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Schizophrenia risk conferred by rare 
protein-truncating variants is conserved 
across diverse human populations

Schizophrenia (SCZ) is a chronic mental illness and among the most 
debilitating conditions encountered in medical practice. A recent landmark 
SCZ study of the protein-coding regions of the genome identified a 
causal role for ten genes and a concentration of rare variant signals in 
evolutionarily constrained genes1. This recent study—and most other 
large-scale human genetics studies—was mainly composed of individuals 
of European (EUR) ancestry, and the generalizability of the findings in 
non-EUR populations remains unclear. To address this gap, we designed 
a custom sequencing panel of 161 genes selected based on the current 
knowledge of SCZ genetics and sequenced a new cohort of 11,580 SCZ cases 
and 10,555 controls of diverse ancestries. Replicating earlier work, we found 
that cases carried a significantly higher burden of rare protein-truncating 
variants (PTVs) among evolutionarily constrained genes (odds ratio = 1.48; 
P = 5.4 × 10−6). In meta-analyses with existing datasets totaling up to 35,828 
cases and 107,877 controls, this excess burden was largely consistent across 
five ancestral populations. Two genes (SRRM2 and AKAP11) were newly 
implicated as SCZ risk genes, and one gene (PCLO) was identified as shared 
by individuals with SCZ and those with autism. Overall, our results lend 
robust support to the rare allelic spectrum of the genetic architecture of SCZ 
being conserved across diverse human populations.

SCZ is a severe, chronic psychiatric illness associated with lifelong 
progression and early mortality2–4. The genetic architecture of SCZ 
includes clear contributions from common single-nucleotide polymor-
phisms (SNPs)5, large copy number variants (CNVs)6 and rare PTVs1,7–14. 
Among these, rare PTVs provide unique value by linking disease risk 
to individual genes unambiguously. Most recently, the Schizophrenia 
Exome Sequencing Meta-Analysis (SCHEMA) Consortium increased 
the sequenced sample size for rare PTV investigations to 24,248 SCZ 
cases and 97,322 controls, established the rare PTV enrichment in genes 
under strong evolutionary constraint and identified ten genes with 
excess burden of rare PTVs in cases compared with controls1. When 
considered alongside earlier studies, these results suggest that, with 
greater sample sizes, additional SCZ genes harboring rare PTVs will 

be discovered. Whole-exome sequencing (WES) and whole-genome 
sequencing (WGS) remain cost prohibitive when applied at large scales, 
and targeted sequencing of carefully chosen genes is an alternative 
approach to rapidly achieve the required sample size for novel risk 
gene discovery.

Most large-scale human genetics research initiatives to date have 
failed to include diverse populations. Over 80% of genome-wide asso-
ciation study (GWAS) participants are of EUR ancestry, despite this 
group comprising less than one-quarter of the total human popula-
tion15,16. Studies of mental illness have contributed to this disparity 
with almost exclusively EUR GWAS cohorts despite the roughly equal 
prevalence of psychiatric disorders worldwide17. The limited evidence 
from SCZ GWASs and CNV studies of non-EUR populations suggests 

Received: 20 December 2021

Accepted: 23 January 2023

Published online: 13 March 2023

 Check for updates

 e-mail: dol31@pitt.edu; laura.huckins@mssm.edu; alexander.charney@mssm.edu

A list of authors and their affiliations appears at the end of the paper

http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-023-01305-1
http://crossmark.crossref.org/dialog/?doi=10.1038/s41588-023-01305-1&domain=pdf
mailto:dol31@pitt.edu
mailto:laura.huckins@mssm.edu
mailto:alexander.charney@mssm.edu


Nature Genetics | Volume 55 | March 2023 | 369–376 370

Letter https://doi.org/10.1038/s41588-023-01305-1

SCHEMA. In constructing the sequencing panel, we used a data-driven 
algorithm to synthesize current knowledge of the genetic architecture 
of SCZ, including a preliminary version of the SCHEMA gene-level bur-
den statistics31,32, with the goal of enriching for genes likely to harbor 
excess rare PTVs in SCZ that had not reached exome-wide significance 
due to a lack of power. This algorithm33,34 is a Bayesian framework 
that prioritizes genes by integrating gene-level burden statistics 
with gene membership in gene sets that have been implicated in SCZ  
(Fig. 1b and Supplementary Tables 2 and 3). The exonic regions of the 
161 prioritized genes were sequenced on the Ion Torrent platform fol-
lowed by rigorous quality control (Supplementary Figs. 1–6). Analyses 
comparing individuals with SCZ and controls were performed for rare 
PTVs (stop–gain, frameshift indels or essential splicing donor/accep-
tor) and deleterious missense variants (placed into tiers based on the 
missense badness, PolyPhen-2 and constraint (MPC) score35 (tier 1: 
MPC > 3; tier 2: MPC 2–3; nondamaging: MPC < 2), and synonymous 
variants were analyzed as a negative control. In our primary analysis, 

broadly shared genetic architecture with that of EUR populations, but 
ancestry-specific effects, such as the major histocompatibility complex 
locus in EUR populations, are also present18–24. For rare genetic variants, 
findings on a broad range of complex human traits have been largely 
consistent across populations25–30. Evidence for ancestry-specific 
rare variant effects is limited but starting to emerge, such as TMEM136 
and serum lipid measurements in individuals of South Asian (SAS) 
ancestry25. No studies have yet shown the effect of rare PTVs in diverse 
ancestries for SCZ.

Here, to diversify populations in SCZ studies and achieve sufficient 
power to discover novel risk genes, we designed a custom sequencing 
panel of 161 putative SCZ genes and applied it to case–control cohorts 
totaling 22,135 individuals from diverse ancestries (40% non-EUR;  
Fig. 1 and Supplementary Table 1). This study, outlined in Fig. 1a and 
hereafter referred to as the Psychiatric Genomics Consortium Phase 3 
Targeted Sequencing of Schizophrenia Study (PGC3SEQ), was limited to 
cohorts that were not part of earlier SCZ sequencing initiatives such as 
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Fig. 1 | Study design and cohort ancestry composition. a, Overview of the 
study design. b, Gene selection for the targeted sequencing panel. Genes were 
selected based on a combination of previous association statistics (SCHEMA), 
gTADA rankings and GWAS associations. Specially, we included: (1) genes in 
the top 100 based on the gTADA rank and/or the SCHEMA P value (top 100 in 
SCHEMA and gTADA, top 100 in SCHEMA alone and top 100 in gTADA alone; total 
n = 133 genes); (2) genes with evidence for association with SCZ in both GWASs 
and SCHEMA (special GWAS genes; n = 4 genes); and (3) an additional 24 genes 
that had the best 24 gTADA rankings of the remaining genes with a burden P value 

of <0.05, to fill up the target panel. The x axis shows the gene-level P value using 
SCHEMA interim data, based on which the panel was constructed (different from 
the final published version). The y axis shows the gTADA rank of genes.  
Only the top 500 genes are plotted for a clear display. Some highly ranked genes 
were excluded (gray dots) due to logistic issues during panel construction.  
c, PGC3SEQ ancestry composition. PGC3SEQ samples include substantial 
non-EUR ancestry. The first two principal components (PCs) are plotted along 
each axis, colored by SCZ case versus control status. 1000 Genomes samples are 
colored by super-population.
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rare was defined as a minor allele count of ≤5 among the entire cohort. 
To maximize power, PGC3SEQ was further meta-analyzed with SCHEMA 
data (Supplementary Table 4 and Supplementary Fig. 7) and sequenc-
ing datasets for bipolar disorder and autism. We performed two broad 
types of analysis: (1) a global enrichment of all constrained genes on 
the custom panel (n = 80 genes) to investigate the overall role of rare 
disruptive variants in diverse ancestries; and (2) gene-level burden 
tests to identify novel SCZ risk genes.

PGC3SEQ SCZ cases carried a significantly higher burden of rare 
PTVs among the 80 constrained genes after adjusting for rare synony-
mous variant counts and five ancestry principal components (odds 
ratio (OR) = 1.48; P = 5.4 × 10−6; Fig. 2a and Supplementary Table 5), 
indicating an independent replication of the excess burden of rare 
PTVs observed in 3,063 constrained genes in SCHEMA. The higher 
effect size seen in PGC3SEQ compared with SCHEMA (ORPGC3SEQ = 1.48 
in 80 genes; ORSCHEMA = 1.22 in 3,063 genes) demonstrates the effec-
tiveness of the gene prioritization strategy used for PGC3SEQ. For 
the 80 genes available in both studies, the signal in PGC3SEQ was 

much attenuated compared with in SCHEMA (ORPGC3SEQ = 1.48 versus 
ORSCHEMA = 3.0; Fig. 2a), indicating that effect sizes are probably over-
estimated in SCHEMA. In contrast, tier 1 and 2 missense variants were 
not significantly enriched in cases relative to controls in PGC3SEQ. The 
effects of missense variants were directionally consistent with those 
in SCHEMA, indicating that the insignificant results may be due to a 
lack of power. The burden of rare synonymous variants, which were 
analyzed as a negative control, was significantly higher in those with 
SCZ relative to controls in PGC3SEQ but not in SCHEMA. Sensitivity 
analysis showed that this signal was due to an overall higher burden of 
rare coding variants in people with SCZ relative to controls in PGC3SEQ, 
rather than due to technical bias or variability between contributing 
cohorts (Supplementary Note and Supplementary Fig. 8). The global 
PTV enrichment in PGC3SEQ remained significant after account-
ing for this overall higher baseline burden (OR = 1.4; P = 1.2 × 10−4;  
Supplementary Fig. 8c and Supplementary Table 5).

We performed meta-analyses of PGC3SEQ and SCHEMA to test 
whether the global enrichment signal was consistent across diverse 
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Fig. 2 | Global enrichment in 80 panel genes under strong constraint 
(pLI > 0.9). a, Case–control enrichment of rare (minor allele count ≤ 5) protein-
truncating, missense and synonymous variants in all ancestries combined. 
The PGC3SEQ results were derived from 11,580 individuals with SCZ and 10,555 
controls and are shown in red/orange. We conducted the same analysis in the 
SCHEMA samples (shown in gray; 19,108 cases and 18,001 controls) that we 
had access to for comparison. b, Ancestry-stratified rare variant (MAF < 0.1%) 
enrichment in the meta-analysis of PGC3SEQ and SCHEMA (29,381 cases and 

27,942 controls). Three groups of variants were analyzed: PTV + MPC > 3 missense 
variants (combined to increase the power); MPC = 2–3 missense variants; and 
synonymous variants. The data are presented as point estimates of enrichment 
ORs (dots) and 95% confidence intervals (bars). Two-sided P values were 
calculated using Firth logistic regression, controlling for five ancestry principal 
components and either the rare synonymous variant count (for PTV and 
missense variants) or the rare nonsynonymous variant count (for synonymous 
variants), to control for potential unknown technical biases.
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ancestries (n = 57,323; ancestry breakdown in Fig. 1a). We assigned 
samples to five ancestral super-populations, as defined in the 1000 
Genomes Project (Methods). At the aggregate level, four of the five 
populations displayed a higher burden of rare disruptive variants 
(PTV + MPC > 3 missense) in SCZ cases compared with controls 
(P < 0.05; Fig. 2b (left) and Supplementary Table 6). Although we did not 
find a nominally significant enrichment in the fifth ancestral population 
(SAS), the magnitude of enrichment was similar to that in the African 
(AFR) population (OR = 1.5), indicating that nonsignificance is probably 
a power issue (Supplementary Note and Supplementary Fig. 9). When 
considered separately, PGC3SEQ and SCHEMA provided independent 
support for the ancestry-stratified enrichments (all ancestries had 
OR > 1 in both datasets; Supplementary Table 6). Indeed, the PGC3SEQ 
data alone showed nominal significance for admixed American (AMR), 
East Asian (EAS) and EUR populations, exempt from any potential 
effect overestimation in SCHEMA. Differences, if any, in the strength 
of enrichment between pairs of ancestral populations were not sizable 
enough to be detected as significant. Across the five ancestral popula-
tions, the burden of tier 2 missense variants was evaluated, although not 
significant in most (OR = 1.1–1.2; Fig. 2b, middle), whereas synonymous 
variants were not enriched in any (Fig. 2b, right).

Having replicated the global rare PTV enrichment in PGC3SEQ 
and established its conservation across diverse populations, we then 
tested individual genes for harboring an excess burden of rare PTVs 
in cases relative to controls. In the PGC3SEQ data alone, none of the 
161 genes sequenced were significant after Bonferroni correction 
(0.05/161 = 3.1 × 10−4; Supplementary Tables 7–9 and Supplementary 
Fig. 10). The direction of effects of all genes was overall consistent with 
the directions observed in SCHEMA (binomial test, P = 0.016) and this 
observation became more pronounced when considering only those 44 
genes with a SCHEMA P value of <0.01 (binomial test, P = 0.002). Of the 

ten significant genes identified in SCHEMA, nine were included in the 
PGC3SEQ panel (GRIA3 was the lone exception). PGC3SEQ had enrich-
ment of rare PTVs for these nine genes collectively (OR = 1.66; P = 0.03; 
49 PTVs in cases versus 24 in controls) and two of the nine genes had 
P < 0.05 when considered individually (RB1CC1 and CUL1; Table 1). 
Notably, SETD1A—the gene with the strongest signal in SCHEMA—had 
a nonsignificant, weakened enrichment in PGC3SEQ, suggesting an 
overestimation of its effect magnitude in SCHEMA (ORPGC3SEQ = 1.6 
versus ORSCHEMA = 20.1). Another gene implicated by SCHEMA that did 
not find support in PGC3SEQ was CACNA1G. Among the nine SCHEMA 
genes on the PGC3SEQ panel, CACNA1G had the largest number of PTVs 
in PGC3SEQ (n = 19) yet an OR of 0.42, directionally inconsistent with its 
effect in SCHEMA (ORSCHEMA = 3.1). Despite some evidence of winner’s 
curse, altogether the gene-level replication tests in PGC3SEQ suggest 
that many of the SCHEMA genes probably confer genuine SCZ risk, 
including those not yet reaching exome-wide significance.

Combining PGC3SEQ and SCHEMA (totaling 35,828 cases and 
107,877 controls) via a P value-based meta-analysis of gene-level sta-
tistics, we identified two new genes at the exome-wide significance 
threshold (Table 2 and Supplementary Table 7): SRRM2 (P = 7.2 × 10−7) 
and AKAP11 (P = 4.2 × 10−7). In previous work, SRRM2 has been shown 
to play a role in the tauopathy of Alzheimer’s disease36–38, and de novo 
mutations in this gene have been linked to developmental disorders39, 
while AKAP11 was suggested as a trans-gene linking to a SCZ GWAS locus 
in a recent study40, which, together with our results, adds to examples 
of the convergence of common and rare variant associations in the 
same gene. A recent meta-analysis of SCHEMA and a bipolar disorder 
dataset also found exome-wide significance for AKAP11 (ref. 41), sug-
gesting a role for this gene in the shared etiology of SCZ and bipolar 
disorder. The current study consolidates the role of AKAP11 in SCZ, 
independent of other psychiatric disorders.

Table 1 | Attempted replication of the nine significant SCHEMA genes in PGC3SEQ

Gene PGC3SEQ SCHEMA

Number of PTV 
alleles in cases

Number of PTV 
alleles in controls

Number of 
alleles in cases

Number of alleles 
in controls

OR (PTVs) Fisher’s exact 
test P

OR (PTVs) P

SETD1A 9 5 23,160 21,110 1.64 0.431 20.1 2.00 × 10−12

CUL1 6 0 23,160 21,110 Infinity 0.032 36.1 2.01 × 10−9

XPO7 5 0 23,158 21,110 Infinity 0.064 52.2 7.18 × 10−9

TRIO 3 3 23,160 21,110 0.91 1.000 5.0 6.35 × 10−8

CACNA1G 6 13 23,160 21,110 0.42 0.105 3.1 4.57 × 10−7

SP4 1 0 23,150 21,104 Infinity 1.000 9.4 5.08 × 10−7

GRIN2A 0 1 23,152 21,104 0.00 0.477 18.1 7.37 × 10−7

HERC1 9 2 23,160 21,110 4.10 0.069 3.5 1.26 × 10−6

RB1CC1 10 0 23,148 21,108 Infinity 0.002 10.0 2.00 × 10−6

Total 49 24 1.66 0.027

All P values are two sided.

Table 2 | Novel exome-wide significant SCZ genes

Gene Location pLIa PGC3SEQ SCHEMAb Meta Pc

Number of 
PTVs

OR (PTVs) P OR (PTVs) P SCZ SCZ and ASD

AKAP11 Chr13:42846289–42897396 0.98 17 4.26 0.014 5.25 8.28 × 10−6 4.15 × 10−7 –

SRRM2 Chr16:2802330–2822539 1 10 9.12 0.013 7.14 7.19 × 10−7 7.19 × 10−7 –

PCLO Chr7:82383329–82792246 1 8 5.01 0.024 4.02 9.36 × 10−4 1.06 × 10−5 5.84 × 10−8

aProbability of loss-of-function intolerance. bThe SCHEMA P values were retrieved from SCHEMA summary statistics and represent the strength of evidence from both case–control and  
patient–proband trio (de novo mutation) data. SCZ, meta-analysis of PGC3SEQ and SCHEMA; SCZ and ASD, SCZ further meta-analyzed with Autism Sequencing Consortium WES. 
cMeta-analysis P values were determined by Stouffer’s method and weighted by sample size. All P values are two sided.
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Lastly, we meta-analyzed gene-level rare disruptive variant sta-
tistics from SCZ, autism spectrum disorder (ASD)42 and bipolar dis-
order41 to identify pleiotropic risk genes that are not detectable at the 
sample sizes attained by studies of any single disorder. This identified 
PCLO as a shared risk gene for SCZ and ASD (P = 5.8 × 10−8; Table 2).  
The result suggests that PCLO may be driving the common variant 
association at nearby loci reported in GWASs of SCZ43 and other  
psychiatric disorders44–47.

The major contribution that the PGC3SEQ study makes to the field 
of human genetics is demonstrating the cross-ancestry conservation 
of the risk conferred by a major class of genetic variation for the most 
severe adult mental illness. To date, the paucity of exome sequencing 
studies of non-EUR populations has impeded the field in developing 
a complete view of the genetic architecture of complex diseases, and 
has made it difficult to assess the degree to which rare PTV associations 
are susceptible to the well-known confounding effects of ancestry in 
GWASs and polygenic prediction studies48–52. Here we addressed this 
knowledge gap with respect to severe mental illnesses. In doing so, 
findings previously established in predominantly EUR cohorts have 
been extended to non-EUR populations for one of the major classes of 
genetic risk variation. This observation was not a foregone conclusion, 
especially since the targeted gene list was derived from SCHEMA—
a study of predominantly EUR cohorts. In effect, PGC3SEQ showed 
that the burden signal in genes with the strongest evidence in EUR 
populations is conserved across non-EUR populations. Our findings are 
also timely information following the publication of SCHEMA, show-
ing that some of the top genes implicated in that study are probably  
false positives.

There are limitations to the current study. The Ion Torrent technol-
ogy is known to have decreased accuracy for indels involving homopol-
ymer repeats of the same nucleotide53. We assessed the impact of such 
indels on our findings via a sensitivity analysis and found that excluding 
them would not change our conclusions (Supplementary Tables 10 
and 11 and Supplementary Fig. 11). We used an interim version of the 
SCHEMA results for PGC3SEQ panel design, and this version is differ-
ent from the published results due to changes in SCHEMA analytical 
strategy. Specifically, the interim SCHEMA statistics31,32 did not include 
de novo mutations from trios, used a different strategy to combine PTV 
and missense variants and were compiled before the incorporation of 
Genome Aggregation Database (gnomAD) controls. Comparing the 
interim and published SCHEMA results, gene ranks underwent non-
trivial changes, with only 27 overlapping genes between the top 100 
lists in the two versions. Consequently, our panel probably included 
more random noise than it would have if panel construction had waited 
until SCHEMA was complete. As WES studies of other diseases approach 
the sample size achieved for SCZ, and strategies are considered for 
how to increase power, the current report offers valuable lessons, and 
we note that results on datasets as large as 24,000 cases and 50,000 
controls can still change substantially as more samples are added. 
The possibility of such changes makes the targeted panel approach 
vulnerable, and perhaps WES and WGS are the safest strategies despite  
their cost.

In summary, rare PTVs have a robust role in SCZ, and across 
ancestries their effect is consistently concentrated in genes under 
strong evolutionary constraint. The deconvolution of this overall 
contribution into individual genes that may have ancestry-specific 
effects will require the sequencing of more individuals of diverse 
backgrounds. Achieving diversity in human genetic research 
must be a top priority to prevent health disparities from worsen-
ing as findings from genetic research begin to be translated into  
clinical practice.
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Methods
Cohorts
A brief description of the individual contributing sample collection of 
PGC3SEQ is available in the Supplementary Note, along with the insti-
tutional review boards that approved the sample collections. To ensure 
compatibility with Psychiatric Genomics Consortium definitions, we 
define cases as those having a diagnosis of SCZ or a schizoaffective 
disorder. A total of 23,352 samples selected to be nonoverlapping with 
SCHEMA as well as other previous and ongoing sequencing efforts in 
the field were identified and sequenced (Supplementary Table 1). The 
PGC3SEQ study protocol was approved by the Icahn School of Medicine 
at Mount Sinai ethical review board (16-00101).

Gene panel construction
We intended to build a panel of putative SCZ risk genes from within 
which the majority of new discoveries from additional WES and WGS 
would come. To this end, we applied both traditional burden statistics 
and the generalized/gene set transmission and de novo association test 
(gTADA) to the SCHEMA data.

Traditional burden statistics. For each gene in SCHEMA, the enrich-
ment statistics of rare variants in cases compared with controls were 
calculated using Fisher’s exact test separately for PTVs and damaging 
missense variants, then the two classes of variants were combined using 
meta-analysis to generate a gene-level P value. Of note, this gene-level 
P value is different from that in the SCHEMA publication, which used a 
slightly different strategy in combining PTVs and missense variants, addi-
tionally incorporated evidence from de novo mutations using trio data 
and included external gnomAD controls. Such analysis strategy changes 
in the later stage of SCHEMA have led to nontrivial changes in gene rank, 
which may impact the power of our panel to implicate disease genes.

gTADA. gTADA is a generalized Bayesian framework where de novo and 
rare variant case/control data are integrated with gene-level external 
information to identify risk genes for neuropsychiatric disorders33,34. 
We first sought to identify gene sets associated with SCZ in SCHEMA. 
Through curation of the literature, we identified an initial set of ~160 
candidate gene sets. Next, each set was tested independently for 
association with SCZ in SCHEMA data using gTADA. From all of the 
sets tested, we identified 27 significantly enriched gene sets. We then 
calculated a joint enrichment Z score from the marginal Z scores and 
the gene set correlation matrix and kept the 25 gene sets with positive 
joint Z scores (Supplementary Table 2). For each of the 25 sets retained, 
gene-level statistics (posterior probability of being a risk gene) were 
then calculated. The genes were then ranked by this metric and the 
mean ranking across the 25 ranks was calculated.

Combining traditional burden statistics and gTADA, genes in the 
top 100 based on the gTADA mean ranking across the 25 ranks or the 
top 100 based on the minimum ranking across the 25 ranks and/or the 
top 100 based on the burden test were included in the panel (Fig. 1b 
and Supplementary Table 3; n = 139 genes; six were later removed due 
to the logistics of designing the sequencing panel). We next included 
four genes with evidence for association with SCZ in both GWASs and 
SCHEMA, with the criteria being: gene burden test P value < 0.05; gene 
with a top 200 rank in gTADA; and gene start and stop positions span-
ning an SNP associated with SCZ in GWAS or, if not, gene located in a 
GWAS locus with fewer than or equal to ten genes. Finally, an additional 
24 genes were chosen for inclusion by taking the best 24 gTADA rank-
ings of the remaining genes with a burden P value < 0.05.

Based on the observation that gene-level rare single-nucleotide 
variant burden statistics have been consistent across ancestries in a 
wide range of diseases18–24, our targeted panel was expected to have 
broad utility across ancestries, even though its construction used 
EUR-dominant datasets. This was further consolidated by findings 
from our own ancestry-stratified analysis (Fig. 2b).

Sequencing and variant calling
Ion AmpliSeq technology is an amplicon-based enrichment method 
for creating sequencing libraries. We used Ion AmpliSeq Designer 
version 6.13 to design amplicons that cover the exons of the 161 genes 
defined based on the Ion hg19 reference. The mean and median per-
centages of covered base pairs across all exons were 97.7 and 100%, 
respectively. Sequencing of the PGC3SEQ samples was performed on 
the Ion Torrent platform at Sema4 between June 2018 and April 2019. 
Sequencing plates were matched with respect to ancestry and case 
versus control composition whenever possible. The average sequenc-
ing depth across all samples was 224×. The Sema4 sequencing facility 
returned to the research team BAM files with flow signal and associated 
quality control metrics. Single-sample calling was performed using 
Torrent variantCaller version 5.8.0, which is specially optimized to 
exploit the underlying flow signal information generated by the Ion 
Torrent sequencing. Sites were left aligned and normalized and multi-
allelic sites were split into separate lines using BCFtools version 1.9  
(http://samtools.github.io/bcftools/).

Genotype-level quality control
We interrogated the call set with respect to a variety of quality con-
trol metrics and implement procedures to ensure rigorous quality 
control standards. In the absence of well-established quality control 
procedures specifically for Ion Torrent data, we drew on the idea of 
GATK’s variant quality score recalibration technique and developed 
a machine-learning genotype-level filter based on 177 quality metrics 
and annotation profiles, including Ion Torrent sequencing metrics 
such as QUAL, FMT/GQ and FMT/DP, allele-related metrics such as AF, 
HRUN and MLLD and coverage and allele frequency from the gnomAD 
database version 2 (https://gnomad.broadinstitute.org). Considering 
that the majority of SCHEMA data with which we meta-analyzed were 
generated on the Illumina platform, we calibrated our Ion Torrent tar-
geted sequencing data using a subset of the control samples (n = 1,347) 
with available Illumina WES data. Specifically, we used XGBoost version 
1.3 (ref. 54) in Python version 3.7.3 to train the classifier in 70% of the 
Ion Torrent–Illumina paired data using Illumina as the ground truth. 
In the remaining 30% test set, the classifier achieved an area under the 
curve of 0.95, an accuracy of 95.3% and a false discovery rate of 4.4% 
for SNPs and an accuracy of 99.0% and a false discovery rate of 6.4% 
for indels. Applying the trained classifier to the test dataset improved 
the concordance between Ion Torrent and Illumina calls from 83.1 to 
95.7%. We also compared our machine-learning classifier with a set of 
conventional hard filters and confirmed that the classifier performs 
unanimously better in all metrics considered (sensitivity, specificity, 
accuracy and false discovery rate).

Applying the machine-learning filter to the entire dataset, 83.2% of 
the calls were retained, and among the passed variants, 96% were SNPs 
and 4% were indels. Five out of 919 detected multiallelics passed the 
filter and were split into multiple biallelic variants. The proportion of 
calls that passed the filter among samples used for model training and 
testing (n = 1,347) and the remaining samples were similar (83.9 versus 
83.1%, respectively). Likewise, the pass rate among sites that were cov-
ered by both Illumina WES capture and our sequencing panel (33.8% of 
the calls fell into these regions) and sites only covered by our panel were 
comparable (85.8 versus 81.8%), indicating that the machine-learning 
model generalized well to new samples and new genomic regions

Sample- and site-level quality control
To identify low-quality and outlier samples, we examined per-sample 
sequencing quality metrics, including the number of mapped reads, 
average read depth across the panel, on-target rate and uniformity 
rate. We also examined sample-level call set characteristics, includ-
ing the call rate, inbreeding coefficient, transition-to-transversion 
ratio at heterozygote sites, heterozygous-to-homozygous call ratio, 
total number of variants, number of SNPs and indels and number of 
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singletons. We visualized the distribution of the above quality con-
trol metrics (Supplementary Fig. 1) and identified 94 low-quality/
outlier samples that met either one of the following criteria: Mappe-
dReads < 400,000; MeanDepth < 40; OnTarget < 80; Uniformity < 65; 
MissingCallRate > 0.3; Inbreeding_F > 0.6; Het_Hom_Ratio < 0.6;  
Total_SNPs < 400; and Total_Indels < 10. The number of low-quality 
or outlier samples was not significantly different between cases and 
controls (55 out of 12,045 cases were low quality or outliers and 38 out of 
11,212 controls were low quality or outliers; chi-squared test, P = 0.1878). 
All of the quality control metrics distributed similarly between SCZ 
cases and controls (Supplementary Fig. 2).

When combining data from single-sample calls, a no call at a par-
ticular site in a particular sample was deemed as a homozygous refer-
ence genotype if the depth at that site in that sample was greater than 
ten and missing otherwise. Lastly, we applied the site-level filters to 
exclude variants with a missing rate of >10%.

Sample relatedness
We used the population structure-adjusted relatedness estimation 
methods PC-AiR and PC-Relate to estimate pairwise relatedness 
between samples. In addition to the quality control steps performed 
per previous sections, we further performed linkage disequilibrium 
pruning on the dataset and removed indels before relatedness esti-
mation. Considering that the conventional kinship coefficient ranges 
for varying degrees of relatedness may not be appropriate when the 
estimates are from targeted sequencing data covering only a small 
fraction of the genome, we derived empirical boundaries based on 
the clustering of sample pairs on an identity-by-descent kinship scat-
terplot (Supplementary Fig. 3). The unrelated and related pairs were 
clearly separated into two clusters with distinct patterns (unrelated 
pairs: lower oval-shaped cluster; related pairs: upper left). We identi-
fied 1,096 pairs of genetic relatives and retained one sample from each 
pair according to the following prioritization scheme: (1) the sample 
has fewer genetic relatives in the entire cohort; (2) patient with SCZ; 
(3) the sample has available genome-wide SNP data; (4) the sample has 
self-reported sex information; and (5) the sample has fewer missing 
genotypes for variants with a minor allele frequency (MAF) of <0.1%. 
These measures yielded a total of 22,135 unrelated individuals for 
downstream analysis.

Control for population stratification
We calculated ancestry principal components for the 22,135 unre-
lated individuals in PLINK version 1.9 (ref. 55) using 1,392 linkage 
disequilibrium-pruned common SNPs (MAF > 1%) that passed all quality 
control steps. Cases and controls were broadly matched on population 
structures (Supplementary Fig. 5a,b). The first five principal compo-
nents were used in later association analysis to control for population 
substructure, based on the observation that: (1) the first five principal 
components explained 75% of the cumulative variance in the genetic 
variation among study participants; and (2) the ability of principal 
components to separate ancestral genetic backgrounds dissipated 
after the first five principal components (Supplementary Fig. 5c).

Ancestry assignment
The genetic ancestry assignment of the PGC3SEQ participants was done 
by calculating principal components jointly with 1000 Genomes phase 
3 participants (n = 2,501), followed by a K-nearest-neighbor classifica-
tion using the top three principal components. We restricted the analy-
sis to 1,372 linkage disequilibrium-pruned common SNPs (MAF > 1%) 
that were present in both the study dataset and the reference dataset 
(1000 Genomes). The reference data were first cleaned and quality con-
trolled using PLINK by filtering for missingness per individual (<10%) 
and missingness per SNP (<10%) and then subsetted to the variant set 
that passed all of the quality control filters in the PGC3SEQ cohort. The 
cleaned reference and study datasets were harmonized, combined and 

pruned for linkage disequilibrium, then input into PLINK for principal 
component analysis with default settings.

K-nearest-neighbor classification was used for ancestry assign-
ment of the study participants. Cross-validation determined K = 5 and 
the first three principal components could best classify participants 
into five super-populations (AFR, AMR, EAS, EUR and SAS). Applying 
the trained classification model, we assigned each study participant 
to the super-population that included the most of the participant’s 
five neighbors. About half of our study participants had self-reported 
ancestry and ethnicity data, which were broadly consistent with their 
genetically inferred ancestry. There was reasonable concordance 
between the country of origin of the sample collection and assigned 
ancestries (Supplementary Fig. 6).

We then ran another round of principal component analysis for 
each global population separately to generate ancestry-specific princi-
pal components, identified ancestry-specific outliers on the principal 
component plots and removed the outliers and recalculated the prin-
cipal components until no obvious outlier existed. After two rounds 
of recalculation, two EAS and seven SAS individuals were flagged as 
outliers within ancestry and were not included in the analysis in which 
stratification by population was performed.

Variant annotation
We employed the same variation annotation workflow as was used in 
SCHEMA for ease of replication and comparison. Specially, annota-
tion by LOFTEE (as implemented in the Variant Effect Predictor)56 
was applied to variants that passed all quality control filters, and the 
analysis was restricted to the canonical transcript with the most dam-
aging annotation. The three broad types of coding variants analyzed 
were: (1) PTVs, defined as any mutation that introduced a stop codon, 
changed the frame of the open reading frame or introduced a change at 
a predicted splice donor or splice acceptor site; (2) missense variants, 
which included any single-nucleotide variant that caused an amino 
acid change; and (3) synonymous variants, which resulted in no amino 
acid change, as a negative control. Missense variants were further par-
titioned into groups with increasing deleteriousness based on the MPC 
score annotation35. Tier 1 missense variants had an MPC score of >3, tier 
2 missense variants had an MPC score of 2–3 and an MPC score of <2 
indicated nondamaging missense variants. The use of MPC as the mis-
sense classifier was based on the SCHEMA results that were compared 
with Combined Annotation Dependent Depletion and PolyPhen; MPC 
most powerfully prioritized damaging missense de novo variants in 
ASD and developmental delay/intellectual disability trios1.

Use of SCHEMA data
SCHEMA is a large multisite collaboration aggregating, generating 
and analyzing high-throughput exome sequencing data of individu-
als with SCZ and controls to advance gene discovery. We accessed the 
post-quality control data of a subset of SCHEMA case–control samples 
with appropriate sharing permissions at the time of this work and did 
not reperform genotype- and sample-level filtering. Specifically, the 
controls from gnomAD, as included in SCHEMA, were not used in the 
current study due to data sharing restrictions. After excluding 216 
samples detected as genetic duplicates with a PGC3SEQ sample, the 
available SCHEMA datasets contained 19,108 cases and 18,001 controls 
(Supplementary Table 4). We used the genetic ancestry label for each 
individual determined by the SCHEMA analysis team and, within each 
ancestral group, calculated population-specific principal components 
using linkage disequilibrium-pruned SNPs with a MAF of >1%, a call 
rate of >95 and a Hardy–Weinberg P value of 1 × 10−6. Using a similar 
procedure to that used in the PGC3SEQ data analysis, we detected and 
removed 24 outlier samples from the EAS group. Supplementary Fig. 7 
shows the ancestral composition of the SCHEMA cohort and Supple-
mentary Table 4 displays the number of SCHEMA cases and controls 
used for this study by original sample collection.
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Statistical approaches for global enrichment across 
constrained genes
We defined rare variants as those with a minor allele count of ≤5 in 
the entire sample for any ancestry-combined analysis and lifted this 
threshold to MAF < 0.1% in ancestry-stratified analysis to preserve 
power. We counted the number of rare variants by annotation type 
observed in each participant in individual genes and added up the 
counts across the 80 constrained genes. The association between rare 
variant burden in the gene set of interest and SCZ status was tested 
using logistic regression with Firth’s penalized likelihood method 
to account for sparse data57, while adjusting for ancestry principal 
components and baseline rare variant burden. The first five global 
principal components were used in the ancestry-combined analy-
sis and the first four principal components calculated within each 
ancestry were used in ancestry-stratified analysis. The baseline rare 
variant burden was used to control for technical and biological differ-
ences between cases and controls. To ensure a minimum correlation 
between the baseline burden and the burden of interest, we used the 
rare synonymous variant count as the baseline burden when the burden 
of interest was a PTV or missense variant and the rare nonsynonymous 
variant count as the baseline burden when the burden of interest was 
a synonymous variant. The significance threshold for the enrichment 
analysis was determined using the Bonferroni method, correcting for 
the five annotation classes tested (PTVs, the three missense groups 
and synonymous variants); that is, 0.05/5 = 0.01. P < 0.05 was used for  
nominal significance.

Using the available individual-level SCHEMA data, we per-
formed global enrichment tests across the 80 constrained genes 
using similar approaches as in the PGC3SEQ analysis. Specifically, 
we used logistic regression with Firth’s correction and adjusted for 
ancestry principal components, sex, sequencing cohort and baseline 
rare variant burden. The first five global principal components were 
used in the ancestry-combined analysis and the first four principal 
components calculated within each ancestry were used in ancestry- 
stratified analysis.

Four of the global populations (AFR, AMR, EUR and EAS) 
had n > 100 in both PGC3SEQ and SCHEMA and we used inverse 
variance-weighted meta-analysis to combine their odds ratios in the 
two cohorts (sample size by population in Fig. 1a). To balance the power 
reduction due to sample stratification, we relaxed the definition of 
rare variants to include those with a MAF of <0.1% (compared with a 
minor allele count of ≤5 in the ancestry-combined analysis). In the full 
SCHEMA cohort, missense variants with MPC > 3 had a global signal 
on par with PTVs1; therefore, we grouped these two types of variants 
together in our analysis of both cohorts to further increase the power. 
Only PGC3SEQ contributed to the analysis of the SAS population.

Statistical approaches for gene-based tests
Gene-based tests aggregate the effects of multiple rare variants and 
can increase the power to detect genetic associations58. It is reason-
able to assume that rare disruptive variants in a gene all have the same 
effect direction (variant alleles associated with higher risk) and under 
this scenario a burden test is appropriate. Considering the sparsity of 
the observed count data, we used Fisher’s exact test to compare the 
burden of PTVs in cases and controls and computed two-sided P values. 
The total disruptive burden per gene was quantified by adding up all 
PTVs (or synonymous variants, as a negative control) annotated to 
the gene. Different from SCHEMA, we did not incorporate missense 
variants because they were not significantly enriched globally (Fig. 
2a). We did not pursue a meta-analysis of the PTV and MPC > 3 variants 
because the extremely low number of MPC > 3 variants prohibited a 
reliable estimation of their effect magnitude, which would be used as 
weights in a meta-analysis. Although Fisher’s exact test is not able to 
accommodate covariates such as ancestry principal components and 
baseline burden, this did not adversely affect our analysis as the Q–Q 

plot showed no sign of inflation in the statistics (Supplementary Fig. 
10, top row).

In the gene-level analysis of SCHEMA, case–control cohorts and 
trio cohorts were meta-analyzed, and rare variants found in both types 
of cohort were not double counted. We combined gene-level P values 
from PGC3SEQ and SCHEMA (summary statistics obtained from the 
SCHEMA publication) using signed Stouffer’s method, with the sign 
of the Z scores being the effect direction of the PTVs and the weights 
of each study calculated as:

4
1

#cases
+ 1

#controls

+ (#trios in SCHEMA)

The above equation applies equal weight to the case–control 
data and trio data. Since only a subset of genes had de novo muta-
tions in SCHEMA trios and the number of trios was small relative to 
the case–control sample size, fine-tuning weights would not mean-
ingfully change our results. This meta-analysis totaled 35,828 SCZ 
cases and 107,877 controls, representing the largest SCZ sequenc-
ing dataset to date. The exome-wide significance level was deter-
mined to be 0.05/(23,321 tests performed in SCHEMA + 161 tests 
performed in PGC3SEQ) = 2.13 × 10−6. As expected, the meta-analysis 
P values deviated substantially from the null (Supplementary Fig. 
10, middle left), consistent with an enrichment of risk genes in the 
targeted panel. Gene-level synonymous variant P values displayed 
the expected null distribution (Supplementary Fig. 10 (middle right) 
and Supplementary Table 9), assuring that the gene-level PTV results 
were free from technical or methodological artifacts agnostic to  
variant annotation.

We then combined the two SCZ cohorts with the WES datasets of 
two other psychiatric diseases to identify genes shared across diagno-
ses. The two studies from which we obtained summary statistics were: 
(1) the latest release of the Autism Sequencing Consortium (ASC)42 (and 
we further converted the gene-level q values to P values); and (2) the 
WES of bipolar disorder by Palmer et al.41. Meta-analysis was performed 
similarly as above and the same exome-wide significance threshold 
was also applied (2.13 × 10−6). We noted some degree of control overlap 
between these studies (for example, SCHEMA and ASC both included 
Swedish controls from the same collection). As the overlap between 
SCHEMA and ASC consists only a small fraction of the entire sample, 
our analysis (and the discovery of PCLO) should only be minimally 
affected. The controls overlapping between SCZ and bipolar disorder 
are expected to be greater per contributing cohort makeup, although 
we did not identify any new genes.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
We describe all of the datasets in the Methods and Supplementary 
Information. The raw PGC3SEQ genotype and phenotype datasets 
are permitted to be distributed at the individual level and we have 
deposited the data in the database of Genotypes and Phenotypes under 
accession number phs003138.v1.p1. We provide the aggregated vari-
ant counts at the gene and gene set level in Supplementary Tables 1–9. 
SCHEMA summary-level data are available online for viewing and down-
load (https://schema.broadinstitute.org). SCHEMA individual-level 
whole-exome sequence data are hosted on the controlled-access 
Terra platform (https://app.terra.bio/) and shared with the collabo-
rating study groups. Requests for access to the controlled datasets 
are managed by data custodians of the SCHEMA Consortium and the 
Broad Institute and are sent to sample contributing investigators for 
approval. The gnomAD database can be accessed at https://gnomad.
broadinstitute.org.
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Code availability
The software and code used in this study are described in the Methods. 
In brief, we used Torrent variantCaller version 5.8.0 to call variants from 
the raw sequence data. For quality control and preprocessing, we used 
XGBoost version 1.3 in Python version 3.7.3, BCFtools version 1.9 and 
PLINK version 1.9. Reanalysis of the SCHEMA cohort was performed 
using Hail 0.1 and 0.2 (https://hail.is/). Main analyses of the PGC3SEQ 
data and their meta-analysis with SCHEMA were performed using R 
version 3.6 with various libraries. Visualization was generated with 
ggplot2 version 3.3.
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n/a Confirmed
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Our web collection on statistics for biologists contains articles on many of the points above.
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Data collection No software and code was used in data collection.

Data analysis Software and code used are described throughout the Supplementary Methods. In brief, we used Torrent Variant Caller version 5.8.0 to call 
variants from the raw sequence data. For QC and pre-processing, we used XGBoost v1.3  in Python v3.7.3, BCFtools v1.9, and PLINK v1.9. Re-
analysis of the SCHEMA cohort was performed using Hail 0.1 and 0.2 (https://hail.is/). Main analyses in the PGC3SEQ data and its meta-
analysis with SCHEMA were performed using R v3.6 with various libraries. Visualization was generated with ggplot2 v3.3. 
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- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

We describe all datasets in Online Methods and Supplementary tables/figures. The raw PGC3SEQ genotype and phenotype datasets are permitted to be distributed 
at the individual level and we have deposited the data in the database of Genotypes and Phenotypes dbGaP. The accession number is phs003138.v1.p1. We provide 
the aggregated variant counts at the gene and the gene-set level in supplementary tables. SCHEMA summary-level data is available as an online browser for viewing 
and download (https://schema.broadinstitute.org). SCHEMA individual-level whole-exome sequence data are hosted on and shared with the collaborating study 
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SCHEMA consortium and the Broad Institute and are sent to sample contributing investigators for approval. The gnomAD database can be accessed at https://
gnomad.broadinstitute.org.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was not predetermined in this study: we intended to aggregate samples from all available schizophrenia patient and control 
cohorts who have not been whole-exome or whole-genome sequenced at the time of study design. The sample size is sufficient because we 
were able to replicate findings from a previous study which had a bigger dataset, and meta-analyzed with that bigger study to further increase 
sample sizes.

Data exclusions We describe sample ascertainment in detail in the Online Methods. We included only cases with a clear diagnosis of schizophrenia or 
schizoaffective disorders, and controls without a known diagnosis of a psychiatric disorder. We additionally described the criteria for which 
low-quality or related samples and low-quality variants were excluded in our study (see sections on Sample and Variant QC). 

Replication Our main analysis integrated case-control rare variant enrichment and gene discovery. We have access to the largest-to-date whole exome 
sequencing datasets of schizophrenia cohorts that are independent to our samples, and this dataset and our own dataset partially replicated 
one another. Some results reported in the other dataset were not replicated in our study.

Randomization Case and control status of samples were assigned by investigators of contributing collections. We controlled for confounding factors 
(sequencing artifacts and population ancestry) by adjusting for those confounders in logistic regression.

Blinding Blinding was not relevant to our study, as the genotype and phenotype data is determined/defined externally and could not be influenced by  
the analyst or during our aggregation steps.
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Human research participants
Policy information about studies involving human research participants

Population characteristics Supplementary Table S1 and S4 described contributing cohorts along with country of origin, the number of samples 
sequenced, and the number of samples retained in the final analysis. For each cohort, we give described description of the 
original recruitment and phenotypic ascertainment in Supplementary Information. To ensure compatibility with Psychiatric 
Genomics Consortium (PGC) definitions, we included samples with a diagnosis of schizophrenia and schizoaffective disorders 
in our analysis. The final dataset included 22,135 individuals from diverse ancestries, 40% of which are non-European (see 
Figure 1 for the number of subjects for each group ). We do not have complete information on subjects' age and sex.

Recruitment Patients were recruited originally as a part of numerous cohort studies, described in Supplementary Table S1 and Table S4. 
The ascertainment strategies of contributing cohorts are described in Supplementary Information.

Ethics oversight The PGC3SEQ study protocol was approved by the Icahn School of Mount Sinai ethical review board (16-00101). The IRBs 
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Ethics oversight that approved individual contributing studies are given in the Supplementary Note, Detail Cohort Description. Informed 

consent was obtained from all participants, and the institutional human subject review and ethics committees relevant to 
each contributing cohort approved the research.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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