side, equilibrium convergence rates are

regularly reported to cope with computational efficiency. Although equilibrium

convergence rates tend to be reported, common practice is that the authors

do not discuss to the detail required the convergence of failure patterns with
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respect to refinement of the mesh, or at least one or the other measure of con-

vergence is not considered. Exceptions can be found when there are enough

particular assumptions so that error estimates can be computed, e.g. fracture

propagation analyses through an elastic body (Bird et al., 2022, 2019). It can be

highlighted that most fracture methods present a global algorithmic efficiency

(e.g. convergence rate of a global Newton’s iteration over an increment) better

than linear convergence rate, even if methods are derived using consistently lin-

earised tangents (Simo and Taylor, 1985) due to the complex changes of state

caused by multiple cracks propagating.

• On the Mesh and/or Meshless nature of fracture methods:

Although meshing can be a modest overhead time-cost in BVPs of simple ge-

ometries, this is not true for structures with complex geometries. Hughes et al.

(2005) highlighted the inefficiency of using a CAD model for the geometry that

is different from the geometric model that is used for the analysis. He and co-

workers proposed using the same NURBS-based functions for both the geometry

and the analysis, and the idea is being investigated worldwide. Although the

idea is of general use in Finite Elements, this idea has also started to resonate

among developers of methods for fracture propagation (De Borst, 2018). In this

regard, a methodology with least computational overhead due to mesh refine-

ment sounds appealing. Such methodologies that include the least effort for

crack propagation problems include X-FEM (Agathos et al., 2016; Belytschko

and Black, 1999; Moës et al., 1999) and EFEM (Jefferson and Freeman, 2022;

Oliver et al., 2006; Simo et al., 1993) among variants of these approaches.

• On the use of an internal length in fracture methods:

Methods for fracture propagation often introduce a numerical or physical length

scale, in order to preserve objectivity with respect to mesh refinement upon

deformation localisation (Belytschko and Black, 1999; Belytschko et al., 1988,

1994; De Borst, 1991; Linder and Armero, 2007; Miehe et al., 2010c; Moës et al.,

1999; Mühlhaus and Vardoulakis, 1987; Oliver et al., 2003; Pijaudier-Cabot and

Bažant, 1987; Simo et al., 1993). However, the links of this internal length to a

physical mechanism is rather vague and most numerical techniques tend to use

it a numerical regularisation artifice. In a multiscale setting, it is yet an answer

to be found whether multiple internal length parameters are needed for each of

the length-scales being coupled (Coenen et al., 2012; Geers et al., 2017).
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2.3.2 Finite Elements and embedded strong discontinuities

Various forms of deriving Finite Elements with embedded strong discontinuities exist

in the literature, and each one with different assumptions on the transfer of rigid

body kinematics due to fracture at the element-level (Jirásek, 2000). A common

assumption is the split of the deformation field to allow a jump within the element

domain as illustrated in Figure 2.10 for various types of dof-based enrichment.
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Figure 2.10: Enrichment of a continuum for fracture modelling with strong disconti-
nuities by Oliver et al. (2006): EFEM (left), XFEM (right).

In this regard, the split of the deformation and its associated strain field reads as

follows:

Decomposition of deformation field: u = u𝑐 +MΩ(x) ⊗ [|u|]
Fracture-enriched strain field: 𝜺 = ∇𝑠

(
u𝑐 +MΩ(x) ⊗ [|u|]

) }
(2.6)

where the scalar-valued MΩ(x) function takes various forms, e.g. of the form

of a Heaviside function summed with other trial smooth functions (Oliver, 1995) or

simply a Heavisde function (Oliver et al., 2003), the sum of a Heaviside function and

a linear combination of shape functions (Regueiro and Borja, 1999). There is debate

on whether there is a better type of definition of the scalar-valued function MΩ(x),
although it is clearly manipulated towards the type of final solution of the BVP, which

is solved either as a condensation scheme by eliminating cracking dofs internally at

the element-level, or by solving coupled equations to obtain additional dofs due to

fracture in a monolithic algebraic form. A few critical observations are made towards

various solutions, i.e. through nodal and elemental enrichment in terms of the merits

and disadvantages of one or the other. Such analysis is important towards extending

a fracture-enriched FEM into a multiscale framework.
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2.3.2.1 Nodal enrichment FEM with embedded discontinuities

The variational BVP that is solved for the rate of the displacement field ¤u ∈ 𝑉[, takes

the following form (Oliver and Huespe, 2004):

𝑉𝑛 :=
{
𝜼 = �̄� + HΩ�̃�; �̄�, �̃� ∈ [H 1(Ω)]𝑛dim

}
(2.7)∫

Ω

∇𝑠𝜼0 : ¤𝝈𝑑Ω −
[ ∫

Ω

𝜼0 · ¤𝒃𝑑Ω +
∫
𝜕Ω𝜎

𝜼0 · ¤𝒕𝑑Γ
]
= 0 ∀𝜼0 ∈ 𝑉0

[ (2.8)

where the customised FE expression for the displacement rate and the strain rate

field read as follows:

Total nodal displacement rate: ¤uel = N ¤d +N∗ ¤𝜷
FEM-based fracture-enhanced strain rate: ¤𝛆 = B ¤d +G ¤𝜷

}
(2.9)

where linearisation of the variational problem in Equation 2.8 using the FE dis-

cretisation in Equation 2.9 leads to the coupled matrix system in Equation 2.10.[
K𝑑𝑑 K𝑑𝛽

K𝛽𝑑 K𝛽𝛽

] { ¤d
¤𝜷

}
=

{ ¤fd
¤f𝛽

}
(2.10)

Note that the loading vectors in array form ¤f𝑑 and ¤f𝛽 are computed in standard

form by using the standard N and modified shape functions N∗, respectively. Note

that an additional requirement to integrate the stiffness terms is to obtain specific

integration rules over each of the positive Ω+ and negative domain Ω− of the element,

and therefore the initiation and the propagation direction of the discontinuity must be

known (Belytschko and Black, 1999; Moës et al., 1999). In recent, work the tracking

of the evolving discontinuities has been proposed to be refined by level-sets (Agathos

et al., 2016).

Note that depending on the assumptions made by manipulating the variational

statement in Equation 2.8, the Finite Element solution of the equilibrium equation in

Equation 2.10 may differ slightly. Nonetheless, recent work shows that the final matrix

system for and enhanced FEM with nodal enrichment and embedded discontinuities is

coupled in a similar structure as presented in (Borja, 2008; Liu, 2015). Since the right

hand side vector in Equation 2.10 has each of the entries filled with general real values,

and the unknowns are strictly unique at shared nodes, there is no opportunities for

element-based condensation of fracture dofs, as opposed to EFEM solution techniques

(Oliver et al., 2006). In this regard, as fracture propagates new dofs are solved for in

the global incremental iterative solution.
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2.3.2.2 FEM quasi-static condensation of embedded discontinuities

The variational BVP that is solved for the rate of the displacement field ¤u ∈ 𝑉[, takes

the following form (Borja, 2008; Oliver and Huespe, 2004), including an expression

for the continuity of tractions along nucleated discontinuity surfaces:

𝑉𝑛 :=
{
𝜼 = �̂� +MΩ�̃�; �̄�, �̃� ∈ [H 1(Ω)]𝑛dim

}
(2.11)

∫
Ω\Γ
∇𝑠�̂�0 : ¤𝝈𝑑Ω −

[ ∫
Ω\Γ

�̂�0 · ¤𝒃𝑑Ω +
∫
𝜕Ω𝜎

�̂�0 · ¤𝒕𝑑Γ
]
= 0 ∀�̂�0 ∈ 𝑉0

[ (2.12)

∫
𝜕Γ

�̃� · ( ¤𝝈Γ − ¤𝝈Ω\Γ) · n𝑑Γ ∀�̃� ∈ 𝐿2(𝜕Γ) (2.13)

where the tailored FE expression for the displacement rate and the strain rate

field read as follows:

Total nodal displacement rate: ¤uel = N ¤d +M𝛽
¤𝜷

FEM-based fracture-enhanced strain rate: ¤𝛆 = B ¤d +G ¤𝜷

}
(2.14)

The Finite Element solution in rate form takes the expression in Equation 2.15.[
K𝑑𝑑 K𝑑𝛽

K𝛽𝑑 K𝛽𝛽

] { ¤d
¤𝜷

}
=

{ ¤fd
0

}
(2.15)

where the zero vector component in the right-hand side of Equation 2.15 allows for

element-based quasi-static condensation of fracture dofs. The algorithmic advantage

of EFEM vs XFEM methods lies therefore in the opportunities for quasi-static con-

densation of fracture dofs (Armero, 2012; Freeman et al., 2020; Jefferson and Freeman,

2022; Oliver et al., 2006).

This brief review of mesh-based methods with strong discontinuities (nodal and

element-based enrichment), which do not require remeshing when cracks form, sug-

gests that the methods are well-suited to be extended to cope with general inelastic

consitutive formulations, e.g. including constitutive homogenisation type of formula-

tions as defined in Section 2.2.

The next Section describes a short overview on numerical enhancement in Finite

Element methods with embedded strong discontinuities which enable regularisation

at the constitutive level, opposed to element-based treatment through additional dofs.
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2.3.3 Embedded discontinuities within material points

The first attempt to address quasi-brittle response enclosed in a computational frame-

work with embedded deformation bands was by Pietruszczak and Mróz (1981). In

this computational framework, (elastic) material behaviour (constitutive response at

the Gauss Point level) was considered in a combined fashion with a (plastic) localised

response in a narrow band of finite thickness, with a formulation derived at the ele-

ment level, and applied to Boundary Value Problems under plain strain settings. The

proposed formulations, where derived and implemented in Constant-Strain Triangular

(CST) elements.

In Pietruszczak and Mróz (1981), the occurrence of plasticity entails plastic strain

increments ¤Y𝑝
Γ

within the localised band only, complemented with a rigid body motion

and elastic straining of the bulk material. In this approach the overall constitutive

relationship is obtained by considering the homogenised plastic strain increment as the

average on an RVE (Reference Volume Element) of the same dimensions of a Finite

Element, i.e. ¤Y𝑝 =< ¤Y𝑝 >𝑅𝑉𝐸 1. A sketch of the splitting criteria of failure modes for

applying homogenisation of strain fields at the integration point with volume Ω𝑚 × 𝑡𝑔

(with 𝑡𝑔 being the out-of-page thickness) is shown in Figure 2.11.
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Figure 2.11: Sketch of failure mode splitting at the integration point level, as employed
for the homogenisation-based failure analysis method with embedded discontinuities
by Pietruszczak and Mróz (1981), where volume fractions are considered for averaging.

In this contribution only constant strain elements were used, then an equivalent

1< · >𝑅𝑉 𝐸 denotes the average on the volume of the Reference Volume Element
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length is defined as 𝑎 =
√
Ω𝑚. The ratio of the volume undergoing plastic straining

Ω𝑚
Γ

( i.e. the localised band of finite thickness) to the volume of the element Ω𝑚

defines the homogenised plastic strain increment ¤𝜺𝑝 =
Ω𝑚

Γ

Ω𝑚
¤𝜺𝑝
Γ
, where

Ω𝑚
Γ

Ω𝑚
=

𝑡𝑏
𝑎
· 1
cos(𝛼𝑏)

and 𝑡𝑏
𝑎
= [𝑏 is a geometric parameter that denotes the ratio of the deformation band

thickness 𝑡𝑏 to equivalent element length
√
Ω𝑚. Upon some derivations including

the consistency condition of the plastic straining band, the homogenised constitutive

relationship takes an incremental form after the application of rotation operations

into a Cartesian reference:

¤𝝈 = T𝑇 ·
{
Ω𝑚

Γ

Ω𝑚

1

𝐻

(
𝜕 𝑓Γ

𝜕𝝈𝚪

)
⊗

(
𝜕 𝑓Γ

𝜕𝝈𝚪

)
+ 𝑫−1𝑒

}−1
·T · ¤𝜺 (2.16)

where ¤𝝈 denotes the Cauchy stress rate in vector form, ¤𝜺 is the strain rate vector,

T stands for a rotation operator in matrix form, 𝐻 is the hardening modulus, 𝑫𝑒

stands for the (isotropic) Elasticity matrix, 𝝈Γ is the stress vector that characterizes

the localised band response in local coordinates, 𝑓Γ = 𝑓Γ (𝝈Γ, 𝛽) stands for the yield

surface of the localised band in local coordinates, with 𝛽 being the softening param-

eter, and (·) ⊗ (·) denotes outer vector product. In this formulation, the plain strain

matrix representation of the inverse of the isotropic elasticity stiffness follows:

𝑫−1𝑒 =
1

𝐸


(1 − a2) −a(1 + a) 0
−a(1 + a) (1 − a2) 0

0 0 2(1 + a)

 (2.17)

where 𝑫−1𝑒 = 𝑪𝑒 with 𝑪𝑒 being the elastic compliance matrix in plain strain set-

ting, and 𝐸 and a stand for Young’s Modulus and Poisson’s ratio, respectively.

Note that the aforementioned approach does not take into account the position

of the shear band with respect to the element, and only a volume-based averaging

procedure is used upon localisation. Therefore the averaging procedure only takes

into account the inclination of the localisation band 𝛼𝑏, since the inclination affects

the volume ratio Ω𝑚
Γ
/Ω𝑚.

Further development of FEMs with embedded localisation bands at the constitutive

level has been undertaken in Belytschko et al. (1988); Haghighat and Pietruszczak

(2016); Klisinski et al. (1991); Simo et al. (1993); Zhao et al. (2018).
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2.4 Advanced micro-macro fracture models

A review of latest computational developments for multiscale quasi-brittle fracture

propagation is presented. In particular, attention is paid to models that consider

coupling between two length-scales, i.e. micro to macroscopic length-scales. Methods

which employ Finite Elements with strong-discontinuities are directly reported.

The Finite Element method with strong discontinuities (either through XFEM

nodal enrichment or element-wise treatment of embedded strong discontinuities) has

been used recently in various multi-level forms, which are often implemented nu-

merically as multi-grid schemes, with the aim of representing physical phenomena

occurring across scales, see e.g. Coenen et al. (2012); Holl et al. (2014); Karamnejad

and Sluys (2014); Linder and Raina (2013); Loehnert and Belytschko (2007); Lu et al.

(2016, 2017); Nguyen et al. (2011); Oskay et al. (2020); Raina and Linder (2015); Toro

et al. (2014). Indeed, an unresolved dilemma in multiscale modelling, lies in the inter-

action of various length-scales during and after the onset of mechanical instabilities,

such as fracture and progressive failure of structures (Geers et al., 2017). A brief

description of what has been achieved in the last two decades is presented below.

Loehnert and Belytschko (2007) proposed a multiscale projection method for mi-

cro and macrocracks occurrence, where cracks at different lenght-scales where resolved

using the Extended Finite Element approach (XFEM) (Belytschko and Black, 1999;

Moës et al., 1999). Nguyen et al. (2011) constructed RVEs to represent the up-

scaled response of localised zones for a class of quasi-brittle materials, and tested the

method for modelling embedded cohesive and adhesive macrocrack response against

direct numerical simulations. Coenen et al. (2012) proposed new boundary conditions

for RVEs to account for directional localisation of microstructures. Toro et al. (2014)

presented a two-scale based formulation for microstructured effective continua, using

strong discontinuity kinematics enhancement for representing the effective macro-

scopic localised response and standard RVEs for the non-localised continua. Holl

et al. (2014) proposed a three-dimensional multiscale fracture propagation method

based on XFEM strategies. Raina and Linder (2015) described a numerical scheme

for up-scaling the response of non-wovens during failure in the finite deformation

range, using a micromechanical model at the effective continua and strong discon-

tinuity kinematics enhancement at the macro-scale. Lu et al. (2016) presented a

multiscale methodology using embedded discontinuities at multiple scales, and up-

graded the method to cope with deformation localisation under coupled fluid-flow

and solid deformation in porous solids (Lu et al., 2017). Oskay et al. (2020) proposed
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a model reduction technique to multiscale fracture propagation in composites, where

micro-scale deformation upon fracture is tracked efficiently using the philosophy of

eigen-deformation.

In addition, a number of authors simulated diffuse fracture phenomena at the

microstructural level during macroscopic fracture in a more classical form, i.e. mak-

ing use of single-scale damage/plasticity frameworks, which are most of the times

phenomenologically-driven. In these contributions, authors often pay more attention

to the enhancement of numerical schemes for fracture modelling and so-called regu-

larisation strategies, given that macro-Continuum level theories for a diverse range of

materials are advanced enough in the literature, e.g. Beese et al. (2018); Duda et al.

(2015); Neuner et al. (2020); Saksala et al. (2015, 2016); Wang and Waisman (2016),

among others. Clearly, these simplified approaches possess advantages in terms of

computational cost, relative to those of multi-grid fracture approaches (Coenen et al.,

2012; Feyel and Chaboche, 2000; Kouznetsova et al., 2002).

Among other attempts to account for microcracking in quasi-brittle media, au-

thors have explored the explicit use of penny-shaped embedded fractures within un-

structured 3D FE meshes, where appropriate frictional contact rules are taken into

account (Nejati et al., 2016).

2.4.1 Multi-level Embedded Strong Discontinuity FEM

Linder and Raina (2013) used the Embedded strong discontinuity method (EFEM)

across adaptive zones of refinement, which then provide the flexibility to cope with

the propagation of macroscopic fracture surfaces, as well as, multiple crack-branching

surfaces typically describing phenomena in more detailed as it would occur in the

microscale (e.g. microcracking and fragmentation) as illustrated in Figure 2.12.

In the multi-level approach by Linder and Raina (2013), there are sub-sets of BVPs

following a domain decomposition, which incorporates the standard EFEM methodol-

ogy at the sub-domain providing a greater resolution to capture even multiple cracks

typical of dynamically-triggered crack branching, while condensation of crack dofs is

kept for efficiency. In this regard an additive decomposition of the deformation field

is used as shown in Equation 2.18.

Local displacement field: uSBVP(x) = u(x) + ũ( [|u|]SBVP) in sub-domain Ω

Local strain field: 𝜺SBVP = 𝜺(x) + 𝜺( [|u|]SBVP) in sub-domain Ω

}
(2.18)
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(a) Multiscale Boundary Value Problem with EFEM
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(b) Multi-level discretisation with EFEM

Figure 2.12: Sketch of typical mechanical components of a BVP for modelling quasi-
brittle solids by multi-level EFEM (Linder and Raina, 2013): multiscale Boundary
Value Problem (top), multi-level discretisation with EFEM (bottom).

where u(x) and 𝜺(x) pertain to the interpolated displacement and strain field from

the global solution, and the additional components ũ( [|u|]SBVP) and 𝜺( [|u|]SBVP)
are computed to account for the presence of strong discontinuities across elements in

this sub-domain Ω. Where the recovered stresses within any element the sub-domain

Ω follow from the enhanced local strain that accounts for the potential presence

of strong discontinuities, and interpolated displacements in pseudo-nodes follows a

kinematic constraint as shown in Equation 2.19.

Local stress recovery: 𝝈 = 𝑫𝑒 : 𝜺SBVP in Ω

Kinematic constraint: uSBVP(x𝑖𝑛𝑜𝑑𝑒) = 𝜙el𝑘𝑐 (x𝑖𝑛𝑜𝑑𝑒,u
el, [|u|] (xck)) along 𝜕Ω

}
(2.19)
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Note that the solution of the SBVP is then complete as the whole boundary for the

sub-domain has known displacements and internal nodes are in equilibrium with body

and inertial forces. In the case of dynamic analysis, the procedure of condensation

and solution can then follow the method by Armero and Linder (2009). The solution

of the sub problem is then nested within the global solution of the main BVP, which

can create theoretical and numerical challenges during the up-scaling stage.

In other important attempts to cope with multiscale response, the embedded

strong discontinuity has served as the basis for crack computations while other mech-

anistic components have been incorporated to account for response across scales.

Tjioe and Borja (2015) used a crystal plasticity framework combined with embedded

discontinuities (which accounted for microcracks) to capture the response of failing

quasi-brittle geo-materials, where the main components followed a natural sequence

from the previous work on geo-material bifurcation presented in Borja (2002); Borja

and Aydin (2004); Foster et al. (2007). Similarly, the Distinct Element method (Cun-

dall and Strack, 1979) has been coupled hierarchically (see e.g. Phillips et al. (1999))

with the embedded strong discontinuity method to cope for the multiscale response

of granular geo-materials (Andrade and Tu, 2009; Chen et al., 2011).

2.4.2 Micromechanical failure modelling with cohesive-cracks

The framework presented by Kaczmarczyk and Pearce (2009), is considered first in

this section. Such a Finite Element scheme was proposed for modelling quasi-brittle

solids with heterogeneities, although by direct numerical simulation of inclusions,

which arguably makes the method computationally inefficient for simulating highly

heterogeneous solids, opposed to periodic homogenisation solutions for highly het-

erogenous solids (see e.g. Terada et al. (2000)). In addition, matrix as well as in-

clusion materials were considered as hyper-elastic with non-linearities coming from

displacement discontinuities at the inter-element boundaries only (Tijssens, 2001; Xu

and Needleman, 1994). Consequently, cohesive-crack zone elements are placed a pri-

ori only at element boundaries, i.e. are placed when mesh is generated originally.

Hence, fracture propagation paths are mesh-dependent, which was proposed to be

alleviated to some extent by generating random triangular meshes. In this mixed

FE formulation, two primary fields are considered, namely, the stress field 𝝈 which

is interpolated within an element domain Ω𝑒𝑙 , and the displacement field 𝒖 which is

approximated only at the element boundaries as illustrated in Figure 2.13.
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(a) Domain discretisation in a mixed FE formulation with inter-element cohesive-
cracks
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(b) Hybrid element with deformed modes (left), cohesive-crack softening law (right)

Figure 2.13: Sketch of typical mechanical components of a BVP for modelling het-
erogenous solids by mixed Finite elements (Kaczmarczyk and Pearce, 2009): a) mesh
to account for heterogeneities and inter-element cohesive cracks generated a priori,
b) element to illustrate different deformed modes based on separate interpolation of
stress and displacement fields, and inter-element cohesive crack softening law.

The governing equations for a BVP employing a mixed FE formulation reads as

in Equation 2.20.

Mechanical balance: LT · 𝛔 = 0 in Ω𝑒𝑙

Constitutive relation: 𝛔 = D𝑒 · 𝛆 in Ω𝑒𝑙

Kinematics relation: 𝛆 = L · u in Ω𝑒𝑙

Natural boundary conditions: Gn · 𝛔 = ť on 𝜕Ωel
𝜎

Essential boundary conditions: u = ǔ on 𝜕Ωel
𝑢


(2.20)
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where 𝛔 stands for the vectorised form of Cauchy stress which is interpolated

within the element domain, 𝛆 = 𝛆𝑒 is the vector form of strain components which

is equivalent to its elastic part at all times (De Freitas, 1998; Jirousek and Zielinski,

1993), u stands for the boundary-approximated displacement field which can be inter-

polated through various forms as illustrated in Figure 2.13b, ť represents the imposed

tractions on 𝜕Ω𝑒𝑙
𝜎 given, while ǔ defines the imposed boundary displacements on Ω𝑒𝑙

𝑢

noticing that 𝜕Ω𝑒𝑙
𝜎 ∩ 𝜕Ω𝑒𝑙

𝑢 = ∅, L is a matrix filled-in with differential operations and

the Gn matrix contains cartesian projections of the unit vector n𝜕Ω𝑒𝑙𝜎 = [n𝑥 , n𝑦]T. In

particular, the matrices L =

(
𝜕𝑥 0 𝜕𝑦
0 𝜕𝑦 𝜕𝑥

)T
and Gn =

(
n𝑥 0 n𝑦
0 n𝑦 n𝑥

)
are used under

2-D geometrical settings.

Note that displacement jumps [|u|]𝐿 =
[
[|u|]𝑛, [|u|]𝑠

]T
, which are defined in terms

of local normal and shear components, are activated upon fracture detection as il-

lustrated with a softening curve in Figure 2.13b. In particular, strong discontinuities

are only allowed through inter-element boundaries by the activation of cohesive-crack

line models, in the case of 2D implementations as found in Kaczmarczyk and Pearce

(2009). Note that in this mixed formulation with dofs at the face instead of element

corners, a crack zone initiation can occur across one-element width, while in standard

FEM formulations at least two elements play a role as illustrated in Figure 2.14.

It is the local displacement jumps [|u|]𝐿 that define local tractions through a

bi-linear softening law, which reads mathematically as follows:

Softening rule: | |t| |𝑐𝑘 =


𝜎𝑐𝑘1 − 𝑓𝑡
^𝑐𝑘1

^𝑐𝑘 + 𝑓𝑡 if ^𝑐𝑘 ≤ ^𝑐𝑘1
𝜎𝑐𝑘1

^𝑐𝑘1 −^
𝑐𝑘
2

(
^𝑐𝑘 − ^𝑐𝑘2

)
if ^𝑐𝑘1 < ^𝑐𝑘 ≤ ^𝑐𝑘2

0 if ^𝑐𝑘 > ^𝑐𝑘2

Loading function: Φ𝑐𝑘

(
[|u|]𝐿 , ^

𝑐𝑘
)
=

√︃
[|u|]𝑛2 + 𝛼𝑐𝑘 [|u|]𝑠2 − ^𝑐𝑘


(2.21)

where ^𝑐𝑘1 = 𝐺 𝑓 / 𝑓𝑡 , ^𝑐𝑘2 = 10^1, 𝜎
𝑐𝑘
1 = 0.1 𝑓𝑡 and | |t| |𝑐𝑘 =

√︁
t2𝑛 + 𝛼𝑐𝑘t2𝑠 . Note that the

aforementioned bi-linear softening model becomes complete with three material prop-

erties, namely, tensile strength 𝑓𝑡 , fracture energy 𝐺 𝑓 and the weighting factor 𝛼𝑐𝑘 ,

which factors the shear displacement jumps to be taken into account for computing

the decreased inter-element cohesive-crack strength | |t| |𝑐𝑘 .
Seeking further developments of the formulation presented by Kaczmarczyk and

Pearce (2009), a Finite Element framework that approximates the effects of ellipsoidal

inclusions in Finite Element subdomains has been proposed by Novák et al. (2012),

with the aim to present an efficient Micomechanics-enhanced Finite Element method
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(a) Crack initiation in a mixed FE formulation with inter-element cohesive-cracks
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(b) Crack initiation in a standard FE formulation with inter-element cohesive-cracks

Figure 2.14: Sketch of crack propagation analysis by employing inter-element
cohesive-cracks zones, where minimum number of elements playing a role varies for
a mixed FEM (Kaczmarczyk and Pearce, 2009; Tijssens, 2001; Xu and Needleman,
1994), when compared to standard FEM.

for modelling heterogeneous materials. The highlights of this formulation is that the

mechanical inclusions are not solved explicitly within the subdomains, the so-called

RVE, but approximations on the perturbations of the macroscopic Finite Element

fields are done using closed-form Eshelby’s solutions (Eshelby, 1957, 1959). These

perturbations on macroscopic fields were enclosed within the equivalent-inclusion

method (Mura, 1987). Interaction between inclusions was approximated using an

iterative self-compatibility algorithm, were the eigen-fields within inclusions were

considered as constant but forced-to-be compatible with the average macrostrain.

In Novák et al. (2012), the finite element formulations were first discussed on how

they may be adapted from a Partition of Unity method (Belytschko and Black, 1999;
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Moës et al., 1999). Nevertheless, the authors pointed out the necessity to increase the

local degrees of freedom by 18 additional degrees in each node per inclusion within

the domain. Such method would have been computational expensive and instead

the hybrid-Trefftz stress element formulation (Kaczmarczyk and Pearce, 2009) was

adopted as an alternative.

2.4.3 Strong-discontinuity zones in micromechanical consti-
tutive laws

Following the idea that an embedded deformation band can be cast in a classical quasi-

brittle macro-Continuum directly into the constitutive-level under certain simplifying

assumptions as revised previously from the work of Pietruszczak and Mróz (1981)

in Section 2.3.3, others have attempted to cast an embedded localisation zone into

a homogenised quasi-brittle macro-continuum. key feature is the coupling of the

embedded localisation zone with evolving penny-shaped microcracking zones in the

bulk before macrocracking (Zhao et al., 2018).

In the study by Zhao et al. (2018), a slightly modified version of strain averag-

ing procedure (Haghighat and Pietruszczak, 2016; Moallemi and Pietruszczak, 2017;

Nguyen et al., 2012, 2014) has been used, opposed to simple averaging procedures as

presented in Pietruszczak and Mróz (1981), now including a more rigorous analysis of

the effect of a sharp embedded localisation zone at the regularised constitutive-level,

which is referred here as a FEM/CLED strategy (Finite Element methodology em-

ploying a constitutive law enriched locally with an embedded strong discontinuity).

The strong discontinuity 𝜕Γm applies a jump [|u|] in the displacement field u within

the volume Ωm considered for averaging as illustrated in Figure 2.15. Accordingly,

this method seeks a regularisation at the quadrature-points, by embedding a sharp

macrocrack 𝜕Γm within Ωm, opposed to an element-level enrichment in advanced

fracture modelling techniques such as EFEM (Armero and Linder, 2009; Oliver et al.,

2006, 2003; Simo et al., 1993).

Therefore, the following mathematical expression applies for the displacement and

strain field {u, 𝜺} within the RVE-level (volume used for averaging at quadrature-

point), which is illustrated as well in Figure 2.16.

Strong form of displacement field: u = u𝑐 + HΩ(x) ⊗ [|u|] ∀x ∈ Ωm

Strong form of strain field: 𝜺 = ∇𝑠
(
u𝑐 + HΩ(x) ⊗ [|u|]

)
∀x ∈ Ωm

}
(2.22)

where ∇𝑠 (·) = 1
2

(
∇(·) + (∇(·))T

)
stands for the symmetric part of the gradient of

a field, and HΩ(x) =
{

1 ,∀x ∈ Ωm+

0 ,∀x ∈ Ωm− is a Heaviside function within the RVE.

Chapter 2. Literature review: Micromechanics & quasi-brittle fracture 35



2.4. Advanced micro-macro fracture models

∂W

RVE = W

m

m

∂W

RVE = W

m

m

distributed
microcraking

deformation
localisation

nGm

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
S

T
U

D
E

N
T

 
V

E
R

S
I
O

N

PRODUCED BY AN AUTODESK STUDENT VERSION

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
S

T
U

D
E

N
T

 
V

E
R

S
I
O

N

PRODUCED BY AN AUTODESK STUDENT VERSION

Figure 2.15: Sketch of a quasi-brittle RVE with embedded strong discontinuities
at the constitutive-level: distributed microcracking before deformation localisation
(left), onset of deformation localisation by strong discontinuity assumption (right).
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Figure 2.16: Sketch of a quasi-brittle RVE with embedded strong discontinuities at
the constitutive-level: displacement and strain field {u, 𝜺} distribution over the RVE.

Further elaboration leads to the volume-averaged strain field 𝜺 over the RVE-level,

used for computations at the quadrature points in Equation 2.23.

Overall strain: 𝜺 = 1
| |Ωm | |

∫
Ωm

(
∇𝑠u𝑐 + HΩ(x) ⊗ ∇𝑠 [|u|]︸                          ︷︷                          ︸

regular part

+ ([|u|] ⊗ (𝛿Γm ⊗ nΓm))𝑠︸                         ︷︷                         ︸
unbounded part

)
𝑑Ωm

(2.23)
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where 𝛿Γm is the scalar-valued surface-type Dirac delta function (with units of the

reciprocal of length), which explodes (𝛿Γm → ∞) for every position right over the

discontinuity surface 𝜕Γm and vanishes everywhere else (𝛿Γm → 0), and nΓm is the

unit normal to the crack surface 𝜕Γm. It is emphasised, that considering the RVE-

domain is small enough, then changes of the displacement gradient fields ∇𝑠u𝑐 and

∇𝑠 [|u|] within Ωm are negligible, which yields to further simplification. Additional

elaboration, using the identity 𝛿Γm (x ∈ 𝜕Γm) · 𝑑𝑉Γm = 𝑑𝑆Γm over the incipient volume

𝑑𝑉Γm that surrounds the sharp discontinuity surface 𝜕Γm, leads to a regularisation of

the integral term that involves 𝛿Γm (x) as shown in Equation 2.24.

𝜺 ≡ ∇𝑠u𝑐 + ∇
𝑠 [|u|]
| |Ωm | |

∫
Ωm+∪Ωm− HΩ(x)𝑑Ωm + ( [|u|]⊗nΓm )𝑠

| |Ωm | |
∫
Γm
𝛿Γm (x ∈ 𝜕Γm) · 𝑑𝑉Γm

≈ ∇𝑠u𝑐 + | |Ω
m+ | |

| |Ωm | | ∇
𝑠 [|u|] +

∫
𝜕Γm+ 𝑑𝑆Γm

| |Ωm | | ( [|u|] ⊗ nΓm)𝑠

≈ ∇𝑠
(
u𝑐 + | |Ω

m+ | |
| |Ωm | | [|u|]

)
+

(
𝐴Γm+
| |Ωm | | [|u|] ⊗ nΓm

) 𝑠
≈ ∇𝑠

(
u𝑐 + bΓm · [|u|]

)
+

(
1
𝑙Γm
[|u|] ⊗ nΓm

) 𝑠
≈ ∇𝑠

(
u𝑐 + bΓm · [|u|]

)
+

(
gΓm ⊗ nΓm

) 𝑠
(2.24)

where 𝑙Γm = | |Ωm | |/𝐴Γm+ represents the characteristic length that regularises defor-

mation localisation within the RVE-level, bΓm = | |Ωm+ | |/| |Ωm | | is the volume fraction

for the positive part of the domain, and gΓm = (1/𝑙Γm) · [|u|] considers a normalised

measure of the displacement jump [|u|].
Note that the first term ∇𝑠 (u𝑐+bΓm · [|u|]) ≈ ∇𝑠u𝑐 occurring in the bulk material(o

bulk domain) can be approximated by the behaviour of a homogenised quasi-brittle

macro-continuum. In Zhao et al. (2018), the response of this continuous strain com-

ponent ∇𝑠u𝑐 = 𝜺𝑒 + 𝜺Γm,𝑑 is then split into two components, with 𝜺𝑒 = 𝑫−1𝑒 : �̄�

and 𝜺Γ
m,𝑑

being micromechanics based, by employing numerical homogenisation (An-

drieux et al., 1986; Pensée et al., 2002; Zhao et al., 2016; Zhu et al., 2008a,b, 2011;

Zhu, 2017) and the Eshelby’s equivalent inclusion method (Mura, 1987) accounting

for penny-shaped microcracks growing in number, according to the microcracking

density parameter ℱ
𝑚
𝛼 (Budiansky and O’Connell, 1976), in various direction sets

𝛼𝑚 = {𝛼𝑚,1, 𝛼𝑚,2, 𝛼𝑚,3...𝛼𝑚,𝑛}.
On the other hand, the regularised-strain term (gΓm ⊗nΓm)𝑠 ≡ 𝜺Γ

m,𝑙
represents the

localised strain contribution due to the presence of a sharp failure surface embedded
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at the RVE-level. Therefore, the homogenised strain 𝜺 could be re-formulated as

follows for a micromechanical quasi-brittle solid venturing deformation localisation

at the RVE-level as shown in Equation 2.25.

𝜺 = 𝑫−1𝑒 : �̄� + 𝜺Γm,𝑑︸              ︷︷              ︸
distributed microcracking

+ 𝜺Γ
m,𝑙︸︷︷︸

Localised fracture

(computation at quadrature points) (2.25)

Discussion on limitations of the model by Zhao et al. (2018): Note that

the implementation by Zhao et al. (2018) allows for evaluation at the quadrature-level,

ensuring regularisation of the load-displacement response for simple paths, although

the interaction between the phenomena at the homogenised quadrature points and

that occurring at the element-level has not yet being reported to be successful.

2.4.4 Micro-to-macro fracture transition in multiscale FEM

Some of the criteria used to detect macrocracks and to establish adequate fracture

transition, from microcracking to fully developed localised fracture, are discussed.

One of the criterion for macro-scale cracking detection as used in various pub-

lications is based on a measure of macroscopic stress fields (e.g. Rankine’s postu-

late of cracking propagating perpendicular to the major principal stress direction)

(Haghighat and Pietruszczak, 2016; Kaczmarczyk and Pearce, 2009; Moallemi and

Pietruszczak, 2017). In this context, the stress criterion 𝑡𝜎,𝑐𝑘 (𝜎1) > 𝜎𝑐𝑟𝑖𝑡 shall be met

for crack detection, with evaluation typically at the element-level (Haghighat and

Pietruszczak, 2016; Moallemi and Pietruszczak, 2017). Such a criterion can be used

in the activation of fracture interfaces, e.g. in inter-element cohesive-crack surfaces

(Tijssens, 2001; Xu and Needleman, 1994), or to propagate embedded macrocracks in

micromechanics-enriched methodologies with focus on strong-discontinuities having

an effect at the constitutive-level (Moallemi and Pietruszczak, 2017). Note that such

a criterion can be inaccurate in cases of severe cracking, and statistical algorithms for

smoothening crack patterns have been proposed as remedy, with algorithm evaluation

within a specified cracking-related radius 𝑅𝑠,𝑐𝑘 . In addition, geometric corrections can

be imposed to macrocack direction when incident macrocracks meet in one element

(Alfaiate et al., 2003, 2002; Freeman et al., 2020; Moallemi and Pietruszczak, 2017)

as illustrated in Figure 2.17.

The usefulness of coupling semi-analytical micromechanical homogenisation schemes

with strong discontinuities has been further exploited at the constitutive-level in Zhao

et al. (2018), by using the directional nature of microcracking as a drive for macroc-

rack activation within the quadrature points. The microcrack density parameter ℱ𝑚
𝛼
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Figure 2.17: Sketch of stress criterion to set macrocracking direction, and correction
based on (i) smoothening algorithm in 𝑟𝑠,𝑐𝑘 ≤ 𝑅𝑠,𝑐𝑘 or (ii) by connecting macrocracks.

(Budiansky and O’Connell, 1976) has been used in this regard, which is evaluated

for various microcracking directions 𝛼𝑚 = [𝛼𝑚,1, 𝛼𝑚,2, ...𝛼𝑚,𝑛]T. The idea follows the

assumption that as soon as the microcracking density exceeds a critical value, defor-

mation localisation would occur. In a mathematical sense, this activation criteria can

be expressed as shown in Equation 2.26.

Macrocrack detection: ΘmM
𝛼

(
ℱ

m
𝛼 ,ℱ

m
𝑐𝑟𝑖𝑡

)
= ℱ

𝑚
𝛼 −ℱ𝑚

𝑐𝑟𝑖𝑡
≤ 0

Microcracking directions: 𝛼𝑚 = [𝛼𝑚,1, 𝛼𝑚,2, ...𝛼𝑚,𝑛]T

 (2.26)

where the macrocrack detection criterion ΘmM
𝛼

(
ℱ
𝑚
𝛼 ,ℱ

𝑚
𝑐𝑟𝑖𝑡

)
= 0 is effectively com-

plied when one of the microcracking directions pushes forward the critical microcrack-

ing density ℱ
𝑚
𝑐𝑟𝑖𝑡

expected for the onset of localisation. An illustration of deformation-

induced multiscale phenomena and the micro-to-macro facture transition occurring

at the RVE-level are shown in Figure 2.18.

Note that in Zhao et al. (2018) the evolution of microcracks is frozen at the mo-

ment of macrocrack activation at the constitutive-level. Therefore, upon deformation

localisation the inelastic response is dominated by the embedded strong discontinuity,

which was particularly tailored as an isotropic damage cohesive-crack model.

The model by Zhao et al. (2018) was shown to be able to capture the response ex-

hibited in the triaxial compression tests on rock samples by Martin (1997) as shown

in Figure 2.19.
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Figure 2.18: Sketch of micro-to-macro fracture transition in a homogenised quasi-
brittle macro-constitutive model by Zhao et al. (2018).

(a) Confining pressure: 𝜎𝑟𝑟 = −30 [MPa]

(b) Confining pressure: 𝜎𝑟𝑟 = −40 [MPa]
Figure 2.19: Simulations of rock triaxial compression tests (experiments by Martin
(1997)) showing smooth micro-to-macro fracture transition, using homogenised quasi-
brittle macro-constitutive model by Zhao et al. (2018).
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Limitations of the micromechanics-to-localisation transition in Zhao

et al. (2018): The premise of microcracking ceasing at the onset of macrocrack-

ing may hinder the general use of the model, since such a response may only be

appropriate for loading conditions which do not induce rotations of principal direc-

tions. Under general loading, it is expected that densely populated microcracking

sets may keep growing in directions unaligned with nucleating macrocracks, before

and after macrocracking has started (Nooru-Mohamed et al., 1993; Van Mier, 1984).

2.5 Concluding remarks

The review presented in this Chapter has focused on numerical schemes which can

be used to tailor micromechanical models for quasi-brittle fracture, including some

material-specific non-linear features for modelling cementitious composites. In ad-

dition, numerical techniques have been reviewed for non-linear quasi-brittle fracture

propagation with focus on strong discontinuities.

It is concluded that methods employing embedded strong discontinuity kinemat-

ics such as EFEM (Jefferson and Freeman, 2022; Linder and Armero, 2007; Oliver

et al., 2003; Simo et al., 1993) can be used to tailor micromechanics-informed mod-

elling techniques for quasi-brittle fracture propagation. While such ideas have been

presented previously in the literature (see e.g. Linder and Raina (2013); Toro et al.

(2014); Zhao et al. (2018)), a rigorous variational element-wise treatment of macro-

fracture dofs coupled with efficient multiscale homogenisation schemes is still to be

resolved. Challenges in such multiscale fracture methods are associated with com-

putational efficiency and interaction across scales upon the occurrence of material

instabilities (e.g. fracture onset and propagation) (Geers et al., 2017).

Quasi-static condensation procedures of macrocrack dofs in EFEM become attrac-

tive for coupling with multiscale fracture schemes, due to the immediate invariability

of the number of global-level dofs to be solved in every incremental iterative pro-

cedure. In addition, variational principles could be used as one of the additional

criteria needed to resolve the interaction across scales upon the nucleation of macro-

scopic fractures, rendering the numerical schemes to always follow a minimum-energy

failure mechanism while multiscale features are active.

Finally, the micromechanical information transferred to the upper length-scale

offers opportunities to improve macrocrack detection and tracking algorithms, since

more accurate homogenised invariants as well as micromechanical state variables be-

come available on the fly.
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Chapter 3

Micromechanics & variational
mechanics of quasi-brittle fracture

“Nothing takes place in the world whose meaning is not that of some maximum or
minimum.”

Leonhard Euler 1707 - 1783
Swiss Mathematical Physicist and pioneer of the Mechanics of elastic solids

3.1 Two-scale modelling in quasi-brittle solids
This chapter describes the theory used for computer implementation in this PhD. The

theory is presented in a comprehensive and consistent form for (i) a micromechanical

constitutive model in Section 3.2, and (ii) an element with embedded strong disconti-

nuities to simulate macro-cracking in Section 3.3. Various versions of such mechanical

components are in the literature, although a physically-sound and mathematically-

rigorous unification of micro and macro concepts did not exist before the research

undertaken in this PhD. These models in original form are described below:

• Section 3.2: A homogenised constitutive relationship which uses evolving direc-

tional diffuse microcracking as a means to simulate inelasticity in quasi-brittle

cementitious solids (Jefferson and Bennett, 2010, 2007), and

• Section 3.3: A variationally-consistent element with embedded strong disconti-

nuities able to simulate fracture propagation at the macro-scale (Freeman et al.,

2020; Jefferson and Freeman, 2022).

The author implemented these micro- and macro-mechanical formulations in the

in-house Fortran code Cardinal, and tested these components separately in Section

3.4. A consistent summary is presented in Section 3.5. The author proposed an orig-

inal strategy of coupling these two-scale concepts exploiting a variational principle,

which is detailed in Chapter 4 and validated in coupled form in Chapter 5.
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3.2. Micromechanical constitutive homogenisation

3.2 Micromechanical constitutive homogenisation

3.2.1 Micromechanical view of Damage Mechanics
The concept of damage is explained after a one-dimensional Hookean model (De Borst

et al., 2012). Consider a macroscopic bar, composed by horizontally aligned micro-

scopic material fibres within a Representative Volume Element (RVE), i.e. at the

material point P. The RVE volume is δV = δA × δ𝑥 with cross sectional area δA

populated with 𝑛𝑏 aligned micro-bars as illustrated in Figure 3.1.

(a) Macro and micro scale geometry and boundary conditions

(b) Evolving material damage and boundary conditions at the micro-scale

Figure 3.1: One-dimensional bar with microstructure under uniaxial extension.

The macrostress is computed using the remaining active forces at the lower scale:

Macrostress: 𝜎𝑥 =
1
δA

(
𝑛𝑏 − 𝜔𝑏𝑛𝑏

)
δ𝐹𝑥𝑖 = (1 − 𝜔𝑏) 𝑛𝑏𝐸𝑏𝐴𝑏δA ε𝑥 = (1 − 𝜔𝑏)𝐸ε𝑥 (3.1)

where 𝜔𝑏 =
𝑛𝑏 𝑓
𝑛𝑏
≥ 0 is the number of failed micro-bars 𝑛𝑏 𝑓 , normalised by the

initial population of micro-bars 𝑛𝑏 within an RVE, 𝐴𝑏 is the area of each micro-bar,

𝐸𝑏 and 𝐸 stand for Young’s modulus of each bar and for the homogenised crossed

section in intact state. This theory is generalised for an isotropic media (Krajcinovic

and Fonseka, 1981; Lemaitre and Chaboche, 1990), and reads as follows:

Cauchy macrostress: 𝝈 = (1 − 𝜔)𝑫𝑒 : 𝜺 = 𝑫𝑠𝑒𝑐 : 𝜺 = 𝑫𝑒 : (𝜺 − 𝜔𝜺) (3.2)

where the scalar 𝜔 ∈ [0, 1] represents the overall internal state variable, 𝝈 is the
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Cauchy stress tensor, 𝑫𝑒 is the elastic material stiffness tensor, 𝑫𝑠𝑒𝑐 (𝜔) is the secant

material stiffness tensor and 𝜺 is the strain tensor.

The damage mechanics concept can be expanded into a multi-plane framework,

for which independent unloading-reloading conditions read as follows:

Scalar damage variable irreversibility: ¤𝜔𝑖 (Z𝑖) ≥ 0
Damage surface: 𝑓𝑑,𝑖 (𝜺, Z𝑖) ≤ 0
Damage increase: 𝑓𝑑,𝑖 (𝜺, Z𝑖) · ¤𝜔(Z𝑖) = 0

 (3.3)

where the subscript (·)𝑖 denotes the number of degradation plane, and Z𝑖 stands

for an internal variable that memorises the deformation history.

3.2.2 Plasticity-enhancement in Damage Mechanics

The inelastic strains 𝜺𝑝 remain upon unloading in Computational Plasticity, opposed

to what happens in damage-induced inelastic strains. Indeed, in standard Damage

Mechanics the inelastic strains 𝜺𝑝 = 𝜔𝜺 vanish upon full unloading (𝜺 → 0)(see

Equation 3.2). This difference is apparent in the unloading reloading branch in the

stress-strain space, and is illustrated in Figure 3.2. Such a plasticity component can

improve the predictions in cyclic fracture problems in future research. The treatment

of cyclic fracture problems escapes from the current PhD, since monotonic fracture

is the focus.

(a) Damage Mechanics (b) Damage-Plasticity

Figure 3.2: Conceptual unloading-reloading stress-strain response under uniaxial con-
ditions, with 𝐸 = 𝐸 being Young’s modulus. Stages: A) elasticity limit, B) peak state,
C) first unloading-reloading branch, D) second unloading-reloading branch.

The following section describes how microcracking sets are embedded in a Contin-

uum, and a damage-informed version of this theory is presented for implementation

in a Finite Element Framework.
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3.2.3 Eshelby’s equivalent inclusion method for embedded
ellipsoidal microcracks

Consider an infinite solid body, under a far-field uniform stress 𝝈∞, with volume

Ω ≡ MΩ ∪ Γ𝑚 and outward normal nΩ, where MΩ represents the volume of the

elastic matrix and Γ𝑚 stands for the volume of an embedded stress-free ellipsoidal

microcrack within the domain
(
𝑥′𝑟/𝑎𝑟

)2 + (
𝑥′𝑠/𝑎𝑠

)2 + (
𝑥′𝑡/𝑎𝑡

)2 ≤ 1, where the space

{𝑥′𝑟 , 𝑥′𝑠, 𝑥′𝑡} corresponds to the local coordinate system {r, s, t} of the microcrack with

t being orthogonal to the plane containing r and s as shown in Figure 3.3.

(a) Embedded ellipsoidal microcrack: macroscopic boundary conditions

n
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(b) Microcrack’s local axes: constant radius 𝑎𝛼 placed orthogonal to r gives a penny shape.

Figure 3.3: Infinite solid body, subjected to uniform stress field at the external bound-
ary, with an embedded stress-free ellipsoidal microcrack.

The problem described in the previous paragraph and illustrated in Figure 3.3 is

solved for the strain perturbations 𝜺Γ𝑚 (𝑥), i.e. the additional strains in the far-field

due to microcracking as compared to the elastic solution with intact material, using

the Equivalent Inclusion Method by Mura (1987). This method splits the problem
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into (i) a loaded fictitious domain Ω, and (ii) this same domain under the action

of eigen-strains within the embedded ellipsoidal microcrack. Such a BVP (Eshelby,

1957, 1959) is defined as shown in Equation 3.4.

Div[𝝈Γ𝑚 (𝑥)] = 0, ∀𝑥 ∈ Ω
𝝈Γ𝑚 (𝑥) = �̄�𝑒 : (𝜺Γ𝑚 (𝑥) − 𝜺∗(𝑥)), ∀𝑥 ∈ Ω
𝝈Γ𝑚 (𝑥) · nΩ = 0, ∀𝑥 ∈ 𝜕Ω
𝜺∗(𝑥) = 𝜺∗, ∀𝑥 ∈ Γ𝑚
𝜺∗(𝑥) = 0, ∀𝑥 ∈ Ω \ Γ𝑚

(3.4)

where the additional constraint 𝝈∞+𝝈Γ𝑚 (𝑥) = 0 applies in the microcrack domain

Γ𝑚 since it is stress-free, 𝝈Γ𝑚 (𝑥) stands for the stress field in the self-equilibrating

domain, and 𝜺∗ is the eigen-strain which is constant within the ellipsoidal microcrack.

Elaboration on the Eshelby’s interior point solution to that problem, aided by

energy-based first principles (Mura, 1987), the microcrack opening displacement field[
𝒖Γ𝑚
𝛼

]
(𝑥′) and the perturbation of the macrostrain field 𝜺Γ𝑚𝛼 are derived in local co-

ordinates:

𝜺Γ𝑚𝛼 ≡ uniform = 1
‖Ω‖

∫
𝜕Γ𝑚

(
𝒖Γ𝑚
𝛼 (𝑥′) ⊗ nΓ (𝑥′)

) 𝑠
𝑑𝑺

= 1
‖Ω‖

∫
𝜕Γ+𝑚

( [
𝒖Γ𝑚
𝛼

]
(𝑥′) ⊗ r𝛼

) 𝑠
𝑑𝑺

}
∀𝑥′ ∈ 𝜕Ω (3.5)

[
𝒖Γ𝑚
𝛼

]
(𝑥′) =

©«
+𝑢Γ𝑚𝑟 (𝑥′) −− 𝑢Γ𝑚𝑟 (𝑥′)
+𝑢Γ𝑚𝑠 (𝑥′) −− 𝑢Γ𝑚𝑠 (𝑥′)
+𝑢Γ𝑚𝑡 (𝑥′) −− 𝑢

Γ𝑚
𝑡 (𝑥′)

ª®®¬ =
8(1 − 𝜐2)
𝜋𝐸

√︃
𝑎2𝛼 − (𝑥′𝑠)2 − (𝑥′𝑡)2

©«
𝜎∞𝑟𝑟
2

2−𝜐𝜎
∞
𝑟𝑠

2
2−𝜐𝜎

∞
𝑟𝑡

ª®¬ , ∀𝑥′ ∈ 𝜕Γ𝑚
(3.6)

where 𝐸 and 𝜐 are the elastic constants of the undamaged Continuum.

Integration of the right-hand side term in Equation 3.5, using the microcrack

opening displacement field in Equation 3.6 (Nemat-Nasser et al., 1996) gives:

𝜺Γ𝑚𝛼 = ℱ𝛼

16(1 − 𝜐2)
3𝐸

©«
�̄�𝑟𝑟

1
2−𝜐 �̄�𝑟𝑠

1
2−𝜐 �̄�𝑟𝑡

0 0
symm 0

ª®¬ ∀𝑥′ ∈ 𝜕Ω (3.7)

where ℱ𝛼 = 𝒩𝛼𝑎
3
𝛼 is the crack density parameter by Budiansky and O’Connell

(1976), 𝒩𝛼 is the number of microcracks per unit volume in the microcrazking zone

𝛼, and 𝑎𝛼 is the radius of one microcrack, and here due to simplicity all the microc-

racks are regarded to have the same radius in the plane orthogonal to the collapsed
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axis, since the microcracks are considered as penny-shaped; note that given that the

microcracking zones are sufficiently large, the volume-average Cauchy stress tensor

�̄�𝐿 tends to approximate the far-field stress 𝝈∞.

3.2.4 Damage-informed microcracking-induced inelastic strain

A damage informed version of the local microcracking-induced inelastic strains in

Equation 3.7 was presented in Jefferson and Bennett (2010, 2007):

𝜺Γ𝑚𝛼 =
𝜔m
𝛼

1 − 𝜔m
𝛼

· 1

𝐸

©«
�̄�𝑟𝑟

1
2−𝜐 �̄�𝑟𝑠

1
2−𝜐 �̄�𝑟𝑡

0 0
symm 0

ª®¬ ∀𝑥′ ∈ 𝜕Ω (3.8)

where 𝜔m
𝛼 = 𝜔m

𝛼 (Zm𝛼 ) is a (local) scalar microcracking variable (𝜔m
𝛼 ∈ [0, 1]),

ℱ𝛼 ≈ 3
16(1−𝜐2)

𝜔m
𝛼

1−𝜔𝛼 is computed phenomenologically using an equivalent strain Zm𝛼 ,

which depends on the deformation history.

N.B.: The Equation 3.8 replaces that of Equation 3.7 to allow a general deformation
history to enable microcracking occurrence, including shear and normal deformation.
Such form eases further derivations of a general micromechanical constitutive law and
its material tangent.

For convenience in Finite Element formulations, the microcracking-induced inelas-

tic strain 𝜺Γ𝑚𝛼 is defined in vector form 𝛆𝑎𝑑𝑑𝛼 in local coordinates as follows:

𝛆𝑎𝑑𝑑𝛼 =
𝜔m
𝛼

1 − 𝜔m
𝛼

·C3𝐷
𝐿 ·N𝜎 · �̄�, ∀𝑥′ ∈ 𝜕Ω (3.9)

where 𝜺Γ𝑚𝛼 = [YΓ𝑚𝑟𝑟 , 𝛾Γ𝑚𝑟𝑠 , 𝛾Γ𝑚𝑟𝑡 ]T is defined by the non-zero microcracking-induced

inelastic components only, �̄�𝐿 = [�̄�𝑟𝑟 , �̄�𝑟𝑠, �̄�𝑟𝑡]T = N𝜎 · �̄� is the resolved components

of the Cauchy stress, N𝜎 is a rotation matrix (see Equation 3.16), and the local

compliance is defined as follows:

C3𝐷
𝐿 =

1

𝐸

©«
1 0 0
0 2

2−𝜐 0
0 0 2

2−𝜐

ª®¬ in 3D, or C𝐿 =
1

𝐸

[
1 0
0 2

2−𝜐

]
in 2D (3.10)

The next section treats the mechanical components used for homogenisation of

the bulk domain in a cementitious composite, which can experience microcracking in

multiple directions.
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3.2. Micromechanical constitutive homogenisation

3.2.5 On computational homogenisation of Micromechanical
solids with directional microcracks

Let the subdomain Ωm be representative domain of the Micromechanical solid ΩM.

In general, the Micromechanical solid may possess various micro-constituents, e.g. a

solid matrix, aggregates and microcracks. For mathematical convenience the microc-

racks can be be idealised as penny-shaped in this framework. Originally, the matrix-

aggregate mixture departs from an intact state with no microcracks. Directional

microcrack nucleation is then considered along with the macroscopic deformation

history as illustrated in Figure 3.4.
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Figure 3.4: Sketch of homogenisation procedures for Micromechanical solids with
directional diffuse microcracking within an RVE. Particularly, sets of degradation
direction 𝜋𝛼 are used for numerical integration over the perimeter on a semi-circle.

Chapter 3. Micromechanics & variational mechanics of quasi-brittle fracture 49



3.2. Micromechanical constitutive homogenisation

An overall elasticity tensor �̄�𝑒 is first defined for the matrix-aggregate mixture.

This may be defined by either, (i) from the knowledge of elastic properties, volume

fraction and orientation of the inclusion phase embedded in the solid matrix, see e.g.

solutions for spherical aggregates in a cementitious matrix in Jefferson and Bennett

(2010); Mihai and Jefferson (2011), or (ii) via calibration upon experimental data

on incipient (elastic) macroscopic response. A summary of homogenisation strategies

for two-phase composites (elastic matrix with spherical inclusions) was presented by

Zimmerman (1991), with discussions including the Mori-Tanaka method (Mori and

Tanaka, 1973), self-consistent method (Hill, 1963; Nemat-Nasser et al., 1996) and the

differential scheme (McLaughlin, 1977), which are shown to follow theoretical limits

as defined by Hashin-Shtrikman bounds (Hashin and Shtrikman, 1961). Strategy

(ii) is adopted for the numerical examples in this PhD, without invalidation of key

research findings.

In a subsequent homogenisation step, directional microcracking is then accounted

for (Jefferson and Bennett, 2010, 2007; Mihai and Jefferson, 2011). Hence, the overall

constitutive response of the Micromechanical solid in Cartesian reference is derived

as follows, including the effect of various sets of aligned microcracks:

�̄� = �̄�𝑒 :
(
𝜺 − 𝜺Γ𝑚︸   ︷︷   ︸

𝜺𝑒

)
(3.11)

𝜺Γ𝑚 =
1

2𝜋

∫ \=2𝜋

\=0

∫ 𝜓= 𝜋2

𝜓=0

[
𝑵−1Y (𝒓𝛼) : 𝜺Γ𝑚𝛼 (𝜺)𝑠𝑖𝑛(𝜓)

]
𝑑𝜓𝑑\ (3.12)

where the homogenised inelastic strain 𝜺Γ𝑚 , due to directional microcracking, is

taken as the volume average for all the sets of aligned microcraking zones. Con-

veniently, Equation 3.12 can be degraded into an integral over the perimeter of a

semi-circle in the case of two-dimensional analysis, and a simplified expression for the

microcracking-induced strains reads as 𝜺Γ𝑚 = 1
𝜋

∫
semi-circle

[
𝑵−1Y (𝒓𝛼) : 𝜺Γ𝑚𝛼 (𝜺)

]
𝑑𝑙.

Note that a discrete number of degradation directions nm
𝑖𝑛𝑡

is used in the two-

dimensional integration scheme (Equation 3.12). A convergence check was performed

by the author on the integration rule adopted for practical problems in a standard

FE framework at the beginning of the PhD, and it has been found that for most

cases, an adequate number of degradation directions is nm
𝑖𝑛𝑡

= 21. The array of re-

solved components of the inelastic strain 𝜺Γ𝑚𝛼 (𝜺) comes after an analysis of distributed

microcracking using stress-free penny-shaped ellipsoids as shown in Equation 3.8.
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3.2. Micromechanical constitutive homogenisation

Following re-arrangement of the transformation operators into matrix form, the

additional strains in Cartesian space 𝑵−1Y (𝒓𝛼) : 𝜺Γ𝑚𝛼 (𝜺), due to a single set of aligned

penny-shaped microcracks, are computed in a vector form as NT
𝜎𝛆

Γ𝑚
𝛼 = NT

𝜎
𝜔m
𝛼

1−𝜔m
𝛼
C𝐿N𝜎 �̄�.

Furthermore, using Equation 3.8 into Equations 3.11 and 3.12, an expression for

the overall secant stiffness operator �̄�𝑠𝑒𝑐 is defined as follows:

�̄� = �̄�𝑠𝑒𝑐 : 𝜺 =
(
�̄�
−1
𝑒 + 𝑪

Γ𝑚 (𝜺)
)−1

: 𝜺 (3.13)

𝑪
Γ𝑚 (𝜺) = 1

2𝜋

{ ∫ \=2𝜋

\=0

∫ 𝜓= 𝜋2

𝜓=0

[
𝑵−1Y (𝒓𝛼) :

𝜔m
𝛼 (𝜺)

1 − 𝜔m
𝛼 (𝜺)

𝑪𝐿 : 𝑵𝜎 (𝒓𝛼)𝑠𝑖𝑛(𝜓)
]
𝑑𝜓𝑑\

}
(3.14)

where 𝑪
Γ𝑚 (𝜺) is the constitutive additional compliance tensor. Note that the

local compliance tensor 𝑪𝐿 remains constant for every degradation direction assuming

isotropic elastic behaviour of the matrix-aggregate mixture in an intact state.

For convenience in Finite Element formulations, the local compliance 𝑪𝐿 is used

in the form presented in Equation 3.10; and the isotropic elasticity material stiffness

operator for the homogenised matrix-aggregate mixture �̄�𝑒 gets the following matrix

form under plane-stress settings:

D̄𝑒 =
𝐸𝑎𝑚

1 − 𝜐2𝑎𝑚


1 𝜐𝑎𝑚 0
𝜐𝑎𝑚 1 0
0 0 (1 − 𝜐𝑎𝑚)/2

 (3.15)

where 𝐸𝑎𝑚 and 𝜐𝑎𝑚 are the homogenised elastic constants of the aggregate-matrix

mixture in intact state.

Note that the transformation operators to convert stress and strain Cartesian

components into local reference in a 2D setting (see 3D version of rotation matrices

in Jefferson (2003a,b)) take a matrix form for finite element computations as follows:

�̄�𝐿 = NY �̄� =

[
𝑟2𝛼,𝑥 𝑟2𝛼,𝑦 𝑟𝛼,𝑥𝑟𝛼,𝑦

2𝑟𝛼,𝑥𝑠𝛼,𝑥 2𝑟𝛼,𝑦𝑠𝛼,𝑦 𝑟𝛼,𝑦𝑠𝛼,𝑥 + 𝑟𝛼,𝑥𝑠𝛼,𝑦

]
�̄�

�̄�𝐿 = N𝜎 �̄� =

[
𝑟2𝛼,𝑥 𝑟2𝛼,𝑦 2𝑟𝛼,𝑥𝑟𝛼,𝑦

𝑟𝛼,𝑥𝑠𝛼,𝑥 𝑟𝛼,𝑦𝑠𝛼,𝑦 𝑟𝛼,𝑦𝑠𝛼,𝑥 + 𝑟𝛼,𝑥𝑠𝛼,𝑦

]
�̄�


(3.16)

where 𝒓𝛼 = [𝑟𝛼,𝑥 , 𝑟𝛼,𝑦, 0]T, and 𝒔𝛼 = [𝑠𝛼,𝑥 , 𝑠𝛼,𝑦, 0]T are in-plane unit vectors, per-

pendicular to each other, used to rotate strain/ stress vectors into a local space.
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3.2. Micromechanical constitutive homogenisation

3.2.6 Standard microcracking growth law of 𝜔m
𝛼

The directional degradation of the scalar variables 𝜔m
𝛼 (𝜺) is computed in standard

form using an exponential law (Jefferson and Bennett, 2007) as follows:

𝜔m
𝛼 (Zm𝛼 (𝜺)) = 1 −

Ym𝑡

Zm𝛼
exp

[
−𝑐𝑠

Zm𝛼 − Ym𝑡
Zm𝑚𝑎𝑥 − Ym𝑡

]
, Zm𝛼 ≥ Ym𝑡 (3.17)

where 𝜔m
𝛼 ∈ (0, 1) is a direction-dependent microcracking scalar variable (𝜔m

𝛼 = 0

for no microcracking, and 𝜔m
𝛼 = 1 for substantial microcracking), which is a function

of an equivalent microcracking state variable Zm𝛼 (𝜺) defined as a strain measure; 𝑐𝑠

is a dimensionless softening constant typically in the range ≈ 5 to 8; Ym𝑡 = 𝑓m𝑡 /𝐸𝑎𝑚
is the uniaxial tensile strain for first micromechanical damage under plane stress

conditions, and Zm𝑚𝑎𝑥 defines the ultimate strain at which the microcracking zone is

fully populated with aligned microcracks.

The standard microcracking growth law is made dependent on the element char-

acteristic length ℎ𝑒𝑙 by setting Zm𝑚𝑎𝑥 = 𝑢𝑚𝑎𝑥/ℎ𝑒𝑙 when the relationship is used in a

standard Finite Element program, i.e. by using a crack band approach (Bažant and

Oh, 1983); with 𝑢𝑚𝑎𝑥 being the maximum displacement discontinuity that can be

observed due to fracture at the macroscopic level before collapse, when a specimen is

subjected to such uniaxial action.

Note that this is a standard growth law since the scalar 𝜔m
𝛼 depends only on the

maximum experienced Zm𝛼 , opposed to a nonlinear and smooth unloading-reloading

branch using a Smooth-Unloading-Reloading response (Alnaas and Jefferson, 2016).

3.2.7 Relationship between macroscopic strain 𝜺 and the equiv-
alent microcracking strain Zm𝛼 (𝜺)

The equivalent microcracking state variable Zm𝛼 in each microcracking direction is

computed as a function of the resolved strain components 𝜺𝐿 (𝜺). This equivalent

microcracking strain Zm𝛼 is interpreted as the magnitude of an equivalent uniaxial

tensile strain needed to make the local microcracking surface to grow up to its current

‘size’, in the (local) shear - normal strain space.

The microcracking surface is defined in Equation 3.18, and loading / unloading

conditions are expressed in Equation 3.19 as follows:

Φ𝛼 (𝜺𝐿 , Zm𝛼 ) =
Ȳ𝑟𝑟

2

[
1 +

( `Y
𝑟Y

)2]
+ 1

2𝑟2Y

√︂(
𝑟2Y − `2Y

)2
Ȳ2𝑟𝑟 + 4𝑟2Y

(
𝛾2𝑟𝑠 + 𝛾2𝑟𝑡

)
− Zm𝛼 = Zm𝛼,𝑒 𝑓 𝑓 − Z

m
𝛼

(3.18)

¤Zm𝛼 ≥ 0, Φ𝛼 · ¤Zm𝛼 = 0, Φ𝛼 ≤ 0 (3.19)

Chapter 3. Micromechanics & variational mechanics of quasi-brittle fracture 52



3.2. Micromechanical constitutive homogenisation

where Φ𝛼 = 0 and ¤Φ𝛼 = 0 is satisfied when an updated homogenised strain 𝜺

enforces the equivalent microcracking state variable Zm𝛼 to grow in the current micro-

craking direction, the resolved strain tensor 𝜺𝐿 = 𝑵Y (𝒓𝛼) : 𝜺 is computed using the

transformation tensor 𝑵Y, 𝛾
2
𝐿
= 𝛾2𝑟𝑠 + 𝛾2𝑟𝑡 is the in-plane resultant engineering shear

strain occurring in a plane defined by the microcraking plane normal 𝒓𝛼, `Y = `𝜎
𝐸𝑎𝑚
𝐺𝑠,𝑎𝑚

and 𝑟Y = 𝑟𝜎
𝐸𝑎𝑚
𝐺𝑠,𝑎𝑚

with 𝑟𝜎 being the cohesion-to-tensile strength ratio and `𝜎 being

the (residual) shear-to-normal stress ratio, and 𝐺𝑠,𝑎𝑚 = 𝐸𝑎𝑚/(2(1 + 𝜐𝑎𝑚)) being the

secant shear modulus.

The local microcracking surface resembles a hyperbolic variation of a smoothed

Mohr-Coulomb type surface, although presented in the local shear - normal strain

space (Jefferson, 2003a,b). The local microcracking surface is illustrated in Figure

3.5.
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Figure 3.5: Microcracking surface in local strain space. Microcracking growth is
illustrated as induced by different path-types: path A is dominated by combined
shear-tensile strain state, and path B by combined shear-compressive strain state.

This sketch shows the capabilities of such microcracking surface to capture mate-

rial directional degradation (ΔZm𝛼 > 0, 𝜔m
𝛼 > 0, and in turn Δℱ𝛼 > 0) under various

(local) strain paths. Degradation-inducing deformation paths include those such as

path A for combined shear-tension deformation, and path B for shear-compression

deformation. Nevertheless, proportional paths would not induce degradation if these

were parallel or with a gradient less than the asymptotic residual ratio `Y.

Chapter 3. Micromechanics & variational mechanics of quasi-brittle fracture 53



3.2. Micromechanical constitutive homogenisation

3.2.8 Material tangent stiffness for Micromechanical continua

By differentiating the homogenised constitutive law for a Micromechanical solid (Equa-

tion 3.13), the tangent operator D̄𝑡𝑎𝑛 is derived as follows:

D̄𝑡𝑎𝑛 = (I + D̄𝑒C̄
Γ𝑚)−1D̄𝑒

[
I −

nm
𝑖𝑛𝑡∑︁ 𝑤num

𝛼

(1 − 𝜔m
𝛼 )2

𝜕𝜔m
𝛼

𝜕Zm𝛼

𝜕Zm𝛼

𝜕Zm
𝛼,eff

NT
𝜎C𝐿N𝜎 �̄�

{
𝜕Zm

𝛼,eff

𝜕 �̄�𝐿

}T
NY

]
(3.20)

where 𝑤num
𝛼 is the set of coefficients for numerical integration, based on nm

𝑖𝑛𝑡
in-

tegration directions over the perimeter of a semi-circle for two-dimensional analy-

sis whereas full 3D implementation requires integration over a hemisphere (Stroud,

1971); regarding plane-stress setting the three partial derivatives are defined, at first

𝜕𝜔m
𝛼

𝜕Zm𝛼
=

(
1 − 𝜔m

𝛼

) [ 1
Zm𝛼
+ 𝑐𝑠
𝑢𝑚𝑎𝑥/ℎ𝑒𝑙−Ym𝑡

]
, secondly, the gradient

𝜕Zm
𝛼,eff

𝜕 �̄�𝐿
is evaluated in closed

form (see Equation 3.21), and thirdly, it is noted that the gradient 𝜕Zm𝛼 /𝜕Zm𝛼,eff is

discontinuous, which implies a tangent operator is used once state-variables are suffi-

ciently settled within the non-linear iterative procedure (see comment box below and

description of existing cases for the derivative).

N.B.: A secant stiffness D̄𝑠𝑒𝑐 (see Equation 3.13) is used instead of the
micromechanics-derived consistent tangent D̄𝑡𝑎𝑛, for the first few global iterations
to detect which degradation sets show further microcrack growth.

The two existing cases for computing the gradient 𝜕Zm𝛼 /𝜕Zm𝛼,eff are shown below:

i. 𝜕Zm𝛼 /𝜕Zm𝛼,eff = 0 in case the effective equivalent strain Zm
𝛼,𝑒 𝑓 𝑓

is under the micro-

cracking surface, i.e. Φ𝛼 < 0 (see Equations 3.18 and 3.19).

ii. 𝜕Zm𝛼 /𝜕Zm𝛼,eff = 1 in case the effective equivalent strain Zm
𝛼,𝑒 𝑓 𝑓

is on the microc-

racking surface, i.e. Φ𝛼 = 0 (see Equations 3.18 and 3.19).

Further development of chain rules in the Equation 3.18 provides the partial

derivatives of the effective micro-state Zm
𝛼,eff

with respect to the resolved strain com-

ponents �̄�𝐿 = [Ȳ𝑟𝑟 , 𝛾𝑟𝑠]T = NY �̄�, and these are presented below:

𝜕Zm
𝛼,eff
/𝜕 �̄�𝐿 = [𝜕Zm

𝛼,eff
/𝜕Ȳ𝑟𝑟 , 𝜕Zm

𝛼,eff
/𝜕𝛾𝑟𝑠]T

𝜕Zm
𝛼,eff
/𝜕Ȳ𝑟𝑟 = 1

2

[
1 +

(
`Y/𝑟Y

)2] + [
(𝑟2Y − `2Y)2Ȳ𝑟𝑟

]
/
[
2𝑟2Y

√︁
(𝑟2Y − `2Y)2Ȳ2𝑟𝑟 + 4𝑟2Y𝛾

2
𝑟𝑠

]
𝜕Zm

𝛼,eff
/𝜕𝛾𝑟𝑠 =

[
2𝛾𝑟𝑠

]
/
[√︁
(𝑟2Y − `2Y)2Ȳ2𝑟𝑟 + 4𝑟2Y𝛾

2
𝑟𝑠

]


(3.21)
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3.3 Formulation of an element with embedded strong

discontinuities (EFEM)
The next subsections describe the basic components of an element with embedded

strong discontinuities alone, presented with consistent notation from Freeman et al.

(2020); Jefferson and Freeman (2022). The coupling of this embedded strong discon-

tinuity approach with a Micromechanics framework, able to induce microcracking at

the bulk domain as presented in Section 3.2, is described in Section 4.1.

3.3.1 Governing equation of BVP for elastic solid with em-
bedded discontinuities

Let the body Ω𝑒 in Figure 3.6 be constituted by an elastic solid with an embedded

strong discontinuity. The BVP is solved for the displacement field u : Ω𝑒 × (0, 𝑇] →
IR2, where 𝑡 ∈ (0, 𝑇]. Considering the mechanical response to be quasi-static, equi-

librium gives:

1 Momentum balance: Div[𝝈] + 𝒃 = 0 in Ω𝑒

2 Constitutive relation: 𝝈 = 𝑫𝑒 : 𝜺 in Ω𝑒\Γ
3 Kinematic relation: 𝜺 = ∇𝑠u = ∇𝑠 (u𝑐 + HΩ(x) ⊗ [|u|]) in Ω𝑒 \Γ
4 Traction continuity: 𝝈Ω+ · n+Γ + 𝝈Ω− · n−Γ = 0 on 𝜕Γ
5 Traction equilibrium: 𝝈Ω+ · n+Γ + tΓ+ = 0 on 𝜕Γ
6 Natural boundary condition: 𝝈 · n𝜕Ω𝑒𝜎 − ť = 0 on 𝜕Ω𝑒

𝜎

7 Essential boundary condition: u = ǔ on 𝜕Ω𝑒
𝑢


(3.22)
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Figure 3.6: BVP of fracturing quasi-brittle solids that possess elastic bulk.
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3.3. Formulation of an element with embedded strong discontinuities (EFEM)

where Equation 3.22-1 stands for momentum balance, Div[·] being the divergence

operation and 𝒃 corresponds to body forces per unit volume. Equation 3.22-2 provides

the constitutive equation, where the material constants 𝐸 and 𝜐 define the elasticity

tensor 𝑫𝑒 for the isotropic Continuum. Equation 3.22-3 yields the kinematic relations

considering embedded strong discontinuities, HΩ(x ∈ Ω𝑒) being a Heaviside-type

function in Ω𝑒, u𝑐 and [|u|] being the continuous and discontinuous displacement

components. Notice that though HΩ(x ∈ Ω𝑒) ⊗ [|u|] (x) imposes a discontinuity

in the displacement field u, the field [|u|] (x) itself is continuous over the domain

Ω𝑒. It is clarified that the Heaviside-type function HΩ(x ∈ Ω𝑒) is scalar valued,

while [|u|] : Ω𝑒 × (0, 𝑇] → IR2, where 𝑡 ∈ (0, 𝑇], hence, the product HΩ(x ∈ Ω𝑒) ⊗
[|u|] (x) is admissible and renders a first-order array. More details on embedded

strong discontinuity kinematics as adopted here (Freeman et al., 2020), is described

in the Section 3.3.3. Equation 3.22-4 enforces traction continuity in the bulk across

a propagating crack surface. Equation 3.22-5 ensures there is traction equilibrium

between an embedded crack band and the adjacent bulk. Equation 3.22-6 provides the

natural (stress/traction) boundary condition and Equation 3.22-7 gives the essential

(displacement) boundary condition.

3.3.2 Degrees of Freedom (dofs) associated with an embed-
ded localisation band

Three dofs are introduced in an embedded localisation band 𝜕Γ, and they are cast in

the vector W = [𝑢𝑟𝑐, 𝑢𝑠𝑐, 𝛼𝑐]T as illustrated in Figure 3.7.

where the vector W defines the total displacement discontinuity occurring at the

centre of the embedded localisation band, with 𝑢𝑟𝑐 being the normal aperture, 𝑢𝑠𝑐

stands for the tangential relative displacement and 𝛼𝑐 represents the relative rotation

between positive and negative macrocrack surfaces, all three components given in

local coordinates.

Note that the embedded localisation band shows zero thickness in the Finite El-

ement representation, although it possesses a virtual thickness for computations of

local tractions t′
Γ+ (x

′ on 𝜕Γ) and further details are in Section 3.3.6.

Additive decomposition is employed over the crack relative displacement vector

W = W𝑒 + Ŵ, with W𝑒 and Ŵ being the elastic and inelastic components, respec-

tively. The displacement associated with the rigid body motion [|u|] over Ω+, used

for kinematic enhancement at the element-level upon fracture, is solely a function

of the inelastic component Ŵ. The inelastic component of W is derived from the
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Figure 3.7: Four-noded element for failure analysis assuming embedded strong-
discontinuity kinematics: local axis convention and dofs (left); crack opening and
sliding (centre), and combined rotational-translational relative displacement (right).

definition of the equivalent force of the localisation band Fck (see Equation 3.40), and

reads as follows:

Ŵ = (I − (K𝑒
Γ)
−1KΓ) ·W = Î ·W (3.23)

where KΓ and K𝑒
Γ are the equivalent stiffness matrices for the embedded locali-

sation band, and these matrices are defined in Equations 3.41 and 3.42 (see Section

3.3.6); and the matrix Î that transforms the total vector W into its inelastic compo-

nent Ŵ is defined as Î = (I − (K𝑒
Γ)−1KΓ) with I being the identity matrix.

Hence, upon updates of the crack relative displacement vector W, the displace-

ment component [|u|] (x ∈ Ω), which is associated with the rigid body motion due to

fracture, is computed as follows:

[|u|] (x) = T𝑤 (x) · Î ·W = T𝑤 (x) · Ŵ, in Ω (3.24)

where T𝑤 (x ∈ Ω) stands for the transformation matrix that computes small-strain

rigid body motion due to fracture, and it is given by:

T𝑤 (x) =


{rΓ}(1) {r⊥Γ }(1) {𝒕𝑜𝑝 × (x − xck)}(1)

{rΓ}(2) {r⊥Γ }(2) {𝒕𝑜𝑝 × (x − xck)}(2)

 (3.25)
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with rΓ = −n+
Γ
, rΓ · r⊥Γ = 0, r⊥

Γ
is a unit vector in-plane to the 𝑥 − 𝑦 space,

𝒕𝑜𝑝 × r⊥
Γ
= rΓ, 𝒕𝑜𝑝 is the unit vector pointing towards out of the page, and xck stands

for the Cartesian coordinates of the centre of the embedded localisation band. Note

that only the first two components from the assembling vectors {·}(1) and {·}(2) are

embedded into T𝑤 (x), i.e. those within the x-y space, although these vectors are

more generally defined in IR3.

3.3.3 On embedded strong discontinuity kinematics in solids

Let the elastic body Ω𝑒 being fully cut by an embedded discontinuity Γ. In a Finite

Element setting, a subdomain Ω ⊂ Ω𝑒 is defined such that Ω = Ω+ ∪ Ω−. The

embedded crack band possesses zero thickness in the Finite Element domain, although

it presents a virtual thickness ℎ𝑐𝑎 for traction-separation computations, which is often

taken as band that is a few times thicker the size of the coarse aggregate, and it is

mostly used as a numerical parameter that is equivalent to a fraction of the element

length ℎ𝑒𝑙 . When cracking is detected, the strain tensor is enhanced to account for

the rigid body translation and rotation of the positive part of the body Ω+. In this

regard, the displacement field u is separated into continuous and discontinuous parts,

i.e. u = u𝑐 + HΩ ⊗ [|u|] in Ω. The jump function is defined as HΩ(x) = 1 in Ω+, and

HΩ(x) = 0 in Ω−, and its effects as kinematic enhancement is illustrated in Figure

3.8.
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Figure 3.8: Illustration of kinematic enhancement effects on displacement and strain
fields at the element level in elastic solids as it is used in EFEM.
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Following elaborations on the enhanced kinematics, the strain tensor is defined by

a regular part in the whole domain Ω, and by an unbounded part at the discontinuity

(Freeman et al., 2020; Simo et al., 1993):

𝜺 = ∇𝑠u = ∇𝑠u𝑐︸︷︷︸
regular

+ ([|u|] ⊗ (𝛿Γ ⊗ nΓ))𝑠︸                     ︷︷                     ︸
= 0 , only unbounded in Γ

+HΩ ⊗ ∇𝑠 [|u|]︸  ︷︷  ︸
≈0

, in (Ω+ ∪Ω−)\Γ (3.26)

where 𝛿Γ (x) ⊗ nΓ = ∇HΩ(x), 𝛿Γ (x) stands for the Dirac delta function. Hence,

the strain in the elastic bulk domain is taken as the symmetric part of the continuous

displacement gradient 𝜺 = ∇𝑠u𝑐.
The current implementation assumes a small strain setting, and the gradient of

the displacement component due to fracture ∇[|u|] → 0 vanishes. Particularly, the

current method links [|u|] (in Cartesian reference) to an inelastic deformation com-

ponent of the embedded localisation band Ŵ (see Equation 3.23).

In addition, element shape functions and a way to compute deformation gradients

(Equation 3.26), at Gauss Points in the bulk domain, are described in Sections 3.3.4

and 3.3.5.

3.3.4 Standard interpolation of continuous fields and associ-
ated gradients

The interpolation of smooth fields is carried out using iso-parametric elements. In

this context, it is highlighted that the displacement field u is discontinuous upon

fracture, and therefore, special treatment needs to be taken for the interpolation of

displacements at the element-level. This deviates from standard FEM implementa-

tions, in which the primary field (e.g. nodal displacement u) is interpolated directly

using shape functions.

The challenge of deriving the displacement field for the continuous part of an

element arrives, since the overall displacement field uel for the fracturing solid is

discontinuous. Therefore, for every global update of the displacement field uel var-

ious possible continuous displacement fields can occur due to iterating values of W

(see definition of crack relative displacement in Section 3.3.2), which converge to a

minimum energy solution at the element-level.

The purpose of this subsection is to give the essential FE interpolation and map-

ping theory required for the description of the strong discontinuity element. The

remainder of the theory considered standard can be found in traditional textbooks
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(De Borst et al., 2012; Hinton and Owen, 1979). In this research, shape functions as-

sume bi-linear interpolation over the domain of 4-noded quadrilateral elements, while

integrations over the element domain Ω\Γ are done using 2 by 2 Gauss Point rules.

Note that given the nodal coordinates xel = [𝑥𝑛1, 𝑦𝑛1, 𝑥𝑛2, 𝑦𝑛2, 𝑥𝑛3, 𝑦𝑛3, 𝑥𝑛4, 𝑦𝑛4]T

and the continuous displacement uel
𝑐 = [𝑢𝑐,𝑥1, 𝑢𝑐,𝑦1, 𝑢𝑐,𝑥2, 𝑢𝑐,𝑦2, 𝑢𝑐,𝑥3, 𝑢𝑐,𝑦3, 𝑢𝑐,𝑥4, 𝑢𝑐,𝑦4]T,

the interpolation of the position and that of the continuous displacement field are:

x(b, [) =
[
𝑁1 0 𝑁2 0 𝑁3 0 𝑁4 0
0 𝑁1 0 𝑁2 0 𝑁3 0 𝑁4

]
xel

u𝑐 (b, [) =
[
𝑁1 0 𝑁2 0 𝑁3 0 𝑁4 0
0 𝑁1 0 𝑁2 0 𝑁3 0 𝑁4

]
uel
𝑐


(3.27)

𝑁1 = 1
4 (1 − b) · (1 − [)

𝑁2 = 1
4 (1 + b) · (1 − [)

𝑁3 = 1
4 (1 + b) · (1 + [)

𝑁4 = 1
4 (1 − b) · (1 + [)


(3.28)

where b and [ are the Gaussian coordinates; 𝑁𝑖 stand for the shape functions;

x(b, [) and u𝑐 (b, [) are the interpolated vectorial position and the interpolated con-

tinuous field. This iso-parametric interpolation is illustrated in Figure 3.9.
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Figure 3.9: Illustration of interpolation for ‘continuous’ displacement field in an iso-
parametric 4-noded quadrilateral element with an embedded strong discontinuity.
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Note that the computation of Cartesian gradients of shape functions, i.e. 𝜕𝑁𝑖/𝜕𝑥
and 𝜕𝑁𝑖/𝜕𝑦, involves the use of the Jacobian of the space transformation J. The Ja-

cobian is derived using chain rules over the shape functions with respect to Euclidean

and Gaussian spaces (De Borst et al., 2012; Hinton and Owen, 1979), and they read

as follows:

Jacobian of the space transformation: J =


𝜕𝑥
𝜕b

𝜕𝑦

𝜕b

𝜕𝑥
𝜕[

𝜕𝑦

𝜕[


Cartesian derivatives of shape functions:


𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁𝑖
𝜕𝑦

 = J−1 ·


𝜕𝑁𝑖
𝜕b

𝜕𝑁𝑖
𝜕[




(3.29)

where the mapping between Euclidean and Gaussian spaces is admissible for any

convex shapes for the 4-noded elements.

3.3.5 Deformation gradients in elements with embedded strong
discontinuity

The strain tensor 𝜺 = ∇𝑠u𝑐 (Equation 3.26) in the Micromechanical bulk is defined

as the symmetric part of the continuous displacement gradient, which is expressed in

vector form 𝛆 = {∇𝑠u𝑐}vec = [Y𝑥𝑥 , Y𝑦𝑦, 2 · Y𝑥𝑦]T = [Y𝑥𝑥 , Y𝑦𝑦, 𝛾𝑥𝑦]T as follows:

𝛆 = Buel
𝑐 =


𝜕𝑥𝑁1 0 𝜕𝑥𝑁2 0 𝜕𝑥𝑁3 0 𝜕𝑥𝑁4 0

0 𝜕𝑦𝑁1 0 𝜕𝑦𝑁2 0 𝜕𝑦𝑁3 0 𝜕𝑦𝑁4

𝜕𝑦𝑁1 𝜕𝑥𝑁1 𝜕𝑦𝑁2 𝜕𝑥𝑁2 𝜕𝑦𝑁3 𝜕𝑥𝑁3 𝜕𝑦𝑁4 𝜕𝑥𝑁4

 uel
𝑐 , in Ω\Γ

(3.30)

where 𝛆 = [Y𝑥𝑥 , Y𝑦𝑦, 𝛾𝑥𝑦]T in Ω\Γ = (Ω− ∪ Ω+)\Γ, with 𝛾𝑥𝑦 = 2Y𝑥𝑦 being the

engineering shear strain, and B being the strain-displacement matrix. Note that the

‘continuous’ component of the displacement field at each node is expressed as follows

(see Section 3.3.3):

u𝑐,inode = uinode − HΩ(xinode) ⊗ [|u|]𝑖𝑛𝑜𝑑𝑒
(
xinode

)
(3.31)
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where the term HΩ(xinode) ⊗ [|u|]𝑖𝑛𝑜𝑑𝑒
(
xinode

)
is non-zero for the positive part

of the domain Ω+ only, and it is equivalent to HΩ(xinode) ⊗ T𝑤 (xinode) · Î ·W (see

Equation 3.24).

Therefore, the array of nodal continuous displacement can be evaluated as follows:

uel
𝑐 =


u𝑐,node1
u𝑐,node2

...

u𝑐,nnode


=


unode1

unode2
...

unnode


−


HΩ(xnode1) ⊗ [|u|]𝑛𝑜𝑑𝑒1

(
xnode1

)
HΩ(xnode2) ⊗ [|u|]𝑛𝑜𝑑𝑒2

(
xnode2

)
...

HΩ(xnnode) ⊗ [|u|]𝑛𝑛𝑜𝑑𝑒
(
xnnode

)


=


unode1

unode2
...

unnode


−


HΩ(xnode1) ⊗ T𝑤 (xnode1) · Î ·W
HΩ(xnode2) ⊗ T𝑤 (xnode2) · Î ·W

...

HΩ(xnnode) ⊗ T𝑤 (xnnode) · Î ·W


(3.32)

Using Equation 3.32 in Equation 3.30, and following re-arrangement of matrix-

vector multiplication into blocks, the computation of strains at the Gauss Points in

the bulk domain is conveniently re-formulated:

𝛆 =
∑𝑛𝑛𝑜𝑑𝑒B𝑖𝑛𝑜𝑑𝑒 · u𝑐,inode , in Ω\Γ

=
∑𝑛𝑛𝑜𝑑𝑒B𝑖𝑛𝑜𝑑𝑒

(
uinode − HΩ ⊗ [|u|]𝑖𝑛𝑜𝑑𝑒

)
, in Ω\Γ

= B · uel −
( ∑𝑛𝑛𝑜𝑑𝑒B𝑖𝑛𝑜𝑑𝑒HΩ ⊗ T𝑤 (xinode)

)
ÎW , in Ω\Γ

(3.33)

further simplification is obtained by defining the matrices M̂ and M:

M̂ = MÎ

M =
∑𝑛𝑛𝑜𝑑𝑒B𝑖𝑛𝑜𝑑𝑒HΩ ⊗ T𝑤 (xinode)

}
(3.34)

where Î and T𝑤 are defined in the Equations 3.23 and 3.25, and the node-based

strain-displacement matrix B𝑖𝑛𝑜𝑑𝑒 gets defined as follows:

B𝑖𝑛𝑜𝑑𝑒 =


𝜕𝑥𝑁𝑖𝑛𝑜𝑑𝑒 0

0 𝜕𝑦𝑁𝑖𝑛𝑜𝑑𝑒
𝜕𝑦𝑁𝑖𝑛𝑜𝑑𝑒 𝜕𝑥𝑁𝑖𝑛𝑜𝑑𝑒

 (3.35)
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Finally, Equation 3.33 becomes into an expression for the strains in the bulk

domain, upon the nodal displacement field uel and the vector W being known at the

element level:

𝛆 = B · uel − M̂ ·W (3.36)

Note that strain computations are done in Gauss Points for integration over the

element domain Ω\Γ, as well as at a Dummy central Gauss Point to ease the detection

of fracture occurrence as illustrated in Figure 3.10.
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Figure 3.10: Kinematic enhancement activation in a fractured solid due to inelastic
deformation of the embedded localisation band. The continuum deformation is often
tracked in a dummy Gauss Point at the centre of the element for fracture detection.

3.3.6 Local tractions in embedded strong discontinuities and
the equivalent crack force

The tractions t′
Γ
(𝑥′ on 𝜕Γ) occurring along the embedded localisation band are re-

lated to the damage evolution of 𝜔(Z, Z𝑒 𝑓 𝑓 ) at the crack surface and the local dis-

placement jump ΔuΓ (Freeman et al., 2020):

t′Γ+ (𝑥
′) = 1 − 𝜔(𝑥′)

ℎ𝑐𝑎

[
𝐸 0
0 𝐸/(2(1 + 𝜐))

]
ΔuΓ (𝑥′), ∀𝑥′ ∈ 𝜕Γ (3.37)
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where t′
ΓM+
(𝑥′) is the local traction on the macrocrack surface in contact with

the positive bulk domain Ω+; the damage evolution of 𝜔(Z, Z𝑒 𝑓 𝑓 ) follows a Smooth-

Unloading-Reloading method (see Section 3.3.7) with the equivalent cracking relative

displacement in effective and maximum experienced version being Z𝑒 𝑓 𝑓 (ΔuΓ (W)) and

Z (see Section 3.3.8); ℎ𝑐𝑎 is the virtual thickness of the localisation band; and the

local discontinuity jump ΔuΓ (W) being defined in Equation 3.38.

ΔuΓ (𝑥′) = 𝚲 ·W, ∀𝑥′ ∈ 𝜕Γ

𝚲 =


1 0 𝑙 (𝑥′ on 𝜕Γ)

0 1 0




(3.38)

where 𝑙 is the relative position along the embedded localisation from its centre.

Note that the actual local displacement jump occurring at the Finite Element is

equivalent to the inelastic part of ΔuΓ (𝑥′), and this inelastic jump is associated with

the rigid body motion on the positive part of the domain Ω+. The local inelastic

displacement jump ΔûΓ (𝑥′) is shown in Equation 3.39.

ΔûΓ (𝑥′) = 𝚲 · Ŵ, ∀𝑥′ ∈ 𝜕Γ (3.39)

where the inelastic vector Ŵ is taken as in Equation 3.23. An illustration of

the response of the embedded localisation band is presented in Figure 3.11, which

emphasises the effects of the deformation of the embedded localisation band on local

tractions and on the rigid body motion transferred to the positive part Ω+.

Furthermore, upon numerical integration of the work done by local tractions along

the embedded localisation band, following some re-arrangement of terms, the work-

conjugated equivalent force vector Fck, is derived to be:

Fck =
[
𝐹𝑟𝑐, 𝐹𝑠𝑐, 𝑀𝑐

]T
= KΓW = K𝑒

Γ{W − Ŵ}, at centre of 𝜕Γ (3.40)

KΓ =
𝐸 · 𝑡𝑔
ℎ𝑐𝑎



∫
𝜕Γ
(1 − 𝜔)𝑑𝑙 0

∫
𝜕Γ
(1 − 𝜔)𝑙𝑑𝑙∫

𝜕Γ

1−𝜔
2(1+𝜐) 𝑑𝑙 0

symm
∫
𝜕Γ
(1 − 𝜔)𝑙2𝑑𝑙


(3.41)

Chapter 3. Micromechanics & variational mechanics of quasi-brittle fracture 64



3.3. Formulation of an element with embedded strong discontinuities (EFEM)

z

X

Y
W

W+

_

W+

W
_

+

x

x-

u = 1(x ') W

hca

x-
x

G

G

+

Not to scale:
+xG

x-
G

_|| || +x x-_|| ||
≥

+x
G

x-
G

_

embedded band
deformation:

D
G 0

0
1

l
0

l
lck-
2

lck+
2 .

(in local coordinates)

" x ' on ∂G

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
S

T
U

D
E

N
T

 
V

E
R

S
I
O

N

PRODUCED BY AN AUTODESK STUDENT VERSION

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
S

T
U

D
E

N
T

 
V

E
R

S
I
O

N

PRODUCED BY AN AUTODESK STUDENT VERSION

Figure 3.11: Illustration of embedded localisation band concept in elastic continua,
and the effect of its inelastic deformation Ŵ on the local displacement discontinuity
𝚫ûΓ (𝑥′) at the fracture surface 𝜕Γ.

K𝑒
Γ =

𝐸 · 𝑡𝑔
ℎ𝑐𝑎



∫
𝜕Γ
𝑑𝑙 0

∫
𝜕Γ
𝑙𝑑𝑙∫

𝜕Γ

1
2(1+𝜐) 𝑑𝑙 0

symm
∫
𝜕Γ
𝑙2𝑑𝑙


(3.42)

where 𝑡𝑔 is the out-of-page thickness, 𝑙 ∈ [−𝑙ck/2, 𝑙ck/2] is the local axis for numer-

ical integration, conveniently located at the crack centre and aligned with the crack

propagation direction.

Note that Fck = KΓW (Equation 3.40) is the work-conjugate to the increment of

inelastic crack relative displacement δŴ.

It is noted that the transformation of the local linear space into a “Gaussian” linear

space b𝑐𝑘 = 𝑙 · 2
𝑙𝑐𝑘

, within 𝑙 ∈ (−𝑙𝑐𝑘/2, 𝑙𝑐𝑘/2), gives a scalar Jacobian determinate, i.e.

det(𝐽)ck =
𝑙𝑐𝑘
2 . Therefore, the integral operations over the crack length are obtained

using Equation 3.43.
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∫
𝜕Γ
(·)𝑑𝑙 =

∫
b𝑐𝑘∈(−1.0,1.0)

(·)det(𝐽)𝑐𝑘𝑑b𝑐𝑘

=
𝑙𝑐𝑘
2 ·

∫
b𝑐𝑘∈(−1.0,1.0)

(·)𝑑b𝑐𝑘
(3.43)

where a Gaussian 2-point rule integration is used along an embedded macrocrack.

3.3.7 Damage evolution along cracks using Smooth-Unloading-
Reloading functions

The SUR degradation law 𝜔(Z, Z𝑒 𝑓 𝑓 ) employs an equivalent traction-separation re-

sponse curve under uniaxial conditions, similar to the degradation law for directional

microcracking previously described in Section 3.2.6. The smooth nature of the func-

tion was selected to aid convergence of the overall nonlinear solution process (Jefferson

and Mihai, 2015). The unloading-reloading branch is updated for the first few itera-

tions of a numerical step but is then frozen after a selected iteration number (itfix).

In practice, itfix = 3 seems to be adequate for most problems. In the nonlinear so-

lution scheme, a secant stiffness matrix is used in the first few iterations and then a

tangent stiffness is used once the iteration number exceeds itfix. The tangent is based

on the tangent of the unloading-reloading function. This means that the stiffness ma-

trix is always positive definite. The SUR degradation evolution law for embedded

localisation bands is illustated in Figure 3.12 and reads as follows:

𝜔(Z, Z𝑒 𝑓 𝑓 ) = 1 −
t𝑛
Γ,𝑢𝑟
(Z, Z𝑒 𝑓 𝑓 ,aux)

𝐸
[
Z𝑒 𝑓 𝑓 ,aux/ℎ𝑐𝑎

] , Z𝑒 𝑓 𝑓 ,aux =

{
𝑎𝑝,𝑢𝑟Z , Z𝑒 𝑓 𝑓 ≤ 𝑎𝑝,𝑢𝑟Z
Z𝑒 𝑓 𝑓 , Z𝑒 𝑓 𝑓 > 𝑎𝑝,𝑢𝑟Z

(3.44)

where the SUR branch t𝑛
Γ,𝑢𝑟
(Z, Z𝑒 𝑓 𝑓 ) from Equation 3.45 is dependent on the

effective Z𝑒 𝑓 𝑓 and the maximum experienced equivalent cracking relative displace-

mentstates Z , where Z establishes the intersection of this SUR function and the target

softening function t𝑛
Γ,𝑡
(Z) from Equation 3.46. The nonlinear SUR branch gets defined

by an exponential expression which grows asymptotically towards the traction t𝑛
Γ,𝑘
(Z)

from Equation 3.47.

The key functions for the SUR method are presented below:

t𝑛Γ,𝑢𝑟 (Z, Z𝑒 𝑓 𝑓 ) = t𝑛Γ,𝑘 (Z)
[
1 −

(
1 −

𝑎𝑝,𝑢𝑟

a𝑢𝑟

)
exp

{
−
Z𝑒 𝑓 𝑓 − 𝑎𝑝,𝑢𝑟Z
(a𝑢𝑟 − 𝑎𝑝,𝑢𝑟)Z

}]
, Z𝑒 𝑓 𝑓 ≥ 𝑎𝑝,𝑢𝑟Z (3.45)

t𝑛Γ,𝑡 (Z) = 𝑓M𝑡

[
𝑟M𝑠 + (1 − 𝑟M𝑠 ) exp

{
−𝑐𝑠

Z − 𝑎𝑘,𝑢𝑟ℎ𝑐𝑎 𝑓M𝑡 /𝐸
𝑢𝑚𝑎𝑥 − 𝑎𝑘,𝑢𝑟ℎ𝑐𝑎 𝑓M𝑡 /𝐸

}]
, Z ≥ 𝑎𝑘,𝑢𝑟ℎ𝑐𝑎

𝑓M𝑡

𝐸
(3.46)
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Figure 3.12: Equivalent traction-separation law describing SUR concept, as adopted
at the embedded localisation band.

where the maximum experienced macro-state Z ≥ 𝑎𝑘,𝑢𝑟 · ZM𝑡 gets initialised at the

displacement projection of the first peak of the uniaxial curve, to attain an expected

macroscopic uniaxial tensile strength 𝑓M𝑡 ; the elastically-derived projected relative

displacement ZM𝑡 = ℎ𝑐𝑎
𝑓M𝑡
𝐸

is defined by extending the first linear response until the

peak strength 𝑓M𝑡 , with 𝐸 being the elastic stiffness of the undamaged cementitious

material; ℎ𝑐𝑎 stands for the virtual thickness of the embedded localisation band; 𝑐𝑠 is

a softening constant; the effective end of the post-peak response is defined at Z ≈ 𝑢𝑚𝑎𝑥;
and 𝑟M𝑠 is a residual ratio that defines the tail of the softening branch (see comment

box below).

N.B.: In the SUR method the smallest traction upon a very large value of equivalent

crack relative displacement approximates to that of limZ𝑒 𝑓 𝑓→∞
(
t𝑛
Γ,𝑡
(Z)

)
= 𝑟M𝑠 · 𝑓M𝑡 ,

where the residual strength ratio 𝑟M𝑠 > 0 is always positive to avoid ill-posed tangents.
Typical values of the residual tensile strength ratio are shown in Table 3.2.

By intersecting the SUR nonlinear branch and the target function at Z𝑒 𝑓 𝑓 = Z ,

the asymptotic re-gained strength function t𝑛
Γ,𝑘
(Z) is derived in Equation 3.47.

t𝑛Γ,𝑘 (Z) = t𝑛Γ,𝑡 (Z) · a𝑢𝑟 · 𝑎𝑘,𝑢𝑟 , in Z ≥ 𝑎𝑘,𝑢𝑟ℎ𝑐𝑎
𝑓M𝑡

𝐸
(3.47)
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The parameter 𝑎𝑘,𝑢𝑟 is used to define the target function and asymptotic unloading

reloading response, which is derived to comply with features of continuity in path and

tangents (Alnaas and Jefferson, 2016; Jefferson and Mihai, 2015), and reads as shown

below:

𝑎𝑘,𝑢𝑟 =
1

a𝑢𝑟 ·
[
1 −

(
1 − 𝑎𝑝,𝑢𝑟

a𝑢𝑟

)
exp

{
− 1−𝑎𝑝,𝑢𝑟
a𝑢𝑟−𝑎𝑝,𝑢𝑟

}] (3.48)

where the SUR parameter 𝑎𝑘,𝑢𝑟 gets defined solely as a function of the SUR con-

stants 𝑎𝑝,𝑢𝑟 and a𝑢𝑟 .

Combining Equations 3.45 and 3.46, with t𝑛
Γ,𝑡
(Z) having an initial value of 𝑓M𝑡 the

full expression for the U-R branch is derived:

t𝑛
Γ,𝑢𝑟
(Z, Z𝑒 𝑓 𝑓 ) = t𝑛

Γ,𝑡
(Z) · a𝑢𝑟 · 𝑎𝑘,𝑢𝑟 ·

[
1 −

(
1 − 𝑎𝑝,𝑢𝑟

a𝑢𝑟

)
exp

{
− Z𝑒 𝑓 𝑓 −𝑎𝑝,𝑢𝑟 Z(a𝑢𝑟−𝑎𝑝,𝑢𝑟 )Z

}]
,∀Z𝑒 𝑓 𝑓 ≥ 𝑎𝑝,𝑢𝑟Z,∀Z ≥ 𝑎𝑘,𝑢𝑟ℎ𝑐𝑎 𝑓

M
𝑡

𝐸

(3.49)

Note that the SUR nonlinear branch returns to a state of linear unloading, which

connects through the origin, for an effective equivalent macrocrack relative displace-

ment Z𝑒 𝑓 𝑓 ≤ 𝑎𝑝,𝑢𝑟 · Z . Therefore, Gauss Points evaluated along the embedded localisa-

tion band that experience opening, sliding and rotation within this linear unloading

branch, respond by freezing macrocrack stiffness and effective macroscopic damage

variation. Hence, the cracking scalar variables, which are associated with linear un-

loading SUR response, are computed as the cracking scalar variables at the transition

between nonlinear and linear SUR response.

Details on the damage surface defined for computing increments of effective equiv-

alent cracking relative displacement Z𝑒 𝑓 𝑓 (ΔuΓ) and its maximum experienced version

Z are described in Section 3.3.8

3.3.8 Relationship between crack displacement jump ΔuΓ and
the equivalent cracking relative displacement Z (ΔuΓ)

The effective equivalent cracking relative displacement Z𝑒 𝑓 𝑓 gets updated using a

damage-informed hyperbolic function which is illustrated in Figure 3.13 and is defined

Chapter 3. Micromechanics & variational mechanics of quasi-brittle fracture 68



3.3. Formulation of an element with embedded strong discontinuities (EFEM)

in Equation 3.50. This damage function is consistent with that of micromechanical

models by Jefferson and Bennett (2010, 2007); Mihai and Jefferson (2011). The

unloading-reloading conditions of the damage surface are shown in Equation 3.51.

Note that only states of loading would change the maximum experienced Z .

Z𝑒 𝑓 𝑓 (ΔuΓ) = 1
2Δun

Γ

[
1 +

(
`Y
𝑟Y

)2]
+ 1

2𝑟2Y

√︂(
𝑟2Y − `2Y

)2
Δun

Γ
+ 4𝑟2Y

(
Δut

Γ

)
Φ(Z, Z𝑒 𝑓 𝑓 ) = Z𝑒 𝑓 𝑓 − Z

 (3.50)

¤Z ≥ 0, Φ · ¤Z = 0, Φ ≤ 0 (3.51)
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Figure 3.13: Damage surface is illustrated for Gauss Points along the embedded
localisation band. As an example of the relative deformation path required to update
the damage surface, path A is presented which consideres both opening and sliding
in the embedded band.

3.3.9 Weak form of BVP for fracturing solid: a variational
approach

A variational principle of least-energy consumption is exploited, as a means for finding

the optimal solution to the BVP as posed in Section 3.3.1. In this regard, momentum

balance Div[𝝈] + 𝒃 = 0 (inertial effects are neglected) is re-worked for small energetic

variations weakly enforced in Ω+ and Ω−, which comprise the subdomain Ω ⊂ Ω𝑒
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(Ω = Ω+ ∪ Ω−) crossed entirely by an embedded strong discontinuity Γ with surface

𝜕Γ = 𝜕Γ+ ∪ 𝜕Γ–:

𝛿Π
Ω+

=

∫
Ω+
∇𝑠 (𝛿u𝑐) : 𝝈𝑑Ω+

∫
𝜕Γ+

(
𝛿u𝑐 + 𝛿[|u|]

)
· tΓ+𝑑Γ︸                                  ︷︷                                  ︸

−
∫
𝜕Γ+

𝛿u·
(
𝜎·n

)
𝑑Γ

−
∫
Ω+
𝛿u·𝒃𝑑Ω−

∫
𝜕Ω+𝜎

𝛿u·t𝜕Ω+𝑑𝑆 = 0

(3.52)

𝛿Π
Ω−

=

∫
Ω−
∇𝑠 (𝛿u𝑐) : 𝝈𝑑Ω−

∫
𝜕Γ–

𝛿u𝑐 · tΓ+𝑑Γ︸                   ︷︷                   ︸
−

∫
𝜕Γ–

𝛿u·
(
𝝈·n

)
𝑑Γ

−
∫
Ω−
𝛿u · 𝒃𝑑Ω −

∫
𝜕Ω−𝜎

𝛿u · t𝜕Ω−𝑑𝑆 = 0

(3.53)

where 𝛿(·) denotes a small variation, tΓ+ = −tΓ– , tΓ+ = tΓ (𝒙 ∈ 𝜕Γ) and tΓ– =

tΓ (𝒙 ∈ 𝜕Γ–) are the tractions at each side of an embedded localisation band.

Note that weak enforcement of (i) traction continuity along the embedded locali-

sation band, and of (ii) traction equilibrium between the embedded localisation band

and the continua, are both exploited in Equations 3.52 and 3.53. Formally, this weak

enforcement of traction equilibrium and traction continuity are expressed as follows:∫
𝜕Γ+

𝛿[|u|] ·
(
𝛔 · n+

Γ
+ tΓ+

)
𝑑Γ = 0∫

𝜕Γ+
𝛿 | [u|] ·

(
𝛔 · n+

Γ
+ 𝛔 · n−

Γ

)
𝑑Γ = 0

 (3.54)

The following expression 𝛿ΨΩ\Γ := 𝛿Π
Ω+
+ 𝛿Π

Ω−
is derived by adding up energetic

variations for each of the subdomain components Ω+ and Ω− (Equations 3.52 and

3.53):

𝛿ΨΩ\Γ =

∫
Ω\Γ
∇𝑠 (𝛿u𝑐) : 𝝈𝑑Ω +

∫
𝜕Γ+

𝛿[|u|] · tΓ+𝑑Γ︸                                                   ︷︷                                                   ︸
𝛿Π
∗
𝑖𝑛𝑡

−
∫
Ω

𝛿u · 𝒃𝑑Ω −
∫
𝜕Ω𝜎

𝛿u · t𝜕Ω𝑑𝑆︸                                       ︷︷                                       ︸
−𝛿Π𝑒𝑥𝑡

= 0

(3.55)

where the minimisation of the functional 𝛿ΨΩ\Γ := 𝛿Π𝑖𝑛𝑡 − 𝛿Π𝑒𝑥𝑡 serves as a means

to express the variational principle shown in Equation 3.56.
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minimise
in Ω\Γ

{ ∫
Ω\Γ
∇𝑠 (𝛿u𝑐) : 𝝈𝑑Ω+

∫
𝜕Γ+

𝛿[|u|] · tΓ+𝑑Γ−
∫
Ω

𝛿u · 𝒃𝑑Ω−
∫
𝜕Ω𝜎

𝛿u · t𝜕Ω𝑑𝑆
}

(3.56)

Note that the external forces are independent of the variations of the fracture-

associated displacement, upon fixing the displacement field. Therefore, the Equation

3.56 is reduced to the minimisation expression in Equation 3.57.

𝛿Π𝑖𝑛𝑡 := inf
in Ω\Γ

{
𝛿Π
Ω+
+ 𝛿Π

Ω−
+ 𝛿Π𝑒𝑥𝑡

}
= inf
in Ω\Γ

{
𝛿Π
∗
𝑖𝑛𝑡

}
(3.57)

where the functional 𝛿Π𝑖𝑛𝑡
∗

possesses a strain energy component, exerted by the

continua, and a fracture energy component, induced by the embedded localisation

band as shown in Equation 3.58.

𝛿Π
∗
𝑖𝑛𝑡 :=

∫
(Ω+∪Ω−)\Γ

∇𝑠 (𝛿u𝑐) : 𝝈𝑑Ω︸                             ︷︷                             ︸
strain energy

+
∫
𝜕Γ+

𝛿[|u|] · tΓ+𝑑Γ︸                    ︷︷                    ︸
fracture energy

(3.58)

3.3.10 Variational Finite Element setting of solids with em-
bedded strong discontinuities

The following elaborations consider an element region as the subdomain Ω ⊂ Ω𝑒.

Using the Equation 3.58 and an approximation of the gradient of the continuous dis-

placement field 𝛆 = {∇𝑠u𝑐}vec (Sections 3.3.4 and 3.3.5), along with an approximation

of work done by the embedded localisation band δŴ
T · Fck (Section 3.3.6) gives:

𝔡Π
∗
𝑖𝑛𝑡 (uel,W) =

∫
Ω\Γ

(
δ𝛆TD𝑒𝛆

)
𝑑Ω + δŴT

Fck (3.59)

Now re-arranging Equations 3.56 and 3.57 gives Equation 3.60.
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𝔡ΨΩ\Γ = 𝔡Π𝑒𝑥𝑡 − 𝔡Π𝑖𝑛𝑡 = 0

𝔡Π𝑒𝑥𝑡 = {δuel}TFel
ext

𝔡Π𝑖𝑛𝑡 = inf
in Ω\Γ

{
𝔡Π
∗
𝑖𝑛𝑡

}


(3.60)

where Fel
ext is defined as the nodal forces applied externally. External distributed

forces and body forces are included in standard form, while the method enables the

embeddment of macrocrack-inducing tractions inside the element domain.

Expansion of the strain vector considering strong-discontinuity kinematic enhance-

ment 𝛆 = Buel −MŴ (Equation 3.36) into Equation 3.59 yields:

𝔡Π
∗
𝑖𝑛𝑡 (uel,W) =

∫
Ω\Γ

({
Bδuel −MδŴ

}T
D𝑒𝛆

)
𝑑Ω + δŴT

Fck (3.61)

Re-arrrangement of common terms with respect to variations of the displacement

δuel and that of the crack relative displacement δŴ in Equation 3.61 gives:

𝔡Π
∗
𝑖𝑛𝑡 (uel,W) = {δuel}T

{ ∫
Ω\Γ

BTD𝑒𝛆𝑑Ω

}
+{δŴ}T

{
Fck−

∫
Ω\Γ

MTD𝑒𝛆𝑑Ω

}
(3.62)

By replacing the inelastic component of variation of crack relative displacement

δŴ = Î · δW (Equation 3.23) in Equation 3.62, further simplification is attained:

𝔡Π
∗
𝑖𝑛𝑡 (uel,W) = {δuel}T

{
𝜕Π
∗
𝑖𝑛𝑡/𝜕uel

}
+ {δW}T

{
𝜕Π
∗
𝑖𝑛𝑡/𝜕W

}
{
𝜕Π
∗
𝑖𝑛𝑡/𝜕uel

}
(uel,W) =

∫
Ω\Γ B

TD𝑒𝛆𝑑Ω{
𝜕Π
∗
𝑖𝑛𝑡/𝜕W

}
(uel,W) = Î

{
Fck −

∫
Ω\Γ M

TD𝑒𝛆𝑑Ω

}


(3.63)

where element-wise quasi-static condensation of crack dofs W becomes possible,

by ensuring that the internal energy variation is minimum, and this gives:

W := Arg

{
inf

in Ω\Γ

{
𝔡Π
∗
𝑖𝑛𝑡

}}
(3.64)
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Minimisation of the variation of internal energy 𝔡Π
∗
𝑖𝑛𝑡 is physically meaningful, and

implies that the additional external work needed to propagate fractures is the least

for any fixed displacement δuel = 0 and any variation of crack relative displacement

vector δW ≠ 0, at the element level as illustrated in Figure 3.14.
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(a) Sketch of energy-based Functional for any arbitrary deformation states
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(b) Sketch of energy-based Functional for arbitrary crack relative displacement, given
an updated element displacement

Figure 3.14: Schematic interpretation of a local minima within an energy-based Func-
tional of a fracturing solid. Top sketch stands for a general surface of the energy-based
functional, and bottom sketch for a slice of the surface given a specific element dis-
placement.

The local minimum of 𝔡Π
∗
𝑖𝑛𝑡 is obtained from fixing displacement field uel in Equa-

tion 3.63 while enforcing the constraint 𝔡Π
∗
𝑖𝑛𝑡 = 0:
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3.3. Formulation of an element with embedded strong discontinuities (EFEM)

{
𝜕Π
∗
𝑖𝑛𝑡/𝜕W

}
(uel,W) = 0

⇒ KΓW −
∫
Ω\Γ M

TD𝑒

{
Buel − M̂W

}
𝑑Ω = 0

 (3.65)

where further re-arrangement of Equation 3.65, which depicts a stationary point

for the internal energy variation 𝔡Π
∗
𝑖𝑛𝑡 gives :{

KΓ +
{ ∫

Ω

MTD𝑒M𝑑Ω

}
Î

}
W =

{ ∫
Ω

MTD𝑒B𝑑Ω

}
uel (3.66)

In addition, by isolating the crack centre relative displacement vector W, the addi-

tional set of PDEs, used for element-wise quasi-static condensation, are conveniently

derived, and are presented in Equation 3.67.

𝝓el
𝑤

(
W

)
:= W −CΓ

(
W,uel

)
· uel = 0

CΓ

(
W,uel

)
= B−1Γ ·AΓ

BΓ = KΓ +B∗Γ · Î
B∗Γ =

∫
Ω\Γ M

TD𝑒M𝑑Ω

AΓ =
∫
Ω\Γ M

TD𝑒B𝑑Ω


(3.67)

where Equation 3.67 corresponds to three unknowns stacked in W, with three

available differential equations for any given displacement update uel.

Now combining Equations 3.63 and 3.65, for the desired stationary condition

𝜕Π
∗
𝑖𝑛𝑡/𝜕W = 0, and the finite element form of the variational principle in Equation

3.60, an energetically-optimal equilibrium equation for fracture propagation with em-

bedded strong discontinuities is derived, and it is presented in Equation 3.68.

𝝓el
𝐹 (uel) := Fel

ext − Fel
int(uel) = 0

Fel
int(uel) :=

∫
Ω\Γ B

TD𝑒

{
Buel − M̂W

}
𝑑Ω , W = CΓ

(
W,uel

)
· uel

 (3.68)

where the crack dofs W, upon weakly enforced energetic minimisation of the

embedded strong discontinuity element, drive the update of maximum experienced

and effective equivalent crack relative displacement Z and Z𝑒 𝑓 𝑓 at the integration

points along the crack length; whereas the newly updated enhanced strain 𝛆 drives

the update of stresses within the bulk domain.
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3.3. Formulation of an element with embedded strong discontinuities (EFEM)

Conveniently, when no cracks have formed, Equation 3.68 degrades into a standard

FEM approach, since M̂ = 0 for cracks undergoing elastic deformation with floating

propagation direction.

3.3.11 Numerical tangent stiffness for cracked elements

At first, an intermediate step is taken for devising a consistently linearized element

tangent operator (Simo and Taylor, 1985) for an element with embedded strong dis-

continuities, which lies in deriving an element-wise secant stiffness operator. By

combining Equations 3.60 and 3.61, upon quasi-static condensation of crack degrees

of freedom W = CΓu
el (Equation 3.67):

𝔡Π𝑖𝑛𝑡 (uel) =
∫
Ω\Γ

{
Bδuel −MÎ{CΓδu

el}
}T

D𝑒

{
Buel −MÎ{CΓu

el}
}
𝑑Ω

+
{
Î{CΓδu

el}
}T

KΓ

{
CΓu

el
} (3.69)

Note that the approximation δŴ ≈ Î{CΓδu
el} has been used, under the assump-

tion of a small variation of δuel. Then, re-arranging terms from Equation 3.69 gives:

𝔡Π𝑖𝑛𝑡 (uel) =
∫
Ω\Γ

{
δuel

}T{
B −MÎCΓ

}T
D𝑒

{
B −MÎCΓ

}{
uel

}
𝑑Ω

+
{
δuel

}T{
ÎCΓ

}T
KΓ

{
CΓ

}{
uel

} (3.70)

Further, by taking terms that do not change within the domain of integration out

of the integral expression on the right-hand side from Equation 3.70, and by replacing

the equivalent terms M̂ = MÎ (Equation 3.34) and K̂Γ = ÎKΓ = Î
T
KΓ gives:

𝔡Π𝑖𝑛𝑡 (uel) =
{
δuel

}T{ ∫
Ω\Γ

{
B − M̂CΓ

}T
D𝑒

{
B − M̂CΓ

}
𝑑Ω

}{
uel

}
+
{
δuel

}T{
CT

Γ K̂ΓCΓ

}{
uel

} (3.71)

By re-arranging common terms from the right-hand side of Equation 3.71 and by

combining with Equation 3.60, to conveniently use the FE setting of the variational

principle:

{
δuel

}T{ ∫
Ω\Γ

{
B − M̂CΓ

}T
D𝑒

{
B − M̂CΓ

}
𝑑Ω +CT

Γ K̂ΓCΓ

}{
uel

}
= {δuel}TFel

ext

(3.72)

Therefore, the secant stiffness at the element level can be devised after cancelling

δuel ≠ 0 from both sides of Equation 3.72:
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3.3. Formulation of an element with embedded strong discontinuities (EFEM)

{ ∫
Ω\Γ

{
B − M̂CΓ

}T
D𝑒

{
B − M̂CΓ

}
𝑑Ω +CT

Γ K̂ΓCΓ

}{
uel

}
= Fel

int (3.73)

Kel
EFEM,sec =

∫
Ω\Γ

{
B − M̂CΓ

}T
D𝑒

{
B − M̂CΓ

}
𝑑Ω +CT

Γ K̂ΓCΓ (3.74)

By differentiating each side of Equation 3.73, derivation of a consistent tangent for

a cracked element is enabled considering an elastic bulk domain under deformation

and embedded cracks being simultaneously active:{
𝜕 (Kel

EFEM,secu
el)/{𝜕uel}

}
︸                              ︷︷                              ︸

Kel
EFEM

{
¤uel

}
= ¤Fel

int (3.75)

Further development of chain rules yields the following numerically derived ex-

pression for the consistent tangent Kel
EFEM, in index notation:

{
𝐾el
EFEM

}
𝑖 𝑗

=

{
𝐾el
EFEM,sec

}
𝑖 𝑗

+
(
𝜕
{
𝐾el
EFEM,sec

}
𝑖𝑟

𝜕𝑢el
𝑗

)
︸                  ︷︷                  ︸
by central differences

𝑢el𝑟 , 𝑖, 𝑗 , 𝑟 = 1... ndofn · nnode︸           ︷︷           ︸
ndofe

(3.76)

where central difference approximations are used for sufficiently small nodal per-

turbations δuel
𝑗
, and Kel

EFEM,sec is updated forwardly and backwardly for each of these

steps, consistently with the quasi-static condensation procedure described previously

in order to compute the difference expression:

𝜕
{
𝐾el
EFEM,sec

}
𝑖𝑟

𝜕𝑢el
𝑗

≈

{
𝐾el
EFEM,sec(𝑢

el+)
}
𝑖𝑟
−

{
𝐾el
EFEM,sec(𝑢

el−)
}
𝑖𝑟

2|ΔFD𝑢
el
𝑗
|

, 𝑖, 𝑗 , 𝑟 = 1...ndofe

(3.77)

where ΔFD(·) stands for a Finite-Difference based forward or backward step size.

Note that a numerical tangent is preferred over one in closed form, since the latter

becomes sophisticated to compute due to the highly-nonlinear system of equations.

Note that a central difference scheme is preferred since the error induced is expected

to be second order O(|ΔFD𝑢
el
𝑗
|2).

N.B.: Secant operators are used until the macrocracking direction is settled, and this
is generally known ‘a posteriori’ of updating cracking dofs using quasi-static element-
based condensation. Therefore, consistent tangent operators for cracked elements are
only used for global iterations after macrocrack activation.
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3.4. Numerical examples of nonlinear diffuse-micro and localised-macro
quasi-brittle response

3.4 Numerical examples of nonlinear diffuse-micro

and localised-macro quasi-brittle response
The models described in Sections 3.2 and 3.3 have been implemented separately to

model failure of quasi-brittle solids in practical numerical examples. The following

sub-section presents a number of examples in which the uniqueness of the solution is

analysed for various meshes upon fracture occurrence.

3.4.1 Uniaxial extension test: uniqueness for various grids

Models were tested under simple uniaxial conditions for checking mesh insensitivty of

the mechanical response. Bilinear quadrilateral elements in plane-stress settings have

been used. Chosen grids comprise: 1 square element, 25 square elements and 225

square elements. Central elements were assumed slightly weaker to drive deformation

localisation. Macrocrack nucleation in EFEM approach was allowed when major

principal stress exceeds peak tensile strength. Boundary conditions are shown in

Figure 3.15, and parameters1 in Table 3.1.
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Figure 3.15: Boundary conditions for failure analyses of quasi-brittle cementitious
solid of domain ΩM(50𝑚𝑚×50𝑚𝑚×50𝑚𝑚) in uniaxial extension.

Table 3.1: Summary of model parameters for uniaxial extension test.

EFEM model with elastic bulk adjusted from Alnaas (2016)

𝐸 [N/mm2] 𝜐 [-] 𝑓M𝑡 [N/mm2] ℎ𝑐𝑎 [mm] 𝑟𝜎 [-] `𝜎 [-] 𝑢𝑚𝑎𝑥 [mm] 𝑟M𝑠 [-]
30000 0.20 3.00 1.00 1.50 1.00 0.20 0.04

Smeared-crack micromechanical model adjusted from Jefferson and Bennett (2007)

𝐸 [N/mm2] 𝜐 [-] 𝑓m𝑡 [N/mm2] 𝑟𝜎 [-] `𝜎 [-] 𝑢𝑚𝑎𝑥 [mm]
30000 0.20 1.85 1.50 1.00 0.30

1Softening: 𝑐𝑠 ≈ 6.0; SUR macrocracking: a𝑢𝑟 = 0.85, 𝑎𝑝,𝑢𝑟 = 0.65; homogenisation: nm
𝑖𝑛𝑡

= 21
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3.4.2 Guidance on calibration of models for micro-diffuse and
macro-localised quasi-brittle response

Note that most parameters are common for both the micromechanics and strong

discontinuity models, except for tensile strength parameters as shown in Table 3.2.

Table 3.2: Guidance on model calibration for modelling quasi-brittle response.

Parameter Comments on calibration

𝐸 The Young’s modulus should allow to capture the correct stiffness of the
cementitious composite under initial deformation in uniaxial setting. A
good first estimate is 30000 [N/mm2] for standard concrete.

𝜐 The Poisson’s ratio can be set to a typical value between 0.2 to 0.3 for
cementitious composites. Calibration should reflect transversal stiffness
correctly under incipient deformation in uniaxial setting.

𝑓M𝑡 The macroscopic strength should match that observed from experimental
data in uniaxial deformation setting. Note that 𝑓M𝑡 is larger than 𝑓m𝑡 .

𝑓m𝑡 The microscale strength should match that observed from incipient non-
linear response in experimental data in uniaxial deformation setting,
since microcracking is acknowledged to be responsible for these non-
linearities.

ℎ𝑐𝑎 The macrocrack band virtual width can be taken as a few times the
coarse aggregate size, e.g ℎ𝑐𝑎 ≈ 5 to 20 mm if it is a concrete with both
fine and coarse aggregate, or up to 2 mm if it is mortar.

𝑟𝜎 This ratio is computed as 𝑟𝜎 = 𝑐′

𝑓M𝑡
. A typical value for this ratio can be

in the range of 1.0 to 1.5.

`𝜎 This ratio is equivalent to the asymptotic shear to compressive stregnth
ratio in 𝜎𝑟𝑠 - 𝜎𝑟𝑟 space when a micro or macrocrack is loaded. A typical
value for this ratio can be in the order 0.50 to 1.30.

𝑢𝑚𝑎𝑥 This is the ultimate crack opening at which most residual fracture resis-
tance vanishes, with typical value for concrete between 0.2 to 0.3 𝑚𝑚.

𝑟M𝑠 This macrocrack’s residual tensile strength ratio can be set typically in
the range 0.01 to 0.05, with the purpose to avoid vanishing strength.
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3.4.3 Discussion of simulation results: uniaxial tensile test

3.4.3.1 EFEM analysis: mesh convergence test

The uniaxial extension response simulated via the EFEM approach employs a con-

stant macrocrack-band width ℎ𝑐𝑎 = 1.0 𝑚𝑚 to render an objective response in the

load-displacement curves, as shown in Figure 3.16e, even if various element sizes are

used for different mesh configurations. It is highlighted that both an objective peak

response and an objective post peak response are obtained. In addition, deformation

fields for various grids remain objective at the ultimate stage as observed in Figures

3.16a and 3.16b. Note that only the macrocrack relative displacement exerts macro-

scopic inelastic response upon deformation. The macrocrack gets nucleated when

major principal stress exceeds the tensile strength (𝜎1 > 𝑓M𝑡 ), and macro-fracture

advancing direction is perpendicular to the major principal strain direction. In ad-

dition, as a consequence of the relaxation of the domain at the end stage shown in

Figures 3.16c and 3.16d. This behaviour implies the strain of the elastic bulk returns

to almost original nil strain, then the macrocrack opening takes over the deforma-

tion imposed along the right edge of the domain, i.e. Δun
ΓM
(x on 𝜕ΓM) ≈ Δ𝑢𝑥 with

n+
ΓM

= [1, 0, 0]T.

3.4.3.2 Smeared-crack micromechanical analysis: mesh convergence test

The micromechanical material model employed a smeared-crack approach (Bažant

and Oh, 1983). In this regard, the ultimate strain for failure to occur at the quadrature-

level Zmmax = Ymmax = 𝑢max/ℎ𝑒𝑙 is set to be inversely proportional the element size

ℎ𝑒𝑙 . It is observed from results of load-displacement curves in Figure 3.17e, that al-

though this simple approach helps to promote an objective end of the strain-softening

branch, peak response is still sensitive to mesh size and therefore fracture energy is

not preserved adequately. Deformation fields for various mesh configurations are also

presented for reference in Figures 3.17a to 3.17b. Note that upon failure, there is

a concentration of strain in a band of defined thickness, which is not completely

objective with respect to mesh refinement, as observed in Figures 3.17c and 3.17d.

3.4.3.3 Hypothesis on improvement due to coupling of methodologies

Coupling of a Micromechanical model and an EFEM approach would allow an objec-

tive peak and post peak structural response for quasi-brittle cementitious composites,

while additional accuracy of the non-linear response of the bulk would be attained.

Among other coupling criteria, (energetic) variational approaches could be explored
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as an elegant resource to seek models with optimal failure mechanisms. Some as-

pects of this type of energetic constraints have been discussed along the simulation

of similar numerical tests to study compatibility in Azua-Gonzalez et al. (2019, 2020,

2021).

(a) EFEM, 25 Elements: deformed shape (b) EFEM, 225 Elements: deformed shape

(c) EFEM, 25 Elements: crack opening (d) EFEM, 225 Elements: crack opening

(e) Uniaxial extension: load-displacement response for EFEM approach

Figure 3.16: Uniaxial extension test on ΩM(50𝑚𝑚×50𝑚𝑚×50𝑚𝑚), using EFEM ap-
proach for quasi-brittle solids with elastic bulk, where weakened material is used in
central elements. Ultimate deformation and macrocrack opening contours are shown.
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(a) Micromechanics, 25 Elements: deformed (b) Micromechanics, 225 Elements: deformed

(c) Homogenised strain: 25 Elements (d) Homogenised strain: 225 Elements

(e) Uniaxial extension: load-displacement response for regularised micromechanical model

Figure 3.17: Simulation of uniaxial extension test on ΩM(50𝑚𝑚×50𝑚𝑚×50𝑚𝑚), using
smeared crack approach for quasi-brittle micromechanical solids. Model adjusted from
Jefferson and Bennett (2007). Various grids used with slightly weakened material
in central line of elements. Nodal deformation and homogenised micromechanics-
induced strain (major principal component) contours shown for end stage.
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3.5 Summarised formulations for micro and macro

fracture modelling in quasi-brittle materials

The main features of the Micromechanical model at the bulk domain (see Section 3.2)

as used in a standard Finite Element program are summarised in Box 3.1, and the

basic element formulation for an EFEM approach is described in Box 3.2.

Box 3.1 Summary of Micromechanical material model for cementitious materials
with directional microcracking, adapted from Jefferson and Bennett (2007)

Constitutive equation [§3.2.5]: �̄� = D̄𝑒 · ( �̄� − �̄�𝑎𝑑𝑑) or �̄� = D̄𝑠𝑒𝑐 · �̄�

where D̄𝑠𝑒𝑐 =

[
I + D̄𝑒 ·

(
𝑛𝑚
𝑖𝑛𝑡∑
𝑖=1

𝜔m
𝛼

1−𝜔m
𝛼
NT
𝜎C𝐿N𝜎𝑤

num
𝛼

)]−1
· D̄𝑒

Consistently-linearised constitutive tangent operator [§3.2.8]:

D̄𝑡𝑎𝑛 = D̄𝑠𝑒𝑐 ·
[
I −

𝑛𝑚
𝑖𝑛𝑡
| ¤Zm𝛼 >0∑
𝑖=1

1
(1−𝜔m

𝛼 )2
𝑑𝜔m

𝛼

𝑑Zm𝛼

𝑑Zm𝛼
𝑑Zm

𝛼,eff
NT
𝜎C𝐿N𝜎 �̄�

{

𝜕Zm
𝛼,eff

𝜕𝜺𝐿

}T

NY𝑤
num
𝑖𝑛𝑡

]
where C𝐿 = 1

𝐸𝑎𝑚

[
1 0
0 2

2−𝜐𝑎𝑚

]
is simplified to account for plane-stress conditions ;

In every microcracking direction (𝛼 = 1...𝑛𝑚
𝑖𝑛𝑡

), as used for numerical integration:

Directional microcracking variable [§3.2.6]: 𝜔m
𝛼 (Zm𝛼 ) = 1 − Zm0

Zm𝛼
exp

{
− 𝑐𝑠

Zm𝛼 −Zm0
𝑢max/ℎ𝑒𝑙−Zm0

}
Microcracking surface [§3.2.7]: Θm

𝛼 (Zm𝛼,eff, Z
m
𝛼 ) ≡ Zm𝛼,eff − Z

m
𝛼 ≤ 0

Microcracking strain [§3.2.7]: Zm
𝛼,eff
( �̄�𝐿) = Ȳ𝑟𝑟

2

[
1 +

(
`Y
𝑟Y

)2]
+ 1

2𝑟2Y

√︃(
𝑟2Y − `2Y

)2
Ȳ2𝑟𝑟 + 4𝑟2Y𝛾2𝐿

Initialial effective microcracking strain [§3.2.7]: Zm
𝛼,eff
≥ Zm0 ; Zm0 ≡ Ym𝑡 =

𝑓 m𝑡
𝐸𝑎𝑚

Microcracking growth irreversibility [§3.2.7]: ¤Z𝛼 ≥ 0 ; Θm
𝛼 ≤ 0 ; Θm

𝛼 · ¤Zm𝛼 = 0

Caveat on Micromechanical model: Hereby, the basic components adopted at

quadrature-level neglect the dilative response upon shearing on re-closed directional

microcracks and the plastic irreversible deformation components upon full unloading.

Although including such mechanical components may help in having more accurate

predictive response of cementitious composites, e.g. in biaxial response (Jefferson and

Bennett, 2010), the focus of this PhD was on tailoring the coupling strategies between

the underlying micromechanical consitutive strategy and an EFEM appoach.
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3.5. Summarised formulations for micro and macro fracture modelling in
quasi-brittle materials

Box 3.2 Summary of EFEM model for embedded fracture propagation in quasi-brittle
solids with elastic bulk, adapted from Alnaas (2016); Freeman et al. (2020).

Mechanical Balance (m.b.) equations [§3.3.11]:

m.b.1. Equilibrium: 𝜙el
𝐹,𝑐𝑘
(uel) ≡ Fel

ext −
∫
Ω\Γ B

T · 𝛔𝑑Ω = 0 ; 𝛔 = D𝑒 ·
[
Buel −MÎW

]
∴


Consistent tangent:

{
Kel

EFEM

}
𝑖 𝑗
=

{
Kel

EFEM,sec

}
𝑖 𝑗
+

(
𝜕

{
Kel

EFEM,sec

}
𝑖𝑟

𝜕uel
𝑗

)
uel
𝑟 (Eq. 3.74)

Kel
EFEM,sec =

∫
Ω\Γ

{
B −M · Î ·CΓ

}T ·D𝑒 ·
{
B −M · Î ·CΓ

}
𝑑Ω + (CΓ)T · Î ·KΓ ·CΓ

m.b.2. Quasi-static condensation: 𝜙el𝑤
(
uel

)
≡W(uel) −CΓ · uel = 0 (Eq.3.67)

where,

CΓ

(
W(uel),uel

)
=

(
BΓ

)−1 ·AΓ

BΓ =
( ∫

Ω\Γ M
T ·D𝑒 ·M𝑑Ω

)
· Î +KΓ

AΓ =
∫
Ω\Γ M

T ·D𝑒 ·B𝑑Ω

 ⇐⇒
𝜕Π
∗

𝑖𝑛𝑡

𝜕W = 0 (Energy minimisation)

Kinematic-enhancement (k.e.) with embedded band [§3.3.5]:

k.e.1. Enriched nodal displacement: u𝑐,𝑖𝑛𝑜𝑑𝑒 = u𝑖𝑛𝑜𝑑𝑒−HΩ(x𝑖𝑛𝑜𝑑𝑒) ⊗ [|u|]𝑖𝑛𝑜𝑑𝑒
(
x𝑖𝑛𝑜𝑑𝑒

)
where uel

𝑐 =


u𝑐,node1
u𝑐,node2

...

u𝑐,nnode


=


unode1

unode2
...

unnode


−


HΩ(xnode1) ⊗ T𝑤 (xnode1)
HΩ(xnode2) ⊗ T𝑤 (xnode2)

...

HΩ(xnnode) ⊗ T𝑤 (xnnode)


· Î ·W

k.e.2. Strain: 𝛆 = Buel
𝑐 = Buel −

( 𝑛𝑛𝑜𝑑𝑒∑︁
B𝑖𝑛𝑜𝑑𝑒HΩ(x𝑖𝑛𝑜𝑑𝑒) ⊗ T𝑤 (x𝑖𝑛𝑜𝑑𝑒)

)
︸                                                   ︷︷                                                   ︸

M

ÎW (Eq.3.36)

where B𝑖𝑛𝑜𝑑𝑒 =


𝜕𝑥𝑁𝑖𝑛𝑜𝑑𝑒 0

0 𝜕𝑦𝑁𝑖𝑛𝑜𝑑𝑒
𝜕𝑦𝑁𝑖𝑛𝑜𝑑𝑒 𝜕𝑥𝑁𝑖𝑛𝑜𝑑𝑒

 , and HΩ(x ∈ Ω+) = 1 while HΩ(x ∈ Ω−) = 0

Embedded localisation band (e.mc.) [§3.3.6]:

e.mc.1. Equivalent crack force: Fck = K𝑒
Γ ·W

𝑒 = KΓ ·W (Eq. 3.40)

where, KΓ =
𝐸 ·𝑡𝑔
ℎ𝑐𝑎


∫
𝜕Γ
(1 − 𝜔)𝑑𝑙 0

∫
𝜕Γ
(1 − 𝜔)𝑙𝑑𝑙∫

𝜕Γ

1−𝜔
2(1+𝜐) 𝑑𝑙 0

symm
∫
𝜕Γ
(1 − 𝜔)𝑙2𝑑𝑙


and K𝑒

Γ =
𝐸 ·𝑡𝑔
ℎ𝑐𝑎


∫
𝜕Γ
𝑑𝑙 0

∫
𝜕Γ
𝑙𝑑𝑙∫

𝜕Γ

1
2(1+𝜐) 𝑑𝑙 0

symm
∫
𝜕Γ
𝑙2𝑑𝑙

 , while 𝜔 ∈ [0, 1]
e.mc.2 Inelastic relative displacement: Ŵ =

(
I − (K𝑒

Γ)−1 ·KΓ

)
·W = Î ·W

with 𝜔 as Smooth Unloading-Reloading (SUR) law [§3.3.7]
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3.6 Concluding remarks

In this chapter, an introductory theory for macroscopic damage and micromechanical

degradation based on the use of mechanical defects was described. This covered more

precisely stress and strain fields in a continuum with embedded stress-free ellipsoids,

which represent (a series of diffuse aligned) microcracks.

Then, the research gap identified in the previous chapter was addressed by the

investigation of a Micromechanics model and an element with embedded strong dis-

continuities. These methods are described thoroughly before coupling details and

implementation guidelines are presented in the next chapter.

The micromechanical homogenisation scheme belongs to the series of models devel-

oped by Jefferson and Bennett (2010, 2007); Mihai and Jefferson (2011), whereas the

embedded strong discontinuity method has been recently under development in-house

at Cardiff University (Freeman et al., 2020; Jefferson and Freeman, 2022), and in this

study the variational nature of this specialised EFEM model has been exploited.

From the analysis of compatibility some hypotheses have been drawn. In such a

novel coupled methodology, the underlying micromechanics is envisaged to evolve in-

dependently of deformation localisation at macroscale. Therefore, avoiding “ad-hoc”

phenomenological criteria for constraining directionality of microscale degradation is

desirable in these new type of scale-bridging strategies.

N.B.: The author has implemented the micro and macro-based models for quasi-
brittle fracture modelling, which are described in detail and tested numerically in
this Chapter, in such a way that the models could be used separately. This eased
the study of compatibility of both models from a numerical and implementation
standpoint, and helped in tailoring initial ideas to develop a robust coupling strategy,
which is described in detail in the next Chapter.
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Chapter 4

Variationally-consistent coupling of
Micromechanics & EFEM

“All the effects of Nature are only the mathematical consequences of a small number of
immutable laws.”

Pierre Simon Laplace 1749 - 1827
French Mathematician and pioneer of the Mathematical Principles of Mechanics

4.1 Seamless micro-macro fracture mechanics model

This chapter focuses on developing a Micromechanics-enriched variationally-consistent

framework, which enables a diffuse-to-localised representation of fracture propaga-

tion in quasi-brittle solids, with emphasis on cementitious composites and structures.

This naturally follows the analysis of micro and macro model components in Section

3.2 and Section 3.3 in the previous Chapter. Localised fracture is addressed using

an element-based strong discontinuity approach (EFEM) (Armero and Linder, 2009;

Freeman et al., 2020; Oliver et al., 2003; Simo et al., 1993). This is considered more

convenient than the X-FEM method (Belytschko and Black, 1999; Moës et al., 1999;

Oliver et al., 2006) because the number of degrees of freedom in the assembled global

matrix system do not change throughout the analysis and no remeshing is required.

The key contribution is the seamless coupling of these two computational components,

enabling simultaneous updates of micro- and macromechanical states:

• Micromechanical continua: An enriched continua is employed for the bulk,

hereafter referred as a Micromechanical continua, which combines Eshelby’s

theory for micromechanical inclusions (Eshelby, 1957; Mura, 1987) and com-

putational homogenisation schemes (Jefferson and Bennett, 2010, 2007). The

Micromechanical framework enables diffuse directional microcracking evolution
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along with macroscopic crack propagation. Conveniently, the use of this Mi-

cromechanical framework circumvents the need for a multigrid approach.

• Embedded (macro) strong discontinuities: Deformation localisation, man-

ifesting as nucleating cracks, is simulated using embedded strong discontinuities

in a variational setting at the global scale (Armero and Linder, 2009; Freeman

et al., 2020; Oliver et al., 2003; Simo et al., 1993). The variational principle

exploited here assumes a minimum energetic state of the micro and macro com-

ponents simultaneously. Energy minimisation serves as a means to condense

additional degrees of freedom at the element level.

4.2 Variational micro-to-macro coupling in EFEM

At first the BVP of a micromechanical solid with embedded strong discontinuities is

described. Such a problem represents an extension to that in Section 3.3.1 by adding a

Micromechanics constitutive model at the bulk domain as described in Section 3.2.5.

Then, emphasis is placed in describing modifications to both components. In this

regard, it is often shown that some changes to the departing framework components

are small, although these are needed to account for multiscale concepts.

Later, a variational principle is exploited in Section 4.2.7 as a means to update

macrocrack degrees of freedom through quasi-static condensation. This energy min-

imisation procedure ensures that micro and macro mechanical state variables are

updated simultaneously at the element-level. An artifice is used in representing ho-

mogenised stresses �̄� in the bulk in such a way that the new derivation follows closely

the steps as that shown in Section 3.3.10.

In addition, Section 4.3 describes algorithms that govern the mechanical com-

ponents of the new formulation including the global incremental iterative solution

of the coupled system, the iterative solution of the element-based quasi-static con-

densation procedure and other associated operations such as the computations of

stresses and the equivalent force of an embedded macrocrack, as well as other rele-

vant computational procedures such as macrocrack tracking and techniques for robust

implementation.
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4.2.1 Governing equation of BVP for Micromechanical solid
with embedded discontinuities

Let the body ΩM in Figure 4.1 be constituted by a solid with micromechanical con-

stituents that can evolve along with an embedded macrocrack. Reference Volume

subdomains Ωm (RVEs) depict a representative portion of the body that can cap-

ture the macroscopic response sufficiently accurately. The BVP is solved for the

displacement field u : ΩM × (0, 𝑇] → IR2, where 𝑡 ∈ (0, 𝑇]. Considering macroscopic

response to be quasi-static, while body forces are sufficiently small compared with

externally-induced forces, equilibrium gives the conditions stated in Equation 4.1.

1 Momentum balance: Div[�̄�] = 0 in ΩM

2 Constitutive relation: �̄� = �̄�𝑠𝑒𝑐 : 𝜺 in ΩM\ΓM

3 Kinematic relation: 𝜺 = ∇𝑠u = ∇𝑠 (u𝑐 + HΩ ⊗ [|u|]) in ΩM \ΓM

4 Traction continuity: �̄�Ω+ · n+
ΓM
+ �̄�Ω− · n−

ΓM
= 0 on 𝜕ΓM

5 Traction equilibrium: �̄�Ω+ · n+
ΓM
+ tΓ𝑀+ = 0 on 𝜕ΓM

6 Natural boundary condition: �̄� · n𝜕ΩM
𝜎
− ť = 0 on 𝜕ΩM

𝜎

7 Essential boundary condition: u = ǔ on 𝜕ΩM
𝑢


(4.1)
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Figure 4.1: Fracture in quasi-brittle solids across two interacting length-scales.

where clear distinction between the Equations 4.1 and 3.22 exists by adopting a

homogenised constitutive response as described in Equation 3.13 into Equation 4.1-2.
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In this regard, the elastic constants are defined as 𝐸𝑎𝑚 and 𝜐𝑎𝑚 for the homogenised

aggregate-matrix response, and these govern the response of the homogenised Con-

tinuum in intact state as well as that of the undamaged embedded macrocrack band.

More details on how the homogenised strains are downscaled due to the embedded

strong discontinuity kinematics (Freeman et al., 2020) are described in Section 4.2.4.

4.2.2 Computational homogenisation in a micromechanical
continua within a multiscale EFEM framework

The homogenised constitutive equation remains in its mathematical form with all its

constituents in tensor as well as matrix notation, as defined previously in Section 3.2.5.

Nonetheless, a minor change has been made to provide a consistent homogenised

response which is mesh insensitive within pre-peak regime, opposed to a mesh sensitive

response around peak response when the micromechanical model uses a simple crack

band approach as shown in Section 3.4.3.2. In this regard, the rate of evolution of

microcracking has been made independent of the element size as highlighted in Section

4.2.2.1. This minor change has modified only one equation from the homogenisation

scheme, and has little implications in stress recovery as well as in the computations

of tangents of uncracked elements as described in Section 4.2.2.2. The computational

aspects of stress recovery in the micromechanical bulk are explained in Section 4.3.3.

4.2.2.1 Directional microcracking growth at the bulk domain in multi-
scale EFEM

The micromechanical model in the present work is based on the microcracking growth

law in Equation 3.17 which was first given in Jefferson and Bennett (2010, 2007);

Mihai and Jefferson (2011); however, a few modifications are described here that

ensure the consistency between macro and micro cracking models.

A key improvement to the model, as presented in this thesis, lies in the adjustment

of the relationship for directional microcrack density ℱ𝛼 (𝜔m
𝛼 (𝜺)) to render softening

objectively at the structural-level, as a consequence of combined action of directional

microcracking and macroscopic fracture as illustrated in Figure 4.2.

In this regard, the growth of microcracks is slowed or fully arrested by the occur-

rence of macroscopic cracks, which is underpinned on the philosophy of macrocracks

interacting with sub-parallel coalescing microcracks (Ortiz, 1988), compared to the

case of microcracking-only driven degradation.
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Figure 4.2: Softening response and energy dissipation in a micromechanical solid
under quasi-brittle fracture. Energy dissipation is underpinned on directional micro-
cracking, macro-to-microcrack shielding and unloading, and macrocrack evolution.

Hence, the characteristic length parameter at micro-scale ℎ 𝑓 𝑎 is introduced in the

evolution law of directional microcracking scalar variables 𝜔m
𝛼 (𝜺) in Equation 4.2,

which supersedes that in Equation 3.17:

𝜔m
𝛼 (Zm𝛼 (𝜺)) = 1 −

Ym𝑡

Zm𝛼
exp

[
−𝑐𝑠

Zm𝛼 − Ym𝑡
𝑢𝑚𝑎𝑥/ℎ 𝑓 𝑎 − Ym𝑡

]
, Zm𝛼 ≥ Ym𝑡 (4.2)

where 𝑢𝑚𝑎𝑥 is still treated as the maximum displacement discontinuity that can

be observed due to fracture at the macroscopic level before collapse, and a (constant)

characteristic length-scale parameter at micro-scale is defined as ℎ 𝑓 𝑎. This new type of

normalisation of 𝑢𝑚𝑎𝑥 into an ultimate strain within the micromechanical degradation

evolution law 𝜔m
𝛼 (𝜺) is made to ensure a slower microcracking growth specially during

post-peak response, as compared to original models (Jefferson and Bennett, 2010,

2007). The characteristic length-scale parameter at micro-scale ℎ 𝑓 𝑎 is set in the

range of a few times the size of the finer aggregate, although it is used more precisely

as a numerical parameter in this thesis. In practice, this new characteristic length can

be set to a fraction of the macrocrack band width, so that deformation localisation

occurs at the macro-scale with ℎ 𝑓 𝑎 ≈ (1/5) · ℎ𝑐𝑎 being a good first estimate.

N.B.: Since the microcracking growth rate is dominating within the pre-peak struc-
tural response and this evolution has been made independent of the element size,
fracture energy is expected to be preserved, with the embedded macrocrack now dom-
inating the structural peak as well the post-peak response (opposed to undesirable
dependency of peak states in crack band approaches in Section 3.4.3.2).
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4.2.2.2 Material tangent stiffness in the Micromechanical bulk in un-
cracked elements in multiscale EFEM

The aforementioned modification of the microcracking growth law 𝜔m
𝛼 (Zm𝛼 (𝜺)) implies

that the partial derivative
𝜕𝜔m

𝛼

𝜕Zm𝛼
in the material tangent D̄𝑡𝑎𝑛 at the bulk domain from

Equation 3.20 changes to the following expression:

𝜕𝜔m
𝛼

𝜕Zm𝛼
=

(
1 − 𝜔m

𝛼

) [ 1

Zm𝛼
+ 𝑐𝑠

𝑢𝑚𝑎𝑥/ℎ 𝑓 𝑎 − Ym𝑡

]
(4.3)

Note that the mathematical definition of the tangent D̄𝑡𝑎𝑛, including all other

variables and derivatives in Equation 3.20 remain unchanged in uncracked elements

in the new multiscale EFEM. In this case, the consistent tangent D̄𝑡𝑎𝑛 is only used

when micro and macro variables across the Fracture Process Zone (FPZ) are on its

way to get settled (see comment box below).

N.B.: A secant stiffness D̄𝑠𝑒𝑐 from Equation 3.13 replaces the micromechanics-
derived consistent tangent D̄𝑡𝑎𝑛, for the first itfix global iterations. The consistent
tangent in uncracked and cracked elements is simultaneoulsy as described in Section
4.3.5.2.

4.2.3 Degrees of Freedom associated with an embedded lo-
calisation band in multiscale EFEM

The dofs W = [𝑢𝑟𝑐, 𝑢𝑠𝑐, 𝛼𝑐]T as described in Section 3.3.2 are applied to impose a

fracture-induced rigid body motion to the positive part of the domain Ω+ as shown

in Figure 4.3.
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Figure 4.3: Superposition of rigid body motion of Ω+ induced by small deformation at
the macrocrack level in multiscale EFEM. The superposition of macrocrack induced
deformation HΩ ⊗ [|u|] (x) is superposed onto the continuous deformation field u𝑐 (x):
original configuration (left), fracture-induced rigid translation (centre), and fracture-
induced translation and rotation (right)
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This fracture-induced displacement HΩ ⊗ [|u|] (x) is superposed on the continuous

displacement field u𝑐 due to (nonlinear) deformation of the homogenised Continuum.

Therefore, Equations 3.23 to 3.25 remain applicable to the coupled multiscale EFEM

model.

4.2.4 On embedded strong discontinuity kinematics for mul-
tiscale crack propagation

The continuum strain 𝜺 is taken as that one considering the rigid body motion of

the positive part of the domain Ω, and therefore, it considers there is a relaxation

of the continuum due to the embedded strong discontinuity, as opposed to standard

strain computations. This is equivalent to the mathematical operation presented in

Equation 3.26, with the only difference that the strain 𝜺 is now considered to be the

volume-average at any material point within the micromechanical Continuum. For

consistency in notation of superscripts M denoting a ‘macro’ term, the strain reads

as follows:

𝜺 = ∇𝑠u = ∇𝑠u𝑐︸︷︷︸
regular

+ ([|u|] ⊗ (𝛿ΓM ⊗ nΓM))𝑠︸                         ︷︷                         ︸
= 0 , only unbounded in ΓM

, in (Ω+ ∪Ω−)\ΓM (4.4)

Similarly, the interpolation of the continuous displacement field and its gradient

fields using FE approximations from Sections 3.3.4 and 3.3.5 are admissible for the

multiscale formulation. Therefore, the continuum strain �̄� at Gauss Points within the

micromechanical bulk is equivalent to that of Equation 3.36, and reads as follows:

�̄� = B · uel − M̂ ·W, in (Ω+ ∪Ω−)\ΓM (4.5)

where M̂(M, Î(K𝑒
Γ,KΓ)) from Equation 3.34 and Î from Equation 3.23 are now

computed using the matrices defined in Equations 4.9 and 4.10.

4.2.5 Local tractions in embedded strong discontinuities and
the equivalent crack force in multiscale EFEM

In the multiscale approach the phenomenological damage-informed response t′
ΓM+

from Section 3.3.6, the adoption of an SUR method from Section 3.3.7 for the evo-

lution of damage 𝜔M(ZM, ZM
𝑒 𝑓 𝑓
) at the embedded localisation band, as well as the

computation of the equivalent macrocrack relative displacement terms ZM and ZM
𝑒 𝑓 𝑓
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from Section 3.3.8 remains as for the standard finite element with embedded discon-

tinuities, i.e. Equations 3.37 to 3.51 are admissible.

The only minor changes in the new formulation correspond to the nomenclature

of the macroscopic scalar damage variable 𝜔M, the equivalent macrocracking relative

displacement ZM and ZM
𝑒 𝑓 𝑓

, which are now defined with a superscript M to clarify

that the embedded macrocrack acts at the macroscale, i.e. within the element-level.

Note that the intact homogenised continuum and its projected response within the

undamaged macrocrack band is characterised within an elastic response dominated

by the material constants for the mixture 𝐸𝑎𝑚 and 𝜐𝑎𝑚.

Following this explanation on the nomenclature for evolution terms within the

macrocrack, the traction separation law for the embedded macrocrack band is equiv-

alent to that in Equation 3.37, and now reads as follows :

t′
ΓM+
(𝑥′) = 1 − 𝜔M(𝑥′)

ℎ𝑐𝑎

[
𝐸𝑎𝑚 0

0 𝐸𝑎𝑚/(2(1 + 𝜐𝑎𝑚))

]
ΔuΓM (𝑥′), ∀𝑥′ ∈ 𝜕ΓM (4.6)

ΔuΓM (𝑥′) = 𝚲 ·W, ∀𝑥′ ∈ 𝜕ΓM

𝚲 =


1 0 𝑙 (𝑥′ on 𝜕ΓM)

0 1 0




(4.7)

Therefore, following the integration of tractions, as done to obtain Equation 3.40,

the equivalent macrocrack force F𝑐𝑘 is now computed with the new matrices KΓ and

K𝑒
Γ as shown below:

Fck =
[
𝐹𝑟𝑐, 𝐹𝑠𝑐, 𝑀𝑐

]T
= KΓW = K𝑒

Γ{W − Ŵ}, at the centre of 𝜕ΓM (4.8)

KΓ =
𝐸𝑎𝑚 · 𝑡𝑔
ℎ𝑐𝑎



∫
𝜕ΓM
(1 − 𝜔M)𝑑𝑙 0

∫
𝜕ΓM
(1 − 𝜔M)𝑙𝑑𝑙∫

𝜕ΓM
1−𝜔M

2(1+𝜐𝑎𝑚) 𝑑𝑙 0

symm
∫
𝜕ΓM
(1 − 𝜔M)𝑙2𝑑𝑙


(4.9)

K𝑒
Γ =

𝐸𝑎𝑚 · 𝑡𝑔
ℎ𝑐𝑎



∫
𝜕ΓM

𝑑𝑙 0
∫
𝜕ΓM

𝑙𝑑𝑙∫
𝜕ΓM

1
2(1+𝜐𝑎𝑚) 𝑑𝑙 0

symm
∫
𝜕ΓM

𝑙2𝑑𝑙


(4.10)
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where the computational aspects of the updates of scalar macrocracking vari-

ables 𝜔M(ZM, ZM
𝑒 𝑓 𝑓
) are explained in Section 4.3.4.1, while the updates of the equiva-

lent macrocracking relative displacement terms ZM and ZM
𝑒 𝑓 𝑓

are described in Section

4.3.4.2.

4.2.6 Weak form of BVP for micromechanical solid with em-
bedded strong discontinuities: a variational approach

The energy based functional for a solid with embedded strong discontinuities in Equa-

tion 3.55 as derived in Section 3.3.9 is recalled, for the general case of a microme-

chanical bulk domain Ω+ ∪Ω−:

𝛿ΨΩ\Γ =

∫
Ω\Γ
∇𝑠 (𝛿u𝑐)︸   ︷︷   ︸

𝜺

: �̄�𝑑Ω +
∫
𝜕Γ+

𝛿[|u|] · tΓ+𝑑Γ

︸                                                   ︷︷                                                   ︸
𝛿Π
∗
𝑖𝑛𝑡

−
∫
Ω

𝛿u · 𝒃𝑑Ω −
∫
𝜕Ω𝜎

𝛿u · t𝜕Ω𝑑𝑆︸                                       ︷︷                                       ︸
−𝛿Π𝑒𝑥𝑡

= 0

(4.11)
where the minimisation of the functional in Equation 4.11 leads to the required

minimum energy solution:

minimise
in Ω\Γ

{ ∫
Ω\Γ
∇𝑠 (𝛿u𝑐) : �̄�𝑑Ω+

∫
𝜕Γ+

𝛿[|u|] · tΓ+𝑑Γ−
∫
Ω

𝛿u · 𝒃𝑑Ω−
∫
𝜕Ω𝜎

𝛿u · t𝜕Ω𝑑𝑆
}

(4.12)

Therefore, the functional for the internal energy which satisfies this variational

statement reads as follows:

𝛿Π𝑖𝑛𝑡 := inf
in Ω\Γ

{
𝛿Π
∗
𝑖𝑛𝑡

}
= inf
in Ω\Γ

{ ∫
(Ω+∪Ω−)\Γ

∇𝑠 (𝛿u𝑐) : �̄�𝑑Ω︸                             ︷︷                             ︸
homogenised strain energy

+
∫
𝜕Γ+

𝛿[|u|] · tΓ+𝑑Γ︸                    ︷︷                    ︸
macro-fracture energy

}
(4.13)

where this functional possesses a homogenised strain energy component, exerted

by the micromechanical continua, and a macro-fracture energy component, induced

by the embedded strong discontinuity at the element-level.

4.2.7 Variational Finite Element setting of micromechanical
solids with embedded strong discontinuities

In the following derivations, the homogenised stress �̄� = D̄sec · �̄� in vector form is

conveniently used in combination with a homogenised secant stiffness matrix from

Chapter 4. Variationally-consistent coupling of Micromechanics & EFEM 93



4.2. Variational micro-to-macro coupling in EFEM

Section 4.2.2. Although other ways could be used to recover stresses for a microme-

chanical solid, such an artifice allows a derivation of the minimum-energy variational

solution of the PDEs by following closely the steps shown in Section 3.3.10. Therefore,

by using Equation 4.13, the following expression is obtained:

𝔡Π
∗
𝑖𝑛𝑡 (uel,W) =

∫
Ω\Γ

(
δ �̄�TD̄sec �̄�

)
𝑑Ω + δŴT

Fck (4.14)

Also the full variational statement in Equation 4.11 in combination with the me-

chanical equilibrium condition in Equation 4.12 give:

𝔡ΨΩ\Γ = 𝔡Π𝑒𝑥𝑡 − 𝔡Π𝑖𝑛𝑡 = 0

𝔡Π𝑒𝑥𝑡 = {δuel}TFel
ext

𝔡Π𝑖𝑛𝑡 = inf
in Ω\Γ

{
𝔡Π
∗
𝑖𝑛𝑡

}


(4.15)

Combining the expansion of the strain vector considering strong-discontinuity

kinematic enhancement �̄� = Buel − MŴ from Equation 4.5 and the equivalence

𝛅Ŵ = Î · 𝛅W from Equation 3.23 into Equation 4.14 gives:

𝔡Π
∗
𝑖𝑛𝑡 (uel,W) = {δuel}T

{ ∫
Ω\Γ

BTD̄sec �̄�𝑑Ω

}
︸                      ︷︷                      ︸

𝜕Π
∗
𝑖𝑛𝑡/𝜕uel

+{δW}T · Î ·
{
Fck −

∫
Ω\Γ

MTD̄sec �̄�𝑑Ω

}
︸                                   ︷︷                                   ︸

𝜕Π
∗
𝑖𝑛𝑡/𝜕W=0

(4.16)

where a local minimum of 𝔡Π
∗
𝑖𝑛𝑡 is obtained from fixing displacement field uel by

using δuel = 0 in Equation 4.16, while enforcing the constraint 𝔡Π
∗
𝑖𝑛𝑡 = 0, and this

gives an expression for quasi-static condensation of W:

𝝓el
𝑤

(
W

)
:= W −CΓ

(
W,uel

)
uel = 0

CΓ

(
W,uel

)
=

{
KΓ +

{ ∫
Ω\Γ

MTD̄secM𝑑Ω
}

︸                        ︷︷                        ︸
B∗Γ

·Î
}−1 { ∫

Ω\Γ
MTD̄secB𝑑Ω

}
︸                       ︷︷                       ︸

AΓ


(4.17)

Combining Equations 4.15 to 4.17, a variational multiscale equilibrium equation

for fracture propagation is derived:

𝝓el
𝐹 (uel) := Fel

ext − Fel
int(uel) = 0

Fel
int(uel) :=

∫
Ω
BTD̄sec

{
Buel − M̂W

}
𝑑Ω , W = CΓ

(
W,uel

)
· uel

 (4.18)
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Similarly as for standard method with embedded strong discontinuities in Equa-

tion 3.68, when no macrocracks have formed, the system in Equation 4.18 degenerates

into standard (non-linear global-local) FEM.

4.2.8 Numerical tangent stiffness for macrocracked elements

Following the procedure shown in Section 3.3.11 and using the new equations de-

rived in Section 4.2.7, the element-wise secant stiffness operator for an element with

micromechanical continua and embedded strong discontinuities is derived below:

𝔡Π𝑖𝑛𝑡 (uel) =
∫
Ω\Γ

{
Bδuel −MÎ{CΓδu

el}
}T

D̄sec

{
Buel −MÎ{CΓu

el}
}
𝑑Ω

+
{
Î{CΓδu

el}
}T

KΓ

{
CΓu

el
}

(4.19)

where further re-arrangement in Equation 4.19 and by combining with Equation

4.15, to conveniently use the FE setting of the variational principle gives:{
δuel

}T{ ∫
Ω\Γ

{
B − M̂CΓ

}T
D̄sec

{
B − M̂CΓ

}
𝑑Ω +CT

Γ K̂ΓCΓ

}{
uel

}
= {δuel}TFel

ext

(4.20)

Therefore, the secant stiffness at the element level Kel
𝑐𝑜𝑢𝑝𝑙𝑒𝑑,𝑠𝑒𝑐 is obtained after

cancelling δuel ≠ 0 from both sides of Equation 4.20, and reads as follows:

Kel
𝑐𝑜𝑢𝑝𝑙𝑒𝑑,𝑠𝑒𝑐 =

∫
Ω\Γ

{
B − M̂CΓ

}T
D̄sec

{
B − M̂CΓ

}
𝑑Ω +CT

Γ K̂ΓCΓ (4.21)

By differentiating each side of Equation 4.20 a consistent tangent Kel
𝑐𝑜𝑢𝑝𝑙𝑒𝑑 for a

macrocracked element is derived:{
𝐾el
𝑐𝑜𝑢𝑝𝑙𝑒𝑑

}
𝑖 𝑗

=

{
𝐾el
𝑐𝑜𝑢𝑝𝑙𝑒𝑑,𝑠𝑒𝑐

}
𝑖 𝑗

+
(
𝜕
{
𝐾el
𝑐𝑜𝑢𝑝𝑙𝑒𝑑,𝑠𝑒𝑐

}
𝑖𝑟

𝜕𝑢el
𝑗

)
︸                   ︷︷                   ︸
by central differences

𝑢el𝑟 , 𝑖, 𝑗 , 𝑟 = 1... ndofn · nnode︸           ︷︷           ︸
ndofe

(4.22)

𝜕
{
𝐾el
𝑐𝑜𝑢𝑝𝑙𝑒𝑑,𝑠𝑒𝑐

}
𝑖𝑟

𝜕𝑢el
𝑗

≈
{
𝐾el
𝑐𝑜𝑢𝑝𝑙𝑒𝑑,𝑠𝑒𝑐

(uel+)
}
𝑖𝑟
−

{
𝐾el
𝑐𝑜𝑢𝑝𝑙𝑒𝑑,𝑠𝑒𝑐

(uel−)
}
𝑖𝑟

2|ΔFD𝑢
el
𝑗
|

, 𝑖, 𝑗 , 𝑟 = 1...ndofe

(4.23)

N.B.: Secant operators are used until the macrocracking direction is settled, and this
is generally known ‘a posteriori’ of updating macrocracking dofs using quasi-static
element-based condensation. Therefore, consistent tangent operators for macroc-
racked elements are only activated for global iterations 𝑖𝑖𝑡𝑒𝑟 > 𝑖𝑡 𝑓 𝑖𝑥 + 1, i.e. after
macrocracking directions are settled.
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4.2.9 Summary of multiscale EFEM for modelling micro-
macro quasi-brittle fracture

The main features of the micromechanical model at the bulk domain from Section

3.2.5 as used in the multiscale EFEM program are summarised in Box 4.1.

Box 4.1 Summary of micromechanical material model for cementitious materials
with directional microcracking, adapted from Jefferson and Bennett (2010, 2007)

Constitutive equation [§3.2.5]: �̄� = D̄𝑒 · ( �̄� − �̄�𝑎𝑑𝑑) or �̄� = D̄𝑠𝑒𝑐 · �̄�

where D̄𝑠𝑒𝑐 =

[
I + D̄𝑒 ·

(
𝑛𝑚
𝑖𝑛𝑡∑
𝑖=1

𝜔m
𝛼

1−𝜔m
𝛼
NT
𝜎C𝐿N𝜎𝑤

num
𝛼

)]−1
· D̄𝑒

Consistently-linearised constitutive tangent operator [§3.2.8]:

D̄𝑡𝑎𝑛 = D̄𝑠𝑒𝑐 ·
[
I −

𝑛𝑚
𝑖𝑛𝑡
| ¤Zm𝛼 >0∑
𝑖=1

1
(1−𝜔m

𝛼 )2
𝑑𝜔m

𝛼

𝑑Zm𝛼

𝑑Zm𝛼
𝑑Zm

𝛼,eff
NT
𝜎C𝐿N𝜎 �̄�

{

𝜕Zm
𝛼,eff

𝜕𝜺𝐿

}T

NY𝑤
num
𝑖𝑛𝑡

]
where C𝐿 = 1

𝐸𝑎𝑚

[
1 0
0 2

2−𝜐𝑎𝑚

]
is simplified to account for plane-stress conditions ;

Note that the derivative
𝑑𝜔m

𝛼

𝑑Zm𝛼
is computed using Eq. 4.3

In every microcracking direction (𝛼 = 1...𝑛𝑚
𝑖𝑛𝑡

), as used for numerical integration:

Directional microcracking variable [§3.2.6]: 𝜔m
𝛼 (Zm𝛼 ) = 1 − Zm0

Zm𝛼
exp

{
− 𝑐𝑠

Zm𝛼 −Zm0
𝑢max/ℎ 𝑓 𝑎−Zm0

}
Note that the microcracking growth evolution is now computed by Eq. 4.2

Microcracking surface [§3.2.7]: Θm
𝛼 (Zm𝛼,eff, Z

m
𝛼 ) ≡ Zm𝛼,eff − Z

m
𝛼 ≤ 0

Microcracking strain [§3.2.7]: Zm
𝛼,eff
( �̄�𝐿) = Ȳ𝑟𝑟

2

[
1 +

(
`Y
𝑟Y

)2]
+ 1

2𝑟2Y

√︃(
𝑟2Y − `2Y

)2
Ȳ2𝑟𝑟 + 4𝑟2Y𝛾2𝐿

Initial effective microcracking strain [§3.2.7]: Zm
𝛼,eff
≥ Zm0 ; Zm0 ≡ Ym𝑡 =

𝑓 m𝑡
𝐸𝑎𝑚

Microcracking growth irreversibility [§3.2.7]: ¤Z𝛼 ≥ 0 ; Θm
𝛼 ≤ 0 ; Θm

𝛼 · ¤Zm𝛼 = 0

In addition, the other relevant mechanical components of the new multiscale

EFEM model are presented in the Box 4.2.
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Box 4.2 Summary of multiscale EFEM model for embedded fracture propagation in
quasi-brittle solids, adapted from Freeman et al. (2020).

Mechanical Balance (m.b.) equations [§4.2.7]:

m.b.1. Equilibrium: 𝜙el
𝐹,𝑐𝑘
(uel) ≡ Fel

ext−
∫
Ω\Γ B

T · �̄�𝑑Ω = 0 ; �̄� = D̄sec ·
[
Buel−MÎW

]
∴


Consistent tangent:

{
𝐾el
EFEM

}
𝑖 𝑗
=

{
𝐾el
EFEM,sec

}
𝑖 𝑗
+

(
𝜕

{
𝐾 el

EFEM,sec

}
𝑖𝑟

𝜕𝑢el
𝑗

)
𝑢el𝑟 (Eq. 4.22)

Kel
EFEM,sec =

∫
Ω\Γ

{
B −M · Î ·CΓ

}T · D̄sec ·
{
B −M · Î ·CΓ

}
𝑑Ω + (CΓ)T · Î ·KΓ ·CΓ

m.b.2. Quasi-static condensation: 𝜙el𝑤
(
uel

)
≡W(uel) −CΓ · uel = 0 (Eq.4.17)

where,

CΓ

(
W(uel),uel

)
=

(
BΓ

)−1 ·AΓ

BΓ =
( ∫

Ω\Γ M
T · D̄sec ·M𝑑Ω

)
· Î +KΓ

AΓ =
∫
Ω\Γ M

T · D̄sec ·B𝑑Ω

 ⇐⇒
𝜕Π
∗

𝑖𝑛𝑡

𝜕W = 0 (Energy minimisation)

Kinematic-enhancement (k.e.) with embedded band [§4.2.4]:

k.e.1. Enriched nodal displacement: u𝑐,𝑖𝑛𝑜𝑑𝑒 = u𝑖𝑛𝑜𝑑𝑒−HΩ(x𝑖𝑛𝑜𝑑𝑒) ⊗ [|u|]𝑖𝑛𝑜𝑑𝑒
(
x𝑖𝑛𝑜𝑑𝑒

)
where uel

𝑐 =


u𝑐,node1
u𝑐,node2

...

u𝑐,nnode


=


unode1

unode2
...

unnode


−


HΩ(xnode1) ⊗ T𝑤 (xnode1)
HΩ(xnode2) ⊗ T𝑤 (xnode2)

...

HΩ(xnnode) ⊗ T𝑤 (xnnode)


· Î ·W

k.e.2. Strain: 𝛆 = Buel
𝑐 = Buel −

( 𝑛𝑛𝑜𝑑𝑒∑︁
B𝑖𝑛𝑜𝑑𝑒HΩ(x𝑖𝑛𝑜𝑑𝑒) ⊗ T𝑤 (x𝑖𝑛𝑜𝑑𝑒)

)
︸                                                   ︷︷                                                   ︸

M

ÎW (Eq.4.5)

where B𝑖𝑛𝑜𝑑𝑒 =


𝜕𝑥𝑁𝑖𝑛𝑜𝑑𝑒 0

0 𝜕𝑦𝑁𝑖𝑛𝑜𝑑𝑒
𝜕𝑦𝑁𝑖𝑛𝑜𝑑𝑒 𝜕𝑥𝑁𝑖𝑛𝑜𝑑𝑒

 , and HΩ(x ∈ Ω+) = 1 while HΩ(x ∈ Ω−) = 0

Embedded localisation band (e.mc.) [§4.2.5]:

e.mc.1. Equivalent crack force: Fck = K𝑒
Γ ·W

𝑒 = KΓ ·W (Eq. 4.8)

where, KΓ =
𝐸𝑎𝑚 ·𝑡𝑔
ℎ𝑐𝑎


∫
𝜕ΓM (1 − 𝜔M)𝑑𝑙 0

∫
𝜕ΓM (1 − 𝜔M)𝑙𝑑𝑙∫

𝜕ΓM
1−𝜔M

2(1+𝜐𝑎𝑚) 𝑑𝑙 0

symm
∫
𝜕ΓM (1 − 𝜔M)𝑙2𝑑𝑙


and K𝑒

Γ =
𝐸𝑎𝑚 ·𝑡𝑔
ℎ𝑐𝑎


∫
𝜕ΓM 𝑑𝑙 0

∫
𝜕ΓM 𝑙𝑑𝑙∫

𝜕ΓM
1

2(1+𝜐) 𝑑𝑙 0

symm
∫
𝜕ΓM 𝑙

2𝑑𝑙

 , while 𝜔M ∈ [0, 1]

e.mc.2 Inelastic relative displacement: Ŵ =
(
I − (K𝑒

Γ)−1 ·KΓ

)
·W = Î ·W

with 𝜔 as Smooth Unloading-Reloading (SUR) law [§3.3.7 and Algorithm 6 in §4.3.4.1]
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4.3 Algorithms of the new multiscale EFEMmodel

4.3.1 On displacement-driven iterative incremental procedure

In this variationally consistent method, as for other methods that employ embedded

strong discontinuities (Armero and Linder, 2009; Freeman et al., 2020; Jirásek, 2000;

Oliver et al., 2003; Simo et al., 1993), displacement degrees of freedom u are the

only field required to be updated at the global level. Although other more complex

approaches have been explored in the literature, e.g. by employing the Hu-Washizu

variational statement based on the interpolations of a discontinuous displacement

field, and the complementary stress and strain fields (Lotfi and Shing, 1995), the

proposition in this PhD research is to keep the element formulation simple for imple-

mentation with a unique solvable field.

Consequentially, macrocrack degrees of freedom W are condensed quasi-statically

at the element-level for every global update. The global tangent stiffness of the system

K𝑔 is assembled as for a standard FEM method, typically with continuous primary

field which is unique at nodal locations. Therefore, nodal connectivity guides the

distribution of local stiffness terms into global positions during FEM assemblage:

¤Fint = K𝑔 ¤u =

(
A

nelem

ielem= 1
Kel
𝑖𝑒𝑙𝑒𝑚

)
¤u =

(
A

nelem

ielem= 1

𝜕Fel
int

𝜕uel

)
¤u (4.24)

Kel
𝑖𝑒𝑙𝑒𝑚 =

{∫
Ω
BTD̄𝑡𝑎𝑛B𝑑Ω, if no macrocracks in Ω𝑖𝑒𝑙𝑒𝑚

Kel
𝑐𝑜𝑢𝑝𝑙𝑒𝑑 (numerical approximation), if macrocrack no. ≥ 1 in Ω𝑖𝑒𝑙𝑒𝑚

(4.25)

where Kel
𝑖𝑒𝑙𝑒𝑚 is the element tangent stiffness for the element domain Ω𝑖𝑒𝑙𝑒𝑚. New-

ton’s method is applied until a specified tolerance is achieved to preserve momen-

tum balance after an out-of-balance force is prescribed at each incremental step.

Note that for an incremental iterative solution with an updated total loading step

F𝑖𝑖𝑛𝑐𝑟ext = F𝑖𝑖𝑛𝑐𝑟−1ext + Δ_Finput
ext , where Δ_ defines the loading step size or increment, the

mechanical equilibrium condition in Equation 4.18 takes the form:

𝝓𝐹 (u) := F𝑖𝑖𝑛𝑐𝑟ext − Fint(u) = 0 (4.26)

Linearisation of the global equilibrium condition yields Equation 4.27, which is

presented as a Newton’s representation to solve for u.

𝚽𝑖
𝐹 (u𝑔) := F𝑖𝑖𝑛𝑐𝑟ext − F𝑖−1int −

(
A

nelem

ielem= 1

𝜕Fel
int

𝜕uel

) 𝑖−1
𝑑u𝑖 = 0 (4.27)
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where 𝑑u𝑖 is the iterative change of the global displacement field, and tangent

operators at the element-level
𝜕Fel

int

𝜕uel are computed as consistent tangents (Simo and

Taylor, 1985) to achieve numerical efficiency. In case of mixed boundary conditions,

i.e. tractions or displacement nodal components are known across the domain, reac-

tions are taken into account into the iterative procedure. An illustrative sketch of the

global incremental iterative solution is depicted in Figure 4.4.
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Figure 4.4: Nonlinear incremental iterative solution of variational multiscale EFEM
methodology with propagating embedded macrocracks at the element level.

A closed-form material tangent D̄𝑡𝑎𝑛 for a micromechanical continua from Sections

3.2.8 and 4.2.2.2 is cast in standard form into the element tangent
∫
Ω
BTD̄𝑡𝑎𝑛B𝑑Ω

for uncracked elements; whereas a numerically-derived consistent element tangent

Kel
𝑐𝑜𝑢𝑝𝑙𝑒𝑑 from Section 4.2.8 is used for elements with a nucleated embedded macro-

crack. Since deriving analytical tangents becomes more elaborate in macrocracked

elements, numerical tangents are computed using central difference approximations.

N.B.: Tangent operators are used only after new macrocracks are fixed in geometry
within a new increment, i.e. considered as fully nucleated macrocracks due to mi-
crocracking coalescence. Before defining a definitive macrocrack orientation, secant
stiffness operators are used instead. Upon fixing nucleating macrocrack orientation,
maximum experienced macro-state variables ZM are fixed to obtain positive tangents
from a fixed Smooth-Unloading-Reloading (SUR) branch.

Some algorithmic aspects of the variational micromechanics-enriched embedded

strong discontinuity Finite Element method are summarised in Algorithm 1.
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Algorithm 1: Non-linear incremental global-local iterative analysis for a
micromechanical solid with propagating embedded strong discontinuities

input : Starting from equilibrium | |𝝓𝐹 | |/| |Fmax
ext | | < tol, 𝝓𝐹 = Fext − Fint, given:

a. Micro/macro states: {Z }m(GP in bulk), {Z }M(macrocrack number)
b. Primary/secondary macro-fields: u, {W}(macrocrack number)
c. Force increment (incl. prescribed displacement): ΔFext ← Δ_Finput

ext

output: New states {Z }m, {Z }M and updated macro-fields u, {W} in equilibrium

1 Update external force vector for the new increment: Fext ← Fext + ΔFext ;
2 Update out-of-balance force vector: 𝝓𝐹 ← Fext − Fint , 𝑓check ← 1;
3 Initialise iteration number: iiter← 0, miter← maximum iteration number;
4 //Start iterative procedure until momentum balance is re-gained, i.e. 𝑓check ← 0;
5 while iiter < miter and 𝑓check ≠ 0 do
6 Iterations number updated: iiter← iiter + 1 ;
7 Compute element tangents Kel

𝑖𝑒𝑙𝑒𝑚 |Ω𝑖𝑒𝑙𝑒𝑚 ∈ ΩM → Assemble tangent K𝑔;
8 Modify tangent K𝑔 and out-of-balance vector 𝝓𝐹 for prescribed displacement;
9 Update displacement: u← u + 𝑑u , for new iterative array 𝑑u = K−1𝑔 𝝓𝐹 ;

10 // Element-wise treatment of micro-macro fracture;
11 for ielem = 1 . . . nelem do
12 // Detect macrocracks: use flow chart in Figure 4.10;
13 Detect new macrocrack nucleation, then proceed to force recovery;
14 // Force recovery at element level;
15 if (no macrocracks in Ω𝑖𝑒𝑙𝑒𝑚) then
16 Standard FEM update: micro states at GPs {Z }𝑚 [Alg. 4];
17 Update strain/stiffness at GPs: �̄� ← Buel, D̄sec( �̄�) [Alg. 3];
18 Recover stresses: �̄� ← D̄secBuel [Eq. 3.13 in §3.2.5 & §4.2.2.1];
19 Recover force Fel

int: F
el
int ←

∫
BT �̄�𝑑Ω ;

20 else
21 Variational energetic scheme: W← CΓu

el [Eq. 4.17 in §4.2.7, Alg. 2];
22 Update micro/macro states: {Z }m and {Z }M in Ω𝑖𝑒𝑙𝑒𝑚 [Alg. 4 & 7];

23 Update strain/stiffness at GPs: �̄� ← Buel − M̂W, D̄sec( �̄�) [Alg. 5 & 3] ;

24 Recover stresses: �̄� ← D̄sec{Buel −M̂W} [Eq. 3.13 in §3.2.5 & §4.2.2.1];
25 Recover force Fel

int: F
el
int ←

∫
BT �̄�𝑑Ω;

26 end
27 Assemble element internal force Fel

int =
∫
BT �̄�𝑑Ω into global array Fint;

28 end
29 Compute new out-of-balance vector including reactions: 𝝓𝐹 ← Fr

ext − Fint;
30 if (| |𝝓𝐹 | |/| |Fr,max

ext | | < tola) then 𝑓check ← 0;

31 end

aTolerance is set to 10−4 for force residuals, unless otherwise stated in simulations in this PhD.
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4.3.2 Numerical solution of quasi-static condensation scheme
in a finite element with embedded macrocracks and
micromechanical bulk

The set of PDEs in Equation 4.17 are solved for W using Newton’s method consec-

utively, until the residual reduces to a specified tolerance. Linearisation of Equation

4.17 leads to a Newton’s type representation of the energetic minimisation procedure

as follows:

{𝚽el
𝑤 (W)}j := Wj−1 − {CΓ

(
W,uel

)
}j−1 · uel + (𝜕𝝓el

𝑤/𝜕W)j−1 · 𝑑Wj = 0

𝜕𝝓el
𝑤/𝜕W := I − 𝜕{CΓu

el}/𝜕W

}
(4.28)

where the tangent 𝜕{CΓu
el}/𝜕W is conveniently approximated by central differ-

ences, for use in the element-wise energetic optimisation:

𝜕
{
{𝐶Γ}𝑖𝑘𝑢el𝑘

}
𝜕𝑊 𝑗

≈
{
{𝐶Γ (W+,uel)}𝑖𝑘 − {𝐶Γ (W−,uel)}𝑖𝑘

}
𝑢el
𝑘

2|ΔFD𝑊 𝑗 |
(4.29)

where standard index notation is used for matrix operations.

The steps for the numerical solution of Equation 4.28 are summarised in Algorithm

2. Also, a geometric interpretation of the variational updates of the macrocrack rela-

tive displacement array W is illustrated in Figure 4.5, where an initial trial solution

W𝑜 is driven towards the minimum-energy solution:
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Figure 4.5: Geometric interpretation of variational iterative updates of macrocrack
dofs W, upon an update of the element-based nodal displacement vector uel.

Chapter 4. Variationally-consistent coupling of Micromechanics & EFEM 101



4.3. Algorithms of the new multiscale EFEM model

Algorithm 2: Element-wise variational update of macrocraking dofs W for
a Micromechanical solid with propagating embedded macrocracks in §4.2.7

input : After global-iterative displacement uel ← uel + 𝑑uel in Ω𝑖𝑒𝑙𝑒𝑚, given:
a. Last-converged states: {Z }m(GP in bulk), {Z }M(macrocrack number)
b. Last global iteration macrocrack dofs: Wiiter-1(macrocrack number)
c. Macrocrack geometry: centre xck, length 𝑙ck , plane-normal rΓ

output: Current global-iterative states {Z }m,iiter, {Z }M,itter and updated
macrocrack dofs Wiiter, preserving minimum energy at element-level

1 Store previous global-iterative macrocrack dofs: W←Wiiter-1 ;
2 Activate flag for element-level iterations, to seek energetic minimum: 𝑓 el

check
← 1;

3 Initialise element-level iterations: iiterel ← 0, miterel ← maximum iteration;
4 //Start iterative procedure until energetic minimum is obtained, i.e. 𝑓 el

check
← 0;

5 while iiterel < miterel and 𝑓 el
check

≠ 0 do
6 Iteration number updated: iiterel ← iiterel + 1 ;
7 if iiterel > 1 then
8 Evaluate the numerical tangent 𝜕𝝓el

𝑤/𝜕W← I − 𝜕 (CΓ · uel)/𝜕W ;
9 Update macrocrack dofs: W←W + 𝑑W , for 𝑑W = −(𝜕𝝓el

𝑤/𝜕W)−1𝝓el
𝑤 ;

10 end
11 // Update macro-states from last-converged;
12 Update macro-states along macrocrack: {Z }M and {Zeff}M [Alg. 7];

13 Compute macrocrack stiffness KΓ, K
𝑒
Γ , then update Î [Alg. 6, Eq. 4.9 & 4.10];

14 //Proceed to compute iterative update of condensation matrix CΓ;
15 Initialise matrices for integration: B∗Γ ← 0, AΓ ← 0;
16 // Loop over RVEs: update micro-states from last-converged;
17 for igp = 1 . . . ngp do

18 Evaluate and store GP-level enhanced-strain �̄� ← Buel − M̂W [Alg. 5];
19 Update micro-states {Zeff}m, {Z }m and {𝜔}m at GP [Alg. 4];
20 Update and store secant stiffness operator: D̄sec [Alg. 3];
21 Compute matrices: B∗Γ,igp ←MTD̄secM𝑤num

igp , AΓ,igp ←MTD̄secB𝑤
num
igp ;

22 Accumulate matrix terms: B∗Γ ← B∗Γ +B∗Γ,igp , AΓ ← AΓ +AΓ,igp ;

23 end

24 Compute condensation matrix: CΓ ← (KΓ +B∗Γ · Î)−1 ·AΓ [Eq. 4.17];

25 Compute residual: 𝝓el
𝑤 ←W −CΓ · uel, 𝝓el,∗

𝑤 ← diag{1, 1,
√
𝐴𝑖𝑒𝑙𝑒𝑚} · 𝝓el,

𝑤 ;

26 if (| |𝝓el,∗
𝑤 | |/𝑢𝑚𝑎𝑥 < tol) then 𝑓 el

check
← 0;

27 end

Note that the tolerance for quasi-static condensation in Algorithm 2 is set to 10−6,

which becomes 10−10 after the first (itfix) global iterations. This is done to reduce

the number of local iterations at the element level when macrocracks are still evolving

in nucleation direction.

Chapter 4. Variationally-consistent coupling of Micromechanics & EFEM 102



4.3. Algorithms of the new multiscale EFEM model

4.3.3 Computations of stresses in the Micromechanical bulk

Stress recovery is done using the secant material stiffness �̄� = D̄sec · �̄� as detailed in

Sections 3.2.5 and 4.2.2.1. Note that storage of the updated microcracking variables,

the secant operator and the homogenised stress at Gauss Points in the bulk is done

through iterations until a macrocracked element is first in a minimum energy state.

To reach that state, which is not the same as the element being in internal mechanical

equilibrium with respect to external forces, multiple strain computations are carried

for each Gauss Point in the bulk as described in Section 4.3.3.3, to include the effect

of an evolving strong discontinuity over a trial step.

4.3.3.1 Computation of the homogenised secant stiffness matrix D̄sec

The numerical integration of the homogenised secant stiffness operator D̄sec is done

upon updates of the directional scalar variables 𝜔m
𝛼 from Section 4.3.3.2. These steps

are presented in Algorithm 3.

Algorithm 3: Update scheme for homogenised secant stiffness D̄sec

input : Given new RVE directional microcracking scalar variables {𝜔}m
𝑅𝑉 𝐸

output: Updated homogenised secant stiffness operator D̄sec

1 Initialise homogenised additional compliance: C̄
Γ𝑚 ← 0;

2 // Use numerical integration over the perimeter of a semi-circle to compute C̄
Γ𝑚 ;

3 for 𝛼 = 1 . . . nm
𝑖𝑛𝑡

do
4 Compute local unit vectors 𝒓𝛼, 𝒔𝛼, 𝒕𝛼 and transformation operators N𝜎, N

T
𝜎;

5 Compute new additional compliance component:

C̄
Γ𝑚
𝛼 ←

𝜔m
𝛼

1−𝜔m
𝛼
NT
𝜎C𝐿N𝜎𝑤

num
𝛼 , 𝑤num

𝛼 := weighting coefficient;

6 Accumulate additional compliance components: C̄
Γ𝑚 ← C̄

Γ𝑚 + C̄Γ𝑚
𝛼 ;

7 end

8 Update homogenised secant stiffness in matrix form: D̄sec ← (I + D̄𝑒C̄
Γ𝑚)−1D̄𝑒;

4.3.3.2 Computation of scalar microcracking variables 𝜔m
𝛼 (Zm𝛼 )

The computations of directional microcracking state variables Zm𝛼 , microcracking

scalar variables 𝜔m
𝛼 , and the material secant operator D̄sec remains as first presented

by Jefferson and Bennett (2010, 2007), although variations in the evolution law for

the directional microcracking scalar variables 𝜔m
𝛼 (Zm𝛼 (𝜺)) from Section 4.2.2.1 need

to be considered. These steps are summarised in Algorithm 4.
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Algorithm 4: Update scheme for RVE micro-states Zm𝛼 (𝛼 ∈ {1, .., nm
𝑖𝑛𝑡
})

input : Given an updated homogenised strain �̄� = {∇𝑠u𝑐}vec
output: New RVE micro-states {Z }m

𝑅𝑉 𝐸
and directional scalar variables {𝜔}m

𝑅𝑉 𝐸

for the updated homogenised strain �̄�
1 // Loop over degradation directions used for numerical integration;
2 for 𝛼 = 1 . . . nm

𝑖𝑛𝑡
do

3 Compute local unit vectors 𝒓𝛼, 𝒔𝛼, 𝒕𝛼 and the transformation operator NY;
4 Compute resolved strain: �̄�𝐿 ← NY �̄� ;
5 Compute effective directional micro-state:

Zm
𝛼,eff
← 1

2 Ȳ𝑟𝑟

[
1 +

(
`Y
𝑟Y

)2]
+ 1

2𝑟2Y

√︂(
𝑟2Y − `2Y

)2
Ȳ2𝑟𝑟 + 4𝑟2Y

(
𝛾2𝑟𝑠 + 𝛾2𝑟𝑡

)
;

6 if Zm
𝛼,eff

> Zm𝛼 then

7 Update maximum experienced directional micro-state: Zm𝛼 ← Zm
𝛼,eff

;

8 Update directional microcracking scalar variable:

𝜔m
𝛼 ← 1 − (Ym𝑡 /Zm𝛼 ) exp

[
−𝑐𝑠 · (Zm𝛼 − Ym𝑡 )/(𝑢𝑚𝑎𝑥/ℎ 𝑓 𝑎 − Ym𝑡 )

]
;

9 end

10 end

4.3.3.3 Computation of the strains �̄� in the micromechanical bulk due to
embedded strong discontinuities

Note that due to the complex nature of the quasi-static condensation of the multi-

scale EFEM model proposed, strain calculations �̄� in the bulk from Equation 4.5 are

performed for every update of W as illustrated in Figure 4.6, to seek a minimum

energy solution within a single trial step with updated uel as described in Equation

4.17. These steps are described in Algorithm 5.
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Figure 4.6: Intermediate micromechanical strains �̄� are taken upon the activation of
the embedded strong discontinuity for a fixed updated nodal displacement uel.
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Algorithm 5: Updating trial strains �̄�(x𝑖𝑔𝑝) at a specific Gauss Point in a
macrocracked element.
input : Trial variation of macrocrack degrees of freedom 𝑑W and nodal

displacement uel at the element.
output: Trial strains �̄� at a specified GP, for a given nodal displacement uel,

and trial 𝑑W
1 Compute newly updated macrocrack dofs: W←W + 𝑑W ;
2 // Note that the new effective macrocrack variables ZM

𝑒 𝑓 𝑓
, may not push further

3 // the maximum experienced macrocrack variables ZM if 𝑖𝑖𝑡𝑒𝑟 > 𝑖𝑡 𝑓 𝑖𝑥

4 Compute new macrocrack based stiffness matrices: K𝑒
Γ and KΓ ;

5 Compute inelastic component of macrocrack degress of freedom :

6 First compute Î← I − (K𝑒
Γ)−1 ·KΓ , then store Î or compute Ŵ← Î ·W ;

7 At this stage, igp is specified ;
8 Compute strain-displacement matrix B and store it for further manipulation ;
9 // Initialise strain-macrocrrack displacement matrix

10 M← 0 ;
11 // Loop over nodes to compute strain-macrocrrack displacement matrix
12 for inode = 1 . . . nnode do
13 Extract B𝑖𝑛𝑜𝑑𝑒 from strain-displacement matrix B;

14 Compute 𝐻Ω(x𝑖𝑛𝑜𝑑𝑒) ←
{

1 , if x𝑖𝑛𝑜𝑑𝑒 ∈ Ω+
0 , if x𝑖𝑛𝑜𝑑𝑒 ∈ Ω−

;

15 // Note the macrocrack normal 𝑛Γ and centre x𝑐𝑘 should be known ‘a priori’
16 Compute T𝑤 (x𝑖𝑛𝑜𝑑𝑒);
17 Update strain-macrocrack displacement matrix:
18 M←M +B𝑖𝑛𝑜𝑑𝑒HΩ ⊗ T𝑤 (𝑥𝑖𝑛𝑜𝑑𝑒)
19 end

20 Compute M̂ by matrix multiplication: M̂←M · Î, if Ŵ is not stored ;

21 Compute the product M̂ ·W, equivalent to M · Ŵ in case Ŵ was stored ;

22 Compute trial strain �̄�(x𝑖𝑔𝑝) ← B · uel − M̂ ·W [Eq. 4.5] ;

4.3.4 Computation of the equivalent force Fck in embedded
localisation bands

The computation of the equivalent force Fck from Equation 4.8, which acts on the

embedded strong discontinuity, is done upon the updates of the scalar macrocracking

variables 𝜔M(ZM, ZM
𝑒 𝑓 𝑓
), which are described in Section 4.3.4.1.

4.3.4.1 Computation of SUR scalar macrocracking variables 𝜔M(ZM, ZM
𝑒 𝑓 𝑓
)

The Smooth-Unloading-Reloading (SUR) method that uses branch and target soft-

ening functions to deal with the response of Gauss Points along embedded strong

discontinuities is used to compute the scalar macrocracking variables 𝜔M(ZM, ZM
𝑒 𝑓 𝑓
)

from Section 3.3.7. This is summarised in Algorithm 6 and shown in Figure 4.7.
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Algorithm 6: Compute SUR tractions t𝑛
Γ,𝑢𝑟

and macrocracking scalar vari-

ables 𝜔M, upon updates of effective ZM
𝑒 𝑓 𝑓

and maximum experienced equiva-

lent relative displacement ZM at macrocrack’s Gauss Point.

input : Trial updates of macrocrack effective and maximum experienced
relative displacement ZM

𝑒 𝑓 𝑓
and ZM, along macrocrak Gauss Points.

output: SUR tractions t𝑛
Γ,𝑢𝑟

and macrocracking scalar variables 𝜔M

1 // Loop over Gauss Points along macrocrack; 𝑛𝐺𝑃
𝑐𝑘

being total number of GPs
2 for igp𝑐𝑘 = 1 . . . n𝐺𝑃

𝑐𝑘
do

3 Compute traction from target function, for given maximum experienced ZM:

4 t𝑛
Γ,𝑡
(ZM) ← 𝑓M𝑡

[
𝑟M𝑠 + (1 − 𝑟M𝑠 ) exp

{
−𝑐𝑠 ZM−𝑎𝑘,𝑢𝑟 ·ℎ𝑐𝑎 · 𝑓 M𝑡 /𝐸𝑎𝑚

𝑢𝑚𝑎𝑥−𝑎𝑘,𝑢𝑟 ·ℎ𝑐𝑎 · 𝑓 M𝑡 /𝐸𝑎𝑚

}]
, ZM ≥ 𝑎𝑘,𝑢𝑟 · ZM𝑡 ;

5 Compute asymptotic SUR traction t𝑛
Γ,𝑘
(ZM) associated with target function:

6 t𝑛
Γ,𝑘
(ZM) ← t𝑛

Γ,𝑡
(ZM) · a𝑢𝑟 · 𝑎𝑘,𝑢𝑟 , in ZM ≥ 𝑎𝑘,𝑢𝑟 · ZM𝑡 ;

7 Compute macrocracking auxiliar displacement for detecting SUR transition:

8 ZM
𝑒 𝑓 𝑓 ,𝑎𝑢𝑥

(ZM, ZM
𝑒 𝑓 𝑓
) ←

{
𝑎𝑝,𝑢𝑟 · ZM if ZM

𝑒 𝑓 𝑓
≤ 𝑎𝑝,𝑢𝑟 · ZM

ZM
𝑒 𝑓 𝑓

if ZM
𝑒 𝑓 𝑓

> 𝑎𝑝,𝑢𝑟 · ZM
;

9 Compute SUR traction at the macrocracking auxiliar displacement ZM
𝑒 𝑓 𝑓 ,𝑎𝑢𝑥

:

10 t𝑛
Γ,𝑢𝑟
(ZM, ZM

𝑒 𝑓 𝑓 ,𝑎𝑢𝑥
) ← t𝑛

Γ,𝑘
(ZM) ·

[
1 −

(
1 − 𝑎𝑝,𝑢𝑟

a𝑢𝑟

)
exp

{
−
ZM
𝑒 𝑓 𝑓 ,𝑎𝑢𝑥

−𝑎𝑝,𝑢𝑟 ZM

(a𝑢𝑟−𝑎𝑝,𝑢𝑟 )ZM

}]
;

11 Compute SUR-derived scalar macrocracking variable:

12 𝜔M ← 1 −
t𝑛
Γ,𝑢𝑟
(ZM,ZM

𝑒 𝑓 𝑓 ,𝑎𝑢𝑥
)

𝐸𝑎𝑚 · [ZM𝑒 𝑓 𝑓 ,𝑎𝑢𝑥
/ℎ𝑐𝑎 ]

;

13 end
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Figure 4.7: Sketch that illustrates the update of scalar macrocracking variables
𝜔M(ZM, ZM

𝑒 𝑓 𝑓
) at Gauss Points along embedded strong discontinuity 𝜕ΓM.
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4.3.4.2 Computation of the equivalent macrocracking relative displace-

ment terms ZM and ZM
𝑒 𝑓 𝑓

The updates of the macrocracking equivalent displacement terms ZM, ZM
𝑒 𝑓 𝑓

are tracked

at macrocrack Gauss Points, using local relative displacements for subsequent up-

date of scalar macrocracking variables 𝜔M(ZM, ZM
𝑒 𝑓 𝑓
) and integration of the equivalent

macrocrack force Fck as described in Algorithm 7.

Algorithm 7: Update scheme for macro-states {Z }M, {Zeff}M for an embed-
ded macrocrack ΓM

input : Given an updated macrocrack relative displacement W = [𝑢𝑟𝑐, 𝑢𝑠𝑐, 𝛼𝑐]T
output: New macro-states {Z }M, {Zeff}M and scalar variables {𝜔}M

1 // Loop over Gauss Points along macrocrack for numerical integration, nGP
ck

:= 2;
2 for igpck = 1 . . . nGP

ck
do

3 Compute local position along macrocrack: 𝑙igp ← {N(bigp,ck)}Txck,edge;
4 Compute separation array ΔuΓM ← [Δun

ΓM
,Δut

ΓM
]T for normal and

tangential separation components: Δun
ΓM
← 𝑢𝑟𝑐 + 𝑙igp · 𝛼𝑐, and

Δut
ΓM
← 𝑢𝑠𝑐 ;

5 Compute effective macro-state:

ZM
𝑒 𝑓 𝑓 ,igp ←

1
2Δun

ΓM

[
1 +

(
`Y
𝑟Y

)2]
+ 1

2𝑟2Y

√︂(
𝑟2Y − `2Y

)2
(Δun

ΓM
)2 + 4𝑟2Y (Δut

ΓM
)2 ;

6 if (ZM
𝑒 𝑓 𝑓 ,igp > Z

M
igp) & (𝑖𝑖𝑡𝑒𝑟 ≤ 𝑖𝑡 𝑓 𝑖𝑥) then

7 Update maximum experienced macro-state: ZMigp ← ZM
𝑒 𝑓 𝑓 ,igp;

8 end

9 end

4.3.5 Algorithms for macrocrack continuity and diffuse-to-
localised transition strategies

In this section, algorithms for macrocrack continuous propagation and detection are

described. At first, criteria for continuity of macrocrack paths is elucidated. Secondly,

the mechanical criteria behind macrocrack detection and directionality of macrocrack

nucleation is discussed.

4.3.5.1 On geometric continuity of macrocracking trajectories

The implementation incorporates the philosophy of geometric path continuity for

embedded macrocracks. In this context, in case no elements are being macroscopi-

cally cracked in the vicinity of the current element Ω𝑖𝑒𝑙𝑒𝑚, the macrocrack is sensibly

assumed to form crossing the element centroid; whereas, when macrocracks are de-

tected in the surroundings, the path of the continuous macrocrack is tracked using

the method in Alfaiate et al. (2003, 2002); Freeman et al. (2020) as in Algorithm 8.
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Algorithm 8: Sequential tracking criteria for embedded macrocracks in a
multiscale EFEM framework with arbitrary fracture propagation direction,
at every global iteration with iiter ≤ itfix.

input : Global macroscale displacement at nodes u𝑔.
output: New macrocrack geometry at fracturing elements.

1 // Loop over all elements in a sequential fashion
2 for ielem = 1 . . . nelem do
3 if macrocracking detected (§4.3.5.2) then
4 Detect advancing macrocrack tips at boundaries;
5 if number of macrocracks at boundaries ≥ 2 then
6 Use two existing macrocrack tips to form macrocrack geometry
7 else
8 Extract element-based macroscale displacement at nodes uel;

9 Compute predictor strains at tracking positions �̄� = B · uel;
10 // Major principal homogenised strain direction defines nΓM

11 if number of macrocracks at boundaries ≥ 1 then
12 Existing macrocrack tip serves as starting point for nucleation
13 else
14 Macrocrack is nucleated through the centre of gravity of the element
15 end

16 end

17 end

18 end

Two cases occur as continuity is enforced, which depend upon the number of

macrocrack tips detected in the element boundaries as shown in Figure 4.8 and de-

scribed below:

• One macrocrack tip detected: the macrocrack is nucleated to depart from

the existing macrocrack tip at the element boundary and the micromechanics-

informed major principal strain direction defines the macrocrack normal;

• Two macrocrack tips detected: the macrocrack nucleation direction is not gov-

erned any more by mechanics only, and rather the two advancing macrocrack

tips are used to form a newly nucleated macrocrack with the aim of providing

continuity of the macrocracking trajectories

Note that special cases for more than two macrocracks being driven towards one ele-

ment may occur, and the current macrocrack tracking algorithm would only join two

of these incident macrocracks, without considering a more mechanically-meaningful

criteria for macrocrack nucleation in such particular cases.

The following section provides details on the role of (i) Micromechanics and that of

(ii) the iterative effective macrocracking relative displacement ZM
𝑒 𝑓 𝑓

within macrocrack

detection.
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(a) Micromechanics-guided macrocracking in multiscale EFEM: nucleation through centre
of gravity (left), and micromechanically-guided macrocrack through existing tip (right)
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(b) Macrocrack-path continuity enforcement in multiscale EFEM: micromechanics-
informed nucleation orientation superseded by full enforcement of geometric continuity.

Figure 4.8: Illustration of sequential embedded macrocrack tracking cases, to
enforce geometric continuity of macrocracking trajectory, in combination with
micromechanically-guided criteria for defining macrocrack nucleation orientation.

4.3.5.2 On theoretical and computational aspects of micro- to macroc-
racking transition

Macrocracking detection is treated as an element-wise procedure in Ω𝑖𝑒𝑙𝑒𝑚 ⊂ ΩM. Two

criteria are used, to identify the appropriate instant, at which embedded macrocracks

can enable displacement jumps 𝚫ûΓM (𝑥′ ∈ 𝜕ΓM) = 𝚲 · Ŵ along the embedded strong

discontinuity as described in Equation 3.39.

The first macrocrack detection criterion postulates the major principal homogenised

stress �̄�1 at the tracking GP (or average from two GPs) shall comply with the fol-

lowing criteria to enable element-wise macrocracking:
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�̄�1 ≥ �̄�𝑐𝑟𝑖𝑡 , �̄�𝑐𝑟𝑖𝑡 := [𝑎𝑝,𝑢𝑟𝑎𝑘,𝑢𝑟 + (1 − 𝑎𝑝,𝑢𝑟𝑎𝑘,𝑢𝑟)𝑘𝑚𝑀] 𝑓M𝑡 (4.30)

where tracking of the major principal homogenised stress �̄�1 is carried out, at a

chosen Gauss Point (GP) (or average from two GPs) at the Micromechanical continua

in Ω𝑖𝑒𝑙𝑒𝑚 = Ω+
𝑖𝑒𝑙𝑒𝑚

∪ Ω−
𝑖𝑒𝑙𝑒𝑚

; 𝑎𝑝,𝑢𝑟 , 𝑎𝑘,𝑢𝑟 are parameters that control the Smooth-

Unloading/Reloading (SUR) character of the traction-separation law of the embedded

macrocrack band from Section 3.3.7 ; 𝑓M𝑡 is the macroscopic tensile peak-stress that

can be observed at the onset of failure; and 𝑘𝑚𝑀 ∈ [0, 1] is a micro-to-macro transition

parameter that controls the delay of macrocrack occurrence. Conveniently, 𝑘𝑚𝑀 has

been incorporated as a user-defined transition parameter, which allows the analyst

to control to some extent the nucleation of macrocracks. It has been found that for

practical use 𝑘𝑚𝑀 ≈ 1, renders an adequate micro- to macrocracking transition.

A few observations are made regarding the selection of the GP for macrocrack

detection based on Equation 4.30:

- Tracking of the major principal homogenised stress �̄�1 at the dummy (central)

GP is used for macrocrack detection in most situations, although not adequate

for cases of complicated fracture patterns. Tracking at the central GP is also

used when no adjacent elements are fractured.

- Tracking of the average major principal homogenised stress 1
2 (�̄�1,GP1 + �̄�1,GP2),

at the two closest GPs to the advancing macrocrack tip, is used in cases of more

complex fracture patterns.

The second macrocrack detection criterion states the average effective macroc-

racking relative displacement ZM
𝑒 𝑓 𝑓 ,𝑎𝑣𝑔

= 1
2 (Z

M
𝑒 𝑓 𝑓 ,1+Z

M
𝑒 𝑓 𝑓 ,2), upon a variationally-consistent

force recovery described in Equation 4.17, must exceed a minimum threshold defined

below:

ZM𝑒 𝑓 𝑓 ,𝑎𝑣𝑔 ≥ Z
M
𝑐𝑟𝑖𝑡 , ZM𝑐𝑟𝑖𝑡 := 𝑎𝑘,𝑢𝑟ℎ𝑐𝑎

𝑓M𝑡

𝐸𝑎𝑚
(4.31)

It is also convenient to track the evolution of inelastic deformation beyond the

threshold in Equation 4.31, along nucleated macrocracks in an objective way using a

normalised inelastic macrocrack relative displacement ZM
𝑖𝑛,𝑛𝑜𝑟𝑚

:

ZM𝑖𝑛,𝑛𝑜𝑟𝑚 :=
ZM
𝑒 𝑓 𝑓 ,𝑎𝑣𝑔

− ZM
𝑐𝑟𝑖𝑡

(1 − 𝑎𝑝,𝑢𝑟)ZM𝑐𝑟𝑖𝑡
(4.32)

After a macrocrack has been detected, geometric features are derived ensuring the
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macrocrack propagation direction is perpendicular to the major principal direction

of the homogenised strain 𝜺, obtained at the chosen GP for tracking in the Microme-

chanical continua (or an average direction, derived from two GPs consistently with

stress-based tracking, can be used). Such detection and propagation direction criteria

are combined with geometric path continuity philosophies as explained in the Section

4.3.5.1. An illustration of the procedure of macrocrack detection, combined with a

sequential macrocrack tracking algorithm is shown in Figure 4.9.
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Figure 4.9: Macrocrack detection in a Micromechanical continua, combined with
geometric continuity features of macrocracking trajectories.

N.B.: Newly nucleated macrocracks that comply with both macrocracking criteria
in Equations 4.30 and 4.31, are allowed to rotate and be updated in geometry in the
current global iteration (within a single incremental step). Geometric updates are
allowed for the first itfix global iteration (itfix = 3).

Figure 4.10 shows a flow chart incorporating steps for macrocrack detection, and

for combining this with macrocrack tracking.
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New iterative element displacement (due to recent global update) : uel ← uel + 𝑑uel

Activate flag for macrocrack detection: 𝑓Z ← 1

iiter ≤ itfix
new

macrocrack

Z
M,iiter−1
𝑒 𝑓 𝑓 ,𝑎𝑣𝑔
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𝑐𝑟𝑖𝑡

𝑓Z ← 0

Delete recent

macrocrack to

allow rotation
𝑓Z = 1

macrocrack

no. < max

Get homogenised major principal

stress : �̄�1 ← < 𝜎1 >GP𝑡𝑟𝑎𝑐𝑘

�̄�1 > �̄�𝑐𝑟𝑖𝑡

Micromechanics

guides new

nucleation

Advance to force recovery

Update states: Standard FEM or Variational principle (if macrocracks exist)

continue

continue

yesyesyes

no no

yes

no

no

yes

no

yes

no

Figure 4.10: Flow chart for macrocrack nucleation criteria in a Micromechanical solid,
and subsequent choice of update schemes for micro/macro state variables.

The implementation of both, macrocrack detection and geometric continuity en-

forcement algorithms, have the slight limitation of being sequential. The improvement

of the proposed method, via a global macrocrak detection and tracking algorithm, is

a subject for future research.
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4.4 On techniques for robust implementation
In some cases, the standard Newton’s scheme for the solution of equations associated

with the minimum energy quasi-static condensation procedure from Section 4.3.2 has

been found to be insufficient, since the very first trial solution must be close enough

to the actual solution of the system of PDEs, otherwise the numerically updated

solution may bounce within the proximity of the solution or break-down the iterative

solution with increasingly diverging error norms, where typical values of tolerances

are reported in Algorithm 2.

In this regard, two different techniques have been tailored for improving the ro-

bustness of the proposed multiscale EFEM methodology.

• 4.4.1 Line search algorithm at the element level: this numerical strategy helps

the trial solution to get closer to the element-based minimum energy solution

upon numerical bouncing, which is typical failure of a Newton’s iterative solver

if the first trial solution is far away from the expected solution.

• 4.4.2 Arc-length control scheme for crack analysis: this has not been fully com-

pleted due to the time limits of the PhD. The main idea is to allow snapping-

back response to be simulated with the new multiscale fracture method by

restricting an equivalent arc-length in force-displacement space.

4.4.1 Line search for improving element-based iterative quasi-
static condensation scheme

To stabilise the convergence of macrocracking dofs W at the element-level, a simple

‘one-dimensional’ search is done in the space 𝜓𝜙 vs Z𝜙, to find an abscissa Z𝜙 =

| |W𝑡𝑟𝑖𝑎𝑙 −W𝑝𝑟𝑒𝑣 | |/| |ΔW| | associated with an approximate minimum residual norm as

expressed in Equation 4.33.

𝜓𝜙 (Z𝜙) =

√√√√√√√(
𝝍𝜙

(
W𝑡𝑟𝑖𝑎𝑙 (Z𝜙)

))T

·

(
𝝍𝜙

(
W𝑡𝑟𝑖𝑎𝑙 (Z𝜙)

))
𝑢𝑚𝑎𝑥

𝝍𝜙

(
W𝑡𝑟𝑖𝑎𝑙 (Z𝜙)

)
=


1 0 0
0 1 0
0 0

√
𝐴𝑖𝑒𝑙𝑒𝑚

 · 𝝓el
𝑤

(
W𝑡𝑟𝑖𝑎𝑙 (Z𝜙)

)

𝝓el
𝑤

(
W𝑡𝑟𝑖𝑎𝑙 (Z𝜙)

)
= W𝑡𝑟𝑖𝑎𝑙 (Z𝜙) −CΓ

(
W𝑡𝑟𝑖𝑎𝑙 (Z𝜙),uel

)
· uel

W𝑡𝑟𝑖𝑎𝑙 (Z𝜙) = W𝑝𝑟𝑒𝑣 + Z𝜙 · ΔW



(4.33)
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where the residual norms are interpolated for macrocracking dofs W within the

range W ∈
[
W𝑝𝑟𝑒𝑣,W𝑝𝑟𝑒𝑣 + ΔW

]
. In the literature (see e.g. Press et al. (1988)),

recommendations for cubic or higher order interpolations are reported. Hence, a cubic

polynomial is used as the basis for finding a local minimum as illustrated in Figure

4.11:
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Figure 4.11: Interpolation of residual norms as a function of a normalised vari-
ation of macrocracking dofs Z𝜙 = | |W𝑡𝑟𝑖𝑎𝑙 − W𝑝𝑟𝑒𝑣 | |/| |ΔW| |, within the domain
W ∈ [W𝑝𝑟𝑒𝑣,W𝑝𝑟𝑒𝑣 + ΔW].

Note that two additional intermediate Z𝜙-points, aside from the extremes of the

domain Z𝜙 = 0.0 and Z𝜙 = 1.0, are used to collect at least four data points for cubic in-

terpolation, e.g. evaluation of the residual norm is done over 𝜻𝜙 = [0.0, 1/3, 2/3, 1.0]T.

Therefore, the computing overhead for the cubic interpolation is in the order of re-

peating the evaluation of the quasi-static condensation equation a few times. The

interpolated polynomial for residual norms takes the form:

𝜓𝜙

(
Z𝜙

)
= 𝑎𝜙,3 · Z3𝜙 + 𝑎𝜙,2 · Z2𝜙 + 𝑎𝜙,1 · Z𝜙 + 𝑎𝜙,0 (4.34)
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where the coefficient, which is not associated with powers of Z𝜙, is defined as

𝑎𝜙,0 =
0 𝜓𝜙 = 𝜓𝜙 (Z𝜙 = 0.0). Hence, by re-arranging the cubic polynomial for residuals:

𝜓𝜙

(
Z𝜙

)
−0 𝜓𝜙 =

[
Z𝜙 Z2

𝜙
Z3
𝜙

]
·

𝑎𝜙,1
𝑎𝜙,2
𝑎𝜙,3

 (4.35)

By evaluating the polynomial over the remaining three data points 1Z𝜙 = 1/3,
2Z𝜙 = 2/3 and 3Z𝜙 = 1.0, the coefficients of the cubic polynomial can be recovered:

a𝜙 = M−1
𝜙 · �̄�𝜙,𝑚 (4.36)

where �̄�𝜙,𝑚 = [𝜓𝜙 (1Z𝜙) −0 𝜓𝜙, 𝜓𝜙 (2Z𝜙) −0 𝜓𝜙, 𝜓𝜙 (3Z𝜙) −0 𝜓𝜙]T, the array of coef-

ficients is defined as a𝜙 = [𝑎𝜙,1, 𝑎𝜙,2, 𝑎𝜙,3]T, and the interpolation matrix M𝜙 is a

constant 1, hence, it can be initialised once and re-utilised every time the line search

procedure is re-called:

M𝜙 =


1Z𝜙

(1
Z𝜙

)2 (1
Z𝜙

)3
2Z𝜙

(2
Z𝜙

)2 (2
Z𝜙

)3
3Z𝜙

(3
Z𝜙

)2 (3
Z𝜙

)3
 (4.37)

Upon computation of the coefficients of the interpolating cubic polynomial of

residuals, an approximate Z𝜙-point for a local minima can be obtained equating the

first derivative 𝜕𝜓𝜙/𝜕Z𝜙 to zero, and checking that the second derivative 𝜕2𝜓𝜙/𝜕Z2𝜙 is

larger than zero. Elaborating on these premises, by using a quadratic form solution,

leads to the following roots and local minima criteria:

𝜕𝜓𝜙/𝜕Z𝜙 = 0 → Z𝜙,𝑚𝑖𝑛 =
−2·𝑎𝜙,2±

√︃
4·𝑎2

𝜙,2−12·𝑎𝜙,3·𝑎𝜙,1
6·𝑎𝜙,3

𝜕2𝜓𝜙/𝜕Z2𝜙 > 0 → check that 2 · 𝑎𝜙,2 + 6 · 𝑎𝜙,3 · Z𝜙,𝑚𝑖𝑛 > 0

 (4.38)

where only one of the roots, if it exists in the real domain, will comply with the

second derivative criteria. Such local minima would serve to trace back the Newton’s

scheme to a closer trial solution W𝑡𝑟𝑖𝑎𝑙,𝑚𝑖𝑛 = W𝑝𝑟𝑒𝑣 + Z𝜙,𝑚𝑖𝑛 · ΔW, which can be used

as a departing numerical solution towards finding the true solution for a stringent

tolerance using Newton’s iterations in the usual way.

1Numerical evaluation leads to M𝜙 =
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4.4.2 On arc-length control for global iterative procedure to
circumvent snapping-back

A scalar-valued constraint equation is proposed to be coupled to the global equilibrium

equation, which possesses a total number of degrees of freedom ntdof = npoin · ndofn,

to form an ntdof + 1 space of unknowns and ntdof + 1 equations (De Borst et al.,

2012; Pretti et al., 2022; Riks, 1979). The ntdof + 1 system of PDEs is solved for the

iterative unknowns {𝛿_, δu𝑔} using a Newton’s type split scheme:

𝚽∗𝐹 = F0
ext + r0react + Δ_(Fext + rreact) − Fint + 𝛿_(Fext + rreact) −K𝑔δu𝑔 = 0

𝑔𝑎𝑐 = 𝚫LT
𝑎𝑐 · ΔL𝑎𝑐 − (Δ𝑙)2 = {A𝑎𝑐 · Δu𝑔}T · {A𝑎𝑐 · Δu𝑔} − (Δ𝑙)2 = 0


(4.39)

where 𝚫L𝑎𝑐 = A𝑎𝑐Δu𝑔 contains the vectorial expression for the difference in posi-

tion between two chosen nodal locations. Some rearrangement of Equation 4.39 leads

to the following system to be solved sequentially, in such a manner that prescribed

zero nodal displacements can be included in the iterative procedure:

δuII
𝑔 = K−1𝑔 · 𝜙𝐹

δuI
𝑔 = K−1𝑔 · (Fext + rreact)

𝑎_,2 · 𝛿_2 + 𝑎_,1 · 𝛿_ + 𝑎_,0 = 0

δu𝑔 = δuII
𝑔 + 𝛿_δuI

𝑔


(4.40)

where the constants for the quadratic form of the arc-length equation, to solve for

a physically meaningful iterative load-amplification factor 𝛿_, are as follows:

𝑎_,2 = {A𝑎𝑐δu
I
𝑔}T ·A𝑎𝑐 · δuI

𝑔

𝑎_,1 = 2{A𝑎𝑐 · (Δu 𝑗−1𝑔 + δuII
𝑔 )}T ·A𝑎𝑐 · δuI

𝑔

𝑎_,0 = {A𝑎𝑐 · (Δu 𝑗−1𝑔 + δuII
𝑔 )}T ·A𝑎𝑐 · (Δu 𝑗−1𝑔 + δuII

𝑔 ) − (Δ𝑙)2


(4.41)

After each new update of Δ_ and Δu𝑔 equilibrium is checked by subtracting the

newly recovered internal force vector Fint from the updated external forces. This

envisaged strategy for coupling a scalar-valued constraint equation to the global in-

cremental iterative solution of the proposed multiscale EFEM framework, has yet to

be completed. This is subject for future research.
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4.5 Concluding remarks
In this chapter, algorithmic and numerical details of the proposed variationally-

consistent multiscale EFEM framework have been given, as summarised below:

• Numerical aspects have been presented for the computational solution of the

new multiscale EFEM model, by presenting a force recovery algorithm. In ad-

dition, for robustness and numerical efficiency, the computation of consistently-

linearised element stiffness tangents has been described, for the case that el-

ements are undergoing micro and/or macrocracking. In this regard, the need

to adopt a central difference approximation in element stiffness tangents when

macrocraking occurs is also explained.

• Algorithmic aspects of the global incremental iterative procedure have been

clarified for a robust and efficient implementation, by taking advantage of posi-

tive tangents used in the SUR solution scheme. The added stability of the SUR

method has been tested with representative numerical examples in the following

chapter.

• The numerical schemes used for detecting and tracking marocracks have been

described. These have been tailored to allow macrocracks to be continuous,

while macrocracks are activated at an adequate instant of deformation locali-

sation. Two criteria are proposed for detection, which are associated with the

micromechanics-enriched strain field and with the evolution of the equivalent

macrocrack relative displacement upon force recovery before nucleating macro-

cracks are fixed.

• Some numerical methods have been described for improving the robustness

of the multiscale EFEM method, tackling both the element-based quasi-static

iterative procedure and global incremental iterative solution. The first one

mentioned has been implemented, whereas the second one requires attention in

further research.
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Chapter 5

Numerical examples of multiscale
quasi-brittle fracture

“Essentially, all models are wrong, but some are useful.”
George E. P. Box 1919 - 2013

British Mathematician of the 20th century

5.1 Representative numerical examples

A series of problem examples are presented to analyse computational features, includ-

ing robustness and efficiency, grid-insensitivity of structural response and applicability

of the method to simulate cementitious composites, focusing on directional microme-

chanical degradation and macro-fracture propagation. The list of problems analysed

is as follows:

5.1.3 Ex.1-Theoretical analyses on a single element.

5.1.4 Ex.2-Failure test on concrete L-panel by Winkler et al. (2001).

5.1.5 Ex.3-Uniaxial tensile test on bone-shaped concrete member by Petersson (1981).

5.1.6 Ex.4-Four-point bending test on plain concrete with no initial notch.

5.1.7 Ex.5-Failure test on hexagonal concrete member by Bennett and Jefferson (2007).

5.1.1 Explanation of features tested on numerical examples
The examples in 5.1.3-Ex.1 are theoretical problems in a single element to test the

ability of directional microcracking to evolve along with evolution of macrocracking.

All of the other examples use multi-element meshes . In addition, mesh sensitivity

analyses are shown respectively in 5.1.4-Ex.2 and 5.1.6-Ex.4, for a single macroc-

rack propagating in a curved path, and for multiple macrocracks propagating almost

parallel to each other so that some macrocracks shut while others become dominant.

A study of convergence of residuals is provided for 5.1.4-Ex.2. This presents se-

quential embedded macrocrack nucleation of a single propagating fracture until a
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stage of large post-peak deformation, which is hereby referred as an ultimate incre-

mental step in the numerical model. Therefore, such an example tests the performance

of the framework with sequential and crack tracking in a critical situation, opposed

to less computationally demanding single element tests in 5.1.3-Ex.1. Such simpler

element tests are expected to preserve a generic quadratic convergence of the equilib-

rium equations without much interference of computational choices for macrocrack

propagation, after the only macrocrack expected settles, i.e. computational expense

of deleting and nucleating more embedded macrocracks is avoided.

In addition, 5.1.5-Ex.3 elucidates the macrocrack tracking algorithm works for two

or more incident macrocracks connecting in a macrocracking element, where macro-

cracks cut the Finite Element mesh all across the computing domain.

Finally, 5.1.7-Ex.5 tests the sequential macrocrack tracking and multiscale compo-

nents, stringently, for an atypical concrete specimen, with hexagonal shape based on

in-house experimental data (Bennett and Jefferson, 2007).

5.1.2 Multiscale fracture model calibration

5.1.2.1 On the Smooth-Unloading-Reloading numerical constants

Numerical constants that characterise the SUR macrocrack response were fixed as

a𝑢𝑟 = 0.85 and 𝑎𝑝,𝑢𝑟 = 0.65 for all numerical examples. Note that these values are

different from the recommended values a𝑢𝑟 = 0.75 and 𝑎𝑝,𝑢𝑟 = 0.60, which are reported

in the literature for models using the SUR algorithm at the Gauss Point level only

(Alnaas and Jefferson, 2016). It was found that the gradient of the SUR branch due

to the chosen set of SUR parameters at the macrocrack level, eases the convergence

of the new multiscale fracture method when compared to standard parameters.

5.1.2.2 On the number of integration directions for homogenisation

The number of degradation directions over half a circle has been fixed to nm
𝑖𝑛𝑡

= 21

for numerical integration of the homogenised response at the RVE-level. This num-

ber of integration directions is fixed at all Gauss Points within the micromechanical

bulk, including the dummy Gauss Point at the element centre. The preferred number

of integration directions is an odd number to trace adequately symmetric microc-

racking evolution, and 9 directions or above tend to give good details of evolution.

Nonetheless, having more than 21 integration directions in each Gauss Point can be

challenging for data storage management without much gain in accuracy of microc-

racking evolution.

Chapter 5. Numerical examples of multiscale quasi-brittle fracture 120



5.1. Representative numerical examples

5.1.2.3 Guidance on calibration of mechanistic parameters

The remaining parameters are more physically-based opposed to more numerically

oriented ones in Section 5.1.2.1 and 5.1.2.2. A first guide on calibration of such

parameters has been presented before on Chapter 3 shown in Table 3.2.

Upon the coupling of both micro and macro components the cohesive-frictional

constants 𝑟𝜎 and `𝜎, and the softening parameters 𝑢𝑚𝑎𝑥 and 𝑐𝑠 are assumed to be

the same for both micro and macro-scales, which aims to reduce the number of input

parameters.

Note that the macrocrack band virtual thickness ℎ𝑐𝑎 can be based to a few times

the coarse aggregate size in structural members of lab-scale. In addition, it is expected

that the value of ℎ𝑐𝑎 be larger in large-scale structural members, since the macrocrack

band would represent the fracture process zone at a much coarser scale than one which

only involves few aggregate grains.

Further guidance on mechanistic model parameters is summarised in Table 5.1.

Table 5.1: Guidance on model calibration for modelling quasi-brittle response of
cementitious composites using a variational micromechanics-enriched EFEM.

Parameter Comments on calibration

Aggregate-matrix mixture elasticity constants
𝐸 , 𝜐 Comments in Table 3.2 apply.

Micro and macro strength parameters
𝑓M𝑡 , 𝑓m𝑡 Comments in Table 3.2 apply.

Micro and macro length parameters
ℎ𝑐𝑎 This is set to a few times a characteristic component at the macroscale,

e.g. coarse grain size in lab-scale structural members, or thick enough to
represent the fracture process zone in larger structural members.

ℎ 𝑓 𝑎 The is set to a fraction of ℎ𝑐𝑎. In practice, ℎ 𝑓 𝑎 ≈ (1/5) · ℎ𝑐𝑎 is a good
starting point for calibration.

Cohesive-frictional parameters
𝑟𝜎, `𝜎 Comments in Table 3.2 apply. These are set as equal for both micro and

macroscales.
Softening parameters

𝑢𝑚𝑎𝑥, 𝑐𝑠 Comments in Table 3.2 apply. These are set as equal for both micro and
macroscales.

𝑟M𝑠 Comments in Table 3.2 apply.
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5.1.2.4 Sets of model parameters

A summary of model parameters used for the series of problems in this Chapter are

summarised in Table 5.2, which were calibrated using guidelines in Table 5.1.

Table 5.2: Summary of model parameters for BVPs, including theoretical problems
in a single element (examples analysed with set no. 1), as well as, numerical examples
which have been validated using experimental data, or analytical means.

Parameter Unit 5.1.3-
Ex.1

5.1.4-
Ex.2

5.1.5-
Ex.3

5.1.6-
Ex.4

5.1.7-
Ex.5

Aggregate-matrix mixture elasticity constants

𝐸𝑎𝑚 𝑁/𝑚𝑚2 30000 20000 38000 30000 30000
𝜐𝑎𝑚 − 0.2 0.2 0.2 0.2 0.35

Micro and macro strength parameters
𝑓m𝑡 𝑁/𝑚𝑚2 1.70 2.00 1.80 1.30 4.00
𝑓M𝑡 𝑁/𝑚𝑚2 3.00 2.70 3.25 2.28 8.90

Micro and macro length parameters
ℎ 𝑓 𝑎 𝑚𝑚 0.50 0.30 0.03 0.15 0.03
ℎ𝑐𝑎 𝑚𝑚 2.00 2.00 0.15 0.75 0.15

Cohesive-frictional parameters: identical for micro and macro-scale
𝑟𝜎 − 1.50 1.20 1.50 1.31 1.50
`𝜎 − 1.00 1.30 1.00 1.20 0.50

Softening parameters: 𝑢𝑚𝑎𝑥 and 𝑐𝑠 are set identical for micro and macro-scale
𝑢𝑚𝑎𝑥 𝑚𝑚 0.20 0.40 0.20 0.20 0.35
𝑐𝑠 − 7.00 7.00 7.00 7.00 7.00
𝑟M𝑠 − 0.04 0.04 0.05 0.05 0.05

5.1.3 Theoretical analyses on a single element

At first, theoretical analyses are considered on a single element departing from an

intact state, through micro and macrocracking until a large post-peak deformation.

Two types of boundary conditions are used, namely, a) uniaxial tensile deformation

applied along horizontal axis, and b) uniaxial tensile deformation along the horizontal

axis until macrocracking occurrence, followed by tensile deformation combined with

a tangential force applied incrementally.

The first boundary condition type is used to study (i) the effect of the user-defined

transition parameter 𝑘𝑚𝑀 on macrocrack nucleation, (ii) the evolution of microcrack-

ing after the activation of a macrocrack, and (iii) the effect of the macrocrack virtual

thickness ℎ𝑐𝑎 on the overall response.

The second boundary condition is used to illustrate, the capacity of directional

microcracking to evolve, upon the occurrence of macrocraking, in other directions
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not dominated by the nucleated macrocrack. In turn, an element Ω ≡ b × d × 𝑡𝑔

(b = d = 50 𝑚𝑚 and out-of-page thickness 𝑡𝑔 = 50 𝑚𝑚) is considered under plane

stress settings, with boundary conditions as illustrated in Figure 5.1.
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Figure 5.1: Boundary conditions for macro-fracture propagation analyses on a ce-
mentitious solid, using a single element Ω: (a) uniaxial tension, (b) uniaxial tension
and incremental tangential force applied upon macrocracking.

5.1.3.1 Single element under pure tensile deformation

The BVP in Figure 5.1a has been solved using 50 incremental steps until the hori-

zontally prescribed deformation reaches u𝑥 = 0.20 𝑚𝑚, considering smaller step size

within the pre-peak and early post-peak structural response to capture non-linearities

adequately with results shown in Figure 5.2a.

Remark 5.1.: Polar plots in Figures 5.2b and 5.2c present the magnitude of the

directional microcracking scalar variable 𝜔m
𝛼 (𝛼 = 1 . . . nm

𝑖𝑛𝑡
) for each unit normals

which are perpendicular to the microcracking propagation direction. Note that the

maximum values within the polar plots would tend to reveal the direction perpen-

dicular to the nucleating macrocracks, which is similar to that obtained by tracing

the eigen-vectors of the strain tensor. Other studies in the literature use an acoustic

tensor (Zhao et al., 2018), or configurational crack measures (Bird et al., 2022) to

trace such direction of accumulated damage.

Remark 5.2.: Note that the symmetry of loading and geometry, for a single

square element under uniaxial tension, leads to equal directional microcracking evo-

lution at any of the Gauss Points in the bulk. Hence, a single polar plot, which

applies to any of the Gauss Points in the micromechanical bulk, is sufficient to study

directional microcracking evolution before and after macrocraking in this uniaxial

case.
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(a) Uniaxial tension: average stress vs displacement, 𝑘𝑚𝑀 ∈ [0, 1]

(b) Microcracking variables 𝜔m
𝛼 : 𝑘𝑚𝑀 = 0 (c) Microcracking variables 𝜔m

𝛼 : 𝑘𝑚𝑀 = 1

Figure 5.2: Uniaxial response of a cementitious solid: (a) stress-displacement curve,
(b-c) bulk directional microcracking evolution.

In all cases presented for this BVP, global iterations did not exceed a maximum of

three iterations for updates of the displacement field at the macroscale, i.e. it reached

quadratic convergence. In these illustrative analyses, only the first macrocracking cri-

teria in Equation 4.30 has been used. It is highlighted that, for practical use of this

variational multiscale EFEM framework in other numerical examples, both macroc-

racking criteria described in Section 4.3.5.2 are used simultaneously, with 𝑘𝑚𝑀 = 1.0.

Regarding sensitivity of the structural-level response with respect to the micro-to-

macrocracking transition parameter 𝑘𝑚𝑀 ∈ [0, 1], under uniaxial tension, the start of

macrocracking has been delayed as 𝑘𝑚𝑀 increases. For values 𝑘𝑚𝑀 = 0.0, 𝑘𝑚𝑀 = 0.5

and 𝑘𝑚𝑀 = 1.0, the start of macrocracking is points 𝑝, 𝑞 and 𝑟 as seen in Figure 5.2a.

The variational update of micro and macro states upon macrocrack activation

at 𝑝 (with 𝑘𝑚𝑀 = 0.0), 𝑞 (with 𝑘𝑚𝑀 = 0.5) and 𝑟 (with 𝑘𝑚𝑀 = 1.0) has been
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observed to produce in all cases a smooth transition from micro to macrocracking

dominated phenomena in the load-displacement space as depicted in Figure 5.2a. This

highlights that the parameter has little effect on the structural response for simple

boundary conditions. For more complex problems, delaying macrocrack nucleation

by setting 𝑘𝑚𝑀 = 1 seems appealing to allow well developed eigenvector fields in the

microcracking bulk to track macrocracking directions.

Note that for either of the transition parameter limits 𝑘𝑚𝑀 = 0.0 and 𝑘𝑚𝑀 = 1.0

the microcracking directions are able to evolve until the structural peak 𝑟, since the

variational updates sorts out the amount of deformation absorbed by the Continuum

and the strong discontinuity as shown in Figures 5.2b and 5.2c. The structural-level

bifurcation state 𝑟 entails relaxation of the micromechanical continua as tensile defor-

mation progresses at the macroscale (deformation is then absorbed by the nucleated

macrocrack at the central axis of the element). Such relaxation is linked to the halt

of the evolution of directional microcracking variables immediately after the peak

structural stress, as illustrated by comparison of the microcracking states evolution

𝜔m
𝛼 from stage 𝑟 and 𝑠 at any of the Gauss Points in the bulk.

In addition, the value of the macro length parameter ℎ𝑐𝑎 has been observed to

cause negligible effects in the load-displacement curve for ℎ𝑐𝑎 ≤ 0.30 · ℎ𝑒𝑙 , where ℎ𝑒𝑙

stands for the element length as illustrated in Figure 5.3.

Figure 5.3: Uniaxial response of a cementitious solid in stress-displacement space:
ℎ𝑐𝑎 ∈ [0.1 · ℎ𝑒𝑙 , 0.3 · ℎ𝑒𝑙], 𝑘𝑚𝑀 = 1

Remark 5.3.: Calibration of the virtual thickness of macrocrack bands has been

carried carefully to avoid imposing large ratios ℎ𝑐𝑎/ℎ𝑒𝑙 , which may have physically

meaningful implications, such as an embedded macrocrack virtual thickness occupying

a large proportion of the element although zero thickness is assigned at the Finite
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Element spatial discretisation. Similarly, small values of the ratio ℎ𝑐𝑎/ℎ𝑒𝑙 << 5%

have been refrained from use, to alleviate any undesired overflow challenges since the

thickness of the virtual band is used as a denominator in the computation of the

equivalent macrocrack force in Equation 4.8.

5.1.3.2 Single element under combined tensile and tangential action

The BVP in Figure 5.1b has been solved for various incremental nodal tangential

forces actived only at the end of the step where the macrocrack is nucleated, whereas

tensile deformation is imposed before and after macrocracking occurs, until the instant

at which the average stress normal to the macrocrack vanishes. Mechanical splitting

action before and after macrocracking is imposed in the horizontal direction. The

post peak response was studied for four different levels of the (nodal) total tangential

force; 𝑓𝑦 = 1500 𝑁, 𝑓𝑦 = 1200 𝑁, 𝑓𝑦 = 720 𝑁, 𝑓𝑦 = 0 𝑁. It is highlighted that

the nodal total force 𝑓𝑦 has been applied progressively only after macrocracking has

been detected, to test the capability of the multiscale framework to capture combined

tangential and normal mechanical actions upon macrocrack nucleation. The average

stress-displacement curve, with components in the direction perpendicular to the

macrocrack plane is shown in Figure 5.4a.

The stages stages 𝑡, 𝑤 and 𝑧 have been marked in Figure 5.4a, in addition to stages

𝑝, 𝑞, 𝑟 and 𝑠 that were previously studied under pure tensile deformation. These

stages have been employed to study microcraking evolution under combined loading

upon macrocracking occurrence. In addition, the problem example with 𝑓𝑦 = 0 𝑁

degrades down as an equivalent response to the BVP in Figure 5.1a. It is remarked

that only the Gauss Point closest to the node under full displacement constraint

is used for this theoretical analysis, since the objective is to show the capacity of

microcracking evolution, upon macrocracking, in various microcracking directions.

Note that for microcracking normals 𝜋/4 ≤ \m ≤ 𝜋/2 and 5𝜋/4 ≤ \m ≤ 3𝜋/2,

microcracking is enabled to evolve with respect to stage 𝑟, when macrocracking is

detected and a macrocrack is nucleated with unit normal pointing into \M = 0 (or

\M = 𝜋 interchangeably). Such microcracking evolution is more easily visualised in the

polar plot corresponding to Figure 5.4b, for 𝑓𝑦 = 1500 𝑁, while further microcracking

is less perceptible for 𝑓𝑦 ≤ 1200 𝑁 in Figure 5.4c. In fact, as 𝑓𝑦 decreases the response

tends to resemble that under pure tensile deformation as observed in Figures 5.4d

and 5.4e, for 𝑓𝑦 = 720 𝑁 and 𝑓𝑦 = 0 𝑁. Therefore, as 𝑓𝑦 decreases principal directions

within the micromechanical bulk tend to remain while deformation is absorbed by

the embedded macrocrack.
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(a) Stress - displacement curve: 𝑓𝑦 = 1500 𝑁, 𝑓𝑦 = 1200 𝑁, 𝑓𝑦 = 720 𝑁, 𝑓𝑦 = 0 𝑁

(b) Microcracking 𝜔m
𝛼 : 𝑓𝑦 = 1500 𝑁 (c) Microcracking 𝜔m

𝛼 : 𝑓𝑦 = 1200 𝑁

(d) Microcracking 𝜔m
𝛼 : 𝑓𝑦 = 720 𝑁 (e) Microcracking 𝜔m

𝛼 : 𝑓𝑦 = 0 𝑁

Figure 5.4: Response of a cementitious solid. A single element Ω is first subjected to
pure tensile deformation until macrocracking occurrence, then subjected to combined
incremental normal deformation and incremental tangential force.
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Remark 5.4.: It is highlighted that the variational update of micro and macro-

cracking states dictates which microcracking directions remain active without any

additional criteria to halt microcracking directions. This ensures that the overall

micro-macro response corresponds to the minimum energy failure mechanism.

5.1.4 Failure test on concrete L-panel byWinkler et al. (2001)

5.1.4.1 Problem description

Winkler et al. (2001) tested a concrete L-panel, with the geometry shown in Figure

5.5a. The bottom of the specimen is restrained in horizontal and vertical direction.

In the experiment, deformation was prescribed at a point located 30 𝑚𝑚 away hor-

izontally from the bottom corner of the hanging leg. Such conditions let to a single

macrocrack be developed from the inner corner of the L-panel towards the right edge

of the vertical leg. A representative fracture pattern, as recorded in experiments, and

approximate boundary conditions to represent the setup in a numerical model are

shown in Figure 5.5b
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Macro-fracture pattern

(Winkler et al.,2001)
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(b)

Figure 5.5: Sketch of L-panel, tested by Winkler et al. (2001): (a) geometric features
(thickness = 100.0 𝑚𝑚), (b) boundary conditions, and representative macroscopic
fracture pattern as recorded experimentally.
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5.1.4.2 Numerical simulation

The domain is discretised with various meshes, opposed to the simpler single element

domain in previous examples. The application of the newly presented formulation for

coupled micro-macro quasi-brittle fracture is studied, to model the single macrocrack

recorded in experiments. In addition, the reaction force that induces this macroc-

rack propagation is also predicted and compared with the experimentally-recorded

reaction.

The self-weight of the specimen is neglected in all incremental stages, and the

geometry presented in Figure 5.5 is adopted as the undeformed configuration. For

the sake of simplicity, no contact considerations have been included between the

loading device and the specimen at the point of uplift. In this regard, incremental

stages of deformation were applied at the loading point.

In this problem example, 90 increments have been employed with an ultimate

prescribed vertical displacement of 0.88 𝑚𝑚 at the control point. Two meshes have

been used to simulate adequately the L-panel test by Winkler et al. (2001), namely,

Mesh 1 and Mesh 2, as illustrated in Figure 5.6. Note that unstructured meshes can be

used with this new multiscale fracture modelling technique although the illustrative

meshes are structured, as used to study objectivity with mesh refinement.

(a) Mesh 1: 1086 elements, 1164 nodes (b) Mesh 2: 2853 elements, 2981 nodes

Figure 5.6: Mesh settings for the simulation of the L-panel test by Winkler et al.
(2001).
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5.1.4.3 Analysis of numerical predictions

The load-displacement prediction for the reaction and deformation prescribed in the

loading point of the hanging leg is presented in Figure 5.7.

Figure 5.7: Load-displacement response of L-panel test: experimental data by Win-
kler et al. (2001) is presented on background. Key stages are marked as points a-b-c-d
with associated snapshots of fracture evolution presented in Figure 5.8.

Remarkably, the parameter set in Table 5.2 upon calibration captures very well

the load-displacement response. Nonetheless, note that small force jumps have been

observed in the load-displacement space for Mesh 1, more noticeably at the transition

from pre- to post-peak regime, given the mesh was not sufficiently dense to detect

macrocracking adequately. It is highlighted that after macrocracking has advanced

considerably into a peak response in Mesh 1, the converging path returns to the true

equilibrium path occurring when macrocrack detection is adequate as for Mesh 2.

Such a return to the actual response is believed to be possible due to a redistribution

of stresses following converged steps, that satisfies a least energetic solution. In this

regard, the load-displacement response is smoothed at the pre-to-post peak transition

by reducing the element size in the micro and macrocracking-dominated zone, as it

is the case for the mesh 2 analysis.

Note that a few stages have been marked in the load-displacement curve (a-d) for

illustration of fracture pattern evolution, from incipient macroscopic fracture com-

bined with surrounding microcracking to the experimental failure as shown in Figure

5.8.
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(a) Mesh 2: step 12, 𝑢𝑦 = 0.095 𝑚𝑚.

(b) Mesh 2: step 32, 𝑢𝑦 = 0.195 𝑚𝑚.

(c) Mesh 2: step 77, 𝑢𝑦 = 0.500 𝑚𝑚.

(d) Mesh 2: step 90, 𝑢𝑦 = 0.860 𝑚𝑚.

Figure 5.8: Evolution of contour plots in L-panel test: homogenised major principal
inelastic strain (continuum level), and normalised measure of the inelastic macrocrack
relative displacement (discrete crack level). Reference scales(x-y): 50 𝑚𝑚-100 𝑚𝑚
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The point of experimental failure was captured closely by the ultimate numerical

stage in the load-displacement curve, which was achieved after a large post-peak

deformation being prescribed in stage d as shown in Figure 5.8d.

In the snapshots in Figure 5.8, contour plots are shown for the homogenised inelas-

tic strain (major principal component) and a normalised inelastic macrocrack relative

displacement. The normalisation for the inelastic macrocrack relative displacement

is adopted as defined previously in Equation 4.32.

Note that additional information on microcracking across the Fracture Process

Zone (FPZ) is visualised over a narrowly defined zone surrounding the advancing

macrocrack, as observed from the snapshots in Figure 5.8. Such additional informa-

tion is not readily available in standard EFEM formulations were the bulk domain is

elastic.

In addition, a comparison of multiscale fracture zones at the final stage d for the

meshes used are presented in Figure 5.9.

(a) Mesh 1: 1086 elements, 1164 nodes (b) Mesh 2: 2853 elements, 2981 nodes

Figure 5.9: Contour plots in L-panel test at final step: homogenised major principal
inelastic strain (micromechanical Continuum level), and normalised measure of the
inelastic macrocrack relative displacement (discrete macrocrack level).
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Note that some differences are observed in the micro and macrocacking fields

at the ultimate simulation stage, and this can be attributed to a need of further

mesh refinement around the Fracture Process Zone (FPZ) in the case of Mesh 1,

as opposed to Mesh 2 which seems adequate to capture a closer fracture pattern as

observed experimentally. In this regard, a comparison of predicted macrocracking

patterns at the final stage d with the experimental crack is shown in Figure 5.10.

These are sufficiently close to validate this aspect of the model.
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Figure 5.10: Comparison of numerically predicted macrocrack patterns in L-panel
test, at final step, against representative experimental pattern by Winkler et al.
(2001).

Remark 5.5.: The new multiscale EFEM framework has successfully passed a

stringent test for objectivity with respect to mesh grading at the post-peak regime

upon macrocracking in the L-panel test by Winkler et al. (2001), where macrocrack

propagation follows a curved trajectory. In addition, this new proposed multiscale

method provides an objective pre- and pre-to-post-peak transition response, when

the FPZ is discretised adequately.

5.1.4.4 Analysis of incremental step size and macrocrack tracking

The sizes of the incremental steps have been chosen to avoid more than two elements

being macrocracked over an incremental stage. This type of step size was found

sufficient to obtain an adequate fracture pattern, although in this numerical example

principal stress and strain directions in the micromechanical Continuum tend to rotate

considerably in the first global iterations for each incremental step. This observation

becomes more problematic as incremental steps get closer to the ultimate stage.
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Note that heavily rotating macrocracks induce deletion and re-nucleation steps,

which slow down the theoretical quadratic convergence rate in a global iterative pro-

cedure of Newton’s type. An alternative to that practical rule of limiting the number

of macrocracked elements, lies in providing a larger threshold for the number of itera-

tions itfix where deletion, re-nucleation and rotation of newly nucleated macrocracks

is allowed.

Remark 5.6.: In order to track macrocrack growth adequately through the mesh

in numerical examples with heavily rotating macrocracks within each incremental

stage, macrocrack nucleation at the element level is more conveniently detected based

on an average for the major principal homogenised stress, computed from the two

closest quadrature points to the advancing macrocrack tip.

5.1.4.5 Analysis of convergence of residuals and global iteration number

The history of global iteration number per incremental step is shown in Figure 5.11a,

for the two meshes, in order to study robustness and convergence characteristics in

this example. It is highlighted embedded macrocracks were nucleated across the com-

puting domain until the ultimate stage, and this makes this problem more challenging

to achieve the theoretical quadratic convergence of Newton’s type of iterative method.

The post-peak regime at the structural level (step no. ≥ 32) remains numerically

stable, with global iteration numbers mostly below from that of a critical step, e.g.

the incremental step 24 for the mesh 2 which reached 20 global iterations.

Note that a stringent tolerance tol = 10−4 has been set for the normalised residual

force norm 𝜓iiter
𝐹

, evaluated at the end of the current iterative update iiter within

the current incremental step iincr as in Algorithm 1. The expression for the force

residual is shown in Equation 5.1.

𝜓iiter
𝐹

= | |𝝓iiter
𝐹 | |/| |Fr,max

ext | |

𝝓iiter
𝐹 = Fr,iincr

ext − Fiiter
int

| |Fr,max
ext | | = max{| |Fr,1

ext | |, | |F
r,2
ext | | . . . | |F

r,iincr
ext | |}


(5.1)

where Fr,iincr
ext includes iterative reactions due to nodal prescribed displacements.

In addition, for illustration of convergence evolution over a global incremental

step, the history for the normalised residual force norm has been reported for the

incremental step 24 in Figure 5.11b.
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(a) Global iteration number per incremental step: Mesh 1 and Mesh 2

(b) Residual force norm vs global iteration in step 24: Mesh 1 and Mesh 2

Figure 5.11: Study of convergence features in L-panel test: (a) global iteration number
per incremental step, (b) evolution of residual force norm | |Fr,iincr

ext −Fiiter
int | |/| |F

r,max
ext | |

for incremental step 24.

The convergence rate1 at which the residuals decrease is at least linear but less

than quadratic as observed from studying the most difficult step in convergence for

both meshes as shown in Figure 5.11b. The unavailability of quadratic convergence

of the modified Newton’s iterative scheme is expected due to the deletion and re-

1The convergence rate 𝑛𝑟 ,𝐹 for force residual comes from 𝜓iiter
𝐹

= 𝑘 · {𝜓iiter−1
𝐹

}𝑛𝑟,𝐹 where the
residual 𝜓iiter

𝐹
is computed as in Eq. 5.1
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nucleation steps as the macrocrack propagates and rotates within a single global

incremental iterative procedure. Note that in simpler cases as it is the situation of

the uniaxial deformation simulation in Section 5.1.3.1, a quadratic convergence rate

has been generally obtained after the only-ocurring macrocrack is nucleated, opposed

to what was observed for the L-panel where macrocrack nucleation steps occur till

the very last stage of the simulation.

Note that although the last iterations tend to provide convergence rate better than

linear, the very first steps for both meshes tend to be slower for convergence. This

can be explained by the fact that the first itfix global iterations cracks are deleted

and allowed to rotate, as well as due to numerical difficulties during the enforcement

of fixed displacements in the iterative procedure.

It has been observed that ≈ 77% of the incremental steps required more global

iterations for the denser mesh as in is the case of Mesh 2 in Figure 5.11a, possibly

due to the larger number of elements being macrocracked, for which only a numerical

approximation of the element-level consistent tangent is computed employing central

differences for gradients in the developed chain rule. A better degree of approxima-

tion, and therefore improved convergence, is expected if the number of significant

figures were increased for computing central difference based gradients, as opposed

to the double precision format used currently.

5.1.4.6 A brief comparison of the new multiscale fracture method with
other approaches

Various other methodologies have been used in the aim to replicate different aspects

of the L-panel test on plain concrete, among these are smeared plasticity models

(Winkler et al., 2001), and new phase-field approaches to model fracture in (quasi)

brittle materials, which can be categorised as variational (Miehe et al., 2010b,c) or

non-variational (Ambati et al., 2015). These phase-field approaches have gained popu-

larity within the Computational Mechanics community. It is now common knowledge

of the research community that these phase-field schemes for fracture propagation

often require very fine meshes for an adequate performance, which is detrimental to

the computational cost of the methodology.

In order to illustrate the computational consumption of the new variational mul-

tiscale method for fracture propagation against other approaches, a brief comparison

is presented in Table 5.3, considering the meshes used for simulation of the L-panel

test as found in the literature.
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Table 5.3: Comparison of mesh requirements to simulate plain concrete L-panel test.

Method Variational Element type Elements Reference

Anisotropic phase-field Yes 4-noded
quadrilateral

9650 Miehe et al. (2010b)

Hybrid phase-field No 4-noded
quadrilateral

9650 Ambati et al. (2015)

Smeared plasticity No 3-noded trian-
gular

9600 Winkler et al. (2001)

micro-macro EFEM Yes 4-noded
quadrilateral

2853 Azua-Gonzalez et al.
(2020, 2021)

Note that from the comparison of various methodologies it was found that the

variational micromechanics-enriched EFEM method is able to simulate adequately

the L-panel test with considerably less number of elements when compared to a

popular variational phase-field model (Miehe et al., 2010b) (in the order of 30% the

number of elements needed for the phase field model). This is highlighted in the

global concluding remarks in Section 6.1 in the following Chapter.

5.1.5 Uniaxial tensile test on bone-shaped concrete member
by Petersson (1981)

5.1.5.1 Problem description

Petersson (1981) tested a concrete specimen of dog-bone shape under uniaxial de-

formation under. The specimen’s bottom face is fully fixed and the top face is sub-

jected to the action of progressive deformation. Particularly, the failed specimen was

reported to present a wide presence of diffuse microcracking at the moment of fail-

ure. Macroscopic failure is predominantly triggered by direct macrocrack opening,

although curved macrocracks were reported which branched and encountered in an

intricate pattern. This type of asymmetric failure was expected due to the difficulties

of providing a homogeneous mixture considering the small size of the specimen. The

specimen geometry is shown in Figure 5.12a. Boundary conditions are described in

a simplified form for numerical simulation, as well as a representative recorded fail-

ure pattern for comparison with numerical predictions (Petersson, 1981) as in Figure

5.12b.
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Macro-fracture pattern (Petersson 1981)

Microcracking zone (Petersson 1981)
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(b)

Figure 5.12: Sketch of bone-shaped specimen, test by Petersson (1981): (a) geo-
metric features (thickness = 30.0 𝑚𝑚), (b) boundary conditions, and representative
experimental macro-fracture pattern and microcracking-dominated failure zone.

5.1.5.2 Numerical simulation

In this numerical example the bone-shaped cementitious composite specimen is dis-

cretised by a regular mesh. The employed Finite Element mesh, which has been

obtained after a mesh convergence study, is shown in Figure 5.13. Note that the

neck of the bone-shaped specimen has progressively smaller elements in the neck to

allow better prediction of fracture patterns. The representative mesh used for this

simulation is composed by 952 elements and 1042 nodes.

The specimen’s bottom face is fully fixed and the top face is subjected to pre-

scribed incremental displacements. The resultant displacement vector u𝑦 = [0, 𝑢𝑦]T

is applied at the nodes within the top face progressively through 40 incremental

steps. Such selection of top surface boundary condition, with restricted lateral move

of the top face, was chosen for the sake of representing adequately experimental setup

conditions, where some friction-associated lateral restriction is deduced by the exper-

imental constraints associated with the size of the experiment. In all incremental

stages, body forces due to self-weight are neglected.
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Figure 5.13: Mesh used for the analysis of the tensile test on bone-shaped concrete
specimen (Petersson, 1981): 952 elements, 1042 nodes.

5.1.5.3 Analysis of numerical predictions

The prediction of the load-displacement curve is shown in Figure 5.14. In this figure,

a representative experimental curve was used as a guidance to calibrate parameter

set in Table 5.2.

Figure 5.14: Stress-displacement response for uniaxial tensile test on bone-shaped
concrete : average vertical stress is considered at bone neck. Key stages are marked
as a-b-c-d with associated snapshots of fracture evolution presented in Figure 5.15.
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Note that the calibrated model reproduced very well the non-linearities observed

in the pre-peak response, and all along the post-peak response during fracture until

a large post-peak deformation in stage d. A small magnifying window is presented

in Figure 5.14 to exaggerate the non-linearities in the pre-peak and early post-peak

regime to confirm the previous statement.

The evolution of diffuse-micro and localised-macro cracking is shown in Figure

5.15. Upon analysis using the newly proposed multiscale method, the numerically

predicted distribution of diffuse microcracking through associated strains is noticeable

in the surroundings of the narrowing area of the dog-bone neck, as depicted for stages

a - b in Figure 5.15.

In these snapshots, a well defined microcracking zone within the Micromechanical

continua is observed to be advancing ahead of macrocracks being nucleated, departing

from the external curved faces within the neck of the bone-shaped specimen. Multiple

macrocracks, including a few following a curved trajectory, get nucleated until the

peak state occurring at stage b. At this peak-strength stage, macrocracks advancing

from both sides of the neck get connected and form continuous paths of macrocracks.

The connection of macrocracks in an element was enabled by the adapted macrocrack

continuity algorithm implemented within this method (Alfaiate et al., 2003, 2002;

Freeman et al., 2020).

In addition, the interaction of micro and macrocracking in this example is complex

although the overall boundary conditions are simple. In this regard, along the overall

softening of the specimen, some macrocracks which never get to localise fully tend

to shut while the micromechanical continuum gets relaxed (homogenised inelastic

strains tend to decrease), whereas localisation takes place in the macrocrak along

the horizontal axis of symmetry with straight trajectory. This observation continues

progressively until the main macrocrack has fully localised, i.e. large deformation

accumulates within this main macrocrack while the reaction force applied onto the

specimen keeps decreasing.

Remark 5.7.: It is emphasised that when Micromechanics-derived inelastic strains

drop within the micromechanical continuum, the maximum experienced material

deterioration remains, i.e. microcracks do not disappear as dictated by the load-

ing/unloading conditions for microcrack growth set by Equation 3.19. This is possible

since microcracking variables memorise the cracking density at degradation directions

at microscale in a damage-informed relationship.
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(a) Step 10, 𝑢𝑦 = 0.0046 𝑚𝑚

(b) Step 15, 𝑢𝑦 = 0.0051 𝑚𝑚

(c) Step 36, 𝑢𝑦 = 0.0256 𝑚𝑚

(d) Step 40, 𝑢𝑦 = 0.1160 𝑚𝑚

Figure 5.15: Evolution of contour plots in bone-shaped concrete test: homogenised
major principal inelastic strain and inelastic macrocrack relative displacement.
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For illustration purposes of microcracking irreversibility, microcracking scalar vari-

ables related to the major principal direction have been extrapolated onto nodal lo-

cations to form a Micromechanical field as shown in Figure 5.16.
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Figure 5.16: Failure patterns: microcracking scalar variable at major principal di-
rection is extrapolated to nodal positions with macrocracks in solid white (left), and
experimental patterns (Petersson, 1981) with approximate locations for sample Gauss
Points in bulk (right). Notice o-p points are 3 𝑚𝑚 away vertically from m-n.

To this point, the numerical prediction in Figure 5.16 shows a widely distributed

microcracking zone, although larger than that identified experimentally (Petersson,

1981). In addition, it is stated that the symmetric distribution of microcracking is

attributed to the homogeneous setting of model parameters, whereas in the exper-

imental setup by Petersson (1981) the asymmetric failure can be attributed among

other aspects to the heterogeneity of the specimen mixture around the neck of the

bone-shaped specimen.

Additionally, to gain insights on directional material degradation, sample Gauss

Points m, n, o and p have been located next to the specimen’s outer surface and

along the vertical symmetry axis, as observed in Figure 5.16 (right). The line formed

by the segment o - p is located at 3 𝑚𝑚 above the horizontal symmetry line. Stages

a-b-c-d, as marked in Figure 5.14, are used to showcase directional scalar variable

arrays 𝜔m
𝛼 (𝛼 = 1 . . . nm

𝑖𝑛𝑡
) for each stage in Figure 5.17.
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(a) Microcracking 𝜔m
𝛼 : point m (b) Microcracking 𝜔m

𝛼 : point n

(c) Microcracking 𝜔m
𝛼 : point o (d) Microcracking 𝜔m

𝛼 : point p

Figure 5.17: Polar plots for directional microcracking evolution 𝜔m
𝛼 (𝛼 = 1 . . . nm

𝑖𝑛𝑡
)

within the bone-shaped specimen test by Petersson (1981). Various sample Gauss
Points in the micromechanical continua are selected, as shown in Figure 5.16, at
stages a, b, c and d marked in the stress-displacement curve in Figure 5.14.

It is observed that points m and o have undergone already large microcracking at

step 10 (stage a), whereas microcracking keeps progressing after this stage in points

n and p. Note that the distribution of microcracking scalar variables for point o is

symmetric towards a rotated horizontal axis and hence a macrocrack nucleates in

the surroundings with an inclined propagation direction. Such propagation direc-
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tion is consistently orthogonal to the major principal direction of the homogenised

strain in the Micromechanical continua. Therefore, the homogenised variables are

demonstrated to reveal the connection between the micromechanical degradation and

macroscopic fractures, which is consistent with experimental observations in terms of

slightly curved fracture trajectories. It is clarified that no effects due to randomness

of fracture resistance of the material has been taken into account, and such effects

could help to improve our current understanding of micromechanics-based detection

and tracking algorithms for macrocracks.

5.1.5.4 Analysis of step size and macrocrack tracking

In this example, the step size was set to adequately capture non-linearities in the

stress-displacement curve in Figure 5.14, specially within the pre-peak state and the

very first post peak structural response. Additionally, it is reported that tracking of

macrocrack detection at the central Gauss Point was sufficient to capture the com-

plex micro- and macrocracking interaction while slightly curved macrocrack paths

were also present. The number of elements that are permitted to develop a macroc-

rack within an incremental step does not dictate the step size as opposed to previous

numerical example for the L-panel, since principal directions for the homogenised

stress and strain in the Micromechanical continua are well settled within the first

iterations along the relatively simple macroscopic splitting conditions imposed. It is

remarked that macrocrack propagation detection and propagation direction are un-

derpinned by such principal stresses and strains, and therefore a good approximation

during the non-linear iterative procedure is pivotal.

The incremental step size by stage c in Figure 5.14 has been set to an order of

magnitude higher than that for the preceding steps in the pre-peak regime and the

multiscale framework is still able to converge. An explanation of this is that the

computational iterative procedure becomes more manageable if the macrocrack prop-

agation direction is fixed adequately, and therefore, the step size can be increased

considerably without much consequences when nucleation of additional embedded

macrocracks is no longer necessary. By the mentioned stage c, all macrocracks had

already cut across the neck of the bone-shaped concrete member, and no more sub-

stantial nucleation occurred, which eased the step size requirements. Note that al-

though no more nucleation occurred during this stage, macrocracks kept interacting

with the surrounding micromechanical continuum.
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5.1.6 Four-point bending test on plain concrete with no ini-
tial notch

5.1.6.1 Problem description: a theoretical benchmark test

This numerical example addresses a typical characterisation test in concrete, where

no notch is present, as opposed to other characterisation tests for cementitious com-

posites in the literature, where macrocracks are typically driven by an initial notch

or an artificial imperfection.

It is hereby highlighted that the purpose of this theoretical simulation is to test

the interaction of multiple macrocracks and considerable microcracking in a large

zone (note that the whole segment between loads in the mid-span of a four point

bending test is subjected to critical bending). In this regard, the use of notches

was discarded. Indeed, when fracture-driving notches are present, e.g. specimens

under complex tension and shear conditions by Nooru-Mohamed et al. (1993), three-

point bending with driving-notch for flexural fracture analysis (Xu and Zhu, 2009),

double-edge-notched beam shear test by Schlangen (1993), among others, the fracture

process zone has been reported as narrow, and therefore, the interaction of micro and

macrocracks is limited.

In this theoretical setting, a concrete beam of square section is subjected to point

loads located at 𝐿/3 and (2/3) · 𝐿, with 𝐿 being the length of the main span and

with supports at the extremes of the main span. The longitudinal dimension of the

mid-span is 𝐿 = 400 𝑚𝑚. The arrangement is shown in Figure 5.18.

Note that analytical formulas for benchmark comparison are given in Section

5.1.6.6.

5.1.6.2 Numerical simulation

In this situation, the effects of contact at supports and loading devices have been

simplified by adding thin layers of elastic material. Such elastic layers serve as stress

distributors into the concrete beam, and avoid singularities which may drive unre-

alistic stresses and potential cracking around contact points. These artificial elastic

layers are modelled as continuum elements.

Note that the parameter set was chosen by trial and error until a complex micro-

macro fracture interaction was induced, while keeping parameters in a sensible range

for standard concrete applications.
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(a) Longitudinal view of the concrete beam under four-point bending.

u

y

u

y

L

3

L

3

L

3

L

8

L

8

elastic continuum

x

y

elastic continuum

elastic continuum elastic continuum

A

A'

L  = 400 mm

SECTION A - A'

b  = d = L/8

b

d

y

z
Dimensions

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
S

T
U

D
E

N
T

 
V

E
R

S
I
O

N

PRODUCED BY AN AUTODESK STUDENT VERSION

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
S

T
U

D
E

N
T

 
V

E
R

S
I
O

N

PRODUCED BY AN AUTODESK STUDENT VERSION

(b) Typical cross section of the concrete beam.

Figure 5.18: Four-point bending test in concrete: a) geometry and boundary condi-
tions are detailed in a longitudinal view, and b) a typical cross section is provided.
Note that the cross section is not drawn to the same scale as the longitudinal view.

Prescribed displacements and fixities are applied at the outer mid-point of those

elastic layers, as observed in Figure 5.18. Note that body forces have been neglected

for this small specimen.

Three mesh configurations have been used for simulations, mesh 1, 2 and 3 as

observed in Figure 5.19. The step sizes have been considered to minimise the chance

of deformation localisation becoming dominant at one side of the beam at least until

the very last loading stages. In the very last stage one last row of elements remain in

compression at the top surface of the beam upon macrocrack propagation from the

bottom of the beam in tension. Results for mesh 2 are considered as mesh converged.
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Figure 5.19 shows macrocracking patterns on top of the mesh at the ultimate loading

stage.

(a) Mesh 1: 2244 nodes, 2102 elements. Macrocrack pattern at final stage.

(b) Mesh 2: 3456 nodes, 3299 elements. Macrocrack pattern at final stage.

(c) Mesh 3: 3822 nodes, 3662 elements. Macrocrack pattern at final stage.

Figure 5.19: Four-point bending test in concrete with no initial notch: mesh config-
urations at macroscale are shown, with normalised inelastic relative displacement at
macrocracks, at ultimate stage with deflection 𝑢𝑦 = 0.7 𝑚𝑚 at loading points.

It has been found that the smaller the element in the last row next to the top

surface of the beam, the simulation converges adequately for bigger deflection at the

loading points. In addition, the closer an incremental step is to failure the lesser

resolution of the principal strain direction fields to track macrocrack adequately in
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the proximity of the top surface of the beam. Therefore, mesh refinement has been

concentrated on the top surface of the beam.

5.1.6.3 Analysis of numerical predictions: load-deflection

The load-deflection prediction of the four-point bending benchmark test on concrete

is shown in Figure 5.20 for the set of parameters chosen to induce complex cracking

deliberately, which are shown in Table 5.2.

Figure 5.20: Curve of total load (𝐹𝑇 = 𝐹
(1)
𝑇
+𝐹 (2)

𝑇
) vs deflection (𝑢𝑦) at contact points

in plates 𝑢𝑦, where 𝐹 (1)
𝑇

and 𝐹
(2)
𝑇

stand for the loads at each plate. Key stages are
marked as a-b-c-d and are visualised as snapshots of evolution in Figure 5.21.

Note that the loads at each plate, 𝐹 (1)
𝑇

and 𝐹
(2)
𝑇

, start to differ from each other

at a stage of substantial macrocracking, i.e. 𝐹
(1)
𝑇
≈ 𝐹

(2)
𝑇

≠ 1
2𝐹𝑇 due to numerical

rounding-off despite the fact that no imperfections in material properties nor geomet-

ric weakening notches have been considered. In such a situation, it has been found

that deformation localisation may become dominant at one loading plate or the other.

For an objective comparison of predictions corresponding to various meshes, both con-

tributions have been accumulated to obtain the overall load 𝐹𝑇 = 𝐹
(1)
𝑇
+ 𝐹 (2)

𝑇
of the

beam.

The instant of theoretical macrocracking from Section 5.1.6.6 is highlighted with

a blue square in Figure 5.20. However, it is highlighted that this prediction is re-

stricted to the hypothesis that the beam is completely elastic until the extreme con-

crete ligament in tension reaches the maximum macroscopic tensile strength. In the

hypothetical case the experiment is performed, there would be non-linear behaviour
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of the concrete beam and moment redistribution due to the directional microcracking

which would allow deformation localisation to be dominant in certain locations.

The instant of macrocracking predicted by the model is highlighted with a red

square in the load-deflection curve. The instant of fracture predicted by the multiscale

EFEM model in the load-deflection curve differs from the theoretical one based on

elasticity, due to the absence of micromechanical non-linearities in the analytical

elastic solution as presented in Section 5.1.6.6.

It is noted that the three meshes provided an objective response in the load-

deflection predictions with respect to mesh refinement, within the pre- and post-peak

regime. However, a small overshooting of the SUR response, in the analysis using

mesh 1, made the post-peak response move slightly away from the theoretical convex

post-peak load-displacement response. This has been reported in the literature for

SUR methods (Alnaas and Jefferson, 2016; Jefferson and Mihai, 2015), and a simple

solution is to set a tolerance to avoid these small deviations, and re-peform additional

updates of the chosen SUR branch. This type of challenge was not found for the

refined meshes 1 and 2.

5.1.6.4 Analysis of fracture patterns and micromechanical evolution

Micro and macrocraking evolution is illustrated in Figure 5.21, for the stages marked

previously in the load-displacement curve.

Note that there is considerable microcracking experienced at all times in stages

a-b-c-d ahead of macrocrack growth. As deflection progresses at loading points, the

homogenised microcracking-induced inelastic strains become more visible in narrower

areas which surround the advancing tip of the two dominant macrocracks.

It is remarked that between stages c and d the two dominant macrocracks closer

to the axis of symmetry tend to shut, whereas the two outer macrocracks become

the ultimately dominant ones. Such situation is true for mesh 2, and similar variants

of macrocracking patterns occur for the other meshes such as mesh 3. Nonetheless,

if the mesh is too coarse the pattern of micro and macrocracking begins to evolve

asymmetrically at some instant during the simulation.
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(a) Mesh 2: Step 25, 𝑢𝑦 = 0.118 𝑚𝑚

(b) Mesh 2: Step 45, 𝑢𝑦 = 0.158 𝑚𝑚

(c) Mesh 2: Step 56, 𝑢𝑦 = 0.180 𝑚𝑚

(d) Mesh 2: Step 221, 𝑢𝑦 = 0.510 𝑚𝑚

Figure 5.21: Contour plots in four-point bending test in concrete: homogenised major
principal inelastic strain, and normalised inelastic macrocrack relative displacement.
Evolution stages a-b-c-d are associated to the marks in the load-displacement curve
in Figure 5.20.
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A contour plot is shown in Figure 5.22 for the microcracking scalar variable at

the ultimate incremental step, where the major principal values are extrapolated at

nodal locations. The central part of the beam is magnified to illustrate better the

FPZ in this region, where two dominating macrocracks cut the computing domain.

All macrocracks are shown with solid white lines on top of the contour plot.

Figure 5.22: Contour plot of microcracking scalar variables corresponding to major
principal direction at the Micromechanical bulk, at final loading stage for a deflection
𝑢𝑦 = 0.7 𝑚𝑚 at loading points. Macrocracking pattern is shown with white solid lines.

This figure elucidates the regional advancement of maximum experienced microc-

racking at ultimate stage d. In addition, the associated macrocraking pattern is also

showcased in solid white lines. Points o and p are 18.5 𝑚𝑚 above the bottom surface

of the beam, and m and n are at the level of the bottom surface. Gauss Points m

and o are cut by the dominant macrocrack, whereas n and p are cut by the second

largest macrocrack.

In addition, the evolution of microcracking is tracked at selected Gauss points in

the polar plots in Figure 5.23. The chosen Gauss Points are marked in their locations

as m, n, o and p in the Figure 5.22.

Note that by stage a, microcracking has already experienced its maximum growth

in Gauss Points m and n in Figures 5.23a and 5.23b, whereas Gauss Points o and p in

Figures 5.23c and 5.23d experience continuing microcracking as macrocracks advance

through the Gauss points in a direction towards the top surface in further stages b-c.

Furthermore, it has been found that by stage d, microcracking growth has reached

its maximum values in all these selected Gauss Points, which is explained by the fact

that macrocrack tips are advancing further away from this region.
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(a) Microcracking 𝜔m
𝛼 : point m (b) Microcracking 𝜔m

𝛼 : point n

(c) Microcracking 𝜔m
𝛼 : point o (d) Microcracking 𝜔m

𝛼 : point p

Figure 5.23: Polar plots for directional microcracking evolution 𝜔m
𝛼 (𝛼 = 1 . . . nm

𝑖𝑛𝑡
)

within sampling Gauss Points in the Micromechanical continua, as shown in Figure
5.22, at stages a, b, c and d marked in the load-deflection curve in Figure 5.20.
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5.1.6.5 Analysis of step size and macrocrack tracking

In this numerical example, the incremental step size in the post peak regime was

chosen to obtain a good strain eigenvector field capable of leading the macrocrack

tacking adequately. In such challenging example, at least one or more incremental

steps have been allowed between the nucleation of new macrocracks specially for the

last steps where macrocracks were approaching to the top surface of the beam.

In all cases, to track geometrically-continuous embedded macrocracks, macroc-

racking detection at central Gauss Point was found sufficient. In addition, as an

artifice to allow a good tracking of continuous macrocracks the global numbering of

elements was arranged so that element number increases from bottom to top surface,

to make adequate use of the implemented sequential macrocrack tracking algorithms.

5.1.6.6 Elastic prediction of macrocrack occurrence

Euler-Bernoulli’s theory of elasticity is used to compute the response in the elastic

range. In this regard, the load 𝐹
𝑀,𝑒

𝑐𝑘
at the onset of macrocracking is computed by

equating the macroscopic tensile strength 𝑓 𝑀𝑡 to the maximum tensile stress pro-

duced by loading, under the assumption that the full cross section remains behaving

elastically:

𝑓 𝑀𝑡 = −
𝑀
𝑀,𝑒

𝑐𝑘
· 𝛿𝑦𝑒𝑡
𝐼𝑧

=
𝑀
𝑀,𝑒

𝑐𝑘
·
(
𝑑
2

)
1
12𝑏 · 𝑑3

=
𝐹
𝑀,𝑒

𝑐𝑘
· 𝐿

𝑏 · 𝑑2
→ 𝐹

𝑀,𝑒

𝑐𝑘
=

1

512
· 𝐿2 · 𝑓 𝑀𝑡 (5.2)

where 𝑀𝑀,𝑒

𝑐𝑘
=

𝐹
𝑀,𝑒

𝑐𝑘
·𝐿

6 is the critical flexural moment, in the mid-region between the

loading points, which causes the onset of macrocracking, 𝛿𝑦𝑒𝑡 = −𝑑/2 is the distance

from the neutral axis of the beam to the extreme ligament in tension, and 𝑏 = 𝑑 = 𝐿/8
are the dimensions of the square cross section. A sketch of internal shear and moment

is shown in Figure 5.24, where self-weight of the beam is neglected.

In addition, the elasticity-based relation between the instantaneous radius of cur-

vature of the beam 1/𝑅𝑏𝑒𝑎𝑚 (𝑥) ≈ 𝑑2{𝑢𝑒𝑦 (𝑥)}/𝑑𝑥2 = 𝑀 (𝑥)/[𝐸𝑎𝑚 · 𝐼𝑧] and the ratio of the

flexural moment to its rigidity 𝑀 (𝑥)/[𝐸𝑎𝑚 · 𝐼𝑧] is used to compute the corresponding

elastic deflection at 𝑥 = 𝐿/3, at the instant of macrocracking in Equation 5.3.
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𝑢𝑒𝑦

(
𝑥 =

𝐿

3

)
= − 5

324
·
𝐹
𝑀,𝑒

𝑐𝑘
· 𝐿3

𝐸𝑎𝑚 · 𝐼𝑧
→ 𝑢𝑒𝑦

(
𝑥 =

𝐿

3

)
= −40

27
·
𝑓 𝑀𝑡

𝐸𝑎𝑚
· 𝐿 (5.3)

In this regard, the elastic predictors for macrofracture, in terms of deflection and

mobilised total force have been computed as {𝑢𝑒𝑦 (𝑥 = 𝐿/3), 𝐹𝑀,𝑒𝑐𝑘
} = [−0.045𝑚𝑚, 712.5𝑁]

and this pair is depicted in the load-deflection curve in Figure 5.20, for validation of

the multiscale EFEM predictions.
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Figure 5.24: Internal shear force and bending moments along the concrete beam under
four-point bending, at the instant of first macrocracking, for elastic predictions. For
consistency with computational modelling, self-weight of the beam is neglected.
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5.1.7 Failure test on hexagonal concrete member by Bennett
and Jefferson (2007)

5.1.7.1 Problem description

Bennett and Jefferson (2007) tested hexagonal concrete specimens in two opposite

sides, aside from other similar tests with variable axis of loading. It is clarified that

only the monotonic uniaxial compression test on the hexagonal concrete specimens

are considered in this PhD thesis.

In these tests, the relative linear displacement was monitored between two points

located 10 𝑚𝑚 away from the associated concrete face using LVDTs. In this regard, a

diagonal LVDT was used to control the stroke during the test, whereas another LVDT

gauged the verticaL relative displacement as shown in Figure 5.25a. In addition, some

layers of soft material were placed between the loading plates and the specimen to

allow a better distribution of loading. Particularly, some of the recorded experiments

presented the tendency for a snap-back response as measured by the LVDTs and load

cells.

Although reproducibility of the tests was proved in Bennett and Jefferson (2007)

by presenting various load-displacement curves for each of the LVDTs, only one rep-

resentative fracture pattern was recorded per type of experiment. In these pictures

reported in the publication, the devices were interfering with the visibility of the

fracture pattern. Therefore, the reconsturction of such pattern presented in this PhD

may vary slightly with the actual fracture pattern in the experiment.

The geometry of the specimen, simplified boundary conditions for use in a numer-

ical model and a (re-constructed) representative fracture pattern at failure stage are

illustrated in Figure 5.25b.

The response of such a complicated test in terms of load-displacement curves

has been reproduced by a non-linear model (Bennett and Jefferson, 2007; Jefferson,

2003a,b) that possesses components for crack-closure and aggregate interlock, which

are absent in the formulations presented in this PhD. Therefore, it was expected

that deviations would occur between the predicted structural response and that of

monitored experiments. In this regard, the focus of simulating this complex test was

on investigating if the model in the current state of development could reproduce to

some extent fracture patterns.

The next section clarifies some of the assumptions used for simulation, some chal-

lenges and potential measures to overcome any limitations. Also some directions

which may be subject for future research are discussed.
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(a) Geometry of hexagonal concrete specimen, thickness = 60 𝑚𝑚
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(b) Boundary conditions and representative experimental fracture pattern

Figure 5.25: Hexagonal concrete specimen under compression in two opposite sides,
as tested by Bennett and Jefferson (2007): a) geometry, b) boundary conditions and
representative fracture pattern. Units shown in sketch are all in 𝑚𝑚.
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5.1.7.2 Numerical simulation

The following prediction has used a regular mesh with 6630 nodes and 6468 elements

as shown in Figure 5.26. Calibration of parameters as shown in Table 5.2 allowed to

capture some the geometric features of the reconstructed experimental macrocrack

pattern.

Figure 5.26: Mesh for simulating the hexagonal concrete test by Bennett and Jeffer-
son (2007), including elastic continuum layers to simulate soft material layers from
experiments. Mesh is comprised of 6630 nodes and 6468 elements.

The bottom and top faces of the specimen were restrained respectively under fully

fixed and prescribed displacement in the vertical direction, while both bottom and

top surfaces were restrained laterally. Although another possibility was to simulate

this problem with a coupled constraint equation from the arc-length type (De Borst

et al., 2012), which was under development in Section 4.4.2, this could not be included

in the PhD thesis within the limits of the degree.

In contrast to other simulations in this chapter, the tolerance for force residuals

was relaxed from 10−4 to 10−3 during calibration when convergence became a chal-

lenge. The simulation results in Section 5.1.7.3 were obtained from a simulation that

was enabled to converge by relaxing the tolerance in the last 5 increments.
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5.1.7.3 Analysis of numerical predictions

A curve of the load-displacement response is presented in Figure 5.27, where the

associated fracture pattern is presented as well. Note that this simulation reached a

large number of global iterations (40 iterations) at a stage for which the specimen is

close to reach its peak. It is believed that challenges of arriving to a minimum energy

solution is due to a large number of rotating macrocracks present. Such situation

might make it very difficult for the modified Newton’s scheme to converge with strict

tolerances. Further discussion is presented in the following paragraphs.

(a) Load-displacement curve for hexagonal concrete test: diagonal LVDT

(b) Fracture pattern before difficulties arrive in finding a minimum energy solution.

Figure 5.27: Numerical prediction of load-displacement and fracture pattern in hexag-
onal concrete specimen under compression in two opposite sides, as tested by Bennett
and Jefferson (2007).
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It is reported that the numerical prediction of the load-displacement response cap-

tures moderately well the very first stage of the pre-peak regime, although difficulties

arrived in finding a minimum energy solution towards the structural peak response.

To alleviate such challenges a regional or global tracking algorithm may be re-

quired to produce a more continuous cracking trajectory, which would reduce the

number of cracks activated to a minimum. In this regard, the global incremental iter-

ative solution could be free of additional challenging iterations and micromechanical

eigenvector fields could settle early on.

Regarding the fracture pattern predicted, it is encouraging that the current mul-

tiscale EFEM model can capture some of the geometric features of failure as recorded

experimentally in such complicated test. Although, it is reminded that the model

may still need some additional mechanical components to capture well the salient

behaviour of cementitious composites.

5.1.7.4 The effect of the iteration number itfix for fixing macrocracks

Some challenges have been experienced, which build on top of the problem of finding

a minimum energy solution, and that are related to the value of the parameter itfix.

For such a complicated BVP, even after a sensible calibration of parameter sets is

provided, the value of itfix=3 caused problems in the nucleating directions of macro-

cracks. It was observed that an apparent small numerical rounding off, during the

intricate variational minimisation and global N-R procedure to find mechanical equi-

librium, triggered small fluctuations in the solution of the PDEs, which in turn caused

the strain eigenvector fields to fluctuate enough to be counterproductive for use in

criteria for macrocrack nucleation as proposed in Section 4.3.5. Such an example of

problematic fracture pattern is shown in Figure 5.28. A few options are described

that could be used as a remedy for this in the future. At first, using higher values of

itfix could be used as a simple solution for such complicated variational and global

updates, although at the expense of having a larger number of iterations. A second

option is a considerable reduction of step sizes during complicated response. Thirdly,

an arc-length strategy would be suitable to constrain the solution into in an appropri-

ate converging branch due to a reduced arc-length, particularly if the step size chosen

causes large a jump between equilibrium states due to associated snapping-back.
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Figure 5.28: Numerical prediction of fracture pattern in hexagonal concrete specimen
by Bennett and Jefferson (2007): elucidation of challenges of low values of itfix as a
cause of obtaining unrealistic macrocrack patterns.

5.2 Disclosure on limitations of numerical com-

ponents for capturing non-linear material be-

haviour

It is remarked that some numerical features of the behaviour of cementitious compos-

ites, such as frictional contact and dilatational response upon micro- and macrocrack

opening and re-closure, as well as the ability to memorise permanent inelastic defor-

mations upon unloading have been neglected in the current implementations. Such

constitutive aspect of behaviour may not be fully separated from the computational

aspects, which enable fracture propagation objectively across scales. The improve-

ment of these numerical and computational components for material behaviour would

be a substantial task in itself, which was not possible in this PhD since the main ob-

jective was targeted on coupling for the first time micromechanics-enriched continuum

models and element-wise EFEM components.
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5.2.1 Concluding remarks

In this chapter, several numerical examples have been presented to illustrate the

capabilities of the proposed variational multiscale EFEM framework. The following

conclusions may be drawn:

• Single element tests under uniaxial tension and combined tension-shear paths,

which involve micromechanical damage and embedded macrocrack occurrence,

have shown that directional microcracking and localised macrocracking can be

modelled seamlessly, aided by energetic constraints and without the need of

‘ad-hoc’ criteria for dictating the evolution of directional microcracks.

• Several comprehensive numerical examples involving macrocrack propagation

with curved trajectories, which have been compared with experimental obser-

vations, have shown that the new multiscale EFEM model can exploit macroc-

rack tracking strategies available in the literature, see e.g. implementations by

Freeman et al. (2020), to predict macroscopic failure mechanisms adequately

while additional information on directional microcracking can be recovered.

• In general, it has been found that the method allows the load-displacement

responses and failure mechanisms, observed in relatively complex experiments

on cementitious composites, to be simulated adequately. Some numerical fea-

tures of behaviour such as frictional contact and dilatational response in rough

micro- and macro-cracks would require some additional constitutive as well as

computational development.

• Good convergence characteristics have been identified in examples of moder-

ate macrocracking complexity. Convergence features are expected to be fairly

affected by choices of macrocrack tracking and the complexity of macrocrack

patterns. It is envisaged that in some cases (such as failure tests on specimens of

complex shapes, e.g. hexagonal concrete test), a global or regionally-improved

tracking algorithm may give better predictions of failure patterns as well as

reduced convergence challenges.
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Chapter 6

Conclusions & future directions

”Further, the dignity of the science itself seems to require that every possible means be
explored for the solution of a problem so elegant and so celebrated.”

Carl Friedrich Gauss 1777 - 1855
German Physicist and pioneer of the Theory of Potentials in Mathematical Physics

6.1 Concluding remarks

A series of findings have been reported throughout this thesis. A summary of relevant

conclusions is presented below:

• A new variational framework has been presented, which couples seamlessly,

for the first time, a directional Micromechanics constitutive model and Finite

Elements with embedded strong discontinuities at the macroscale. This frame-

work contributes to the emerging literature on multiscale methods for modelling

quasi-static deformation localisation across scales in quasi-brittle materials.

• The algorithms developed for the implementation of the coupled micro-macro

crack model exhibited good convergence characteristics; e.g. they had a con-

vergence rate between linear and quadratic for BVPs with a single macrocrack

propagating across the mesh. Macrocrack tracking can adversely affect the

convergence characteristics, particularly when complex multiple crack patterns

develop.

• The framework has been found to capture adequately overall load-deformation

responses, which are objective with respect to mesh refinement. In addition, due

to the embedded strong discontinuity nature of the method, mesh refinement
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needed for adequate prediction of the evolution of the fracture process zone is

not excessive as opposed to other common variational methods such as phase-

field models.

• The field derived from the strain tensor eigenvectors provides an effective basis

for defining macrocrack propagation directions. It has been found that macro-

crack normals are adequately defined by the major principal strain within the

micromechanical bulk. It has also been found that delaying the activation of a

strong discontinuity within an element and allowing the micromechanical strain

field to further develop, can produce more realistic crack patterns.

• The proposed micro-macro scheme is more computationally efficient than multi-

scale schemes that use discretisations at two scales e.g. FE2 methods. The

proposed framework exploits algorithmic advantages of reduced-complexity ho-

mogenisation schemes in the bulk, and quasi-static condensation of macrocrack

dofs at the element level. The latter is preserved as in classical formulations of

embedded strong discontinuity Finite Element methods.

6.2 Future directions

Although substantial progress has been made on the development of micromechanical

directional homogenisation schemes that are fully compatible, in a seamless fashion,

with embedded strong discontinuity methods at the element-level, various aspects

have been considered as secondary and further extensions of the framework are en-

visaged in the near future. Some proposed areas of future research include:

• Micro- and macrocracking frictional contact, and dilatational response at dis-

continuities upon re-closure, if included in a new extension of the model, would

allow the model to better capture the response of concrete materials and struc-

tures under complex situations, e.g. to reproduce failure of hexagonal concrete

characterisation tests by Bennett and Jefferson (2007).

• Other micromechanical components for a rigorous homogenisation analysis of

concrete materials could be considered, such as two-phase Mori-Tanaka ho-

mogenisation (to explicitly consider micromechanical evolution at the aggregate

phase and cement paste) in conventional concrete, and other components for

unconventional concrete, e.g. reinforcing fibres.
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• The model for the embedded macrocrack band could be extended to include

a homogenised response in which the properties of the Micromechanical bulk

could be projected in a similar way to its continuum counterpart. Then, energy

dissipation across scales would be based on a reduced number of phenomological

assumptions, while the variational basis of the method remains.

• Micromechanical fields could be further exploited to enhance sequential algo-

rithms for geometric continuity of embedded macrocracks. Micromechanical

fields could also serve as a basis for extending macrocrack tracking into paral-

lelisable algorithms that consider both local and global domains.

• An adequate reproduction of snap-back response during macroscale fracture

propagation could be ensured by extending the method with arc-length con-

straint equations. Implementation challenges may arrive over bouncing equilib-

rium states, which would push the limits of element-wise quasi-static conden-

sation procedures, if large trial element distortions occurred.

• The current formulation does not consider continuity of displacement jumps.

The method could be extended to consider a continuous field of displacement

jumps. Whether full-continuity of displacement jumps or higher order schemes

are beneficial for robustness is an open question.

• The methodology has been derived as a general framework which can be im-

plemented in a 3D model, hence implementing the model in a 3D version is a

subject for future research. In this case, the homogenised continuum would re-

quire three translation dofs, and the embedded macrocracks would be based on

a quasi-static condensation scheme for three translational and three rotational

dofs.
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Bažant, Z. P. (1984). Microplane model for strain-controlled inelastic behavior. In

Desai, C. S. and Gallagher, R. H., editors, Mechanics of engineering materials,,

pages 45–59, N.Y. John Wiley and Sons, Inc.

Bažant, Z. P., Belytschko, T. B., and Chang, T. (1984). Continuum Theory for

Strain-Softening. Journal of Engineering Mechanics, 110(12):1666–1692.

Bazant, Z. P., Nguyen, H. T., and Dönmez, A. A. (2022). Critical Comparison of

Phase-Field, Peridynamics and Crack Band Model M7 in Light of Gap Test and

Classical Fracture Tests. Journal of Applied Mechanics, pages 1–79.
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