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ABSTRACT

Chemometrics/informatics, and data analysis in general, are increasingly important in x-ray photoelectron spectroscopy (XPS) because of
the large amount of information (spectra/data) that is often collected in degradation, depth profiling, operando, and imaging studies. In this
guide, we present chemometrics/informatics analyses of XPS data using a summary statistic (pattern recognition entropy), principal compo-
nent analysis, multivariate curve resolution (MCR), and cluster analysis. These analyses were performed on C 1s, O 1s, and concatenated
(combined) C 1s and O 1s narrow scans obtained by repeatedly analyzing samples of cellulose and tartaric acid, which led to their degrada-
tion. We discuss the following steps, principles, and methods in these analyses: gathering/using all of the information about samples, per-
forming an initial evaluation of the raw data, including plotting it, knowing which chemometrics/informatics analyses to choose, data
preprocessing, knowing where to start the chemometrics/informatics analysis, including the initial identification of outliers and unexpected
features in data sets, returning to the original data after an informatics analysis to confirm findings, determining the number of abstract
factors to keep in a model, MCR, including peak fitting MCR factors, more complicated MCR factors, and the presence of intermediates
revealed through MCR, and cluster analysis. Some of the findings of this work are as follows. The various chemometrics/informatics
methods showed a break/abrupt change in the cellulose data set (and in some cases an outlier). For the first time, MCR components were
peak fit. Peak fitting of MCR components revealed the presence of intermediates in the decomposition of tartaric acid. Cluster analysis
grouped the data in the order in which they were collected, leading to a series of average spectra that represent the changes in the spectra.
This paper is a companion to a guide that focuses on the more theoretical aspects of the themes touched on here.
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I. INTRODUCTION

In this guide, we show the analysis of two rather large x-ray
photoelectron spectroscopy (XPS) data sets using various explor-
atory data analysis (EDA) methods. In particular, we analyze two
XPS data sets obtained from the repeated analyses of filter paper
(cellulose, a natural polymer containing C, O, and H) and tartaric
acid (a small, symmetric molecule that also contains only C, O, and
H). We focus here on carbon and oxygen containing materials
because the C 1s and O 1s XPS narrow scans are the most com-
monly shown and analyzed in the scientific literature. Both data
sets reveal significant degradation of the materials during XPS anal-
yses that appears to lead to graphitization. These data sets were
analyzed/probed with a series of EDA chemometrics/informatics
methods that include a summary statistic (pattern recognition
entropy, PRE), principal component analysis (PCA), multivariate
curve resolution (MCR), and cluster analysis. This work also pre-
sents an examination of the raw spectra, identifies anomalies in the
data sets, covers methods for determining the number of abstract
factors to keep (that best describe a data set), discusses data prepro-
cessing, shows XPS peak fitting of MCR components (to the best of
our knowledge this is the first time this has been done), identifies
intermediates revealed in an MCR analysis (to the best of our
knowledge this is also the first time this has been done), shows the
evolution of XPS data using cluster analysis, and compares the
results from multiple EDA methods. This guide has Paper I that
focuses on more general and theoretical aspects of the techniques
and analyses shown here. The chemometrics/informatics methods
employed in this study have been reviewed and discussed multiple
times in the literature.1–8

XPS is the most widely used and important method for chem-
ically analyzing surfaces.9–12 In XPS, a beam of x rays, which is
directed onto a surface, generates photoelectrons via the photoelec-
tric effect. The kinetic energies of these photoelectrons are mea-
sured, converted into binding energies, and used to identify the
elements present at a sample surface. Relatively, small “chemical
shifts” in the resulting peak positions (typically 1–4 eV, but some-
times as large as 10 eV) reveal the chemical (oxidation) states of the
elements.13 While the x rays used in XPS can penetrate ca. 1 μm
into a material, the photoelectrons they generate can only escape in
an unattenuated fashion from the upper ca. 5–10 nm of it.
Accordingly, XPS is a surface sensitive spectroscopy. Furthermore,
while little or no sample damage occurs in many XPS analyses, e.g.,
for many inorganic materials, it does occur in some cases. This
damage is often caused more by photoelectrons than the x rays
themselves. Because XPS peak widths and chemical shifts are of
similar magnitudes, peak fitting is often necessary in XPS data
analysis. For quite a few years, XPS experts have expressed concern
over the quality of some of the XPS peak fitting in the scientific lit-
erature. In response to this issue, which is part of the larger
problem of reproducibility in science,14,15 a group of experts has
recently produced a series of guides that cover multiple aspects of
XPS.12,16–25 These guides follow many efforts by XPS experts to
educate the broader community, including through ISO and ASTM
standards. This particular guide is part of a second series of guides
that covers additional topics related to XPS and also other surface
analytical techniques.

Materials containing carbon and oxygen (and hydrogen) have
been extensively analyzed by XPS. Indeed, Beamson and Briggs’
classic work on organic polymers suggests that a large subset of the
organic polymers of interest in XPS are those that contain only
carbon, hydrogen, and oxygen.26 Such materials include the acry-
lates, methacrylates, polyethylene glycol/oxide, polypropylene
glycol/oxide, polyethyleneterephthalate, polyether ether ketone, and
the naturally occurring polymers lignin and cellulose. All are of
practical and theoretical importance, and there are multiple exam-
ples of their characterization in the literature by XPS,27–29 including
by near ambient pressure (NAP)-XPS.30–34 These polymers are
dominated by a series of functional groups that contain increasing
numbers of carbon—oxygen bonds, including reduced carbon with
no carbon—oxygen bonds (C—C/C—H, where carbon is usually
sp2 or sp3 hybridized), C—O (alcohols, ethers, and epoxides),
CvO (carbonyls) and O—C—O (acetals), C(O)O (carboxyls and
esters), and O—C(O)O (carbonates).13 While both the C 1s and O
1s narrow scans are important for understanding these polymers,
the C 1s narrow scan is usually more informative because (i) the
chemical shifts exhibited by carbon in its different oxidation states
occur over ca. 10 eV, which is quite a bit more than for oxygen (ii)
organic polymers generally contain more carbon atoms than
oxygen atoms, i.e., the C 1s narrow scan often represents a larger
fraction of the atoms in the material; and (iii) the XPS of carbon is
quite strongly determined by initial state effects, i.e., the state of the
atom as influenced by those it is bonded to. As a result of this first
point, the C 1s spectrum is often easier to fit/interpret. The large
spread in binding energies for carbon is, no doubt, a reflection of
its lower electronegativity compared to oxygen. That is, carbon may
be bonded to elements that are more electronegative than it is, e.g.,
nitrogen, oxygen, chlorine, and fluorine, to those that have roughly
the same electronegativity, e.g., hydrogen and sulfur, and to those
that are more electropositive, e.g., silicon and germanium, while
there is only one element (fluorine) that is more electronegative
than oxygen. Sulfur, which has about the same electronegativity as
carbon, also shows a wide range of chemical shifts. In addition to
polymers, some small organic molecules with sufficiently low vola-
tilities can be analyzed by conventional XPS. Such molecules are
often held together by multiple hydrogen bonds. More volatile
organic molecules may be analyzed by NAP-XPS.30

While XPS causes little or no sample damage in many cases,
organic materials sometimes degrade during XPS analyses. This
damage usually occurs gradually, over multiple scans. Damage can
be identified by comparing different scans in an analysis, e.g., by
ratioing spectra.25 In describing the damage caused by x rays and
photoelectrons during XPS, Baer et al. noted that, in general,
sample damage takes place in an approximately linear fashion at
the beginning of an analysis but nonlinearly at later times.35

Because it undergoes rapid damage during XPS analysis, polyvinyl
chloride (PVC) is often used as a standard in damage studies.35–38

Even though clean cellulosic filter paper is damaged during XPS, it
has been proposed as an in situ reference for analysis of organics
and polymeric materials.39 Cellulosic filter paper stays relatively
clean in and out of vacuum, and, more importantly, its C 1s enve-
lope is different from adventitious carbon contamination. Related
studies have shown damage to polymers when they are irradiated
with energetic electrons or photons, where these conditions appear
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to lead to an increase in sp2 carbon/sample graphitization and
cross-linking.40,41 Large numbers of spectra may be needed to
understand sample damage. These large data sets may be difficult
to interpret and visualize by conventional methods.

Chemometrics/informatics methods have been used for years to
analyze large and complex data sets. However, in spite of previous
work in this area,1,5,42–44 this capability has been overlooked by
much of the XPS community. Indeed, multivariate/chemometrics
methods may not have been significantly adopted and employed by
XPS practitioners because of the general unfamiliarity of many scien-
tists with these techniques. The first extensive use of chemometrics
algorithms, such as PCA, MCR, and image classification, in degrada-
tion studies was done on a PVC/polymethymethacrylate (PMMA)
blend.41,45 The time-of-flight secondary ion mass spectrometry
(ToF-SIMS) community appears to have recognized the importance
of chemometrics methods to a somewhat greater extent than the
XPS community.42,45–51 Chemometrics/informatics techniques can
be used as an alternative to or in combination with conventional
peak fitting because they reduce the dimensionality of large and
complex data sets and may extract hidden features in the data.
Fundamentally, these multivariate methods work in XPS data analy-
sis because of the high degree of correlation between the spectra in
many data sets. Chemometrics/informatics methods are particularly
relevant to XPS today because of the trend to collect increasingly
large data sets in degradation, depth profiling, operando, and
imaging studies. Thus, methods are increasingly needed to more effi-
ciently analyze and visualize these data sets. In addition to providing
a wide variety of analysis methodologies, chemometrics/informatics
can guide experimental design to ensure maximal interpretability of
experimental results. Finally, while the particular EDA methods

employed herein are, for the most part, widely used and effective, we
have not covered all possible EDA methods in this guide—there are
many more than may be considered.

Section III of this paper is organized into sections that cover
multiple aspects of the chemometrics/informatics analysis of XPS
data. To help the reader understand the connections between these
sections/concepts, they have been organized into a flowchart
(Fig. 1). This diagram teaches that one should first gather (and
then use) all the information available about one’s samples and
data. The raw data should then be plotted and its general structure
should be analyzed, where one should look for any outliers or
irregularities in it. At this point, one should determine which che-
mometrics/informatics analyses to perform. The data preprocessing
necessary for these analyses should then be undertaken. Because of
its widespread use and power, we recommend PCA first be per-
formed. The reader may also wish to consider a summary statistic
analysis. One then determines the appropriate number of abstract
factors to keep in the PCA model. After obtaining these initial
results, one should return to the original data to confirm them. We
then recommend that MCR be performed. Peak fitting of the MCR
factors can help reveal the chemical evolution of a data set.
Chemical intermediates may even appear in this analysis. Finally,
one may wish to consider cluster analysis to obtain another mathe-
matical perspective of one’s data. As suggested by the dashed lines
in the flowchart, we believe that chemometrics/informatics analyses
should always point one back to the original data. At that point,
initial findings can be confirmed, and the original data may be
better understood, dissected, and reconsidered so that more correct
and refined chemometrics/informatics analyses can then be
undertaken.

Finally, someone new to chemometrics/informatics may want
to apply these methods in their work, but be put off by all the new
vocabulary, concepts, and techniques in this paper and the previous
one. Does one really have to master all these concepts and methods
to be able to do chemometrics/informatics or is there an easier
way? We think there is an easier way. Of course, we believe that (i)
all the methods described in this work are important, where each
has strengths that let it solve certain problems better or more con-
veniently than the others and (ii) there is value in probing data sets
with different statistical/mathematical tools because the results
from these methods can reinforce each other. Nevertheless, in our
opinion, those who wish to most quickly benefit from chemomet-
rics/informatics in their XPS analyses should focus on MCR, first
reading (and following) Secs. III A and III B and then skipping to
the sections on MCR. The other sections of this document and the
information in the previous paper can then be referred to as
needed. In our opinion, not only do the most exciting and impor-
tant results in this study come from MCR, MCR is easier to apply
than PCA, and its results are generally more intuitive. For example,
spectra taken under identical conditions do not, in general, need to
be preprocessed prior to MCR. In contrast, some form of prepro-
cessing is required before most PCA analyses, and it is not always
clear what that best preprocessing approach is. MCR factors are
also much easier to interpret than PCA loadings because they gen-
erally look like (and very often represent) real spectra. In addition,
while PCA is often used to estimate the number of factors that are
needed in an MCR analysis, one can do this with MCR itself by

FIG. 1. Flowchart of the topics covered in this work (blue boxes). The red
boxes indicate important subtopics.
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(i) looking at the amount of variance captured by the different
MCR factors (in a good model, the number of factors that
are kept will generally account for most of the variance in the
data set),

(ii) examining the factors themselves to see where they no longer
show meaningful structure,

(iii) creating models with successively larger numbers of factors
in them, evaluating the chemical reasonableness of the
models (this approach is shown in Sec. III),

(iv) perhaps reconstructing spectra from one’s data set with MCR
factors as is done in Figs. 13–15 for PCA, and

(v) using what one knows about one’s sample to determine the
appropriate number of MCR factors to keep/expect.

It would probably be best to use a combination of these
approaches. While our view may not be shared by all chemometri-
cians, we believe that MCR is the most powerful and relevant tool
for analyzing the types of data sets considered in this work, and
that if one were to learn and apply only one of these techniques, it
should be MCR. However, in the long run, if one is to be effective
in this space—if one wishes to be able to apply chemometrics/
informatics methods to a wide variety of data sets, one should
become familiar with at least PCA, and, in time, with other chemo-
metrics/informatics methods as well.

II. EXPERIMENT

The impact of repeated XPS analyses (x-ray irradiation of the
samples) on two organic materials (cellulose and tartaric acid) was
examined using the data sets from two different instruments as
described below.

A. Materials analyzed

1. Cellulose

Sixty C 1s and O 1s XPS narrow scans of a cellulose sample
(filter paper) were collected with a Kratos AXIS Ultra instrument
with an Al K-alpha monochromatic source at 300W. In our experi-
ence, the charge compensation system for this instrument is
superb—the data were not shifted or otherwise corrected after they
were collected. The pass energy for these measurements was 10 eV.
The instrumental resolution determined from the Fermi edge of
silver yielded a resolution of 0.5 eV with a step size of 0.1 eV. The
region analyzed was about 150 × 350 μm2 (FOV2 slot). Acquisition
of each spectrum took about 10 min. The total analysis time was
36 h.

2. Tartaric acid

One hundred and one C 1s and O 1s XPS narrow scans of a
tartaric acid sample were collected with a Thermo Fisher Scientific
K-alpha+ spectrometer. Samples were mounted by pressing them
into a well on the Thermo K-Alpha copper powder sample
exchangeable top plate. Data were recorded using a microfocused
monochromatic Al K-alpha x-ray source (6 mA × 12 kV = 72W)
using the 400-μm spot option which forms an ellipse of approxi-
mately 600 × 400 μm2. Data were recorded at pass energies of
150 eV for survey scans and 40 eV for high resolution/narrow scans

with 1 and 0.1 eV step sizes, respectively. A total of two scans each
for the C1s and O1s regions were acquired, totaling approximately
50 s per iteration. Charge compensation was achieved using a com-
bination of both low energy electrons and argon ions with the
flood source operating at the following conditions: beam = 0.2 V,
emission = 100 mA, and extractor = 40 V. However, in spite of the
reasonable efforts undertaken to provide adequate charge compen-
sation for the sample, the less expensive K-alpha+ instrument prob-
ably does not have the capabilities of the higher end instrument
used to analyze the cellulose sample. Accordingly, in this work,
these data were handled in both corrected and uncorrected ways.
That is, all of the analyses in this work, except those in Figs. 13–15,
were performed with uncorrected/unshifted data. Appendix
describes the approach taken to shift the peak positions of the O 1s
peaks to a common value.

B. Data organization

The spectra analyzed herein were organized row-wise into
data matrices, where each row of the data set contained one spec-
trum/scan. The concatenated data set consisted of C 1s and O 1s
narrow scans joined/linked together into a single spectrum.

C. Computer/software

The computer programs used to analyze the data sets with
summary statistics were written in the MATLAB computing envi-
ronment (Version R2018b, Release No. 8.6.0.267246, The
MathWorks Inc., 1 Apple Hill Drive, Natick, MA). The computer
used for this work was an Intel Corei7-4770 CPU@3.40 GHz with
8.0 GB of RAM on a 64-bit Windows 10 Enterprise Edition operat-
ing system. PCA and MCR were performed using the PLS Toolbox,
version 8.7, and MIA Toolbox, version 3.0.9 from Eigenvector
Research, Inc., Wenatchee, WA, in the MATLAB programming
environment. Curve fitting was performed in CASAXPS 2.3.25. The
PCA abstract factors used in Figs. 13–15 were computed using
Iterative SVD (Ref. 52) implemented in CASAXPS.

III. RESULTS AND DISCUSSION

We now show the chemometrics/informatics analyses of two
moderately large XPS data sets, as presented in a series of subsec-
tions. These subsections cover important concepts/steps that
should be considered in performing chemometrics/informatics
analyses including gathering all the information possible about the
samples, examining/plotting the raw data, determining the types of
analyses to perform, preprocessing the data, knowing where to
begin the chemometrics/informatics analysis, identifying outliers or
other unexpected features in data sets, returning to the original
data to confirm chemometrics/informatics results, determining the
number of factors to keep in a model, MCR, peak fitting of MCR
factors, more complicated MCR factors and the presence of inter-
mediates, and cluster analysis, including using the average spectra
from clusters to follow an analysis. We again refer the reader to the
flowchart in Fig. 1, which shows the logical sequence of and con-
nections between these topics.
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A. Gather/use all the information you have about your
samples

As discussed in Paper I,53 all of the information that is avail-
able about a sample, including its chemical/structure information,
should be considered in a chemometrics/informatics analysis of it.
Most of this paper is about analyses of two data sets obtained from
samples of cellulose and tartaric acid. The structures of these poly-
mers/molecules are shown in Fig. 2. In both cases, these structures
suggest that two types of chemically different carbon are in these
materials: for cellulose, we expect carbon in +1 (C—O) and +2
(O—C—O) oxidation states, while for tartaric acid, we expect
carbon in +1 (C—O) and +3 [C(O)O] oxidation states.13 Thus, if
additional (more than two) signals are present in the XPS spectra
of these materials, they must come from impurities or (in the case
of cellulose) additives.

B. Examine (plot) the raw data

As discussed in Paper I,53 an early step in a chemometrics/
informatics analysis should be to visually examine/plot the data.
Figure 3 presents overlay plots of the C 1s and O 1s narrow scans
from the cellulose and tartaric acid data sets, i.e., all the spectra are
plotted on top of each other. These plots show significant changes
in the data, where such changes in XPS spectra may indicate
sample degradation or charging. These plots also suggest that there
is a rather significant break or discontinuity in the cellulose O 1s
data set. These plots provide good motivation for the chemomet-
rics/informatics analyses of these spectra.

Waterfall plots show spectra in a side-by-side, sequential
fashion. The waterfall plots in Figs. 4(a)–4(c) for cellulose show a
decrease in the C—O peak, an increase in the reduced carbon peak,
and a decrease in the O 1s signal. Because of the more three-
dimensional nature of waterfall plots, it can be advantageous to

view them from different angles. Figure 4 shows “high binding
energy” and “low binding energy” views of the cellulose and tar-
taric acid C 1s data sets. These plots again suggest that there is a
break/discontinuity in the cellulose data, which will be discussed
below. Like the plots of the cellulose data, the waterfall plots of the
tartaric acid data show an increase in the reduced carbon peak and
a decrease in the O 1s signal [see Figs. 4(d)–4(f )].

Another possible way to view spectra is by plotting their deriv-
ative. Figure 5 shows the first and last (60th) C 1s and O 1s narrow
scans of the cellulose data set and their derivatives. These plots
reveal considerable differences between the 1st and 60th C 1s
narrow scans in both their differentiated and undifferentiated
forms. However, the changes in the O 1s spectra are more subtle—
the most obvious change in them is that the O 1s peaks decrease in
size. However, the O 1s peak position and peak shape do change to
some degree, where the shift in this peak position is nicely revealed
by the change in the zero-crossings of the corresponding derivative
curves. There is generally more complexity/“wiggles” in derivative
spectra than undifferentiated spectra.

C. Develop a general strategy for the chemometrics/
informatics analysis

It can be challenging for a beginner in chemometrics/infor-
matics to know which analyses/tools to apply to a data set.
Accordingly, if an analyst is unsure how to proceed, we recommend
the approach in the flowchart in Fig. 1. Of course, there are other
chemometrics/informatics analyses and approaches that the analyst
will learn in time and be able to consider. However, one new to
this area may wish to follow the approach outlined in Fig. 1
because (i) PCA, MCR, and cluster analysis are very well accepted
and established and (ii) they have been shown to be effective on
many types of data sets. We have also found summary statistics to
be helpful in the initial evaluation of our data. Of course, those
who are more experienced with chemometrics/informatics may see
more tailored/focused approaches for analyzing particular data sets.

D. Preprocess the data

“Data preprocessing” or just “preprocessing” refers to any
mathematical treatment of a data set prior to a chemometrics/infor-
matics analysis. The objectives of data preprocessing are to suppress
signal that is not of interest, bring signal of interest to the forefront,
and make the data mathematically consistent with the analyses that
are to be performed on it, e.g., one may add an extremely small
number to zero values in a data set to prevent an algorithm from
dividing by zero. Paper I53 describes multiple ways of preprocessing
data for chemometrics/informatics analyses that include no prepro-
cessing at all, normalization with the 1-norm, baselining, variable
selection, mean centering, autoscaling, Poisson scaling, concatena-
tion, differentiation, smoothing, and the use of multiple preprocess-
ing methods. Some of these methods are important for XPS data
analysis, and some of them are discouraged. An advantage of
pattern recognition entropy (PRE), which will be described in
Sec. III E, is that it requires little or no preprocessing.

FIG. 2. Chemical structures of cellulose (top) and tartaric acid (bottom).
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E. Where to start an informatics analysis, and
identifying outliers and unexpected features in data
sets

A summary statistic is a single number that characterizes a
spectrum. Summary statistical analyses are quite easy to perform
and can be helpful in identifying trends in data/spectra.
Accordingly, we suggest that a summary statistic be applied early in
a data analysis. PRE,1,5,6,59–61 which is based on Shannon’s entropy,
clusters and reveals trends in data, where its results are often
similar to those in PCA scores plots. PRE is particularly useful in
image analysis. Figure 6 shows the PRE analyses of the C 1s and O

1s spectra from the cellulose and tartaric acid data sets. First, Fig. 6
simply reveals that the PRE values change, which suggests that the
spectra are changing (in three of the four subplots in Fig. 6 these
changes are basically monotonic). Of course, this is not surprising
because the original data/underlying spectra are also changing
(see Figs. 3 and 4). Second, PRE reveals an abrupt change in the
cellulose C 1s and O 1s spectra, where this discontinuity occurs
between spectra 51 and 52. No evidence for a gap or jump is
present in either the raw spectra (Figs. 3 and 4) or in the PRE anal-
yses [Figs. 6(c) and 6(d)] of the tartaric acid spectra. Figure S1 in
the supplementary material65 shows other summary statistical

FIG. 3. Overlay plots of 60 (a) C 1s and (b) O 1s narrow scans from an XPS analysis of cellulose and 101 (c) C 1s and (d) O 1s narrow scans from an XPS analysis of
tartaric acid. Arrows show the general direction of early time to later time in data collection. See Appendix for an approach used to energy shift the O 1s and C 1s tartaric
acid peaks such that the O 1s signals would align.
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FIG. 4. Waterfall plots of the C 1s and O 1s narrow scans in the cellulose [(a)–(c)] and tartaric acid [(d)–(f )] data sets. Two different views of the C 1s data sets [(a) and
(b) and (d) and (e)] and one view of the O 1s data sets [(c) and (f )] are presented. The cellulose and tartaric acid data sets here contain 60 and 101 spectra, respectively.
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analyses of these data. PRE is a rather new chemometrics/informat-

ics tool. It was developed by some of the authors on this paper.
As single numbers, summary statistics are limited in the

amount of insight they can provide about spectra. Accordingly, we
next recommend that a whole-spectrum analysis be performed.
The most common, and arguably important, of these EDA
methods is PCA. Figure 7 shows the two-dimensional PCA scores
plots of the C 1s, O 1s, and concatenated C 1s and O 1s spectra of

the cellulose and tartaric acid data sets, which were preprocessed
by mean centering. In all cases, the data points/spectra fall along
trajectories, which suggest steady changes in the spectra. These
types of trajectories are often observed in PCA analyses. As can be
seen in the x- and y-labels of these plots, most of the variance in
these data sets is captured by these first two PCs. In Paper I,53 and
also below, we discuss methods for determining the number of
abstract factors to keep in a chemometrics/informatics analysis. The
breaks in the trajectories of the data points/spectra in the PCA of
the cellulose data set [Figs. 7(a)–7(c)] take place at the same point
as the breaks in the PRE analysis in Figs. 6(a) and 6(b). This dis-
continuity in the data was confusing to us. The scientist who took
the data informed us that after scan 51, a different analysis was per-
formed on this cellulose sample, after which the remainder of the
data for this analysis were collected. That is, the cellulose received
additional irradiation between scans 51 and 52. As in its PRE anal-
ysis, no break or discontinuity is present in the tartaric acid data
set [Figs. 7(d)–7(f )]. Rather, continuous trajectories are observed,
which, again, suggest steady changes in the spectra.

Outlier identification is an early step in an informatics analy-
sis. In the C 1s, O 1s, and concatenated C 1s and O 1s PCA scores
plots of cellulose [Figs. 7(a)–7(c)], the first points (corresponding
to the first narrow scans collected) are either fairly far from the
next points and/or inconsistent with the trajectories of the points
that follow them. These results suggest that the first C 1s and O 1s
scans of the cellulose data set may be outliers. These effects are
even more pronounced in the 3D PCA scores plot (on the first
three PCs of these data) in Fig. 8. This result illustrates that even if
most of the variation in a data set is be captured by a few PCs, the
higher PCs sometimes contain useful, and even important, infor-
mation about the data set. The same applies for MCR. Finally,
additional information may be added to PCA scores plots. Figure 9
shows a plot of the PCA of the concatenated C 1s and O 1s narrow
scans of the cellulose data set, where the elapsed time of the analy-
sis has been added to the plot via the color of the data points. This
type of plot allows additional information/another dimension to be
rather easily added to a graph.

F. Determine the number of abstract factors to keep in
a model

One of the challenges associated with PCA and MCR is deter-
mining the “right” number of abstract factors to keep, i.e., the
number that appropriately captures the relevant variance in a data
set. While there is no simple formula or approach for determining
the appropriate number of abstract factors to keep, there are
accepted tools that can be used to this end, including scree plots,
cross-validation, and reconstructing the data from increasing
numbers of PCs. Figure 10 shows scree plots obtained from the
PCA analysis of the cellulose data set after mean centering. The top
row of plots in this figure, which show the cumulative variance cap-
tured by the PCs, reveals that for all three data sets (the C 1s, O 1s,
and concatenated C 1s and O 1s data sets), the first two PCs
capture more than 99% of the variance in the data. The bottom
row of scree plots in Fig. 10 shows the log of the eigenvalues
(a measure of the amount of variance captured per PC) as a func-
tion of the principal component number. In these types of plots,

FIG. 5. First and the last (60th) undifferentiated [(a) and (c)] and differentiated/
derivative [(b) and (d)] C 1s and O 1s narrow scans of the cellulose data set. A
smoothing/differentiating Savitzky–Golay filter54–58 was used to produce the
results in (b) and (d).

FIG. 6. PRE analysis of 60 C 1s (a) and O 1s (b) narrow scans from an XPS
analysis of cellulose and 101 C 1s (c) and O 1s (d) narrow scans from an XPS
analysis of tartaric acid. No preprocessing was performed on the data before
these analyses. PRE is a summary statistic based on Shannon’s entropy. That
is, PRE takes a spectrum and turns it into a single, characteristic number, which
is plotted here.
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one typically looks for a discontinuity in the plot (a “knee”) where
the slope of the results (as viewed from right to left) changes. This
point in the plot is often taken as the number of PCs that describe
a data set. Accordingly, these plots suggest that five PCs describe

the cellulose data sets quite well. That is, while, in some cases, a
two-PC (two-abstract factor) model may adequately describe the
cellulose data sets because of the high amount of variance it cap-
tures, the higher PCs appear to contain some relevant (non-noise)

FIG. 7. Two-dimensional PCA scores plots of the C 1s [(a) and (d)], O 1s [(b) and (e)], and concatenated C 1s and O 1s [(c) and (f )] spectra of the cellulose (first
column) and tartaric acid (second column) data sets after preprocessing by mean centering. Each point in these plots corresponds to a spectrum, where the “scores” here
are the projections of these spectra on a new set of rotated, orthogonal axes, which are called principal components, or “PCs.” The first two PCs here account for most of
the variance in the data sets. For example, in panel (c), the “(97.96%)” value in the x axis label “Scores on PC1 (97.96%)” indicates that PC1 accounts for 97.96% of the
variance in the data set.
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information. These results are typical of the PCA of many data
sets. The scree plots for the tartaric acid data sets in Fig. 11 show
that the first two PCs account, on average, for a lower fraction of
the variance in the data sets than for the cellulose data set, and that
a total of four to five PCs probably describe these data sets.

A more graphical approach for finding the number of abstract
factors that describe a data set is to first perform PCA on the data
and then to reconstruct the spectra from increasing numbers of
PCs. Both the reconstructed spectra and the loadings (abstract
factors) are examined here. It is often better not to preprocess the
data prior to this type of reconstruction, and the data were not pre-
processed in the analyses that are now described. Figure 12 shows
reconstructions of the first spectrum of the tartaric acid C 1s data
set from increasing numbers of abstract factors. The high RSD
values and the presence of significant structure in the residuals of
the reconstructions from one [Fig. 12(a)] and two [Fig. 12(b)]
abstract factors suggest that the spectrum is inadequately described
by one or two PCs. Reconstructing the spectrum from three or
more abstract factors yields spectra that no longer change signifi-
cantly. However, the residuals in Fig. 12(c) still show some structure,
which mostly disappears when the spectrum is reconstructed from
four abstract factors. The loadings of these factors in Fig. 13 suggest
that abstract factors 1–4 have meaningful structure and that four
abstract factors (PCs) adequately describe this data set. Nevertheless,
like scree plots and cross-validation, this is an inexact approach.
There appears to still be a small amount of structure/information in
abstract factors 5 [Fig. 13(e)] and 6 [Fig. 13(f)]. Nevertheless, these
factors are becoming noisier, which also suggests that they are con-
tributing less useful information to the analysis. With the exception
of the first abstract factor, the negative peaks in the abstract factors
in Fig. 13 make them hard to interpret chemically. As noted in
Paper I,53 the approach of reconstructing data from abstract factors
should be applied to different spectra in a data set. Figure 14 shows
the reconstruction of the 50th C 1s spectrum in the tartaric acid

FIG. 8. Three-dimensional PCA scores plots of the (a) C 1s, (b) O 1s, and (c)
concatenated C 1s and O 1s spectra of the cellulose data set after preprocess-
ing by mean centering. PC 3 here only accounts for a small amount of the vari-
ance in these data sets.

FIG. 9. Two-dimensional PCA scores plots of the concatenated C 1s and O 1s
narrow scans of the cellulose data set with the elapsed time shown as the color of
the data points. In PCA, the spectra are, in essence, plotted as single points in a
hyperspace, where the axes of this coordinate system are rotated to align with the
greatest amount possible of variance in the data. The “scores” of the data points
(spectra) are the projections of the data points (spectra) on the new (rotated) axes,
where these new axes as called “principal components” or “PCs.”
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data set. Fortuitously, this spectrum is very well described by the
first abstract factor. That is, if only this spectrum were reconstructed,
one might conclude that only one, or perhaps two, abstract factors
are necessary to describe this data set. Finally, one can denoise/
smooth a spectrum by reconstructing it from a limited number of
abstract factors. This removal of noise is illustrated in Fig. 12—
compare the noise levels on the spectra reconstructed from three
and four abstract factors to the original spectrum, i.e., the spectrum
reconstructed from all the abstract factors.

G. Return to the original data after an informatics
analysis to confirm findings

With modern chemometrics/informatics software, it is easy to
perform many different analyses on data sets. However, the predic-
tions and findings from these analyses should always be confirmed
in the original data. We now follow this procedure for the outlier
in the cellulose data set (spectrum 1) suggested in Figs. 7–9.
Figure 15 shows the raw, concatenated C 1s and O 1s data for the
first three narrow scans of this data set. Included in this plot are
enlarged views of the tips of the peaks. While one might argue that
these three scans are not terribly different from each other, Fig. 15
suggests that spectrum 1 is indeed different from spectra 2 and 3.
These results underscore the ability of chemometrics/informatics

methods to differentiate between spectra, even when the differences
between them are fairly subtle. These differences might have been
missed otherwise.

H. Multivariate curve resolution (MCR) (of the cellulose
data set)

MCR has become popular among chemometricians as it offers
various advantages over PCA. For example, because of the non-
negativity constraints that are usually applied in MCR, MCR load-
ings have the appearance of real spectra, making them easier to
interpret, while PCA loadings often have negative peaks (see, for
example, Fig. 13). Figure 16 shows scores and loadings plots for
two-component MCR models of the C 1s, O 1s, and concatenated
C 1s and O 1s data of the cellulose data set. In all three cases, more
than 99% of the variance in the data sets is captured by two com-
ponents. In each case, the scores on one of the components rise
monotonically, while the scores on the other fall monotonically.
Accordingly, one might expect that the first and last scans of the
data sets would basically be the same as the MCR components,
which is confirmed in the last row of Fig. 16. In other words, MCR
makes the interesting prediction that the cellulose spectra are essen-
tially linear combinations of the first and last spectra in this data
set. Chemically, this implies that there are two chemical states for

FIG. 10. Scree plots from the PCA analyses of the cellulose data sets after mean centering. Scree plots show the amount of variance captured by a PCA model vs the
principal component number.
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the material: an undamaged state and a damaged one. As we will
see below, it is not always the case that series of spectra can be con-
veniently described with only two components.

The following are additional conclusions/considerations from
the MCR analyses of the cellulose data set in Fig. 16.

(i) The break in the cellulose data between spectra 51 and 52,
which was apparent in the summary statistic [Figs. 6(a) and 6
(b)] and PCA (Figs. 7–9) analyses, is also obvious in the MCR
scores plots for all three models (the C 1s, O 1s, and concate-
nated C 1s and O 1s models) [see Figs. 16(a)–16(c)].

(ii) While the PCA analyses in Figs. 7(a)–7(c), 8 and 9 suggest that
spectrum 1 is an outlier in the C 1s, O 1s, and concatenated
data sets, this effect was only observed in the MCR model of
the O 1s spectra [see Fig. 16(b)], where spectrum 2 has the
highest and lowest scores on components one and two, respec-
tively. It is not entirely clear why this effect is only apparent in
Fig. 16(b). Nevertheless, these somewhat different results from
PCA and MCR underscore the importance of using multiple
informatics methods to analyze data sets. The different mathe-
matics of these methods probe data sets differently.

(iii) Preprocessing usually affects informatics analyses. For
example, the outlier in the cellulose data set became apparent
when the data were mean centered prior to the PCA analysis

(Figs. 7–9), but not when no preprocessing was applied (see
Fig. S2 in the supplementary material).65 No preprocessing
was applied to the cellulose data set prior to MCR. However,
it is incorrect to mean center (or autoscale) spectra prior to
MCR because of its non-negativity constraints, unless special
considerations/changes are applied in the analysis.

(iv) In Fig. 16, we obtain loadings with very similar shapes from
the C 1s, O 1s, and concatenated data sets, which suggests
that all of these analyses are revealing/exposing the same
chemical variation/evolution in the data.

(v) The relative concentrations of the different chemical compo-
nents of a material are often more obvious/better preserved
in the loadings obtained from the concatenated data set. For
example, in Fig. 16, the loadings of the concatenated data set
are closer to the real spectra. MCR results from concatenated
data can be easier to interpret—concatenation forces the rela-
tive areas of the peaks/different signals to be constant.

I. Peak fitting the MCR factors (of the cellulose
data set)

We believe we now show for the first time that chemical infor-
mation can be extracted from MCR factors of XPS data sets by
peak fitting. Such fits can help us understand the chemical changes

FIG. 11. Scree plots from the PCA analyses of the tartaric acid data sets after mean centering. Scree plots show the amount of variance captured by a PCA model vs the
principal component number.
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that may take place in a material. In this section, we focus on
fitting MCR factors of C 1s narrow scans. Figure 17 shows both the
fits of the two MCR components of the cellulose C 1s spectra
shown in Fig. 16, and the fits of the first and last C 1s narrow scans

in this data set. The protocol used in these fits was determined as
follows. First, the spectra and MCR components were fit with four
synthetic peaks (Voigt functions with a mixing parameter, m, that
was allowed to vary from 0 to 100)62 that represent the following

FIG. 12. Reconstructions of the first, unpreprocessed, C 1s spectrum from the tartaric acid data set using (a) one, (b) two, (c) three, (d) four, (e) five, (f ) six, (g) twelve,
and (h) all the PCs (abstract factors). The residuals of these reconstructions are shown above the spectra in each panel. As the number of PCs used to reconstruct the
raw data increases, the residuals and residual standard deviations (residual STDs) decrease.
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chemical states: C—C/C—H (peak 1), C—O (peak 2), O—C—O
(peak 3), and carboxyl carbon/C(O)O (peak 4),31 where these
peaks were constrained to have equal widths, their Gaussian contri-
butions/contents were optimized such that all four peaks in a fit

had the same value of the mixing parameter, and the position of
the highest binding energy peak was constrained to be at least
1.2 eV above the previous peak. This last constraint was only neces-
sary in the fits of the first two narrow scans in the data set. These

FIG. 13. First six loadings (abstract factors) from a PCA analysis of the C 1s tartaric acid data set in which no preprocessing was performed on the data. The “loadings” contain
the contributions of the original axes to the new (rotated) axes in PCA. These abstract factors were used to regenerate the spectra in Figs. 12 and 14. For these analyses
(in Figs. 12–14), the binding energy scale was adjusted to align the O 1s spectra peak maxima in all the spectra. Appendix contains more details of this adjustment.
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same chemical states of carbon were used in a recent XPS study of
cellulose.39 A universal polymer Tougaard background was used
for all the fits.63 No other constraints were applied. These fits indi-
cate that significant changes take place during the XPS analysis of

cellulose, i.e., the first and last narrow scans (and also the two
MCR components) are very different. As expected from the results
in Fig. 16 for cellulose, the fits to MCR components 1 and 2 are
quite similar to the fits of the first and last C 1s narrow scans in

FIG. 14. Reconstruction of the 50th unpreprocessed C 1s spectrum from the tartaric acid data set using (a) one, (b) two, (c) three, (d) four, (e) five, ( f ) six, (g) twelve, and
(h) all abstract factors. The residuals of these reconstructions are shown above the spectra in each panel. As the number of PCs used to reconstruct the raw data
increases, the residuals and residual standard deviations (residual STDs) decrease.
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the data set, respectively. These results are also consistent with sig-
nificant sample degradation during the analysis. For example, an
obvious change in the spectra is the decrease in intensity of
the C—O peak and the concomitant increase in intensity of the
C—C/C—H peak, which suggests carbonization of the material.

The protocol used to fit the C 1s narrow scans and MCR com-
ponents in Fig. 17 was applied to all the spectra in the cellulose
data set. Figure 18 shows the percent areas of the four synthetic
peaks used in these fits plotted as a function of sample irradiation
time [not scan number as in Figs. 6 and 16(a)–16(c)]. This plot
clearly shows the break in the data that is apparent in Figs. 6
and 16, indicating that the latter data points (after the break) are an
extension of the earlier ones. Figure 18 also shows the total C/O
area ratio for cellulose as a function of x-ray exposure. The increase
in this ratio suggests sample damage, and it is also consistent with
the increase in the area of peak 1 and the decrease in the areas of
peaks 2 and 3 in Fig. 18. Over the course of this damage, peak 4
(the carboxyl signal) increases and then begins to decrease, suggest-
ing it is an intermediate (there should not be any carboxyl func-
tionality in pure cellulose, see Fig. 1). Sample damage is expected
to randomize and/or introduce new chemical states into a material.
Therefore, the best synthetic peaks for the fits to the data may
change over the course of the analysis. In particular, a more
random material is often better described by a more Gaussian fit
component. We optimized the mixing parameter, m, in all the fits.
However, there was no clear trend in the results, e.g., the average
value of m for these scans was 10., the standard deviation here was
11, and, in general, for each fit, the plot of the error in the fit
versus m was flat (at a minimum value) from m = 0 to m = 20–40.
Even though m did not change/show a trend in these fits, we still
believe it is a good idea to check for this possibility.

While MCR can be extremely useful in understanding
series of spectra, MCR components may contain artifacts or
anomalies. For example, component 1 [see Fig. 17(a)] contains
a small carboxyl peak that is not in the first spectrum in the
data set. A more subtle example of an artifact is on the right
side of component 1. Here, as indicated in the residuals, com-
ponent 1 is not precisely fit with the first synthetic peak.
Nevertheless, in spite of these artifacts, MCR is an extremely
powerful tool for understanding series of spectra. However, the
possibility of artifacts in an MCR analysis underscores the
importance of utilizing all the information available in an anal-
ysis, i.e., from both the raw data and (ideally) multiple infor-
matics analyses of it—an artifact created by one chemometrics/
informatics analysis may not be present in the results of
another chemometrics/informatics tool.

J. Identification of intermediates in an MCR analysis

In addition to the methods mentioned in Sec. III F, another
way to determine the number of abstract factors that describe a
data set is to create models with successively larger numbers of
factors in them, evaluating the chemical reasonableness of the
models. As noted above, PCA of the mean-centered C 1s data set
of tartaric acid suggested that a minimum of four abstract factors is
necessary to describe the data set. Figure 19 shows MCR models
of the tartaric acid data set with three, four, five, and six factors.

The MCR models with three to six factors depicted in Fig. 19 all
capture more than 99% of the variance in the data, which is defi-
nitely a positive sign. The loadings of the three-factor model [Fig.
19(b)] are smooth and appear to be chemically reasonable. The
scores on these components [Fig, 19(a)] suggest that there is an
initial state (described by component 3), an intermediate state
(described by component 1, which grows in and then disappears),
and a final state (described by component 2) for this material.
However, the scores here are somewhat unreasonable because those
corresponding to the initial and final states do not change in a
monotonic fashion. These results suggest that a model with more
components should be considered. Figures 19(c) and 19(d) show
the four-component MCR model of the tartaric acid C 1s data set.
Again, the loadings [Fig. 19(d)] are smooth and chemically reason-
able. The corresponding scores plot [Fig. 19(c)] indicates that there
are two initial states (components 3 and 4), one intermediate state
(component 1), and one final state (component 2). However, as
before, the initial and final states do not change in an entirely
monotonic fashion. These results again prompted us to consider a
model with more factors.

Both the five and six-component models of the tartaric acid
data set are satisfactory in many ways. First, all of the initial and
final states in the models change in a monotonic fashion. In addi-
tion, both models have scores and loadings that are not overly
noisy, although we would be uncomfortable with any more noise in
the results than that in the six-component model because noisy
loadings suggest that we are fitting/adding noise in a model. The
five-component model decomposes the spectra into two initial
states (components 4 and 5), two intermediate states (components
1 and 2), and one final state (component 3). These results raise
the interesting possibility that component 3 (the final state) is
also an intermediate state, i.e., that the scores on this component
will also eventually decrease. Obviously, more scans would be

FIG. 15. First, second, and third concatenated C 1s (left) and O 1s (right)
spectra of the cellulose data set. The insets of these panels show zoomed-in
views of the data.
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needed to confirm or reject this hypothesis. The reduced carbon
(C—C/C—H) signal in the loadings increases from the initial states
through the intermediate states to the final state, suggesting a car-
bonization of the material.

The six-component MCR model of the tartaric acid data set
presents a particularly interesting view of the evolution and deg-
radation of the material. The C 1s spectrum of pure tartaric acid
should contain two equal-area, chemically shifted signals corre-
sponding to the two chemically different carbons in the mole-
cule. However, in addition to the two expected signals, the initial
states in the six-component model (components 5 and 6) also
show reduced carbon, and these components do not have the

two main signals in exactly the expected 1:1 ratio. That is, these
initial states suggest the presence of adventitious carbon contam-
ination. Component 4 then grows in as the initial states (compo-
nents 5 and 6) disappear. Interestingly, component 4 contains
the two equal-area signals expected from tartaric acid, with little
reduced carbon. These results suggest that the x-ray beam and
photoelectrons “clean” the surface of adventitious carbon.
Thereafter, two intermediate states (components 1 and 2) and a
final one (component 3) appear. Again, the final state (compo-
nent 3) may actually be an intermediate. We believe that this
analysis is the first time these types of intermediate states have
been shown/suggested in an XPS degradation study. MCR is a

FIG. 16. MCR of the 60 XPS spectra in the cellulose data set. (a)–(c) Scores plots, (d)–(f ) loadings on components 1 and 2, and (g)–(i) plot of the first and last scans
from the C 1s [(a), (d), and (g)], O 1s [(b), (e), and (h)], and concatenated C 1s and O 1s [(c), ( f ), and (i)] data sets. The scores in (a)–(c) are the projections/contributions
of the loadings (abstract factors) to the original spectra. That is, the spectra are represented as a linear combination of the two components shown in (d)–(f ).
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powerful tool for these types of analyses. However, this all begs
the question, how do we actually know that the degradation of
this material involves multiple intermediates? First, intermediates
are present in many complex chemical reactions, and the degra-
dation of tartaric acid is probably complex. Second, the five-
component MCR model, where component 1 has grown in
(around scan 22), should mostly describe the data (the score on
the other components is low at that point). As shown in Fig. S3
in the supplementary material,65 component 1 and scan 22 are
indeed very similar, i.e., the model appears to be representing the
data at this point, which suggests it has some validity. In
summary, these results suggest the interesting possibility that
MCR can be used to uncover the underlying chemistry, including
intermediates, in complex XPS data sets.

To better understand their chemistry, we peak fit the MCR
factors in the six-component model in Fig. 19(h). To find an
appropriate protocol for this fitting, the raw spectra in the data set
were first fit. This protocol consisted of three synthetic peaks with
equal widths representing the C—C/C—H (peak 1), C—OH (peak
2), and COOH (peak 3). No other constraints were applied to these
fits. The optimal m values (mixing parameters) for the fit

FIG. 17. Peak fitting of the two MCR components used to describe the cellulose data set and of the first and last spectra of this data set. See the text for the fitting proto-
col. The abstract factors (components) here were multiplied by a factor of 103.

FIG. 18. Areas (as percentages of the total area) of the four synthetic peaks in
the peak fits to the C 1s narrow scans in the cellulose data set (see the text for
the fitting protocol).
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components ranged from 0.6 to 0.8, and the average spacings
between the first two peaks and the last two peaks were 1.72 ± 0.04
and 2.33 ± 0.09 eV, respectively. These results prompted us to fit
the loadings in Fig. 19 with three synthetic peaks of equal widths,

spacings of 1.72 and 2.33 eV, and an m value of 0.7. Very good fits
were obtained with this protocol (see Fig. 20). There is little evi-
dence of sample charging in these fits, i.e., the first peak stayed at a
relatively constant position of 285.0 ± 0.2 eV, where the shifts in the

FIG. 19. MCR analyses with different
numbers of components of the C 1s
narrow scans of the tartaric acid data
sets. MCR scores (left) and loadings
(right) from models with three [(a) and
(b), four [(c) and (d)], five [(e) and (f )],
and six [(g) and (h)] components. The
scores and loadings become noisier as
the number of components in the
models increase, i.e., increasing
amounts of noise are being incorpo-
rated into the models.

ARTICLE avs.scitation.org/journal/jva

J. Vac. Sci. Technol. A 40(6) Nov/Dec 2022; doi: 10.1116/6.0001969 40, 063205-19

Published under an exclusive license by the AVS

https://avs.scitation.org/journal/jva


peak positions were not monotonic. Figure 21 is a plot of the areas
of the three synthetic peaks used to fit the six MCR components. It
shows that (after the initial, apparent cleaning of the material) the
amount of reduced carbon increases monotonically from the earlier

to the later components, while, overall, the areas of the two oxygen
containing peaks decrease somewhat. These results suggest that, as
was the case with cellulose, x-ray exposure and photoelectrons car-
bonize tartaric acid.

FIG. 20. Peak fits of the MCR loadings of the six-component MCR analysis of the tartaric acid C 1s data set in Fig. 19(h). See the text for the fitting protocols used here.
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K. Cluster analysis

Cluster analysis is another widely used EDA method. Cluster
analysis groups similar samples/spectra according to their distances
in a multidimensional space. The resulting groupings are typically
shown as a dendrogram. Figure 22(a) shows the cluster analysis/
dendrogram of the tartaric acid C 1s data set that grouped the data
into five classes. (The number of clusters/classes in a cluster analy-
sis can be chosen by the user.) Interestingly, the spectra naturally
clustered in this analysis in the same consecutive order that they
appear in in the data set. In other words, the series of clusters
reflects the evolution/changes that are taking place in the data set.
Figure 22(b) shows the average spectrum for each of the five clus-
ters. As in the MCR analysis [Fig. 19(h)], these spectra indicate
that the sample is carbonizing with x-ray exposure (the reduced
carbon peak grows in). Thus, cluster analysis confirms the other
results in this work—as previously noted, it is good to verify the
trends/conclusions of one chemometrics/informatics method with
others. Cluster analysis was also performed on the O 1s and con-
catenated data sets. As with the C 1s data, the clustering took place
consecutively. However, different spectra appeared in the different
clusters, i.e., the groupings were not the same. Cluster is relatively

FIG. 21. Percent areas of the synthetic peaks used to fit the MCR
components of the tartaric acid data set in Fig. 20.

FIG. 22. (a) The dendrogram from the cluster analysis of the tartaric acid C 1s data set and (b) the average spectrum of each cluster identified in the dendrogram in (a).
The numbers on the left side of the figure correspond to the spectra in the data set. The user can select the number of clusters in a cluster analysis. That is, imagine
moving a vertical line back and forth across the dendrogram, e.g., if the line were at 3 × 105 on the x axis, two clusters would have been selected. Five clusters have been
selected here, which are color coded and numbered. The distances between the data points (spectra) or clusters of data points in a dendrogram are given by the lengths
of the lines parallel to the x axis.
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easy to apply and conceptually simpler than some other chemomet-
rics/informatics methods. However, cluster analysis does not gener-
ally provide as much insight or information as MCR or PCA. For
example, although the cluster analysis in Fig. 22 groups the data in
a reasonable way, it does not suggest or reveal the presence of inter-
mediates. Cluster analysis could lead to additional multivariate
analyses and/or XPS peak fitting. For example, one might perform
MCR or PCA on the spectra in a specific cluster. In addition, the
average spectra in Fig. 22(b) could be peak fit.

L. Summary of the results

The following is a summary of the information provided by
each of the chemometrics/informatics methods applied to the cellu-
lose and tartaric acid data sets, including where the analyses
agreed, any problem areas, and differences in the results.

(i) For the cellulose data set, in plotting (examining) the raw
data, PRE, PCA, and MCR showed a break in the data set.
This break would probably be harder to identify in a cluster
analysis. Two- and three-dimensional PCA scores plots indi-
cated that the first scan in the data set is an outlier, where the
presence of this outlier was confirmed by returning to the
original data. Neither PRE nor MCR produced this same
result, although MCR of the O 1s data suggested that the
second data point (spectrum) in the data set may be an
outlier. Scree plots suggested that five PCs describe the cellu-
lose data set, although most of the variance in the data sets
was captured by only two PCs—for at least some applications,
a two-abstract factor MCR model will be reasonable because
it captures so much of the variance in the data set. However,
as is often the case in factor-based analyses of data, even
though higher abstract factors may account for quite small
amounts of the variance in a data set, they may still contain
useful information about it. Overall, MCR indicated that the
cellulose data set could be quite well described by only
two-abstract factors, which closely resembled the first and last
spectra of the data set. In other words, MCR makes the inter-
esting prediction that the spectra in the data set are essentially
linear combinations of two-abstract factors (basically the first
and last spectra of the data set), which represent two chemical
states. In general, concatenated (combined C 1s and O 1s
spectra) gave the most chemically meaningful results in the
MCR analysis. MCR is unique in its ability to produce
abstract factors that closely resemble real, underlying spectra.
Peak fitting of the original C 1s data, and of the two MCR
components that describe it, better revealed the significant
chemical changes the material underwent as it carbonized.
While PCA is, and will continue to be, extremely important
in chemometrics/informatics, its orthogonality constraints do
not allow it to produce the same type of intuitive information.

(ii) None of the chemometrics/informatics methods applied to the
tartaric acid data set (PRE, PCA, MCR, and cluster analysis)
suggested that there were any outliers or discontinuities in it.
Rather, PRE and especially PCA, suggested quite smooth trajec-
tories (changes) for the spectra. Scree plots suggested that four
to five PCs describe the tartaric acid data set. Reconstruction of
this data set from abstract factors suggested that even a 6th PC

may contain meaningful information. As is common in MCR
analyses, models of the data set with successively more abstract
factors were considered. Models with three and four abstract
factors were not favored because of the lack of chemical reason-
ableness in their scores. The scores in the models with five and
six-abstract factors were both more chemically reasonable and
they suggested the presence of intermediates in the decomposi-
tion of this material. In our opinion, this is an extremely
important result. It is the first time something like this has
been observed. It suggests that MCR can be used to identify
intermediates/intermediate states in XPS data sets where
decomposition and other chemical changes are occurring. The
PCs from the PCA analysis were not fit in either this analysis
or the previous one as their more abstract nature simply does
not allow it. While cluster analysis provided a series of average
spectra that seemed to reveal the chemical evolution of the tar-
taric acid as it degraded, it did not suggest intermediates in the
decomposition of the material. Also, while cluster analysis is
easier to apply, and we do recommend it for EDA analyses
(years ago, some of us successfully analyzed hyperspectral
ToF-SIMS images using cluster analysis that produced very
interpretable and useful results64), we have not, in general,
found it to be as powerful as MCR.

IV. SUMMARY AND CONCLUSIONS

This article shows the application of some of the more common
EDA methods to the analysis of two XPS data sets. It is intended to
be a guide to using these methods. The current trend in XPS is to
collect increasingly large data sets in degradation, depth profiling,
operando, and imagining studies, which should make chemometrics/
informatics techniques increasingly relevant in the field. The first
step in an informatics analysis is to gather and consider whatever
information one has about one’s material. A next logical step is to
plot the raw data in different ways. One should then develop a strat-
egy for the analysis of one’s data. Next, the data are preprocessed,
and chemometrics/informatics analyses are performed. Summary sta-
tistics are a quick method of analyzing data sets, where PRE is often
sensitive to their underlying structure. PCA is another “first tech-
nique” that should be applied in chemometrics/informatics analyses.
Considerations for PCA include the number of PCs (abstract factors)
to keep in an analysis, different preprocessing methods, and different
ways of plotting/representing the results, including the addition of
extra information to scores plots. Scree plots, reconstruction of the
data from abstract factors, and consideration of the chemical reason-
ableness of a model can be used to determine the number of abstract
factors that describe a data set. One should return to the original
data after an informatics analysis to confirm predicted data structures
or outliers in the raw data. We strongly recommend MCR as an
EDA method for uncovering the underlying structure of complex
XPS data sets. For example, MCR analysis of the cellulose data sug-
gested that two states, representing the damaged and undamaged
material, describe the data well. These loadings closely resembled the
first and last scans of the data set. Concatenation of data can be
useful in MCR (and PCA) analysis—by linking two or more spectra
to become a single spectrum, the ratios of the peaks in each spec-
trum are “locked,” which can lead to more meaningful results. MCR
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factors of XPS narrow scans may be peak fit to better reveal their
underlying chemistry. The protocol for peak fitting MCR factors
may be based on fits of the raw data. The C/O area ratios from the C
1s and O 1s narrow scans in the cellulose data set correlated with the
increase in reduced carbon in the material and were consistent with
the proposed carbonization of the material. The degradation of tar-
taric acid appeared to be more complex. Models based on two to
four abstract factors were not entirely chemically reasonable. Five or
six-abstract factors appeared to better describe the data, where these
models raised the possibility of a contaminated surface state, a
cleaned surface state, and multiple intermediates. We believe this is
the first time the evolution of an XPS data set has been revealed in
this way. These data also show that the sample is carbonizing with
x-ray exposure. The MCR loadings of the six-abstract factor model
were peak fit. Finally, we showed cluster analysis of the tartaric acid
data set. The average spectra of each cluster were also used to follow
changes in this data set.
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APPENDIX

This appendix focuses on small shifts observed in the peak
positions of the O 1s tartaric acid spectra as they were collected by

a Thermo Fisher Scientific K-alpha+ spectrometer [see these raw
spectra in Fig. 3(d)]. As indicated in its structure (Fig. 2) and dis-
cussed herein, two well-separated C 1s signals of equal area are
expected from tartaric acid. In contrast, O 1s signals typically
undergo less chemical shifting—they are less sensitive to the chemi-
cal state of oxygen. The O 1s spectra in the tartaric acid data set are
featureless and rather stable in shape—they can be well approxi-
mated as a single peak. Figure 23 shows the first 20 O 1s spectra in
the tartaric acid data set. These spectra shift by a fraction of an eV
to higher binding energy. We took two approaches to analyzing
this (and its accompanying C 1s) data. In the first, the raw data
were used as collected. This approach was taken in all the analyses
shown in this work, except those in Figs. 12–14. In the second, the
O 1s signals in Fig. 23 were aligned to a common value, where
their accompanying C 1s spectra were shifted by the same amount.
In all likelihood, the consequences of not shifting these O 1s
spectra to a common binding energy value were that (i) more
abstract factors were needed to describe the data set (the spectra
were probably more spread out in the hyperspace they occupy), (ii)
the resulting chemometrics/informatics analysis was somewhat
more complicated because a larger number of abstract factors was
probably needed to describe data, (iii) it was probably somewhat
more challenging to determine the dimensionality of the data set
(the number of abstract factors that best describe it), (iv) the
abstract factors were probably a little harder to interpret because
they had to account for both sample charging (peak shifts) and
chemical effects, and (v) attempts that might be made to denoise
the spectra would require a larger number of abstract factors than if
the spectra were aligned. A negative effect of aligning the O 1s

FIG. 23. First 20 raw O 1s spectra from the tartaric acid data set fitted using a
single component to obtain the peak position/maximum.
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spectra in this data set is that any real chemical shifts in these data,
which may very well be present, are lost.
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