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Abstract

Motivation: Clustering is an unsupervised method for identifying structure in unlabelled data. In the context of
cytometry, it is typically used to categorize cells into subpopulations of similar phenotypes. However, clustering is
greatly dependent on hyperparameters and the data to which it is applied as each algorithm makes different
assumptions and generates a different ‘view’ of the dataset. As such, the choice of clustering algorithm can
significantly influence results, and there is often not one preferred method but different insights to be obtained from
different methods. To overcome these limitations, consensus approaches are needed that directly address the effect
of competing algorithms. To the best of our knowledge, consensus clustering algorithms designed specifically for
the analysis of cytometry data are lacking.

Results: We present a novel ensemble clustering methodology based on geometric median clustering with weighted
voting (GeoWaVe). Compared to graph ensemble clustering methods that have gained popularity in single-cell RNA
sequencing analysis, GeoWaVe performed favourably on different sets of high-dimensional mass and flow
cytometry data. Our findings provide proof of concept for the power of consensus methods to make the analysis,
visualization and interpretation of cytometry data more robust and reproducible. The wide availability of ensemble
clustering methods is likely to have a profound impact on our understanding of cellular responses, clinical
conditions and therapeutic and diagnostic options.

Availability and implementation: GeoWaVe is available as part of the CytoCluster package https://github.com/bur
tonrj/CytoCluster and published on the Python Package Index https://pypi.org/project/cytocluster. Benchmarking
data described are available from https://doi.org/10.5281/zenodo.7134723.

Contact: burtonrossj@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Clustering is an unsupervised method for identifying structure in un-
labelled data. In the context of cytometry, the objective is to categor-
ize events into groups of similar phenotypes. This technique is
increasingly being adopted in the field and is widely regarded as an
acceptable alternative to manual analysis (Aghaeepour et al., 2013;
Cheung et al., 2021; Weber and Robinson, 2016). However, the
choice of algorithm appears to be often driven either by its availabil-
ity in commercial software or ease of its use. In many instances, the
reason behind the particular choice of algorithm is not discussed. Of
note, clustering algorithms differ in the assumptions made of data,

their performance tends to be highly data specific and results can
vary widely depending on the chosen hyperparameters (Ghosh and
Acharya, 2011; Pedersen and Olsen, 2020; Ronan et al., 2016).

Ensemble clustering (also referred to as consensus clustering)
offers an opportunity to reduce this frequently encountered bias by
combining the partitions of multiple clustering algorithms run on
the same data to identify a consensus that is informed by multiple
‘views’, thereby reducing the dependence on any individual algo-
rithm. Unlike ensemble methods in supervised classification, ensem-
ble clustering has many challenges: the number of clusters may
differ amongst the base partitions, the optimal number of consensus
clusters is often unknown, and it is necessary to solve the
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correspondence issue of matching clusters between individual parti-
tions (Boongoen and Iam-On, 2018; Ghosh and Acharya, 2011).

Broadly speaking, ensemble clustering methods can be grouped
into three categories: co-association methods, feature-based methods
and methods using graph representations (Ghosh and Acharya, 2011;
Boongoen and Iam-On, 2018; Vega-Pons and Ruiz-Shulcloper, 2011).

Co-association methods act on the pairwise similarity of clusters
sourced from different algorithms. Consensus solutions can be
derived from simple techniques such as agglomerative clustering of
the binary co-association matrix (N�N matrix, where N is the
number of events, for instance, the number of single cells) (Ronan
et al., 2016) or the cluster-based similarity partitioning algorithm
(CSPA), that forms partitions on the derived similarity graph using
the METIS software (Strehl and Ghosh, 2002). Methods that act on
co-association are burdened by space complexity and are therefore
intractable for large data where such a matrix exceeds the available
computer memory (Ghosh and Acharya, 2011).

Feature-based methods offer an alternative by presenting the
problem as a label-association matrix (m�n matrix, where m is the
number of unique clusters). Consensus solutions can be formulated
with iterative voting, finite mixture models, pairwise agreement be-
tween clusters or agglomerative clustering of this label-association
matrix (Boongoen and Iam-On, 2018).

Another popular approach for consensus clustering is by using
graph-based methods, where a weighted graph of the clusters contribu-
ting to an ensemble is generated and then partitioned into k parts using
a graph partitioning technique (Ghosh and Acharya, 2011; Boongoen
and Iam-On, 2018). Strehl and Ghosh (2002) developed the hyper-
graph partitioning algorithm (HGPA) and the meta-clustering algo-
rithm (MCLA), both heuristics that represent the clustering ensemble
as a hypergraph. Later the hybrid bipartite graph formulation (HBGF)
algorithm was introduced as an alternative approach that models clus-
ters and observations in the same graph. In each case, consensus parti-
tions are constructed from a subsequent bipartite graph (Fern and
Brodley, 2004). The advantage of the aforementioned graph methods
is their heuristic approach that avoids the need for a co-association
matrix, making them applicable to large data.

Ensemble clustering methods have successfully been adopted in
the field of single-cell RNA sequencing (scRNA-seq) but the meth-
odologies chosen usually reflect the size of data generated by this
technique and do not address the space complexity issues that arise
from larger datasets. The graph partitioning-based ensemble method
for single-cell clustering, Sc-GPE (Zhu et al., 2020), is an example of
a solution deploying co-association to the problem of ensemble clus-
tering, where a co-association matrix is weighted by the similarity
(adjusted rand index) of contributing clustering methods. However,
the dependence on a co-association matrix makes this technique in-
tractable for cytometry data. The same limitation applies to SC3
(Kiselev et al., 2017), another consensus approach for scRNA-seq
employing CSPA for ensemble clustering. Single-cell aggregated
(from ensemble) clustering (SAFE-clustering) (Yang et al., 2019)
avoids the need for generating a co-association matrix by applying
graph-based methods instead but the implementation only allows a
limited number of contributing algorithms to the consensus and is
exclusively designed for scRNA-seq.

In contrast to these advances in scRNA-seq data analysis, ensem-
ble clustering methods have yet to be developed specifically for
cytometry data analysis. Generic techniques from the graph-based
ensemble clustering family failed to find additional benefits over
existing algorithms (Weber and Robinson, 2016). However, an en-
semble methodology that utilizes the label-association matrix
showed improved performance compared to individual algorithms
(Aghaeepour et al., 2013). Despite the reported improvement, that
publication did not disclose a readily available implementation of the
methodology, thus making it difficult to reproduce their approach.

Of note, methods developed for scRNA-seq data analysis may not
scale to the size of data encountered in cytometry data analysis, which
can be hundreds of times greater. We here benchmarked a range of
graph ensemble clustering methods against popular clustering algo-
rithms for cytometry data analysis and present a novel ensemble clus-
tering methodology based on geometric median clustering with

weighted voting (GeoWaVe). Unlike previous ensemble clustering tech-
niques, GeoWaVe is explicitly designed for cytometry data analysis
and offers a computationally inexpensive heuristic approach, permit-
ting the analysis of large data. Compared to graph ensemble clustering
methods that have gained popularity in scRNA-seq analysis, GeoWaVe
performed favourably on different sets of high-dimensional data gener-
ated using cytometry by time of flight (CyTOF) or multicolour flow
cytometry. Our findings provide proof of concept for the power of
consensus methods to make cytometry data analysis more robust and
reproducible.

2 Materials and methods

2.1 Benchmarking datasets
Six cytometry datasets were chosen for benchmarking ensemble
clustering methods (Supplementary Table S1). The public CyTOF
datasets ‘Levine-13’, ‘Levine-32’ and ‘Samusik’ were obtained from
open-source repositories (Weber and Robinson, 2016) and arc-sinh
transformed with a standard cofactor of 5. Doublets, debris and
dead cells were removed, and ground-truth labels were taken from
the original publications, with manual gating by the respective
authors (Levine et al., 2015; Samusik et al., 2016). A 28-colour
spectral flow cytometry dataset, ‘OMIP’, was obtained from open-
source repositories (Mair and Prlic, 2018). Data were arc-sinh trans-
formed with a standard cofactor of 150 and manually gated accord-
ing to the gating strategy described by the original authors (Mair
and Prlic, 2018). The following populations were identified and
served as a ground truth for the comparison of results from the clus-
tering algorithms: CD14þ monocytes; CD19þ CD80þ and CD19þ

CD80� B cells; CD45RAþ CCR7þ naı̈ve CD3þ CD4þ T cells;
CD45RAþ CCR7þ naı̈ve CD3þ CD8þ T cells; CD3þ CD4þ CD8þ

double positive (DP) and CD3þ CD4� CD8� double negative (DN)
T cells; CD56þ natural killer (NK) cells; and CD141þ dendritic cells
(DCs), CD1cþ DCs, CD1c� CD141� (DN) DCs and CD123þ

plasmacytoid dendritic cells (pDCs).
Finally, two in-house generated flow cytometry datasets were

used, ‘Sepsis’ and ‘Peritoneal Dialysis’ (PD). Both datasets were
acquired using a 16 colour BD LSR Fortessa. Sepsis data were
derived from nine acute sepsis patients (see Supplementary
Methods; Supplementary Table S2), were arc-sinh transformed
(standard cofactor of 150) and batch effect corrected using the
Harmony algorithm (Burton et al., 2021). Each sample was manual-
ly gated for single live CD4þ and CD8þ T cells, Vd2þ cd T cells and
CD161þ Va7.2þ mucosal-associated invariant T (MAIT) cells. The
identified lymphocyte populations then served as a ground truth for
the comparison of results from the clustering algorithms. PD data
were derived from a single adult receiving PD with no previous
infections for at least 3 months prior to sampling (Burton et al.,
2021). Leukocyte populations in peritoneal effluent were identified
as live CD45þ immune cells and manually gated for CD3þ T cells,
CD19þ B cells, CD15� CD14þ monocytes/macrophages, CD15þ

neutrophils, CD15� CD14þ/� CD1cþ DCs and CD15� SIGLEC-8þ

eosinophils. The identified populations then served as a ground truth
for the comparison of results from the clustering algorithms.

Base clustering and graph ensemble methods, and the metrics
used to evaluate their performance against ground-truth labels are
described in Supplementary Methods (Moon et al., 2019; Pedregosa
et al., 2011; Qiu et al., 2011; Van Gassen et al., 2015; Levine et al.,
2015; Stassen et al., 2020; Yang et al., 2019). To make analysis
manageable, where data exceeded 300 000 observations (which was
the case for the Samusik, OMIP, Sepsis and PD data), down-
sampling was performed. To demonstrate the computational effi-
ciency of GeoWaVe, additional experiments were performed using
synthetic data (see Supplementary Methods).

2.2Geometric median clustering with weighted voting
Graph ensemble methods address issues of computational complex-
ity by using a heuristic, deriving the consensus from graph represen-
tations of the label-association matrix, rather than from the
unmanageable co-association matrix. Taking inspiration from this
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approach, we propose a novel alternative heuristic ensemble cluster-
ing method that incorporates information about the original feature
space: GeoWaVe, where the clusters generated by base clustering
algorithms contributing to an ensemble are summarized by their
geometric median. The geometric median (implemented with the
hdmedians package; Roberts et al., 2017) was chosen over other
measures of central tendency because it is robust to outliers, is not
necessarily a point from the original data, can handle negative
values and is defined in any dimension.

Using this approach, a summary of the expression profile of all
clusters contributing to the consensus is generated, which can subse-
quently be clustered into consensus clusters (Fig. 1 heatmap); a con-
sensus cluster being a collection of clusters of similar phenotypes.
Since each cluster is treated as an individual contribution, differen-
ces in the number of clusters provided by each input algorithm are
not consequential, meaning GeoWaVe can accept the outputs of any
combination of clustering algorithms.

The clusters that contribute to a consensus are overlapping sets,
given that each base clustering algorithm is exposed to the same
data. Therefore, it is possible that an event can be assigned to more
than one consensus cluster. This will occur more frequently for
events that sit on the boundary between clusters. To solve this prob-
lem, where an event is assigned to multiple consensus clusters a
score is calculated for each consensus cluster and the event assigned
to the consensus with the maximum score.

Given that a consensus cluster can be defined as a set of clusters
c 2 C, and a single cluster c is a finite set of n-dimensional vectors,
the geometric median û of each cluster c can be calculated according
to Equation 1 (Roberts et al., 2017):

û ¼ argmin
x 2 R

x� xij jj j2: (1)

For each event t assigned to more than one consensus cluster C,
the Manhattan distance between the event and the geometric median

of each member cluster of C is computed. The sum of these distances
normalized by the size of the consensus Cj j (i.e. the number of
clusters within the consensus) gives a weighting factor p for the
consensus cluster C relative to the event t (Equation 2):

p ¼
P

c2C t � ûðcÞ
�
�

�
�

�
�

�
�
1

Cj j
: (2)

The consensus cluster score for C relative to an event t is then
calculated as the size of the consensus Cj j divided by the weighting
factor p (Equation 3):

score ¼ Cj j
p
: (3)

The motivation for the consensus cluster score is derived from
the fact that not all clusters are equally defined, and some may be a
poor fit for a given event. To account for this possibility, the major-
ity voting algorithm is weighted by the distance from an event to the
centre of each cluster that contributes to a consensus. This method
ensures that the consensus an event is assigned to is informed by
both the number of supporting algorithms (described by the term Cj j
in Equation 3) but also the quality of the clusters in that consensus
(described by the term p in Equation 3).

The choice of clustering algorithm applied to the geometric
medians of clusters is ambiguous in that any number of existing
methods may be suitable to the task. The advantage of geometric
medians as a heuristic is that the expression profile can be visualized
easily as a heatmap (Fig. 1), and different clustering methods can be
applied and critiqued. This allows the investigator to introduce prior
knowledge, such as known phenotypes expected to occur in the
data. The ambiguity of the clustering algorithm applied to the geo-
metric median matrix allows for the use of methods such as the
ConsensusClusterPlus method (Wilkerson and Hayes, 2010), choos-
ing an optimal number of clusters from a given range. Therefore, an
investigator can visualize the geometric medians and choose a range
of clusters based on an intuition driven by the biological question.

GeoWaVe is available as part of the CytoCluster package, devel-
oped for Python version 3.8 or greater. The CytoCluster package is
available on the Python Package Index (PyPI) and offers popular
cytometry clustering algorithms, graph ensemble clustering and
GeoWaVe ensemble clustering, as well as numerous utilities and
plotting tools, delivered through a simple object-orientated
application programming interface.

3 Results

3.1 Graph ensemble clustering methods fail to

outperform individual clustering algorithms for

cytometry data analysis
Diversity among the members of an ensemble can enhance results
(Boongoen and Iam-On, 2018). Ensemble clustering solutions
should also take input from informative algorithms suited to the
analytical task in question. Therefore, we chose algorithms that
have reported good performance for cytometry data analysis, are
well understood, have differing underlying methodologies and are
computationally efficient.

We here sought to benchmark ensemble methods from the litera-
ture using externally and internally generated data, in particular en-
semble methods that scale to large cytometry data (greater than
100 000 data points), namely graph-based methods. Base clustering
algorithms and ensemble methods were tasked with clustering three
CyTOF datasets with available ground-truth labels. The Levine-13
data describe a total of 265 627 bone marrow cells from two healthy
human donors and include 13 parameters (Supplementary Fig. S1)
(Levine et al., 2015). Levine-32 describes 167 044 bone marrow
cells from a single healthy human donor but at higher resolution
with 32 CyTOF parameters (Supplementary Fig. S2) (Levine et al.,
2015). Examples of challenges presented by these two datasets in-
clude overlapping monocyte subsets differentiated by CD11b

Fig. 1. Schematic diagram of the GeoWaVe algorithm. (A) Clusters generated by

multiple clustering algorithms are pooled, and (B) the geometric median for each

cluster is calculated to create a matrix of c clusters. (C) This matrix of cluster geo-

metric medians (clusters of the Levine-13 data shown here as an example) is clus-

tered into consensus clusters; groups of clusters within similar expression profiles.

Consensus cluster labels are then assigned to individual events and overlapping con-

sensus assignments handled with a score that accounts for the distance of the event

to the members of each consensus cluster
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expression in the Levine-13 data, and small subsets of B cells differ-
entiated by IgM and IgD expression in the Levine-32 data. The
Samusik data describe bone marrow samples with a total of 841 644
cells from 10 C57BL/6J mice and identified 24 populations using 39
CyTOF parameters (Supplementary Fig. S3) (Samusik et al., 2016);
the branching topology of which offers a unique challenge to any
clustering algorithm aiming to partition data in meaningful ways
(Fig. 2).

In addition to these three CyTOF datasets, we included the
OMIP-44 28-colour spectral flow cytometry dataset for the identifi-
cation of human dendritic cell compartments (Mair and Prlic,
2018). Of the 28 parameters, 15 were retained for the identification
of the main subsets described by the original authors
(Supplementary Fig. S4). To examine the performance on traditional
flow cytometry data, two in-house datasets acquired with a 16-col-
our BD LSR Fortessa were included. The first was for the identifica-
tion of conventional and non-conventional T cell subsets from
peripheral blood mononuclear cells (PBMCs) from patients diag-
nosed with sepsis (Supplementary Fig. S5A) and the second, for the
identification of leukocyte populations in peritoneal effluent from a
patient undergoing PD (Supplementary Fig. S5B). Both the Sepsis
and PD data offer unique challenges because of relatively small and
ambiguous populations being present amongst a backdrop of more
predominant cell types (Fig. 2).

Figure 3 shows the performance of the base clustering algorithms
(the algorithms that were used to contribute to ensemble clustering),
graph ensemble clustering algorithms and the GeoWaVe variants,
measured by adjusted rand index (ARI). In most cases, MCLA
offered greater performance compared to the other graph ensemble
methods, a finding corroborated by Fowlkes–Mallows index (FMI;
Supplementary Fig. S6A) and adjusted mutual information (AMI;
Supplementary Fig. S6B). Although in the Levine-13 and Levine-32
data graph ensemble methods improved on the performance of algo-
rithms such as SPADE or FlowSOM, in only one of the six datasets
(OMIP) did any graph ensemble outperform the base clustering
algorithms. Based on this evidence, it is difficult to justify the use of
graph ensemble methods for cytometry data.

The graph ensemble methods required that the number of con-
sensus clusters k be pre-defined. Selection of k was performed using
internal performance metrics (Supplementary Fig. S7) as described
in the Supplementary Methods. To test whether the performance of
graph ensemble methods was adversely affected by the chosen
method for selecting k, the performance of graph-based clustering
algorithms was examined across different values of k using external
evaluation metrics. HBGF was chosen because it had the best run-
time of the three graph ensemble methods. Here, performance was
optimum for low values of k despite the number of ground-truth
populations being much larger for the Levine-13, Samusik and
OMIP datasets (Supplementary Fig. S8). The choice of k was

therefore assumed not to be a factor in the poor performance of
graph ensemble methods in this case. Taken together, our findings
demonstrate that graph ensemble clustering methods for mass and
flow cytometry data performed worse than one or more contribu-
ting base clustering solutions.

3.2 GeoWaVe outperforms graph ensemble methods

and improves upon the performance of base clustering

algorithms
To validate GeoWaVe, multiple algorithms for clustering the geo-
metric medians were tried. Affinity propagation and mean shift
were compared because of their ability to select the optimal number
of clusters from the characteristics of the data. k-means and agglom-
erative hierarchical clustering were also tested, with the optimal
number of clusters chosen from a range of clusters using the
ConsensusClusterPlus method (Wilkerson and Hayes, 2010). For ag-
glomerative hierarchical clustering, a variety of linkage methods and
distance metrics were tried. Agglomerative hierarchical clustering
offers an additional advantage to the end use, because consensus
clusters can be easily visualized as a dendogram and clustered heat-
map, allowing the investigator to choose an appropriate range for
the number of consensus clusters driven by their understanding of
the underlying biology.

GeoWaVe performance was compared to base clustering algo-
rithms and graph ensemble methods using external evaluation met-
rics. GeoWaVe outperformed all other methods in five of the six
datasets when comparing ARI (Fig. 3) and FMI (Supplementary Fig.
S6). GeoWaVe also outperformed graph ensemble methods when
comparing ARI, FMI and AMI but failed to outperform base cluster-
ing methods in terms of AMI in the Levine-13 and Samusik data.

The effect of the choice of clustering algorithm applied in
GeoWaVe was data specific. For the Levine-13, Samusik and OMIP
data the choice of the algorithm was negligible, whereas hierarchical
clustering for the Levine-32 data was sensitive to the choice of dis-
tance metric. Affinity propagation gave a very poor performance for
Sepsis data. Likewise, affinity propagation, along with k-means and
Ward clustering, resulted in poor performance for PD data.

3.3 GeoWaVe outperforms graph ensemble methods

for the detection of under-represented populations
External evaluation metrics used in the prior section offer perform-
ance criteria that are independent of the labels, i.e. they do not re-
quire a like-to-like matching of cluster and ground-truth labels.
Instead, measures of similarity between the cluster labels and
ground-truth labels were used. Aghaeepour et al. (2013), Samusik
et al. (2016) and Weber and Robinson (2016) alternatively framed
such problems in the context of a classification task: a one-to-one
mapping of ground-truth labels to clusters was achieved using the
Hungarian algorithm such that the sum of F1 scores across ground-
truth labels is maximized, and the precision (positive predictive
value), recall (sensitivity) and F1 score (harmonic mean of precision
and recall) for each ground-truth label are reported.

This procedure was repeated for the clustering algorithms bench-
marked in previous sections and the ensemble clustering solutions.
Figure 4 shows the average F1 score for the base clustering algo-
rithms, graph ensemble methods and GeoWaVe along with the
standard deviation (error bars) showing the variation in F1 score be-
tween populations. The F1 score, precision and recall are reported
in Supplementary Figure S9. GeoWaVe continued to outperform
graph ensemble methods across the six benchmark datasets but
failed to match the F1 score obtained by methods such as PHATE
combined with k-means in the Levine-13 data and Phenograph in
the Samusik data. While MCLA graph ensemble clustering was
more comparable to GeoWaVe in the Sepsis data when observing F1
score, GeoWaVe clustering still outperformed MCLA in terms of
precision, recall and F1 score. GeoWaVe clustering offered optimal
average F1 scores for Levine-13, Sepsis, OMIP and PD data, and
outperformed graph ensemble methods across all datasets.

Fig. 2. UMAP density plots of the Levine-13, Levine-32, Samusik, Sepsis, OMIP

and Peritoneal Dialysis (PD) data. Colour intensity corresponds to the density of

observations in a region of events
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An advantage to matching clusters to ground-truth populations
using the Hungarian algorithm was the ability to compare the per-
formance at the population level. The F1 score for ground-truth
populations for the top-performing algorithm from the base cluster-
ing, graph ensemble clustering and GeoWaVe ensemble clustering
are shown as heatmaps in Figures 5 and 6. Each row includes a
measure of the population size as an additional heatmap on the y-
axis. The heatmaps demonstrate the superior performance of
GeoWaVe compared to graph ensemble methods for the identifica-
tion of under-represented populations such as pDCs in the Levine-
13 dataset, plasma cells, basophils and pro-B cells in Levine-32,
pDCs in the OMIP data (Fig. 5), B cells and dendritic cells (DCs) in
the PD data, and MAIT cells in the Sepsis data (Fig. 6).

GeoWaVe matched the performance of base clustering algo-
rithms for under-represented cell populations, whereas the graph en-
semble clustering algorithms failed to do so. GeoWaVe also showed
improved performance over base clustering algorithms for identify-
ing populations such as monocytes, and subsets of T cells in the

Levine-32 data, myeloid DCs (mDCs) in the Samusik data, MAIT
cells in the Sepsis data and eosinophils in the PD data. Despite the
success of GeoWave in comparison to graph ensemble methods, it
still failed to identify some rare subsets completely. In contrast,
base-clustering algorithms showed either good performance or iden-
tification of at least some of the population. Examples include im-
mature B cells in the Levine-13 dataset, CD16þ NK cells in the
Levine-32 dataset, and plasma cells in the Samusik dataset.

3.4 GeoWaVe is computationally efficient
Across all variations of the GeoWaVe algorithm run on the six
benchmark datasets, the longest recorded runtime was for the 40
parameters Samusik data with 300 000 observations, at a runtime of
2 min and 12 s (Supplementary Tables S3–S5).

To assess the ability of GeoWaVe to scale to larger data, we
tested it against synthetic data of increasing size and complexity (see
Supplementary Methods; Supplementary Fig. S10). The runtime per-
formance of the GeoWaVe algorithm is affected by two attributes of

Fig. 3. Adjusted rand index (ARI) for base clustering algorithms (top), graph ensemble methods (middle) and GeoWaVe ensemble (bottom) for the six benchmark datasets.

The best ARI score for each dataset is shown as a dotted line, and the best performing method for those data is highlighted. *The optimal number of clusters k was chosen

using the ConsensusClusterPlus method (Wilkerson and Hayes, 2010)

Fig. 4. Performance of base clustering algorithms, graph ensembles and GeoWaVe ensembles, after matching cluster labels to ground-truth labels using the Hungarian linear as-

signment algorithm (as described by Weber and Robinson (2016)) and maximizing the sum of F1 scores across ground-truth label and cluster label pairings. Average F1 scores

are reported with error bars showing the standard deviation either side of the average. *The optimal number of clusters k was chosen using the ConsensusClusterPlus method

(Wilkerson and Hayes, 2010)
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the data: the total number of observations and the overlap between
clusters obtained by base clustering algorithms. Increasing overlap
between clusters results in more observations being assigned to mul-
tiple consensus clusters, and the consensus cluster score (described
in Section 2) must be computed for each of these observations.
GeoWaVe employs multiprocessing to distribute these calculations
across the available cores of a machine, resulting in excellent run-
time performance as shown for ten randomly generated Gaussian
data point clouds in 15 dimensions (Fig. 7). Using GeoWaVe, we
were able to generate ensemble clusters in <10 min, even for data-
sets scaling to millions of observations. We believe that such run-
times are reasonable and allow investigators to run experiments
with a range of hyperparameters.

4 Discussion

Cytometry has become a cornerstone of biomedical and healthcare
research and is widely used in clinical diagnosis. In many patho-
logical conditions, the understanding of disease mechanisms and
how to exploit them for patient benefit relies largely on cytometry,
including the diagnosis of conditions like leukaemia and HIV infec-
tion, and studying antigen-specific responses in vaccine trials.
Historically, cytometry data have been processed and analysed
manually. Until recently, this was deemed acceptable given that
cytometry instruments could only accommodate relatively few

parameters in any experiment. Over the past decade, however, the
number of available parameters has increased drastically with the
advent of multicolour flow cytometry and mass cytometry, allowing
the characterization of even minor populations at the single-cell
level and the discovery of novel cell types and new functional fea-
tures. Traditional approaches no longer suffice—as the number of
parameters grows, data analysis is becoming more labour intensive,
more subjective and harder to standardize and reproduce across
studies and sites. In response to the technological advances, the do-
main of cytometry bioinformatics is rapidly evolving to provide new
computational solutions for data analysis and interpretation such as
autonomous gating, supervised classification and unsupervised clus-
tering. Arguably the most impactful technology introduced to this
space are clustering algorithms designed specifically for cytometry
data analysis, such as SPADE, FlowSOM and Phenograph. The top
clustering algorithms alone have already amassed >12k citations in
the scientific literature within a few years and are enabling

Fig. 5. Heatmap of population F1 scores for the Levine-13 (A), Levine-32 (B),

Samusik (C) and OMIP (D) data. Population level F1 scores are shown for the top-

performing algorithm amongst base clustering, graph ensemble and GeoWaVe algo-

rithms. Ground-truth populations (rows) are coloured by F1 score in the central

heatmaps, with darker colours indicating a lower F1 score. On the right y-axis, each

row is labelled with an additional heatmap that describes the normalized size of the

population (total number of events) relative to other populations within the same

data

Fig. 6. Heatmap of population F1 scores for the Sepsis (A) and Peritoneal Dialysis

(PD) (B) data. Population level F1 scores are shown for the top-performing algo-

rithm amongst base clustering, graph ensemble and GeoWaVe algorithms. Ground-

truth populations (rows) are coloured by F1 score in the central heatmaps, with

darker colours indicating a lower F1 score. On the right y-axis each row is labelled

with an additional heatmap that describes the normalized size of the population

(total number of events) relative to other populations within the same data

Fig. 7. Runtime performance of GeoWaVe algorithm on randomly generated syn-

thetic data consisting of 10 Gaussian data point clouds with an increased number of

observations. Four synthetic datasets are shown, each with an increasing standard

deviation (SD) used for the generation of Gaussian data point clouds resulting in

more overlap between clusters
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researchers to make rapid progress in their fields—for instance, in
the understanding of the immunopathology of COVID-19 that rap-
idly translated into novel therapies, outcome prediction and vaccine
development (Arunachalam et al., 2020; Bolouri et al., 2021;
Hadjadj et al., 2020; Mathew et al., 2020).

We here developed GeoWaVe, an ensemble clustering algorithm,
as a solution to reduce the variance commonly observed amongst
clustering methods in the cytometry literature, where results depend
upon hyperparameter choice and the particular context in which
they are applied. Presently, there is an absence of a ‘one size fits all’
solution to clustering cytometry data, leaving scientists to rely on ex-
ploratory analysis that risks biasing results through data dredging.
Ensemble clustering offers an alternative by finding a consensus
informed by the results of multiple clustering algorithms exposed to
the same data. This multi-view approach theoretically offers robust,
consistent and stable solutions (Ghosh and Acharya, 2011; Vega-
Pons and Ruiz-Shulcloper, 2011) without biasing the analysis with
the assumptions of a single algorithm. The act of employing ensem-
ble clustering also forces the analyst to compare and contrast the
results of multiple algorithms, which can be an informative exercise.

Ensemble clustering presents many challenges that come to bear
when applied to complex data such as those generated with cytome-
try. Unlike supervised classification, there are not a defined number
of classes provided by labelled examples. Different algorithms may
generate different quantities of clusters, which must be compared
and consolidated into consensus clusters. Cytometry data also tend
to generate large data that can be difficult to handle with conven-
tional computer resources. This is becoming increasingly relevant
for studies that intend on phenotyping hundreds or even thousands
of subjects.

An existing ensemble approach that can scale to large data and
was included in this study is the graph-based methods, such as
HGPA, MCLA and HBGF. These techniques were benchmarked
against six independent datasets but failed to outperform individual
clustering algorithms such as FlowSOM, PhenoGraph or SPADE. In
response to this, an alternative heuristic ensemble method named
GeoWaVe was developed, which was suitable to the nature of
cytometry data. Given that the dimensions of cytometry data are not
beyond the comprehension of the investigator and meaningful phe-
notypes can be determined by considering sets of features, we pro-
pose to summarize each cluster contributing to a consensus by its
geometric median in the feature space. This can for instance be
visualized in a heat map. Our study demonstrates that clustering the
matrix of these geometric medians can generate informative consen-
sus clusters.

Our analyses showed that GeoWaVe consistently outperformed
HGPA, MCLA and HBGF. The use of geometric medians also pro-
vided a useful visual aid when choosing the number of consensus
clusters to be formed. By visualizing the heat map of geometric
medians in combination with t-SNE, UMAP or PHATE embeddings,
a suitable number of partitions can easily be estimated. This allows
the investigator to introduce informative priors and select clusters
based on knowledge of the underlying biology. If uncertain, a range
of partitions can be searched using the ConsensusClusterPlus
method (Wilkerson and Hayes, 2010). Our approach is novel in its
computational efficiency, ability to handle millions of observations
and its communication of the consensus clusters to the investigator
in a familiar manner that reflects the underlying biology.

The use of geometric medians as a heuristic is not without limita-
tions. Summarizing a cluster using the geometric median tells little
of the topology, and a significant loss of information may result in
misinformed consensus clusters that are not representative of the
data themselves. Additionally, the optimal choice of clustering
method applied to the matrix of geometric medians is not immedi-
ately apparent and performance can vary depending on the data—
for instance, this choice was important to the performance on the
Levine-32, Sepsis and PD data, but less relevant for the Levine-13,
Samusik and OMIP data. Of note, the use of a heuristic means that
the run-time of GeoWaVe is fast enough to accommodate hyper-
parameter tuning. The investigator is therefore encouraged to ex-
periment with different clustering algorithms and hyperparameters

and inspect the partitions on the geometric median heat maps and
embeddings generated from a suitable dimension reduction tech-
nique. Although this fails to remove the exploratory approach to
clustering of cytometry data, it introduces the multi-view consensus
necessary for robust results.

Weber and Robinson (2016) performed a similar assessment of
clustering algorithms without the focus on consensus methods and
framed their assessment as a classification problem, inspired by the
work by Samusik et al. (2016). They chose to use F1 score by first
mapping clusters to ground-truth labels using the Hungarian algo-
rithm and maximizing F1 scores across reference populations. This
methodology was repeated in the present study and supported the
conclusion that GeoWaVe ensemble methods outperform the graph
ensemble methods of HGPA, MCLA and HBGF. Closer inspection
of individual population F1 scores revealed that rare cell popula-
tions were often not identified by graph ensemble methods.
Although identification of these subsets was improved in GeoWaVe,
performance was often worse than individual clustering algorithms
and some populations, such as platelets in the Levine-13 data,
remained unidentified. The performance of the base clustering algo-
rithms for many rare cell populations was also poor, possibly
impacting the performance of ensemble outputs. Further work is
needed to generate clustering methodologies that directly address
this limitation.

There is a significant flaw in the assessment of clustering per-
formance through F1 score. Mapping clusters to ground-truth labels
in such a way implies that a one-to-one relationship must exist be-
tween the clusters generated and the reference populations.
Clustering analysis can be complicated by sub-structures in data
captured as clusters but absent in the ground-truth labels. If the pur-
pose of clustering cytometry data is to identify a precise number of
clusters, then this form of evaluation seems justified although one
could argue that in such a scenario a supervised classification ap-
proach might be more suitable. Clustering analysis tends to be
applied in the interest of discovery when the number of clusters is
unknown. Despite this flaw, it was deemed necessary to replicate
the methods of Weber and Robinson (2016), which was informative
of the role population size plays. It showed that although the con-
sensus clustering of geometric medians outperforms graph-based
methods, there is still work to be done to ensure rare cell popula-
tions do not go undetected with this technique. It would be advis-
able that if rare cell populations are suspected to be present, that the
consensus is formed by methods with high resolution such as those
formed on nearest-neighbour graphs (Levine et al., 2015; Samusik
et al., 2016; Stassen et al., 2020).

Future work should focus on more diverse ensemble clustering.
In this work, four classes of algorithm were chosen based on their
popularity in the cytometry literature and their available implemen-
tations. However, there is a wide variety of further clustering algo-
rithms that could be explored for inclusion in ensemble clustering.
There are ongoing efforts to address the computational complexity,
such as improvements to SC3. Other solutions to the computational
complexity may come from advances in the statistical and computa-
tional literature, such as consensus formed on heuristics of cluster
similarity using metrics such as the Jaccard index (Khedairia and
Khadir, 2022). In the meantime, clustering on geometric medians is
likely to be a viable solution for cytometry data analysis. We are
confident that the availability of user-friendly but powerful ensem-
ble clustering methods has the potential to represent a major ad-
vance in big data analysis, with implications for an improved
understanding of cellular responses, clinical conditions, and thera-
peutic and diagnostic options.
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