
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/15 4 4 9 0/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Jiang,  Yali, Yang, Ga n g,  Li, H aijian g  a n d  Zh a n g,  Tian  2 0 2 2.  Knowle d g e  d rive n

a p p ro a c h  for  s m a r t  b ridg e  m ain t e n a nc e  u sin g  big  d a t a  mining.  Auto m a tion  in

Cons t r uc tion  1 4 6  , 1 0 4 6 7 3.  1 0.10 1 6/j.au t con.20 2 2.10 4 6 7 3  

P u blish e r s  p a g e:  h t t p://dx.doi.o rg/10.10 1 6/j.au t con.20 2 2.1 0 4 6 7 3  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



 

1 
 

Knowledge Driven Approach for Smart Bridge Maintenance Using Big Data 1 

Mining  2 

Yali Jianga, Gang Yang a, Haijiang Li b,*, Tian Zhang a, *  3 
aCollege of Transportation Engineering, Dalian Maritime University, Dalian 116026, China  4 
bSchool of Engineering, Cardiff University, Cardiff CF24 3AA, UK 5 

* Corresponding authors: lih@cardiff.ac.uk (H.J. Li); saghb@126.com (T. Zhang); 6 

 7 

Abstract: Life cycle bridge maintenance is highly complex and multi-disciplinary oriented, 8 

different ICT technologies have been widely adopted, but the generated data and information 9 

are often intensive, specific and isolated, it is very difficult to contribute effectively for holistic 10 

bridge maintenance decisions. This paper investigates state-of-the-art methods used in 11 

bridge maintenance, a total of 2732 papers were selected for visualization analysis and 12 

323 papers were pinpointed for further critical review. The review informs that mindset 13 

shifting from traditional and pre-digital, through data driven to knowledge-based 14 

approach is required for bridge engineers to holistically understand multi-sources of 15 

data and information to enable systematic thinking. The review further reveals the need 16 

for a knowledge-driven approach that can leverage bridge maintenance big data to 17 

provide smart holistic decisions, a novel knowledge-oriented framework and 18 

methodology were proposed in the end with an aim to unify and streamline different 19 

sources of data and information to facilitate new developments towards smart bridge 20 

maintenance. 21 
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1 Introduction 26 

Bridges are essential for highway networks and play an important role in human 27 

society [1,2]; they are facing ageing challenges involving factors, such as 28 
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environmental corrosion, vehicle overload and human-made hazards [3,4]. According 29 

to the 2016 Canadian Infrastructure Report, 25% of the existing bridges are in poor or 30 

very poor condition [5]. According to the 2017 American Society of Civil Engineering 31 

report, approximately 240,000 bridges have exceeded their 50-year service life, and 32 

over 56,000 bridges have been classified as structurally deficient [6]. In China, the total 33 

number of dangerous bridges posing serious safety risks to human society was 34 

approximately 70000 by the end of 2017 [2]. To restore the sub-standard bridges back 35 

to perfect condition, ¥69.7 billion was invested in the renovation of 34,000 dangerous 36 

bridges in China between 2016 and 2020 [7]. According to the UK government, the 37 

number of substandard bridges has risen to more than 3,100 by January 2021 [8], and 38 

the cost for proper maintenance for those sub-standard bridges was estimated to be 39 

£1.16 billion by March 2022 [9]. Therefore, an effective maintenance procedure can 40 

considerably reduce the cost [5], and this becomes increasingly pivotal [10]. 41 

Bridge maintenance tasks are complex and multi-disciplinary oriented, e.g., 42 

structure, cost, health and safety, sustainability and environmental issues. resulting in 43 

an extremely complex process. Hence, proactive, holistic and smart lifecycle 44 

approaches are required to comprehend the complexity of bridge structural conditions. 45 

Embracing advanced technologies has continuously improved the intelligence level of 46 

bridge maintenance. The wide application of IoTs along with traditional bridge surveys, 47 

e.g., non-destructive technologies [11] and sensors [12], make it possible to obtain 48 

more comprehensive detection and monitoring data. Unstructured and structured 49 

datasets are quickly accumulated to form multisource, heterogeneous and 50 

autonomous maintenance ‘Big Data’, but only a small part of those are utilised 51 

successfully for bridge maintenance decision-making. Cloud computing [13], building 52 

information modelling (BIM) [14], artificial intelligence [15,16], etc., have greatly 53 

improved the data processing power. Virtual reality (VR) [17], digital twins (DT) [5], 54 

semantic web technology (SWT) [18], etc., provide a more intelligent data visualisation 55 

and reasoning approach for superlarge-scale bridge maintenance. All of these 56 
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innovations are leading the industry towards a more productive, more effectively 57 

managed digital age, where real-time data and project reporting will be available for 58 

maintenance projects. Recent developments are showing a gradual shift from data to 59 

knowledge-driven decision-making for bridge maintenance, and those accumulated 60 

large amounts of data can be turned into a vast base for knowledge mining for 61 

knowledge-driven approaches. 62 

Regarding smart bridge maintenance, some studies focus on specific technical 63 

applications, e.g., Abu Dabous et al. [19] comprehensively reviewed the commonly 64 

used noncontact testing technology for condition monitoring of concrete bridges. 65 

Agnisarman et al. [20] reviewed the application of automated visual inspection 66 

technology to inspect infrastructure, such as bridges. Fujino et al. [21] and Sun et al. 67 

[22] discussed the prospects and driving forces of big data technology in bridge 68 

monitoring. Zhou et al. [2] compiled the development of China’s bridge maintenance 69 

information system. These articles indicated that using information technologies to 70 

improve the quality and efficiency of management is the unanimous choice of bridge 71 

engineers. Other studies review details of analytical methods, e.g., Banerjee et al. [23] 72 

conducted a systematic and comprehensive review of the literature on the resilience 73 

assessment of bridges and bridge networks under single and multiple hazardous 74 

conditions. Kabir et al. [24] reviewed the application of multicriteria decision-making 75 

technology in the field of infrastructure management. Frangopol et al. [25] briefly 76 

reviewed the research results related to the design, maintenance, and lifecycle 77 

management of infrastructure (involving bridges). Although these reviews cover the 78 

application of advanced technologies or analytical methods in bridge maintenance, 79 

thus showing benefits from data-driven approaches, they have not been pushed further 80 

to examine the potential of knowledge-based approaches. The relevant 81 

understandings about knowledge-driven approaches are still missing. 82 

To address these gaps, this paper provides a critical review of smart bridge 83 

maintenance by collecting and analysing a large number of papers from the Web of 84 
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Science (WoS) core collection database, using literature visualisation analysis and 85 

critical review to study and conclude key areas for knowledge-driven smart bridge 86 

maintenance. The wider review visually analyses bridge maintenance using the 87 

CiteSpace software (6.1.R2), which covers four perspectives: literature quantity 88 

analysis, journal co-citation analysis, document co-citation analysis, keywords 89 

clustering and burst analysis; the later focused review summarises knowledge-driven 90 

smart bridge maintenance aiming at three areas: bridge maintenance tasks and issues, 91 

advanced technologies supporting smart maintenance, and holistic decision-making 92 

approaches. Based on the above review and analysis, a novel knowledge-oriented 93 

framework is finally proposed, with the aim of facilitating new developments towards 94 

smart bridge maintenance. 95 

2 Review and Analysis Methodology 96 

To explore the state-of-the-art development of intelligent technologies in bridge 97 

maintenance, a literature analysis is performed on the WoS core collection database. 98 

WoS is an important database resource for obtaining global academic knowledge 99 

supported by powerful combined retrieval functions [26,27]. The search is based on 100 

using the ‘AND’ and ‘OR’ operators search benchmark, and the search code in the 101 

database is as follows: 102 

TS = (xxx* AND/OR xxx*) 103 

Knowing that ‘TS’ represents the topic of the articles, ‘xxx’ and ‘*’ are standard for 104 

the search term and the fuzzy search, respectively. Further details of the operators’ 105 

search benchmark are as follows: 106 

 107 
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 108 
Fig. 1. Steps to search for papers in the WoS core collection database. 109 

This search in this paper is composed of four steps (concluded in Fig. 1): in step 110 

1, papers published between January 1, 2000, and December 31, 2021, are retrieved 111 

from the database on the topic of bridge maintenance. Papers that are not related to 112 

bridging engineering are excluded, such as the cytology, immunology and oncology 113 

categories, which include the term “intercellular bridge”. In addition, only articles and 114 

review articles written in English were selected for the document types because of their 115 

high quality and cutting-edge research [28]. After preliminary filtering, 2732 papers are 116 

selected, and their contents reveal that BIM, IoT, cloud technology and other 117 
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technologies are often mentioned in smart bridge maintenance driven by data or 118 

knowledge approaches. Consequently, in step 2, the following search benchmarks are 119 

jointly used in the WoS core collection database to refine the search results: ‘BIM OR 120 

“Building Information Model*”’, ‘IoT OR “Internet of Things”’, ‘“Big Data”’, ‘cloud’, and 121 

‘Semantic’. 122 

 123 
Fig. 2. Network of co-occurring keywords for AI. 124 
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 125 
Fig. 3. Network of co-occurring keywords for the intelligent bridge. 126 

Furthermore, to avoid missing important papers, step 3 searches for intelligent 127 

technology-related keywords in the bridge engineering field by using ‘AI OR “Artificial 128 

Intelligence”’ and ‘“Intelligent Bridge”’ as topics. As shown in Figs. 2 and 3, the 129 

CiteSpace software is used to rank and visualise the occurrence frequency of all the 130 

keywords. In the CiteSpace network, each node shown with a coloured circle (or cross, 131 

triangle, square) represents an object. Some objects are linked by lines. The thickness 132 

of the link is used to indicate the partnership strength. The colour is used to correspond 133 

to different years. In the keyword co-occurrence network, each node represents a 134 

keyword, and the node’s size (or font size) reflects the frequency of the keyword 135 

occurring in the dataset. The higher the frequency is, the larger the node size. 136 

According to the results in Figs. 2 and 3, 10 keywords with high frequency and related 137 

to data- or knowledge-driven approaches are selected for research. A total of 323 138 

papers were obtained. In step 4, 2732 papers are visually analysed to infer the 139 

research hotspots and trends of intelligent technology application in bridge 140 

maintenance, and a critical review analysis of 323 papers summarise the development 141 

status of smart bridge maintenance. 142 



 

8 
 

3 Literature Visualisation Analysis 143 

The visualisation analysis relies on four types of bibliometric techniques [29,30] 144 

applied using CiteSpace, including literature quantity analysis, journal co-citation 145 

analysis, document co-citation analysis, keywords clustering and burst analysis. 146 

CiteSpace maps the knowledge domain by systematically creating various accessible 147 

graphics, which can discover the semantic knowledge hidden in a large amount of 148 

information and track the development frontier of technology [31,32]. CiteSpace 149 

software provides multiple options for input thresholds, e.g., time slicing, data selection 150 

criteria, and pruning strategies. Sensible input thresholds can make the generated 151 

network layout clearer and more reasonable. 152 

3.1 Literature quantity analysis 153 

As shown in Fig. 4, the paper publication times are identified according to the 154 

information in the bibliographic records. The number of papers published has grown 155 

steadily with slight fluctuations. In 2000, the number was only 27. In 2021, the number 156 

reached 414. In 2008 and 2014, there were slight fluctuations. The decrease is 157 

probably due to the limited budgets and lack of data for decision-making, which are 158 

long-existing challenges for bridge maintenance. 159 
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Fig. 4. Statistical graph of the number of papers over time. 161 

Fig. 5 shows the co-occurring network of countries. In this network, the time slice 162 
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length is 2. The criteria of data selection are g-index (k=25), LRF=3.0, L/N=10, LBY=8, 163 

and e=2.0. There are 92 nodes and 398 links. Each node represents a country, and 164 

the node’s size reflects the number of published articles in that country. The more 165 

papers a country publishes, the larger the node size. The United States has issued the 166 

most papers, followed by China. This is not surprising because the peak period of 167 

bridge construction in developed countries, such as the U.S. and countries in Europe, 168 

was concentrated in the 1950s and 1970s. The large-scale ‘ageing’ of bridge structures 169 

appeared earlier than in China. Therefore, European countries and the U.S. have 170 

conducted relatively more research on bridge maintenance technology. There are 171 

many problems during bridge operation due to insufficient maintenance in China. Many 172 

bridges even collapsed due to improper management, e.g., Qijiang District Rainbow 173 

Bridge (1999.1), Liaoning Panjin Tianzhuangtai Bridge (2004.6), Sichuan Panzhihua 174 

Jinsha River Bridge (2012.12), Guangdong Heyuan Chengnan Ramp Bridge (2015.6) 175 

and Yilan Bridge (2019.10). Therefore, domestic scholars continue research to solve 176 

problems in the field of bridge maintenance in China. 177 

 178 
Fig. 5. Countries’ co-occurring network. 179 

3.2 Journal co-citation analysis 180 

Journal co-citation analysis reflects the correlation between various journals. 181 
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Through this type of analysis, the intellectual root sources for published works in a field 182 

are obtained. The number of co-citations of various journals is shown in Fig. 6, where 183 

the time slice length is 2. The selection criteria are Top 50, LRF=3.0, L/N=10, LBY=8, 184 

and e=2.0. To remove excessive links, network pruning is used through the Pathfinder 185 

strategy, which was recommended by Chen and Morris [33]. In this network, there are 186 

201 nodes and 604 links. Each node represents a journal, and the node’s size 187 

represents the number of times the journal has been co-cited. The more times the 188 

journal is co-cited, the larger the node size. Among them, “Engineering Structures”, 189 

“Journal of Bridge Engineering”, “Journal of Structural Engineering”, and “Structure and 190 

Infrastructure Engineering” have the most co-citations. 191 

 192 
Fig. 6. Journal co-citation network. 193 

Moreover, if a node connects two or more large groups of nodes with the node 194 

itself in between, it has high betweenness centrality represented by a purple ring in 195 

CiteSpace. Table 1 lists journals with betweenness centrality values greater than or 196 

equal to 1.0. The journal “Engineering Structures” has the highest centrality, with a 197 

value of 0.27. The high centrality represents a large amount of importance for these 198 

journals. These analysis results provide a basis for follow-up in-depth research, and 199 

follow-up researchers can examine the direction of smart bridge maintenance in depth 200 
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by collecting papers from these top journals. 201 

Table 1. Cited journals sorted by centrality. 202 
Cited Journals Centrality Count 

Engineering Structures  0.27 910 

Structural Engineering International 0.20 224 

Journal of Infrastructure Systems 0.17 433 
Computer-Aided Civil and Infrastructure 

Engineering 0.17 364 

Structural Safety 0.12 409 

Computers & Structures 0.12 307 

Journal of Computing in Civil Engineering 0.12 304 

Reliability Engineering & System Safety 0.10 379 

Automation in Construction 0.10 283 

3.3 Document co-citation analysis 203 

Document co-citation analysis demonstrates the quantity and authority of 204 

references and their authors cited by publications [34]. Leading researchers for a 205 

knowledge domain can be identified. Fig. 7 shows the co-citations network of various 206 

documents, where the time slice length is 2. The selection criteria are Top 50, LRF=3.0, 207 

L/N=10, LBY=8, and e=2.0. Network pruning is a Pathfinder strategy. In this network, 208 

there are 511 nodes and 744 links. Each node represents a document with the first 209 

author's name and the publication year, and the node’s size represents the number of 210 

times the document has been co-cited. 211 
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 212 
Fig. 7. Document co-citation network. 213 

The top 10 documents are summarised in Table 2. Frangopol [35-39] received the 214 

most attention, with 238 citations in total. This was followed by Melchers [40], Okasha 215 

[41], Biondini [42], Sabatino [43] and Kim [44], with approximately 30 citations each. 216 

According to the WOS citation metrics, Frangopol has 650 publications in the WOS 217 

database, with a total of 15,543 citations and 7,030 citing articles. Melchers has 307 218 

publications with a total of 7,548 citations and 4,729 citing articles. In addition, 219 

documents with high betweenness centralities are also worth attention. These 220 

documents with betweenness centrality values greater than or equal to 0.15 are listed 221 

in Table 3, including authors, Bocchini [45,46], Furuta [47], Van Noortwijk [48], and Liu 222 

[49]. According to the WOS citation metrics, the number and citations of published 223 

articles are high. Therefore, all documents listed in tables can be regarded as the major 224 

intellectual turning points, and their authors are leading researchers in the field of 225 

bridge maintenance. 226 

Table 2. Cited documents sorted by count. 227 

Cited References 
CiteSpace Metrics WOS Citation Metrics 

count centrality publications times 
cited 

citing 
articles 



 

13 
 

Frangopol DM, 2011, Structure and 
Infrastructure Engineering [35] 75 0.05 650 15543 7030 

Frangopol DM, 2017, Structure and 
Infrastructure Engineering [36] 44 0.01 \ \ \ 

Frangopol DM, 2007, Structure and 
Infrastructure Engineering [37] 43 0.02 \ \ \ 

Frangopol DM, 2001, Journal of 
Computing in Civil Engineering [38] 38 0.08 \ \ \ 

Frangopol DM, 2016, Structure and 
Infrastructure Engineering [39] 38 0.06 \ \ \ 

Melchers RE, 2018, Structure and 
Infrastructure Engineering [40] 34 0.14 307 7548 4729 

Okasha NM, 2009, Structural Safety 
[41] 33 0.02 26 601 433 

Biondini F, 2016, Journal of 
Structural Engineering [42] 31 0.01 112 1596 1054 

Sabatino S, 2015, Engineering 
Structures [43] 30 0.11 16 316 256 

Kim S, 2013, Journal of Structural 
Engineering [44] 28 0.08 38 1123 684 

 228 

Table 3. Cited documents sorted by centrality. 229 

Cited References 
CiteSpace Metrics WOS Citation Metrics 

centrality count publications times 
cited 

citing 
articles 

Bocchini P, 2011, Structural 
Safety [45] 0.26 5 51 1284 1134 

Furuta H, 2006, Structure and 
Infrastructure Engineering [47] 0.21 11 75 966 739 

Van Noortwijk JM, 2004, 
Probabilistic Engineering 

Mechanics 48] 
0.17 11 44 2029 1506 

Bocchini P, 2011, Reliability 
Engineering & System Safety [46] 0.15 16 \ \ \ 

Liu M, 2006, Journal of Bridge 
Engineering [49] 0.15 9 42 548 492 

 230 

3.4 Keywords clustering and burst analysis 231 

The current research trend of intelligent technology is explored through keywords 232 
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clustering maps and burst word analysis. Cluster analysis is used to detect and analyse 233 

the emergence of research trends over time and identify the focus of research trends 234 

at a specific time in its knowledge base [31,32]. Clustering can reveal the 235 

interconnection between different research trends. Burst words represent a substantial 236 

increase in the number of occurrences of the keyword in a short period of time, which 237 

indicates that such articles have attracted substantial attention in the corresponding 238 

year [31,32]. First, a keyword cooccurring network is generated. As shown Fig. 8, 239 

keywords co-occurring network has 516 nodes and 1,442 links. The time slice length 240 

is 2. The selection criteria are g-index (k=25), LRF=3.0, L/N=10, LBY=8, and e=2.0. 241 

Network pruning is a Pathfinder strategy. There are 10 keywords with frequencies over 242 

100, including bridge maintenance (frequency = 277), model (frequency = 208), system 243 

(frequency = 203), structural health monitoring (frequency = 165), bridge management 244 

(frequency = 163), optimisation (frequency = 154), etc. 245 

 246 
Fig. 8. Keywords co-occurring network. 247 

Second, a total of 11 important clusters are identified and shown in Fig. 9 based 248 

on the keywords by the log likelihood ratio (LLR) algorithm. The LLR algorithm can 249 

select the best cluster labels in terms of uniqueness and coverage [34]. Clusters are 250 
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sorted by size, i.e., the number of members the cluster contains. The cluster #0 251 

“optimisation” is the largest, with 71 members, while the cluster #11 “seismic effects” 252 

is the smallest, with only 6 members. Table 4 lists all of the clusters and their 253 

information, including “cluster size”, “silhouette value”, “mean year”, and “LLR label”. 254 

The silhouette metric measures the average homogeneity of a cluster [50]. The greater 255 

the silhouette score represents, the more consistency of the cluster members. The 256 

silhouette values of clusters range from 0.667 to 0.946, which indicates that the 257 

members of each cluster are sufficiently consistent. The mean year of publication of a 258 

cluster refers to whether it consists of recent papers or older papers. Except for clusters 259 

#0 and #7, all other clusters are formed by recent papers. Based on the cluster map, 260 

clusters #0-11 form the application framework of the new-generation information 261 

technology with intelligent algorithms and BIM as the core to support bridge 262 

maintenance and management. 263 

 264 
Fig. 9. Cluster map of keywords. 265 
Table 4. Clusters sorted by size. 266 

Cl
uster ID Size Silhouette Mean 

(Year) Label (LLR) 

#0 71 0.898 2007 optimization; maintenance; uncertainty; life-
cycle cost; genetic algorithm 
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#1 69 0.816 2013 
structural health monitoring; damage 
detection; cable-stayed bridge; operational 
modal analysis; system identification 

#2 69 0.724 2010 corrosion; concrete structures; reinforced 
concrete; service life; finite element analysis 

#3 55 0.694 2014 
building information modeling (bim); life 
cycles; risk management; bridge management 
system; structural health monitoring 

#4 46 0.751 2016 bridge inspection; bridge health monitoring; 
digital twin; big data; optimization 

#5 45 0.667 2013 
asset management; bridge management 
system; railway bridge; bridge management; 
transition probability 

#6 34 0.825 2015 machine learning; deep learning; artificial 
intelligence; computer vision; machine vision 

#7 33 0.847 2008 
bridge deck; bridge tests; fiber reinforced 
polymers; composite materials; signal 
processing 

#8 22 0.853 2010 
system reliability; semi-integral bridges; 
integral bridges; performance prediction; finite 
element 

#9 21 0.881 2017 
condition assessment; masonry arch bridges; 
long-span bridges; point cloud; terrestrial laser 
scanning 

#10 13 0.941 2013 
reliability analysis; concrete cracking; bond 
strength; reinforcement corrosion; 
maintenance planning 

#11 6 0.946 2015 
seismic effects; probabilistic modelling; 
hysteresis; generalised extreme value 
distribution; existing concrete bridges 

 267 

Finally, burst detection is carried out based on the algorithm developed by 268 

Kleinberg [51]. The top 41 keywords with the strongest citation burst are sorted by 269 

strength in Fig. 10. Lifecycle cost (2004-2013) received the strongest attention, with a 270 

burst strength of 11.6, followed by bridge maintenance (burst strength = 11.13, 2004–271 

2009) and machine learning (burst strength = 9.76, 2018–2021). Some keywords have 272 

always been the focus of attention in the field of bridge maintenance, such as bridge 273 

deck (burst strength = 9.68, 2002-2013), concrete structure (burst strength = 9.14, 274 

2000–2013), oriented multiobjective optimisation (burst strength = 8.01, 2006–2017) 275 

and lifecycle (burst strength = 5.92, 2002–2015) with long duration and high strength. 276 
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 277 
Fig. 10. Top 41 keywords with the strongest citation burst. 278 

Fig. 11 shows the classification of some burst keywords extracted from Fig. 10 279 

that are extremely relevant to bridge maintenance. These burst keywords are sorted 280 

by the beginning time. From the perspective of maintenance projects, management 281 

has drawn attention earlier via bridge management system (burst strength = 3.3, 2006-282 

2011), bridge management (burst strength = 3.15, 2008-2013), and maintenance 283 
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management (burst strength = 3.25, 2010-2013). Inspection has recently started to 284 

gain attention via maintenance & inspection (burst strength = 5.93, 2016-2019). From 285 

the perspective of methods or technologies, the application of new-generation 286 

information technology, e.g., machine learning (burst strength = 9.76), deep learning 287 

(burst strength = 4.99), building information modelling (burst strength = 4.17), and 288 

digital twin (burst strength = 3.88), in the bridge maintenance phase has exploded 289 

recently. Moreover, in general, keywords cluster analysis can help map documents and 290 

classify them. However, when the topic is relatively new or the number of certain 291 

keywords is not enough to form a category, it is easy to ignore. Therefore, a critical 292 

review analysis is adopted in the following section to further analyse the collected 293 

literature. 294 

 295 
Fig. 11.  Burst keywords classification. 296 

4 Smart bridge maintenance – from data to knowledge-driven 297 

After visually analysing the collected papers, those papers are further reviewed to 298 

identify the gaps and shape the vision development for smart bridge maintenance. 299 

Critical review analysis process is shown in Fig. 12. First, the tasks of bridge 300 

maintenance are summarised. Then, the current issues that limit development are 301 

identified. Finally, aiming at these issues, advanced technologies or approaches and 302 

their development trends are analysed. 303 
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 304 
Fig. 12. Critical review analysis process. 305 

4.1 Bridge maintenance tasks and issues 306 

Bridge maintenance is very complex. According to all of these collected articles, 307 

bridge maintenance systems normally include four parts: detection, evaluation, MR&R 308 

(maintenance, repair, and rehabilitation), and management (Fig. 13). Bridge detection 309 

is the cornerstone of checking the hazards of bridges [52]. It is basic to evaluate the 310 

safety and maintenance of bridges. The development of detection technology has 311 

shifted from visual inspection in the early stage to full-coverage detection, which 312 

combines visual inspection, equipment inspection and monitoring technology [53]. 313 

Research shows that non-destructive technologies (NDTs) [54-57] are popular 314 

development directions. In the next stage, further exploration is carried out by 315 

combining new-generation information technologies, such as unmanned aerial vehicle 316 

systems [58-60] and robots [61-63]. 317 
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 318 
Fig. 13. Bridge maintenance system. 319 

Bridge evaluation is used to assess the condition of the structure by 320 

comprehensively describing the defects of each component. In addition, it can provide 321 

decision support for bridge MR&R [64]. Bridge evaluation is divided into general 322 

evaluation and adaptability evaluation. General evaluation refers to the comprehensive 323 

assessment of each component’s technical condition to determine the bridge’s level of 324 

technical condition. The data mainly come from the periodic survey. Adaptability 325 

assessment refers to the evaluation of the actual bearing capacity, traffic capacity and 326 

flood resistibility of bridges by combining the test and structural stress analysis. The 327 

data are mainly from periodic surveys and special monitors. In addition, some studies 328 

defined bridge evaluation as the observation and evaluation of the state of the built 329 

structure, including damage identification [65,66]. The purpose of damage 330 

identification is to find possible local damage, which is used in emergencies, such as 331 

ship collisions, strong winds, and earthquakes. At present, an evaluation standard 332 
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system matching the existing detection technology level has been formed for small and 333 

medium-sized bridges. 334 

Bridge MR&R refers to the regular maintenance and repair operations for the 335 

normal use of bridges. More precisely, tasks are carried out to prevent and repair 336 

catastrophic damage to bridges and improve bridge quality and service levels [10]. 337 

Bridge maintenance activities are typically divided into two categories [67,68]: time-338 

based maintenance (TBM) or regular maintenance. It is protective maintenance 339 

behaviour to delay or postpone the degradation of the structure; the other is condition-340 

based maintenance (CBM), which is reinforcement maintenance behaviour to enhance 341 

structural performance. Due to the conventional hazards of bridge structures, a 342 

relatively mature MR&R technique has been formed. These methods have been widely 343 

used in the repair and reinforcement of small- and medium-sized bridges [69-71]. 344 

Bridge maintenance involves both technology and data/information management. 345 

Storing the data/information can better serve the follow-up maintenance behaviours. 346 

The bridge management system (BMS) [72] and structural health monitoring system 347 

(SHMS) [73] are the two most developed systems in bridge maintenance. SHM has 348 

been widely used in the maintenance and management of long-span bridges. The BMS 349 

coverage can be extended to all bridges, including small- and medium-span bridges. 350 

The combination of the two systems can provide full coverage of the bridge network. 351 

The complexity of bridge maintenance is reflected in the fact that the system has 352 

massive data and rich knowledge to work with; it involves various information from 353 

multiple sources, and a large number of stakeholders and organisations collaborate 354 

throughout its entire lifecycle. When massive data, information, equipment and people 355 

are intertwined, it is concluded that there are several critical issues that need to be 356 

addressed, including (1) equipment constraints and subjective surveys; (2) data and 357 

information silos; (3) superficial data mining; and (4) lack of holistic decisions. 358 

Equipment constraints and subjective surveys – With the existing equipment 359 

constraints, it is still not easy to have the most cost-effective technical solutions or 360 
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equipment for a large amount of data acquisition. The data collected often lack good 361 

quality, and the data acquisition accuracy is low. Structural defects are identified and 362 

classified manually by engineers and inspectors who need to control the entire process 363 

from hazard discovery, testing, recording and entry of results, and the entire process 364 

is highly error prone and unreliable. 365 

Data and information silos –The whole lifecycle bridge maintenance involves 366 

many different hardware and software systems to work together; the data 367 

interoperability issues are still critical, as there are no mature solutions to help to 368 

overcome data and information silos. For example, BMS is used to manage bridge 369 

survey data, and the generated information regarding bridge structural condition is 370 

stored in the inspection reports.  SHMS is used for monitoring the external 371 

environment and structural response, and it can deal with large-capacity data 372 

measurement, transmission and storage. However, these two systems work mostly 373 

independently; hence, the survey cannot be timely and effectively shared through 374 

different working stages and systems. The intuitionistics of manual inspection and real-375 

time health monitoring are not sufficiently integrated. 376 

Superficial data mining – The current maintenance is more focused on collecting 377 

rather than utilising data. Over the years, bridge systems have collected a large amount 378 

of survey data, but only a small part of those are utilised successfully for bridge 379 

maintenance decision-making. Various types of data have a low degree of correlation 380 

and lack connectivity analysis, which means that the potential scientific value of the 381 

obtained data has not been fully explored. The diversification of data formats (e.g., 382 

structured data, unstructured data) also increases the difficulty of information sharing 383 

and integration. 384 

Lack of holistic decision-making – Generally, the knowledge and information in 385 

the whole process of bridge maintenance are dispersed among different teams. People 386 

with different skills and professional backgrounds perform various tasks, and different 387 

engineers tend to focus on their deliverables and operate in silos. As a result, 388 
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information and knowledge are not easily shared between different departments. In the 389 

absence of effective computer-aided tools, it is difficult for a single person or team to 390 

master multidomain knowledge. Therefore, decision-makers tend to rely on subjective 391 

experience to make critical solutions, which are often not holistic or comprehensive. 392 

4.2 Data Acquisition Technologies  393 

For critical issues in bridge maintenance, embracing advanced technologies and 394 

methods has become essential. First, advanced techniques can collect rich data to 395 

accurately reflect bridge conditions and serve as a basis for maintenance decision-396 

making. Second, analytical methods are developed to deeply mine the raw data, derive 397 

meaningful data, and make maintenance decisions. In practice, maintenance data are 398 

mainly captured by sensors or NDTs. Some data that are difficult to collect with sensors 399 

and NDTs can be obtained from second-hand sources, e.g., some environment and 400 

social data that need to be collected from databases of relevant agencies [1]. Table 5 401 

summarises  mainstream data types for bridge maintenance. Data collected by 402 

sensors are divided into three groups: environment data, traffic data and structure 403 

response data. Structural data, acceleration, strain, and stress are the most common 404 

types because they are the basis for most structure analyses [74]. Major data types 405 

collected by NDTs include bridge profiles, point cloud data, photo images, acoustics, 406 

radar, infrared images, electrical data and chemical data. Bridge profiles are the most 407 

common meaningful data, followed by structure response data. Moreover, due to the 408 

strict requirements on equipment, environment, and operators to generate point clouds 409 

[75], more studies choose to create point clouds from photos [76,77]. 410 

Table 5. Mainstream data types for bridge maintenance. 411 
Data acquisition 

manner Data type Instances 

Sensors Environment data 

Temperature  
Wind speed 
Humidity  
Topography and geology 
Hydrology 
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Traffic data  
Traffic volume 
Vehicle load  
Vehicle speed 

Structure responses 

Strain and stress  
Displacement and deflection  
Cracks and deformation 
Acceleration  
Vibration and frequency  

NDTs 

Bridge profile  
Properties of components, e.g. 
geometry, number, material properties, 
and connection of components 

Point clouds  Bridge structure features: 1) both local 
features, e.g. girder cracks, and global 
features, e.g. holistic bridge geometry. 
2)only reflect surface conditions. Photo images 

Acoustics and ultrasonic  
Local features: reflect both surface and 
subsurface conditions. Radar 

Infrared images  
Electrical and chemical  Structural corrosion 

 412 
For data collection sensors, a SHM system is the dominant method. Various 413 

sensors and bridge structures are fused as a whole system through IoTs, which may 414 

gather the various sensor data of bridges regularly or in real time to provide a scientific 415 

basis for decision-making in bridge maintenance [78,79]. However, SHM systems are 416 

only installed on the superstructures of critical bridges in practice, while other parts are 417 

ignored. Therefore, many studies have optimised sensor placement problems based 418 

on intelligent algorithms [53,80] to consider the quality and cost-effectiveness of data 419 

acquisition. The current optimal placement methods of sensors include the effective 420 

independent method, MinMAC (Minimise Modal Assurance Criterion), modal matrix 421 

summation and integration method, origin residual method, modal matrix QR 422 

decomposition method, SVD (Singular Value Decomposition), GRM (Guyan Reduction 423 

Method), etc. Moreover, the sensor network can be wired or wireless. It is recognised 424 

that wireless sensor networks (WSNs) are easier to maintain, more stable, and more 425 

cost-effective in the long term [12,81]. However, the reliability of WSNs is affected by 426 
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several technical challenges, e.g., the lack of a power supply and unstable sensor 427 

communication. In practice, the wired system is still implemented more widely, 428 

although its data transferring relies on traditional cables rather than on wireless 429 

communication techniques. 430 

For data collection devices of NDTs, the application of unmanned aerial vehicles 431 

(UAVs) or drones, mobile detection terminals, and wall-climbing robots has greatly 432 

improved the safety, efficiency, and intelligence of data acquisition. For example, a 433 

drone can conveniently access hard-to-reach areas to capture data efficiently using 434 

sensors (e.g., infrared cameras) that it carries. However, these devices require 435 

additional calibration, path planning, and control to avoid being blocked by barriers [74]. 436 

Another research hotspot is the  intelligent detection equipment loaded with image 437 

recognition technology, and then the computer vision technology is used to process 438 

data for timely analysis to determine the crack profile, width, length, and propagation 439 

direction [5]. Hence, the demand for data processing in real-time is met. In addition, 440 

facing the strategic needs of emergency rescue in major natural disasters and access 441 

to transportation facilities, research on rapid diagnostic technology of bridge 442 

performance after disasters has attracted the attention of scholars [83]. 443 

Existing studies on data acquisition technologies mainly focus on the innovation 444 

of modern inspection devices. Modern inspection devices can still be inefficient, as 445 

they require sending staff onsite to collect data [84]. Inspectors need to develop the 446 

skill to operate modern inspection devices. The advent of intelligent virtual assistants 447 

(IVA) technology helps data collection from the human factors perspective. IVA is an 448 

AI-powered agent that integrates machine learning, AR, VR, data science and other 449 

technologies to perform tasks or services based on user commands or questions [85]. 450 

Li et al. [86] presented a VR-based training and assessment system to assist bridge 451 

inspectors in controlling drones. This study demonstrated that IVA has the ability to 452 

identify needs of individuals in detail and help them develop the skill in bridge 453 

inspection. Table 6 lists the advantages and disadvantages of data acquisition 454 
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techniques. Furthermore, the development trend and the key performance indicators 455 

(KPIs) targeted by technologies in data acquisition are summarised in Fig. 14. With 456 

the improvement of hardware and software technologies, the quality and cost-457 

effectiveness of data acquisition is improved. The volume and integrity of maintenance 458 

data have increased at the same time. 459 

Table 6. Advantages and disadvantages of data acquisition technologies. 460 
Technologies Advantages Disadvantages 

Technologies 
of sensors 

All-around data; 
High quality; 
Getting data in real-time; 
Getting data in the long-term; 

Placement problems; 
Technical challenges; 
Only for critical bridges; 

Technologies 
of NDTs 

High accuracy; 
High intelligence;  
Unmanned; 
Reducing data processing time; 
Accessing to most blind spots; 

Strict pre-commissioning operations 
of devices; 
Staff needing to be onsite; 

 461 
Fig. 14. Trend and KPIs in data acquisition. 462 

4.3 Data and Information Mining Technologies 463 

In this section, the similarity between characteristics of bridge maintenance data 464 

and big data is analysed (Fig. 15). Maintenance data have low-value density and time 465 

variability and are in line with the 4V characteristics of big data, which are large in 466 

volume, diverse in variety, frequently changing in velocity, and of great value but low in 467 

value density [87.88]. Bridge maintenance data have the characteristics of big data. 468 
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The collection of a large amount of data can be turned into a vast base for knowledge 469 

mining to go for knowledge-driven approaches. Thus, it is important to adopt big data 470 

analysis methods to deeply leverage the raw data. What is converted from raw data is 471 

meaningful data, which is also called information. 472 

 473 
Fig. 15. Similarity analysis between characteristics of bridge maintenance data and big data. 474 

To derive meaningful data from raw data, all kinds of methods are adopted to carry 475 

out data preprocessing, data fusion, feature extraction, pattern recognition and other 476 

processes step-by-step. Various data types are processed with various technologies, 477 

e.g., electrical signals are converted to digital signals [89], traffic load data are 478 

converted to structure strain and stress [90], and displacement and strain data are 479 

fused together to gain more comprehensive results [91]. The analysis technology of 480 

unstructured data is relatively complicated. A considerable amount of data under the 481 

condition of the bridge and maintenance actions is buried in the textual bridge 482 

inspection reports and not utilised [92]. Information extraction (IE) methods can 483 

automatically recognise and extract information from unstructured textual bridge 484 

inspection reports and represent them in a structured format. IE methods used in 485 

papers can be classified into two primary categories [93-95]: rule-based methods and 486 

machine learning ML-based methods. Rule-based methods use manually coded rules 487 

for text processing. ML-based methods use ML algorithms for training text processing 488 



 

28 
 

models based on the text features of a given training text. However, compared to other 489 

IE efforts, e.g., IE from social media text, automated IE from bridge reports is more 490 

challenging because bridge inspection reports written by different organisations from 491 

various locations are highly variable in terms of text characteristics and patterns. To 492 

capture the variability in text patterns, IE methods require the development of a 493 

comprehensive set of rules specifically for bridging the reports domain. This process 494 

is time-consuming and requires a great amount of human effort. Therefore, a few 495 

ontology-based IE algorithms have been studied [96,97]. For example, semantic 496 

modelling and semantic natural language processing (NLP) techniques were used to 497 

facilitate automated textual regulatory document analysis (e.g., code analysis). 498 

Then, the processed data can be used to analyse structural conditions, including 499 

current condition evaluation, failure probability computation, and life expectancy 500 

prediction. For current condition evaluation, condition indexes [98] can be calculated 501 

directly based on sensors or survey data to indicate if damages happen and the if 502 

structure is out of service, e.g., discrete indexes are estimated by mapping detected 503 

damages and abnormal responses to discrete values to evaluate the current condition 504 

[11,99]. for the mechanism for failure probability computation includes two aspects: 505 

deterioration severity computation and load computation. The former estimates the 506 

probability that deterioration (e.g., loss of stiffness) exceeds the limit [100,101]. The 507 

input data mainly come from the survey data, including the bridge profile, damage data 508 

(e.g., the size of crack), and environmental data. The latter estimates the probability 509 

that the load exceeds the design capacity [102,103]. The input data mainly come from 510 

the sensor data, including the bridge profile, traffic data, structure responses (e.g., 511 

vibration and displacement) and environment data. Then, life expectancy can be 512 

predicted as the time that the failure probability and a condition index decline below a 513 

threshold [104-106]. 514 

Whether assessing the load rating or reliability of deterioration during the service 515 

life of structures, time variables are always the first issue to be considered in many 516 



 

29 
 

studies, e.g., the prediction model deteriorating in time due to corrosion and live load 517 

increase [107], the lifetime performance indicators for the deteriorating structures [108]. 518 

The main analytical methods are “model-based” and “data-driven” [22]. The model-519 

based method is essentially a process of bridge structure finite element modelling, 520 

model modification, and system parameter inversion. It has high requirements for the 521 

accuracy of the theoretical model and the quality of the data. The data-driven method 522 

identifies the changing pattern of the structural state by studying the changing trends 523 

and probability distributions of the data itself. It is widely used in structural health 524 

monitoring. However, only a small part of the maintenance data is used for the analysis 525 

process, and its performance improvement is often limited when used on large 526 

datasets [22]. In fact, there are many studies on the combined use of the above two 527 

methods, e.g., developing stochastic deterioration models for bridge elements [109-528 

112]. Stochastic models capture the uncertainty and randomness of the facility 529 

deterioration process as one or more random variables. Stochastic approaches are 530 

more in line with the degraded state of the bridge in the real environment, e.g., physics-531 

based stochastic models, Markov chains or Weibull distribution models [113,116]. With 532 

the development of artificial intelligence (AI) technology, many research efforts have 533 

developed different AI models to better predict and understand bridge deterioration. 534 

For example, an artificial neural network (ANN) model is used to develop an application 535 

model for estimating the future condition of bridges [117]. Artificial neural networks 536 

(ANNs) and k-nearest neighbours (KNNs) are used to build two computational machine 537 

learning models to predict deck conditions [118]. 538 

At the same time, the digital twin (DT) concept proposed by Michael Grieves [119] 539 

has been gradually introduced into the bridge maintenance field with the development 540 

of intelligent technology. The DT concept has shown pivotal potential in security 541 

prewarning [120]. DT can make full use of data (such as physical models, sensor data 542 

(real-time data), operating history (real data), and related derived data generated 543 

through mining to integrate multidisciplinary, multiphysical, multiscale, and 544 
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multiprobability simulation processes. Comparing the application of the BIM and DT 545 

models in bridge maintenance work [6], the DT model pays more attention to how to 546 

capture and store the historical data of the bridge and, based on that, to predict the 547 

future behaviour of the bridge. Data, such as accumulated damage history and repair 548 

history can be directly exported, which provides important support for project 549 

maintenance teams and decision-making agents to respond appropriately in time when 550 

the bridge fluctuates suddenly [121]. 551 

Table 7 lists the advantages and disadvantages of analytical methods. These 552 

methods can be collectively referred to as data and information mining technologies, 553 

which are the combination and improvement of methods represented by various terms. 554 

Specifically, these terms encompass various algorithms, such as classification, 555 

clustering, association analysis, and regression. However, stressing the use of a 556 

certain method alone is not enough to determine the success of big data analysis from 557 

knowledge mining to turn to knowledge-driven approaches. The final analysis result is 558 

often the intersection of the effects that can be achieved by each link in the process. 559 

Table 7. Advantages and disadvantages of analytical methods 560 
Analytical Methods Advantages Disadvantages 

IE methods for text 
files 

Automatically reorganization 
and extraction information; 

Time-consuming; 
An amount of human effort; 

The model-based 
method for 
evaluation 

Easy for engineers;  
Well-established methodology; 

High requirements for models 
and the data; 

The data-driven 
method for 
evaluation 

Mining hidden patterns in data;  
Widely used in structural health 
monitoring; 

Only using a small part of data; 

Stochastic 
approaches for 

evaluation 

High accuracy; 
In line with the degradation state 
of the real bridge; 

Difficult to simulate random 
variables; 

Digital Twin 
technology for 

evaluation 

Making full use of data; 
Integration multi-disciplinary, 
multi-physical, multi-scale, and 
multi-probability simulation 
processes; 

Unclear methodology in bridge 
maintenance; 
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4.4 Holistic decision-making approaches 561 

Maintenance decision-making involves multifactor (e.g., structure safety, costing 562 

issues, sustainability) and multidomain knowledge (e.g., structure engineering, 563 

material perspectives, environmental perspectives). It is difficult to describe the 564 

relationship between variations of factors and the decision-making objective with 565 

precise mathematical and mechanical methods. Knowledge-based and artificial 566 

intelligence-supported reasoning, which is characterised as a knowledge-based 567 

approach, has received increasing attention. Prioritisation indices (PIs) are a need-568 

based bridge maintenance approach that allows short-term maintenance decisions to 569 

be made [122]. A PI of Valenzuela et al. [123] considers the structural condition, 570 

hydraulic vulnerability and seismic risk, in addition to the importance of the bridge 571 

within the road network and the productive system. Echaveguren et al. [124] proposed 572 

a systematic method for maintenance decisions and their associated costs by using a 573 

PI based on bridge conditions, strategic importance and vulnerability. Additionally, 574 

decision-making can be treated as a special case of reinforcement learning (RL) by 575 

using a family of efficient sampling algorithms, such as the bootstrapping TD (temporal 576 

difference) method, the Monte-Carlo tree search (MCT) method, the deep neural 577 

network (DNN) method, and the convolutional neural network (CNN) method [125]. 578 

Recently, an important trend has been using semantic web technology (SWT) to 579 

address issues related to knowledge representation and decision-making [126-128]. 580 

For example, the bridge hazard knowledge base was created to realise hazard 581 

classification management. A specific bridge ontology was developed to solve the 582 

intelligent retrieval of massive data and knowledge reasoning that is difficult to achieve 583 

with traditional approaches [18]. 584 

Bridge maintenance supported by knowledge-driven approaches also needs to 585 

define the data needed for different decision-making scenarios and how to use 586 

technologies to complete the retrieval and service in a smart way [1]. Currently, most 587 

data needs are defined in bridge inspection manuals. For instance, primary inspection 588 
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only requires structure photos, general evaluations and a description of damages, and 589 

detailed inspection can require accurate measurement of components’ structural 590 

performance (e.g., concrete strength) and surface and subsurface damages. A few 591 

studies also attempt to define data needs for operation and maintenance applications, 592 

e.g., defining the data needs for bridge life estimation [129] and investigating 593 

information requirements of stakeholders (e.g., the owner and maintenance teams) 594 

[130]. However, comprehensive data requirements have not yet been defined. 595 

Although not defined, online databases and cloud servers reduce hardware 596 

dependency and provide the opportunity for accessing unified and up-to-date models, 597 

as well as their associated data that could be easily accessed through mobile devices. 598 

Hadoop is a software framework that supports distributed applications. It is used to 599 

build a distributed platform and use other program groups to perform specific functions, 600 

such as storage and calculation, which is the “Hadoop ecosystem”, including 601 

MapReduce, Spark, cloud computing, etc [22,131]. Cloud computing is another 602 

research hotspot. Its architecture can respond to the needs of heterogeneous big data 603 

storage in maintenance projects and efficient information sharing and transmission 604 

across participants, disciplines, and project stages. Bridge managers assess data 605 

during the bridge operation phase from the cloud platform in real-time and understand 606 

the health conditions of bridges [132,133]. At the same time, facing the real-time 607 

computing requirements of maintenance data, the powerful computing power of cloud 608 

computing makes it possible to execute complex algorithms online [13]. 609 

Database technology holds considerable potential in the bridge maintenance field. 610 

The use of a database allows valuable information to be captured, stored, sorted, and 611 

extracted according to a predetermined set of selection criteria [134]. Relational 612 

database (RDB) systems and NoSQL (Not-Only SQL) database systems are often 613 

employed as the primary data storage for bridge maintenance applications [135,136]. 614 

One of the most cutting-edge database technologies is to build an integrated 615 

information platform for bridge construction, management and maintenance based on 616 
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building information modelling (BIM). In bridge maintenance, BIM research has been 617 

an additional research hotspot for a long time. Its main objectives are twofold: (1) 618 

Enabling an integrated bridge database [137-139]. A wide array of information about 619 

the bridge, including the 3D geometry, project management information, such as time 620 

schedules and costs or operation and maintenance metrics, are stored in a central, 621 

object-oriented database. (2) Developing electronic data exchange standards to 622 

facilitate information sharing and collaboration [140-143], such as how the incoming 623 

and outgoing information is handled and how project participants build, use and 624 

manage this information. The application of BIM further promotes the openness, 625 

sharing and multiparty collaboration of data. However, its centralised paradigm is 626 

degraded by the risk of data manipulation [144]. 627 

Blockchain technology and InterPlanetary file system (IPFS) are emerging 628 

solutions to prevent the problems caused by centralisation. Blockchain is a type of 629 

distributed ledger technology (DLT) that uses a decentralised architecture based on 630 

distributed computing, crypto-chain block structures to store data, node consensus 631 

algorithms to verify data and smart contracts to program data [145]. A recent research 632 

trend has presented the feasibility of integrating blockchain with BIM, involving 633 

methods of blockchain-BIM integration [146-148] and methods of BIM data storage in 634 

the blockchain [149,150]. The IPFS, which is a peer-to-peer network, is regarded as 635 

an appropriate technical complement to blockchain for storing large files [151]. Tao et 636 

al. [152] presented a framework for secure BIM design collaboration in which an IPFS 637 

network is responsible for storing large design files (e.g., BIM models), while a 638 

blockchain network is leveraged to keep and exchange design information (e.g., design 639 

changes). Similar to other emerging technologies in their first years, research on 640 

blockchain and IPFS related to bridge engineering is still new and fragmented, but in 641 

the future, it may have the potential to play a critical role [153,154]. Finally, the 642 

development of technologies, such as Web3D, VR and mixed reality (MR) has greatly 643 

promoted the process of information visualisation. Three-dimensional models are 644 
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displayed to clients using these techniques. More importantly, the maintenance data 645 

(e.g., monitoring data, inspection maintenance data, construction management data) 646 

are visually displayed and interact with a three-dimensional model as the carrier [155]. 647 

The development trend and KPIs in smart bridge maintenance are summarised in 648 

Fig. 16. Bridge management workers are changing their mindset. They consider the 649 

heterogeneity of massive data, attach importance to the implicit relationship between 650 

data, and promote the improvement of data analysis results. In addition, they pay more 651 

attention to the real-time and powerful analysis and unified storage of dynamic 652 

incomplete big data/information, as well as needs for multi-source information sharing 653 

and transmission across participants, disciplines, and project phases. The critical 654 

review hence reveals the trends of moving from data to knowledge-driven smart bridge 655 

maintenance, and a proactive, holistic and smart lifecycle approach is needed to 656 

comprehend the complexity of bridge structural conditions. 657 

 658 
Fig. 16. Trend and KPIs in smart bridge maintenance. 659 

5.  A framework facilitating knowledge-driven smart bridge maintenance 660 

Knowledge-driven bridge maintenance supported by big data mining ideally needs 661 

to address several challenges. Table 8 lists a broader range of challenges identified 662 

by many researchers to further classify them into two different categories: (1) technical 663 

challenges in the data-driven manner and (2) challenges in the transition towards 664 

knowledge-driven approaches. 665 

Table 8. Challenges identified by previous researchers. 666 
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Challenges in the data-driven manner 

 Lack of higher performance hardware to handle large volumes of data; 
 Lack of data integration; 
 Limitation and isolation of distinct types of data sources; 
 Lack of a standard neutral exchange format and schema; 
 Poor interoperability of heterogeneous software and platforms; 
 Poor interoperability and information sharing among software and technology; 
 Poorly developed theory and method for structural state evaluation; 
 Unclear method to create accuracy analytical model; 
 Poorly developed MR&R technologies; 

Challenges in the transition towards knowledge-driven approaches 

 Lack of the definitions of data flow requirements; 
 The differences and lack of fully adopted work flow; 
 Lack of standard procedures; 
 Lack of standard data needs; 
 Inadequacy of representation of semantics and geometrics for data models; 
 Poor collaboration between academia and industry; 

 667 

(1) Technical challenges in the data-driven manner 668 

Many technology-related challenges prevent data-driven approaches from 669 

meeting the growing demands of smart bridge maintenance. A major challenge is the 670 

lack of unified data formats for bridge maintenance covering the entire lifecycle data 671 

exchange and across different sectors. As the data formats cannot be unified, the big 672 

data collected cannot be effectively exchanged and shared in different sectors. Thus, 673 

only a small portion of those have been utilised successfully for maintenance decision-674 

making. Currently, there are various examples of integrating different types of datasets 675 

and data formats, e.g., expanding the industry foundation classes (IFC) architecture. 676 

However, IFC provides a rich, redundant yet ambiguous schema for interoperability of 677 

heterogeneous software and platforms, leading to the lack of semantic clarity in 678 

mapping entities and relationships. Moreover, the standards for the component 679 

classification in the bridge operation and maintenance phase are different from those 680 

in the design and construction phases, which means that engineers must do a great 681 

amount of work to fully expand the common data standards throughout the lifecycle of 682 

bridges. Thus, no unified data formats have been fully extended to encompass the 683 
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major types of bridge maintenance projects. 684 

The technology-related challenges may be mitigated by improvements to the 685 

technology over time, but data-driven approaches are still not sufficient to solve tasks 686 

of bridge maintenance decision-making. Bridge maintenance is a complex task that 687 

requires the cooperation of different stakeholders. The coordination of work among 688 

different teams and organisations in this type of task is important, while is a 689 

complicated process. Hence, it requires more holistic and smart lifecycle approaches. 690 

(2) Challenges in the transition towards knowledge-driven approaches 691 

An ideal smart maintenance system can determine data/information requirements 692 

and identify by whom and when the data/information should be provided throughout 693 

the project lifecycle according to different decision-making scenarios. During this 694 

process, data exchange, as one of the important requirements, should be exhaustive 695 

in representation of semantics, as well as geometrics. Currently, there are several 696 

studies integrating blockchain and IPFS technologies with BIM software to address 697 

challenges, such as interoperability and information sharing among software and 698 

technology and the definitions of data flow requirements. However, the focus is only 699 

on the model level. These BIM systems lack efficient semantic query and reasoning 700 

capabilities. There is still a lack of such a holistic and comprehensive semantic-level 701 

knowledge system that can provide enough semantic interoperability and 702 

representation of the knowledge. This may be because numerous concepts and their 703 

logical relationships defined in maintenance standards require engineers to perform 704 

manual extraction rather than directly be recognised by computer programs to form a 705 

complete knowledge system. It requires manual labour and a high-quality collaboration 706 

of experts among different teams and organisations. In addition, it is difficult to reuse 707 

or expand existing knowledge bases. These knowledge bases that are built for the 708 

same purpose may have different terms and structures. The problem of collaboration 709 

between knowledge bases established for different purposes is also difficult to solve. 710 

The above challenges hinder the transition towards knowledge-driven approaches. 711 
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Fig. 17 shows a proposed framework, which is knowledge driven and targets the 712 

development of suitable knowledge networking mechanisms to drive numerous tools. 713 

Specifically, this roadmap uses semantic web technology, BIM, and IoTs to integrate 714 

maintenance data with embedded big data methods support to enable smart reasoning 715 

and holistic maintenance decision-making. The framework includes three key 716 

components: 1) A dynamic semantic knowledge base. In a knowledge-driven manner, 717 

a dynamic semantic knowledge base is used for intelligent semantic recognition, data 718 

and information integration, numerical-based and logical-based reasoning, and holistic 719 

decision-making. 2) A database. In a data-driven manner, a database is used for real-720 

time data/information mining with high-performance computing power. 3) Data 721 

acquisition system. Big data are collected in a large volume and comprehensively 722 

throughout the whole bridge lifecycle. The collaboration of these three crucial 723 

components allows the whole framework to work seamlessly and effectively. 724 
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In a knowledge-driven manner, a dynamic semantic knowledge base is used for intelligent semantic recognition, data and information 
integration, numerical-based and logical-based reasoning,  holistic decision-making.

In a data-driven manner, a database is used for real-time data/information mining with high-performance computing power.

Raw Data Downloaded from NDTs Raw Data Downloaded from Sensors

Input the Required Useful Data/Information

Data Uploaded to the Database

Data capture by Sensors

Environment data: Temperature, 
Wind, Humidity, Topography and 

geology, Hydrology.

Traffic data: Traffic volume, Vehicle 
load ,Vehicle speed. 

Structure responses: Strain and 
stress, Displacement and deflection, 

Cracks and deformation, Acceleration, 
Vibration and frequency. 

Data capture by NDTs

Bridge profile: Properties of 
components, e.g. geometry, 

number, material properties, and 
connection of components.

Point clouds, Photo images: 
Bridge structure features: 1)both 
local features, e.g. girder cracks, 
and global features, e.g. holistic 
bridge geometry. 2)only reflect 
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Electrical and chemical: 

Structural corrosion.

Big data processing technologies
Hadoop

MapReduce
Spark

Cloud computing
...

Big data storage technologies
RDB

NoSQL
…

Big data analysis methods
Machine Learning

Information Extraction
Natural Language Processing

Artificial Neural Network
Digital Twin

…

BIM Information Integration Platform with a unified format

Holistic Decision-making 
Process

Semantic Models

Logical-based Reasoning Process 

SemanticRules

Query Interface

OWL to IFC
Web Ontology 

Language (OWL) 
API

Industry Foundation 
Classes (IFC) architecture

Decision Criteria 
Checking

Maintenance solutions

Uers 

Maintenance demands

Output Data/Information Requirements 

Second-hand 
Sources

Maintenance 
costs

Social data

Environment 
data

Update

…

Model 2

Model 1

Numerical-based Analysis 
Process

Analytical analysis

Finite Element 
analysis

Taxonomy Triples 

Digital  models
IFC to OWL

 725 
Fig. 17. A knowledge framework to implement smart bridge maintenance. 726 

The workflow is provided as follows: First, bridge maintenance personnel input 727 

their needs. Semantic models of the knowledge base match the corresponding 728 

maintenance scenarios that define the required data/information and their details. 729 

These details are passed into the BIM platform through the translation between the 730 

semantic web standard language (Web Ontology Language) and the industry 731 

foundation classes architecture. Then, the BIM information integration platform with a 732 
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unified data format drives the database to call the data collected by the corresponding 733 

source in a targeted manner. The process can be called and released in real-time 734 

(shown in blue lines). Furthermore, big data storage and processing technologies and 735 

big data analysis methods are jointly used to obtain the required useful 736 

data/information from raw data in real-time online analysis mode. They are unified and 737 

coordinated by the BIM platform. Some of them are used to build finite elements or 738 

mathematical models for numerical-based analysis. Some are transformed into 739 

semantic models for logic-based reasoning. The results of numerical-based analysis 740 

can be embedded in logic-based reasoning to support holistic decision-making. The 741 

correctness of the results is determined according to certain criteria. The results that 742 

meet the requirements are fed back to engineers at the query interface to assist them 743 

in making maintenance decisions, which are further updated into the knowledge base 744 

as facts (shown in red lines). 745 

The framework is an open, computable, and evolvable knowledge network based 746 

on maintaining big data. Openness means that the sources of the data are diverse. Big 747 

data comes from massive, heterogeneous and autonomous sources. Computability 748 

means that the knowledge network can use various methods to explore complex and 749 

evolving relationships between maintenance data, and it can perform reasoning 750 

calculations on knowledge itself. Evolvability means that the network can continuously 751 

infer the latest knowledge and update itself. At the same time, knowledge in other 752 

networks can be transformed into a standard form and absorbed into the network. 753 

 754 

6 Conclusion 755 

This paper presents a critical review and comprehensive literature analysis to 756 

investigate state-of-the-art methods used in smart bridge maintenance, which reveals 757 

the need for a knowledge-driven approach supported by large survey/monitoring data 758 

mining. First, 2,732 papers collected from the WoS core collection database are 759 

visually analysed using the CiteSpace software, including four perspectives: literature 760 
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quantity analysis, journal co-citation analysis, document co-citation analysis, and 761 

keywords clustering and burst analysis.. Second, the result of visualisation analysis 762 

helps to pinpoint 323 papers for further critical review, focusing on three areas: bridge 763 

maintenance tasks and issues, advanced technologies supporting smart maintenance, 764 

and holistic decision-making approaches. The analysis informs that bridge engineers 765 

need to change their mindset from traditional experience oriented to holistically 766 

consider the heterogeneity of maintenance big data, to understand the implicit 767 

relationship and knowledge among different data and information streams. Based on 768 

the concluded technical challenges in the data-driven manner and challenges in the 769 

transition towards knowledge-driven approaches, this paper    proposes a novel 770 

framework and methodology in the end with an aim to leverage the underused large 771 

amounts of bridge maintenance big data  by using knowledge-driven approaches, 772 

including three key components: smart raw data acquisition, data and information 773 

unification through BIM, and dynamic ontological knowledge processing, to  facilitate  774 

future developments towards  smart bridge maintenance. 775 
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