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Highlights
A Non-Intrusive Probabilistic Multi-Energy Flow Calculation Method and Its Application in
Operation Risk Analysis of Integrated Energy Systems
Bo Dong, Peng Li, Hao Yu, Haoran Ji, Juan Li, Jianzhong Wu, Chengshan Wang

• An sPCE-based non-intrusive probabilistic multi-energy flow model is established.
• A solving algorithm based on Bayesian compressive sensing method is proposed.
• Three violation risk indices based on probabilistic multi-energy flow are constructed.
• A CVaR-based risk analysis method is developed for integrated energy systems.
• The proposed method reduces the computation time by 96% with an acceptable accuracy.
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A B S T R A C T
With the deep coupling of electricity, heat, and gas systems, the uncertainties in renewable
energy sources and loads significantly impact the energy flow distribution of integrated energy
systems. Probabilistic multi-energy flow calculations considering these uncertain factors have
become essential for risk analysis, optimal management, and operational control. However,
it is still difficult to efficiently and accurately deal with the diverse and large numbers of
correlated random variables. This paper proposes a non-intrusive probabilistic multi-energy flow
calculation method and explores its application in the operation risk analysis of integrated energy
systems. The probabilistic multi-energy flow model is established considering the uncertainties
and correlations of renewable energy sources and loads. The proposed model is solved within the
sparse polynomial chaos expansion framework based on Bayesian compressive sensing. Thus,
the probabilistic density functions of the risk indices of each subsystem can be obtained. On
this basis, the conditional value-at-risk method is employed for the operation risk analysis. The
feasibility and advantages of the proposed method are verified using a typical integrated energy
system test case.

1. Introduction
An integrated energy system (IES) integrates the production, distribution, conversion, storage, and utilization of

multiple energy carriers to realize their coordinated construction and operation [1]. However, the diverse loads and
increasing penetration of distributed energy resources have resulted in profound uncertainties in IES [2] . Various
uncertainties and fluctuations are propagated and coupled via energy-conversion devices, posing one of the toughest
challenges for the operation of an IES. For example, distributed generators with a high correlation may lead to voltage
violations in an electric network [3] and disrupt the operation of motors and pumps in other energy networks. The
output regulation of a gas power plant may result in fluctuations in its gas consumption and consequently severe
pressure disturbances to the gas network [4]. The operational risk of the IES is significantly increased because of
the multi-energy interactions and coupled uncertainties. New methods and tools are required to analyze the operation
states and risks of an IES under complex operating modes and scenarios.

Multi-energy flow calculations [5, 6] are essential for IES risk analysis as well as many other applications,
such as planning [7], optimal dispatch [8, 9], security analysis [10, 11], and dynamic simulation [12]. Nevertheless,
conventional multi-energy flow calculation mainly uses deterministic methods, that is, deterministic multi-energy flow
(DMEF) calculations. DMEF lacks the ability to deal with uncertainties and cannot efficiently reveal the operation risks
caused by fluctuating energy sources and loads, making it difficult to be fully trusted by planners and operators. This
problem motivates the adoption of probabilistic multi-energy flow calculation (PMEF) methods, in which uncertainties
are handled using a large amount of historical data, statistical results, or analytical modeling approaches [13, 14].

The most representative probabilistic multi-energy flow calculation method is the Monte-Carlo simulation (MCS),
which generates numerous random samples and conducts a DMEF calculation for each sample to derive the overall
probability distribution of energy flows [15, 16]. However, the accuracy of MCS method is highly dependent on the
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Nomenclature
Abbreviations 𝑇start Temperature of the start node of pipeline
BCS Bayesian compressive sensing 𝑈𝑖 Voltage magnitude of node 𝑖
CDF Cumulative distribution function 𝑊 Injection heat power
CVaR Conditioned Value-at-Risk 𝒙 Random variables
DMEF Deterministic multi-energy flow 𝜃𝑖 Phase angle of node 𝑖
gPC Generalized polynomial chaos 𝑤(𝒙) Weight function
IES Integrated energy system Φ𝑖(𝒙) Orthogonal polynomial basis
LAR Least angle regression 𝛿E(𝑖) Voltage violation value of node 𝑖
MCS Monte Carlo simulation 𝛿H(𝑖) flow rate violation value of pipeline 𝑖
PDF Probabilistic density function 𝛿G(𝑖) Pressure violation value of node 𝑖
PMEF Probabilistic multi-energy flow
sPCE Sparse polynomial chaos expansion Parameters

𝑨h Node-branch matrix of heat system
Indices 𝑩h Loop-branch matrix of heat system
𝑖, 𝑗 Indices of nodes 𝐶p Specific heat capacity
𝑘 Indices of pipelines 𝐷 Diameter of pipeline

𝐾 Weymouth coefficients
Variables 𝐿 Length of pipeline
𝑎𝑖 Expansion coefficients 𝑚𝑖,max Upper limit of flow rate of pipeline 𝑖
𝑓 Flow rate of pipeline in gas network 𝑛E Number of electric nodes
𝑓𝛿E Voltage risk index of electric subsystem 𝑛H Number of heat pipelines
𝑓𝛿H Flow rate risk index of heat subsystem 𝑛G Number of gas nodes
𝑓𝛿G Pressure risk index of gas subsystem 𝑝𝑖,max∕𝑝𝑖,min Upper/lower pressure limits of node 𝑖
𝐹 in
𝑏,𝑖∕𝐹

out
𝑏,𝑖 𝑖th energy flow enters/leaves bus 𝑏 𝑃n Standard atmospheric pressure

𝐹 in
𝑒,𝑖∕𝐹

out
𝑒,𝑖 𝑖th input/output power of equipment 𝑒 𝑟 Expansion order of sPCE

𝐻 Output power of compressor 𝑅 Heat transfer coefficient
𝑱 Jacobian matrix 𝑆 Gas compression ratio
𝑚 Flow rate of pipeline 𝑇𝑛 Standard temperature
𝑚𝑞 Injection flow rate 𝑇a Ambient temperature
𝑝𝑖 Pressure of node 𝑖 𝑉𝑖,max∕𝑉𝑖,min Upper/lower limits of voltage of node 𝑖
𝑃𝑖 Injected active power of node 𝑖 𝜂𝑎, 𝜂𝑏, 𝜂𝑐 Energy consumption coefficient
𝑄𝑖 Injected reactive power of node 𝑖 𝜈, 𝜅, 𝜔, 𝜇 Hyperparameters of Bayesian model
𝑇𝑠 Supply temperature
𝑇𝑜 Output temperature Functions
𝑇𝑟 Return temperature 𝐸[⋅] Expectation operator
𝑇end Temperature of the end node of pipeline ‖ ⋅ ‖0 L0-norm

number of samples, which may result in unacceptable computational costs for a large IES with large numbers of random
variables.

Many new methods with reduced computational burden have been developed for the probabilistic multi-energy flow
calculation of IES. These methods mainly fall into three categories: the approximation methods, analytical methods,
and surrogate model methods [17]. Point estimation method is a representative approximation method that utilizes
the statistical features of the input variables to describe the moments of the output variables. It has been widely
applied in probabilistic multi-energy flow calculations, considering the uncertainties from multi-energy loads [18],
renewable energies [19, 20], and demand response [21]. However, the point estimation method cannot directly obtain
the probabilistic density function (PDF) of the output random variables, and it shows low accuracy on higher-order
moments.

The semi-invariant method is the most commonly used analytical method because of its high efficiency and low
computational complexity. For example, the semi-invariant method is used in the planning of distributed generation,
considering the uncertainties of wind turbines and photovoltaics in [22]. The semi-invariant method and Gram–Charlier
expansion are used to construct the PMEF model in [23]. However, the semi-invariant method is based on linearized
energy flow equations that lead to lower accuracy. It is also difficult to effectively incorporate the correlations between
different uncertainties in these semi-invariant methods.
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The surrogate model method is a newly developed type of probabilistic analysis method, among which the
polynomial chaos expansion method has gained popularity owing to its high efficiency and accuracy. Polynomial
chaos expansion methods can be further classified into intrusive and non-intrusive methods. The intrusive methods,
represented by the generalized polynomial chaos (gPC) method [24], approximate probabilistic solutions by applying
expansions to differential or algebraic equations containing random input variables. Attempts have been made to apply
the gPC method in the probabilistic analysis of power systems, such as probabilistic power flow calculation [25, 26]
and dynamic stochastic simulation with distributed generation [27, 28].

However, in the PMEF calculation of an IES, the random variables for the multi-energy sources and loads are
usually numerous and diverse. These random variables may exhibit correlations because of their shared impact factors
such as ambient temperature and weather. In this situation, the gPC method suffers from two problems. First, it is still
difficult for the gPC method to deal with the correlation between random variables. More complex algorithms need
to be introduced to realize the processing of correlations, which significantly decreases the computational efficiency.
Second, the gPC method uses polynomial bases to approximate the output responses of a system. However, the number
of polynomial bases increases exponentially according to the size and type of random variables, resulting in unsolvable
largescale equations, that is, the “curse of dimensionality” [29]. These problems limit the application of the gPC method
to the PMEF of an IES.

In this study, a non-intrusive probabilistic multi-energy flow calculation method based on sparse polynomial chaos
expansion (sPCE) is developed for the analysis of IES with massive correlated uncertainties, as shown in Fig. 1.
The proposed probabilistic multi-energy flow method is further employed in the operation risk analysis of an IES to
demonstrate its applicability and validity. The main contributions of this study are summarized as follows:
• An sPCE-based non-intrusive PMEF method is proposed for an IES with multiple and numerous uncertainty factors.

The non-intrusive framework provides an efficient way to deal with the correlated random variables in an IES [30].
Bayesian compressive sensing (BCS) theory is employed to further reduce the dimension of the polynomial chaos
expansions and effectively improve the computational efficiency.

• A quantified operation risk analysis method for an IES is developed based on the proposed PMEF calculation method.
The operational risk indices for multiple energy carriers in an IES are defined. A conditional value-at-risk (CVaR)
model is constructed to assess the risk index based on the probabilistic multi-energy flow calculation results. A case
study based on a typical IES demonstrated the effectiveness of the proposed method.
The remainder of this paper is organized as follows. Section 2 describes the modeling method for the multi-

energy flow calculation of an IES. Section 3 presents the PMEF calculation method of the IES based on sPCE and
Bayesian compressive sensing theory. Section 4 establishes the risk analysis method for an IES based on the proposed
probabilistic mul,ti-energy flow method. Section 5 discusses a case study that is conducted to verify the proposed
method. The conclusions are presented in Section 6.

Application
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Figure 1: Framework of the proposed sPCE-based PMEF calculation method and its application
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2. Modeling for the multi-energy flow calculation of IES
This section presents the multi-energy flow calculation models for the IES, including the electric network, heat

network, gas network, and multi-energy station.
2.1. Modeling of the electric network

The active and reactive power flow equations for the 𝑖th electric node can be calculated as follows:

𝑃𝑖 = 𝑈𝑖
∑

𝑗∈𝑖
𝑈𝑗

(

𝐺𝑖𝑗 cos
(

𝜃𝑖 − 𝜃𝑗
)

+ 𝐵𝑖𝑗 sin
(

𝜃𝑖 − 𝜃𝑗
)) (1)

𝑄𝑖 = 𝑈𝑖
∑

𝑗∈𝑖
𝑈𝑗

(

𝐺𝑖𝑗 sin
(

𝜃𝑖 − 𝜃𝑗
)

− 𝐵𝑖𝑗 cos
(

𝜃𝑖 − 𝜃𝑗
)) (2)

where 𝑃𝑖 and 𝑄𝑖 denote the active and reactive power injection into node 𝑖; 𝑈𝑖 and 𝑈𝑗 denote the voltage magnitudes
of nodes 𝑖 and 𝑗; 𝐺𝑖𝑗 and 𝐵𝑖𝑗 denote the real and imaginary parts of the element (𝑖, 𝑗) in the nodal admittance matrix;
and 𝜃𝑖 and 𝜃𝑗 denote the phase angles of nodes 𝑖 and 𝑗, respectively.
2.2. Modeling of the heat network

The energy flow model of the heat network consists of hydraulic model and thermal model [31]. The hydraulic
model describes the fluid distribution in the network according to two basic topology laws. First, the sum of mass
flows that enter and leave a node must be equal to zero. Second, the sum of the head losses in a loop must be equal to
zero. These two laws can be expressed as:

𝑨h𝒎 −𝒎L = 𝟎 (3)
𝑩h𝑲h𝒎|𝒎| = 𝟎 (4)

where 𝑨h denotes the node-pipeline connection matrix of the heat network; 𝒎 denotes the flow rate vector in the heat
pipelines; 𝒎L denotes the flow rate vector of the loads; 𝑩h denotes the loop-branch connection matrix; and 𝑲h denotes
the resistance coefficient matrix of the pipelines.

The thermal model contains the following equations that describe the thermal behaviors of the loads, pipelines,
and thermal energy balance of the system [32].

𝑊𝑖 = 𝐶p𝑚L,𝑖
(

𝑇s,𝑖 − 𝑇o,𝑖
) (5)

𝑇end,𝑘 =
(

𝑇start,𝑘 − 𝑇a
)

exp
(

−𝑅𝑘𝐿𝑘∕𝐶p𝑚𝑘
)

+ 𝑇a (6)
(

∑

𝑚out,𝑘

)

𝑇start,𝑘 =
∑

𝑚in,𝑘𝑇end,𝑘 (7)
Eq. (5) illustrates the nodal heat power demanded by the heat loads, in which 𝑊𝑖 denotes the heat load power of

node 𝑖; 𝐶p denotes the specific heat capacity; 𝑚L,𝑖 denotes the injected flow rate of node 𝑖; and 𝑇s,𝑖 and 𝑇o,𝑖 respectively
denote the supply and output temperatures of node 𝑖. Eq. (6) indicates that the outlet temperature of a pipe can be
calculated based on the temperature drop along the pipeline, where 𝑇start,𝑘 and 𝑇end,𝑘 denote the temperatures of the
start and end nodes of pipeline 𝑘; 𝑇𝑎 denotes the atmospheric temperature; 𝑅𝑘 is the heat transfer coefficient of the
pipeline 𝑘; 𝐿𝑘 is the length of pipeline 𝑘; and 𝑚𝑘 denotes the flow rate within pipeline 𝑘. The mixture temperature
at a node with multiple incoming pipelines is calculated using Eq. (7), where 𝑚in,𝑘 and 𝑚out,𝑘 denote the flow rate of
pipeline 𝑘 that enters and leaves the node, respectively.
2.3. Modeling of the gas network

The model of a gas network consist of pipelines and compressors. The steady-state gas pipeline model [33] can be
expressed as:

𝑓𝑘 = 𝐶g
𝑇n
𝑝n

𝐷
8
3
𝑘

√

(

𝑝𝑖2 − 𝑝𝑗2
)

𝑆𝐿𝑘𝑇𝑍
(8)

where 𝑓𝑘 denotes the flow rate of gas pipeline 𝑘; 𝐶g denotes the coefficients of the Weymouth equation; 𝑇n denotes
the standard temperature; 𝑝n denotes the standard atmospheric pressure; 𝑝𝑖 and 𝑝𝑗 respectively denote the pressure of
Bo Dong, et al.: Preprint submitted to Elsevier Page 4 of 20
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nodes 𝑖 and 𝑗; 𝑆 denotes the specific gravity of gas; 𝐿𝑘 denotes the length of the pipeline 𝑘; 𝐷𝑘 denotes the diameter
of the pipeline 𝑘; 𝑇 denotes the temperature of the gas; and 𝑍 denotes the gas compressibility coefficient.

Similar with Kirchhoff’s current law in electric network, the sum of gas flowing into and out of a node must be
zero in the gas network. The nodal Kirchhoff’s current law equations of the gas network can be expressed as follows:

𝑨g𝒇 − 𝒇L = 𝟎 (9)
where 𝑨g denotes the node-pipeline connotation matrix; 𝒇 denotes the vector of the flow rate in the pipelines; and 𝒇Ldenotes the vector of the gas flow rate injected into the nodes.

Compressors are commonly used to adjust the pressure along the pipelines. The power consumption of a compressor
driven by an electric motor can be regarded as the load of the electric subnetwork. The horsepower 𝐻c and consumed
power 𝑃c of the compressor are calculated as follows [34]:

𝐻c = 𝐾c𝑓c
⎡

⎢

⎢

⎣

(

𝑝𝑖
𝑝𝑗

)𝑍 𝑎−1
𝑎

− 1
⎤

⎥

⎥

⎦

(10)

𝑃c = 𝜂𝑎 + 𝜂𝑏𝐻c + 𝜂𝑐𝐻c
2 (11)

where 𝐾c denotes the output coefficient; 𝑓c denotes the flow rate of the compressor; 𝑎 denotes the relative specific heat
capacity; and 𝜂𝑎, 𝜂𝑏, and 𝜂𝑐 denote the energy consumption coefficients of the compressor.
2.4. Unified modeling of the multi-energy station

The unified energy bus (UEB) model [35] is used to formulate the model for multi-energy stations. This unified
model provides a way to incorporate different energy sources, energy conversion devices, and loads into the model of
multi-energy stations. A schematic diagram of model structure is shown in Fig. 2, in which the symbols 𝛼, 𝛽, and 𝛾
denote the energy types.

Figure 2: The unified energy bus model of integrated energy system

The model of the energy station includes energy flow, energy conversion, and load balance equations. The energy
flow equations describe the energy flow balance of each energy bus, which is formulated as:

𝑚
∑

𝑖=1
𝐹 in
𝑏,𝑖 =

𝑛
∑

𝑗=1
𝐹 out
𝑏,𝑗 𝑏 ∈ {𝛼, 𝛽, 𝛾,…} (12)

where 𝐹 in
𝑏,𝑖 denotes the 𝑖th energy flow entering energy bus 𝑏; 𝐹 out

𝑏,𝑗 denotes the 𝑗th energy flow leaving energy bus 𝑏;
and 𝑚 and 𝑛 respectively denote the numbers of branches that enter and leave the energy bus 𝑏.
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The energy conversion equation describes the coefficient of performance (COP) or efficiency of the energy
conversion equipment, which is expressed as:

𝐹 in
𝑒,𝑖𝜂𝑒,𝑖𝑗 = 𝐹 out

𝑒,𝑗 𝜀 ∈ {𝛼 − 𝛽, 𝛽 − 𝛾, 𝛼 − 𝛾,…} (13)

where 𝐹 in
𝑒,𝑖 and 𝐹 out

𝑒,𝑗 denote the 𝑖th input and 𝑗th output energy flow of device 𝑒; and 𝜂𝑒,𝑖𝑗 denotes the conversion
efficiency or COP between the 𝑖th input and 𝑗th output of device 𝑒.

The load balance equation describes how the loads on an energy bus are allocated to the energy supply equipment,
which is expressed as:

𝐹 in
𝑏,𝑖 = 𝑐𝑏,𝑖𝐿𝑏 𝑏 ∈ {𝛼, 𝛽, 𝛾,…} (14)

where 𝐿𝑏 denotes the load of energy bus 𝑏, and 𝑐𝑏,𝑖 denotes the distribution coefficient of the 𝑖th input energy flow of
bus 𝑏.

Eqs. (12)–(14) can be combined according to the energy station configuration and topology, forming an energy
station model expressed as a set of linear equations.
2.5. Unified multi-energy flow calculation model of IES

By combining Eqs. (1)-(14), the unified multi-energy flow model of the IES can be formulated and expressed as a
nonlinear equation set as follows:

𝒀 = 𝒇 (𝒙) (15)
where 𝒀 denotes the output response including the voltage magnitude, phase angle, supply temperature, and gas
pressure; and 𝒙 denotes the input variables including the injected active/reactive power, heat power, and gas flow
rate. The Newton-Raphson method is applied to solve Eq. (15), and the iteration format can be expressed as:

Δ𝒙 = −𝑱−1Δ𝒀 (16)
where Δ𝒙 denotes the variation of the output variables, 𝑱 denotes the Jacobian matrix, and Δ𝒀 denotes the variation
of the input variables. The Jacobian matrix 𝑱 can be formulated as:

𝑱 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕Δ𝑷
𝜕𝜽

𝜕Δ𝑷
𝜕𝑽

𝜕Δ𝑷
𝜕𝒑 𝟎 𝟎 𝟎

𝜕Δ𝑸
𝜕𝜽

𝜕Δ𝑸
𝜕𝑽 𝟎 𝟎 𝟎 𝟎

𝜕Δ𝒇
𝜕𝜽

𝜕Δ𝒇
𝜕𝑽

𝜕Δ𝒇
𝜕𝒑 𝟎 𝟎 𝟎

𝜕Δ𝒇
𝜕𝒎 𝟎 𝟎 𝜕Δ𝑾

𝜕𝒎
𝜕Δ𝑾
𝜕𝑻 s

𝟎
𝟎 𝟎 𝟎 𝜕Δ𝑻 s

𝜕𝒎
𝜕Δ𝑻 s
𝜕𝑻 s

𝟎
𝟎 𝟎 𝟎 𝜕Δ𝑻 r

𝜕𝒎 𝟎 𝜕Δ𝑻 r
𝜕𝑻 r

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(17)

In scenarios with uncertainties, 𝒙 in Eq. (15) is transformed from a deterministic input variable to a stochastic
input variable and 𝒀 consequently becomes a stochastic output response, forming the PMEF problem of the IES. This
problem can be solved using many statistical methods such as the commonly used MCS. In this study, the following
PMEF calculation method is proposed for Eq. (15) to improve the overall solving performance.

3. Structure for PMEF calculation of IES
In this section, a PMEF calculation method is proposed for IES. First, the Gaussian-Copula function is employed

to describe the correlations among the random variables. Subsequently, the sparse polynomial chaos expansion (sPCE)
structure for the PMEF calculation of the IES is developed. Finally, a sparse surrogate model is constructed using the
Bayesian compressive sensing (BCS) method to efficiently obtain the probabilistic distribution of the IES operation
states.
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3.1. Handling of the correlated random variables in the IES
The renewable energy sources and loads in an IES generally exhibit diverse uncertainties, which have been

extensively studied in existing literature. In this study, the normal, Beta, and Weibull distributions are used to describe
the uncertainties in loads, PV, and wind generation, respectively. Moreover, owing to common factors such as weather,
temperature, and users’ energy usage habits, there are correlations between these uncertainties. Assuming 𝑢 and 𝑣 are
two random input variables in the PMEF problem, the Copula theory is employed to handle their correlations, which
can be expressed as:

𝐶(𝑢, 𝑣) = ∫

Φ−1(𝑢)

−∞ ∫

Φ−1(𝑣)

−∞

1
2𝜋

√

1 − 𝜌2
𝑒
𝑠2−2𝜌𝑠𝑡+𝑡2

2(1−𝜌2) d𝑠 d𝑡 (18)

where Φ−1(𝑢) and Φ−1(𝑣) are the inverse functions of standard normal distribution, and 𝜌 denotes the linear correlation
coefficient. Based on the Gaussian-Copula function, the joint PDF can be obtained by combining the marginal
distributions 𝑢 and 𝑣 of the random variables and their rank correlation coefficients 𝜌 [36]. The sampling process
can be performed according to the joint PDF to generate samples with random decorrelated input variables.
3.2. Polynomial chaos expansion for PMEF calculation

After decorrelation, 𝒙 becomes an 𝑛-dimensional random vector with independent components in the probabilistic
multi-energy flow stochastic function 𝒚 = 𝒇 (𝒙). According to polynomial chaos expansion (PCE) theory [24], response
𝑦 can be approximated using a multidimensional polynomial chaos expansion model 𝑃 (𝒙) as:

𝑦 = 𝑓 (𝒙) ≈ 𝑃 (𝒙) =
∑

𝑖
𝑎𝑖Φ𝑖(𝑥) (19)

where 𝑥 = [𝑥1, 𝑥2,… , 𝑥𝑛] denotes an 𝑛-dimensional independent random vector; Φ𝑖(𝑥) denotes the orthogonal
polynomial basis; 𝑎𝑖 denotes expansion coefficients; 𝑃 (𝒙) denotes the polynomial approximation of the original PMEF
model and can be utilized as a surrogate model for efficient multi-energy flow calculations; and Φ𝑖(𝑥) denotes the
polynomial basis, that should satisfy the following orthogonality condition:

𝐸
[

Φ𝑖(𝑥)Φ𝑗(𝑥)
]

= ∫ Φ𝑖(𝑥)Φ𝑗(𝑥)𝜔(𝑥)d𝑥 =
{

0 𝑖 = 𝑗
𝐸
[

𝜙2
𝑖 (𝑥)

]

𝑖 ≠ 𝑗 (20)
where 𝐸[⋅] denotes the expectation operator, and 𝜔(𝑥) denotes the weight function.

An orthogonal polynomial basis can be selected according to the distribution of variables. Some typical probability
distribution functions and their corresponding polynomials, also known as the Wiener-Askey scheme of orthogonal
polynomials [37], as listed in Table 1.

Table 1
Wiener-Askey scheme of orthogonal polynomials

Variable Distribution Orthogonal polynomial Weight function
Load Gaussian Hermite 1

√

2𝜋
𝑒−𝑥2∕2

Photovoltaic Beta Jacobi (1 − 𝑥)𝛼(1 + 𝑥)𝛽

The orthogonal polynomial basis of the Weibull distribution associated with a wind turbine is constructed using the
discretized Stieltjes procedure [38]. Then, the set of polynomial bases 𝜙 can be obtained for each independent variable,
which is expressed as:

𝝓 =
{

𝜙𝑗
𝑖
(

𝑥𝑖
)

}

𝑖 = 1, 2,… , 𝑛; 𝑗 = 1, 2,… , 𝑟 (21)
where 𝜙𝑗

𝑖 (𝑥𝑖) denotes the 𝑗th basis of the 𝑖th random variable 𝑥𝑖; 𝑛 denotes the number of variables; and 𝑟 denotes the
highest expansion order.

Note that 𝝓 is the basis of the random input variable rather than that of the response function. Thus, for all the 𝑛
random variables, there will exist 𝑟×𝑛 bases in total. The 𝑖th polynomial basis 𝜙𝑖(𝒙) of the response function can then
be calculated using:

Φ𝑖(𝒙) =
𝑛
∏

𝑖=1
𝜙(𝑘𝑖)𝑖

(

𝑥𝑖
) (22)
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where 𝑘𝑖 satisfies 0 ≤
∑𝑛

𝑖=1 𝑘𝑛 ≤ 𝑟, indicating that the highest order of the basis cannot exceed 𝑟.
After selecting the optimal basis polynomials, expansion coefficient 𝑎𝑖 should be calculated to obtain the surrogate

model. The least squares method is used to calculate the coefficients based on the sampling data. The sampling process
is also known as the experimental design, which samples the random input variables and conducts a calculation for
each scenario. Thus, the problem is transformed into the following residual minimization problem:

�̂� = argmin
𝑁
∑

𝑖=1

[

𝑦ED
(

𝑥(𝑖)
)

− 𝑎TΦ
(

𝑥(𝑖)
)]2 (23)

where 𝑁 denotes the experimental design size; 𝑥(𝑖) denotes the 𝑖th sampling data set of the random variables; and 𝑦ED
denotes the experimental design of the target response 𝑌 of the original multi-energy flow model. Once the coefficients
have been determined, the polynomial chaos expansion of the response is derived.
3.3. Sparse coefficients calculation based on Bayesian compressive sensing

As indicated in Eq.(22), the number of expansion terms in the full PCE model can reach 𝑀 = (𝑟 + 𝑛)!∕(𝑟!𝑛!). To
ensure expansion accuracy, the size of the experimental design is typically set to 𝑁 = 2𝑀 [17]. Under this condition,
as the expansion order 𝑟 or the number of variables 𝑛 increases, the number of coefficients 𝑀 and the size of the
experimental design 𝑁 increase rapidly, which significantly limit the calculation efficiency.

However, in the PMEF of the IES, most coefficients of the high order expansion terms tend to be zero and can be
ignored. The sensitivity of the response to each input variable is also different. For example, electric load fluctuations
usually impact the nearby bus voltage more than the far-away ones. The coefficients of the less influential expansion
terms can also be considered zero to reduce the computational burden. Therefore, the PCE-based probabilistic multi-
energy flow model can be considered sparse. Eq. (23) is then transformed into the problem of minimizing the number
of non-zero elements in the coefficient vector 𝑎:

{

�̂� = argmin ‖𝒂‖0s.t. 𝒚ED − 𝒂T𝚽 = 𝟎 (24)

where ‖𝒂‖0 denotes L0 norm.
The Bayesian compressive sensing method [39] is applied to solve Eq. (24) for the expansion coefficients �̂� . The

idea of the BCS method is to select the polynomial basis function that is the most relevant to the residual vector
according the correlation function in each step, which is given as follows:

For a given orthogonal polynomial basis and initial experimental design, the likelihood function is given as follows:
𝑃 (𝒀 |𝚽,𝒂, 𝜇) = 𝑁

(

𝒀 |𝒂𝚽, 𝜇−1) (25)
where the likelihood function follows a Gaussian distribution with a variance of 𝜇−1.

The problem in Eq. (24) is equivalent to applying a Laplace prior on the coefficients 𝑎. Hence, hierarchical priors
are applied to deal with this problem [40].

𝑃 (𝒂|𝝀) =
𝑃
∏

𝑖=1
𝑁

(

𝑐𝑖|0, 𝜆𝑖
) (26)

𝑃
(

𝜆𝑖|𝜅
)

= Γ
(

𝜆𝑖|1,
𝜅
2

)

= 𝜅
2
exp

(

−
𝜅𝜆𝑖
2

)

(27)
Thus, the posterior distribution of all parameters can be obtained by using the Bayesian inference:

𝑃 (𝒂,𝝀, 𝜅, 𝜇|𝒚) =
𝑃 (𝒚|𝒂, 𝜇)𝑃 (𝑎|𝝀)𝑃 (𝝀|𝜅)𝑃 (𝜇)𝑃 (𝜅)

𝑃 (𝒚)
(28)

The dependencies of the hyper parameters in joint probability model are shown in Fig. 3.
Thus, the posterior distribution of 𝑎 can be obtained from 𝑃 (𝒂,𝝀, 𝜅, 𝜇|𝒚). It follows a Gaussian distribution

𝑁(𝒂|𝜇𝑎,Σ𝑎) with:
𝛿𝑎 = Σ𝑐𝜇𝚽T𝒚 (29)
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Figure 3: Graphical model representing the Bayesian model parameters

Σ𝑎 =
(

𝜇𝚽T𝚽 + diag
(

1
𝜆𝑖

))−1
(30)

Therefore, the hyper parameters in Eqs. (29) and (30) can be calculated by maximizing 𝑃 (𝒚,𝝀, 𝜅, 𝜇). A fast Laplace
algorithm is applied to reduce the computational cost by updating a single 𝜆𝑖 rather than total 𝜆 in each step. Thus, the
update of 𝛿𝑐 and Σ𝑐 could become more efficient. We refer to [41] for the further details of the algorithm.

4. PMEF-based operation risk analysis of IES
The PMEF calculation method could efficiently obtain the probabilistic distribution of energy flows, which is

essential for the operational risk analysis of an IES. In this section, the risk index in the IES is introduced. Subsequently,
the CVaR model is constructed to perform a probabilistic analysis of the operation risk. Finally, the framework of the
probabilistic multi-energy flow based risk analysis of an IES is established.
4.1. Indices for risk analysis of IES
4.1.1. Voltage violation in electric networks

The voltage quality is a critical index for the operation of electric networks. The nodal voltage in an electric network
must be limited within a certain range. The average violation voltage value of all the nodes is chosen to quantify the
voltage risk for the electric network, which can be expressed as:

𝛿E(𝑖) =

⎧

⎪

⎨

⎪

⎩

(

𝑉𝑖 − 𝑉𝑖,max
)

∕𝑉b,𝑖 𝑉𝑖 > 𝑉𝑖,max
(

𝑉𝑖,min − 𝑉𝑖
)

∕𝑉b,𝑖 𝑉𝑖 < 𝑉𝑖,min
0 𝑉𝑖,min ≤ 𝑉𝑖 ≤ 𝑉𝑖,max

(31)

𝑓𝛿E = 1
𝑛E

𝑛E
∑

𝑖=1
𝛿E(𝑖) (32)

where 𝛿E(𝑖) denotes the voltage violation index of node 𝑖; 𝑉𝑖,max denotes the upper limit of the voltage magnitude of
node 𝑖; 𝑉𝑖,min denotes the lower limit of the voltage magnitude of node 𝑖; 𝑉𝑏,𝑖 denotes the basic voltage magnitude of
node 𝑖; 𝑓𝛿E denotes the voltage violation index of the electric subsystem; and 𝑛E denotes the number of nodes in the
electric subsystem. The basic voltage magnitude is typically set to the rated value, that is, 1.0 p.u. when the electric
load flow is calculated in per-unit value. The upper limit 𝑉𝑖,max is set to 1.05 p.u. and the lower limit 𝑉𝑖,min is set to
0.95 p.u. in this study.
4.1.2. Flow rate violation in heat networks

Flow rate violation is considered to be the main risk in the operation of a heat network. Therefore, the average
violation flow rate value of pipelines is defined as the risk index of the heat network [42], which can be expressed as:

𝛿H(𝑘) =
{ (

𝑚𝑘 − 𝑚𝑘,max
)

∕𝑚𝑘,max 𝑚𝑘 > 𝑚𝑘,max
0 𝑚𝑘 ≤ 𝑚𝑘,max

(33)

𝑓𝛿H = 1
𝑛H

𝑛H
∑

𝑘=1
𝛿H(𝑘) (34)
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where 𝛿H(𝑘) denotes the flow rate violation index of pipeline 𝑘; 𝑚𝑘,max denotes the upper limit of the flow rate of
pipeline 𝑘; 𝑓𝛿H denotes the flow rate violation index of the heat subsystem; and 𝑛H denotes the number of pipelines in
the heat subsystem.
4.1.3. Pressure violation in gas networks

The nodal pressure in a gas network must be limited to a certain range to guarantee operational security. Therefore,
the average violation pressure value of all the nodes is defined to describe the risk in the gas networks, which can be
calculated using:

𝛿G(𝑖) =

⎧

⎪

⎨

⎪

⎩

(

𝑝𝑖 − 𝑝𝑖,max
)

∕𝑝b,𝑖 𝑝𝑖 > 𝑝𝑖,max
(

𝑝𝑖,min − 𝑝𝑖
)

∕𝑝b,𝑖 𝑝𝑖 < 𝑝𝑖,min
0 𝑝𝑖,min ≤ 𝑝𝑖 ≤ 𝑝𝑖,max

(35)

𝑓𝛿G = 1
𝑛G

𝑛G
∑

𝑖=1
𝛿G(𝑖) (36)

where 𝛿G(𝑖) denotes the pressure violation index of node 𝑖; 𝑝𝑖,min denotes the lower limit of the pressure of node 𝑖;
𝑝𝑖,𝑚𝑎𝑥 denotes the upper limit of the pressure of node 𝑖; 𝑝𝑏 denotes the basic pressure of node 𝑖; 𝑓𝛿G denotes the
pressure violation index of the gas subsystem; and 𝑛G denotes the number of nodes in the gas subsystem.
4.2. Conditional Value-at-Risk for risk analysis

The PDFs of all three indices could be directly solved as the target response in the probabilistic multi-energy flow
calculation, because the nodal voltage, flow rate and nodal pressure are all random state variables. Then, CVaR is
applied to quantify the operational risks based on the PDF results. The concept of CVaR is developed from the Value-
at-Risk (VaR) assessment model and has been widely used in the risk assessment of financial markets and power
systems [43].

To construct the CVaR model, VaR is firstly defined, which represents the maximum possible loss value expected
from an investment at a given confidence level and can be expressed as:

VaR𝛽 = min
{

𝛼 ∈ 𝑅,∫𝑓 (𝑥,𝑦)≤𝛼
𝜌(𝑦)d𝑦 ≥ 𝛽

}

(37)

where 𝑓 (𝑥, 𝑦) denotes the loss function, 𝜌(𝑦) denotes the probabilistic density function, 𝛽 denotes the confidence level.
However, VaR cannot accurately assess the tail risk or consider extreme scenarios, which leads to lower accuracy

in risk assessment. To effectively reflect the average loss of tail risk, CVaR is used to describe the expected value of
the risk exceeding VaR under a given confidence level.

The value of CVaR can be calculated using:

CVaR𝛽 = 𝛼 + 1
𝑁(1 − 𝛽)

𝑁
∑

𝑖=1

[

𝑓𝛿 − 𝛼
]+ (38)

where 𝛼 denotes the value of VaR; 𝑁 denotes the number of samples; and [𝑓𝛿 − 𝛼]+ denotes the maximum value
between 𝑓𝛿 − 𝛼 and 0.
4.3. Procedure of PMEF-based risk analysis of IES

The structure of the PMEF-based risk assessment of the IES proposed in this study is shown in Fig. 4, and its
detailed steps are summarized as follows:
Step 1): Input deterministic and random parameters of the IES. The deterministic parameters included those of the
multi-energy networks and energy stations. The random parameters included the PDFs of the loads, output power of
the distributed generators, and correlation coefficients between random variables.
Step 2): Establish a multi-energy flow model based on the deterministic input parameters.
Step 3): Establish the Gaussian-Copula function of the correlated random variables 𝑿 according to their correlation
coefficients. Then, the sample from the joint PDF 𝑿 to generates a decorrelated dataset 𝒙ED of random variable 𝑿.
Step 4): Perform deterministic multi-energy flow calculation of IES to gain the samplings of target output response
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𝒚ED.
Step 5): Determine the orthogonal polynomial bases according to the predefined types of input variables. Use the
sampling data 𝒙ED and response 𝒚ED to estimate the sparse coefficients of the bases using the BCS method. Thus, a
surrogate model for the selected response can be established.
Step 6): Sample the random variable 𝑿 and calculate the response of each sample. Then the curves of the PDFs of the
selected responses, including nodal voltages, flow rates in the heat pipelines, and pressures of the gas nodes, can be
obtained from the statistical results of all samples.
Step 7): Calculate the CVaR values of the risk indices according to the sampling data. Then the CVaR value of the
risk indices can be employed in operational risk analysis.

Input the deterministic and random parameters of CIES.

Establish the deterministic multi-energy flow model according to 

the input parameters, as described in Sections 2.1-2.4.

Deterministic multi-energy flow

Start

 Generate independent samplings xED corresponding 

to the random variable X, as described in Section 3.1.

Obtain output responses yED based on input samplings xED and the 

deterministic multi-energy flow model, as described in Section 2.5.

Select orthogonal polynomial basis and establish the surrogate 

model, as described in Section 3.2.

Probablistic multi-energy flow

Calculate the sparse coefficients using BCS method, as described 

in Section 3.3.

Obtain the sampling data from the surrogate models and derive the  

PDF curves  of variables and risk indices.

Risk assessment

Calculate the CVaR values of the voltage, flow rate, and pressure 

risk indexes, as described in Sections 4.1-4.2.

Apply analysis and comparison according to the CVaR value of 

risk indexes.

End

Figure 4: Flowchart of the PMEF based risk analysis method

5. Results and discussions
5.1. Case study

The structure of the IES in this case study is shown in Fig. 5, in which the IEEE 123-node distribution network [44],
32-node heat network [31] and 48-node gas network [45] are coupled through four energy stations. The configurations
of the energy stations are listed in Table 2. In this study, it is assumed that the electric, heat, and gas loads follow
a Gaussian distribution [46], and the output power of the PV and wind turbine follows the Beta [47] and Weibull
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distributions [48], respectively. The types of random variables in each energy subsystem are listed in Table 3. The
correlation coefficients among random variables are listed in Table 4, where the subscripts e, h, g, p, and w denote
electricity, heat, gas, PV, and wind turbine, respectively. The proposed method is implemented using MATLAB R2018a
on a computer with an Intel Core i5-8500 3.00GHz CPU and 8 GB memory.
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Figure 5: The structure of the test IES consists of an electric network (blue), a heat network (red), a gas network (green),
and 4 energy stations

Table 2
Configuration of the energy stations

Energy Station Configuration Electricity node Heat node Gas node
ES1 CHP (as heat slack node) 105 1 47
ES2 CHP (as electric slack node) 1 31 15
ES3 electric boiler 121 32 -
ES4 gas turbine 91 - 27
C1 electric compressor 47 - 25
C2 electric compressor 62 - 13

Table 3
Types of uncertainties in IES

Uncertainty Number Type
Wind turbine 5 Weibull
Photovoltaics 5 Beta
Electric load 20 Gaussian

Heat load 10 Gaussian
Gas load 10 Gaussian

5.2. Verification of the proposed PMEF calculation method
In this section, the proposed sPCE-based probabilistic multi-energy flow method is applied to verify its accuracy

and effectiveness. The modelling method of the IES is introduced in Section 2. The proposed PMEF method is
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Table 4
Correlation coefficients of random variables in IES

correlation coefficient 𝜌ee 𝜌hh 𝜌gg 𝜌pp 𝜌ww 𝜌ge 𝜌he
0.5 0.5 0.5 0.5 0.5 0.2 0.2

conducted according to Section 3. The proposed method is compared with two other algorithms to verify its correctness
and effectiveness, as follows:
• The Monte-Carlo simulation method based on Latin hypercube sampling. The MCS method adopts 10,000 samples

to obtain the PDF of the response, which is then utilized as the benchmark for comparison.
• The gPC method based on intrusive computing framework [25]. In this study, the coefficients in gPC are solved

using the stochastic Galerkin method, as shown in Appendix A. The gPC method uses a 2nd order expansion, which
is denoted as gPC-2.

• The proposed sparse polynomial chaos expansion method based on the Bayesian compressive sensing. The
expansion order is set to two (denoted as sPCE-BCS-2) and five (denoted as sPCE-BCS-5). The sample size of
experimental design is set to 300.
Note that the input correlations of MCS and sPCE are preprocessed with Gaussian-Copula functions introduced in

Section 3.1, and that of gPC is preprocessed with Nataf transformation shown in Appendix B.
Taking the voltage magnitude of electric node 95, flow rate of heat pipeline 4, and pressure of gas node 10 as

examples, the PDFs obtained using the MCS, gPC, and sPCE-BCS-5 methods are presented in Fig. 6. The PDFs derived
by the surrogate model methods, including gPC and sPCE-BCS-5, are both calculated based on 300 samples. Compared
to MCS, both gPC and sPCE could obtain results with acceptable accuracy. Based on the calculation results of the
probabilistic multi-energy flow, the risk of violation can be assessed for nodes or pipelines in the energy subsystems.
As shown in Fig. 6(b) and 6(d), electric node 95 has a probability of 38.38% exceeding the lower voltage limit of 0.95
p.u., and heat pipeline 4 has a probability of 2.52% exceeding its flow rate limit.

The maximum mean errors of the operational state variables in the IES are listed in Table 5. Both the gPC and
sPCE-BCS methods achieved high accuracy, with most of the relative errors being smaller than 0.5%. Moreover, using
the same order of polynomial expansion, gPC-2 showd a higher accuracy than sPCE-BCS-2 because of its intrusive
calculation structure. However, when the expansion order of sPCE-BCS reach the 5th order, sPCE-BCS-5 overall
showed a better accuracy than gPC-2.

Table 5
Maximum errors of different methods compared with Monte-Carlo method

Subsystems Variable 𝜖gPC−2∕% 𝜖sPCE−BCS−2∕% 𝜖sPCE−BCS−5∕%

Electric
Voltage magnitude 0.0548% 0.1659% 0.0316%

Phase angle 0.2337% 0.2565% 0.1574%
Active power -0.1247% 0.5199% 0.1606%

Reactive power -0.2337% -0.2864% -0.0753%

Heat
Flow rate 0.0109% -0.2195% -0.0774%

Supply temperature -0.3450% 0.4415% 0.0101%
Return temperature 0.2124% -0.1869% -0.0891%

Gas Pressure -0.2742% -0.4450% -0.1252%
Flow rate 0.1869% 0.3623% 0.1368%

Table 6 shows the comparison results of the computational times of the four methods. The sPCE-BCS method
achieved a significant efficiency advantage over the MCS. This improvement is mainly because the sampling size
is reduced by 97% in the sPCE-BCS methods. Because the multi-energy flow calculation must be repeated for each
sample, a small sampling size directly leads to a reduced time cost. Although the gPC-2 method adopts the same
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(a) PDF of the voltage of electric node 95 (b) CDF of the voltage of electric node 95

(c) PDF of the flow rate of heat pipeline 4 (d) CDF of the flow rate of heat pipeline 4

(e) PDF of the pressure of gas node 10 (f) CDF of the pressure of gas node 10

Figure 6: Comparison of the PDFs and CDFs of the state variables in the IES

sampling size, its computation time is nearly five times of the sPCE-BCS-2 and four times of the sPCE-BCS-5 method
because the problem size to be solved using the gPC method increases exponentially with the size of random variables.
This comparison verified the efficiency advantage of the proposed sPCE-BCS method.

The above results show that the proposed sPCE-BCS can obtain probabilistic multi-energy flow results with a
substantially higher computational speed and accuracy. Although gPC-2 shows a higher accuracy than sPCE-BCS-2
for the same expansion order, sPCE-BCS can improve its accuracy by applying a higher expansion order, for example,
sPCE-BCS-5, while maintaining its computation speed to be faster than the gPC method.
5.3. Application in the risk analysis of IES

In this section, the CVaR-based risk analysis method which is introduced in Section 4 is applied to the test IES
case. The indices introduced in Section 4.1 are selected as the responses of the PMEF calculation. The CVaR value is
calculated according to the methods introduced in Section 4.2 based on the PDF of the indices.

1) Risk analysis of single subsystem considering uncertainties of sources and loads.
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Table 6
Comparison of the total calculation time using different methods

Method Total/s
MCS 2864.1
gPC-2 480.4

sPCE-BCS-2 97.3
sPCE-BCS-5 110.7

The CVaR analysis of a single energy subsystem can be utilized to quantify the operational risks under different
uncertainties, providing an essential reference to guide its interaction with other energy subsystems. In this section,
the output power of DGs in the electric subsystem and loads in the heat network is considered to be increased with
a proportion from 0% to 50%, which would lead a violation risk to the corresponding subsystems. The CVaR of the
electric and heat subsystems is calculated to evaluate the risk index under different increasing levels of DGs and heat
loads, as shown in Fig. 7.

(a) Electric subsystem (b) Heat subsystem

Figure 7: CVaR values of electric and heat subnetworks under different increasing levels of DGs and heat loads

Take the results of the electric subnetwork in Fig. 7(a) as an example. For a confidence level of 0.9, the VaR and
CVaR values of the risk index for the electric subnetwork are 0.085 and 0.099 p.u, respectively, when the output power
of DGs is not increased. This means, for the top 10% of the most severe scenarios, the voltage violation indices have
an average of 0.085 p.u. and an expectation of 0.099 p.u. With the increase of DGs’ output power, the CVaR value
also increases, indicating that the operation of the electric subsystem affords more risks. As the output power of DGs
increases by a proportion from 0% to 50%, the CVaR value increases from 0.099 p.u. to 0.1130 p.u., indicating a rise
in risk owing to changes in operation strategy. In addition, a higher confidence level produces a larger CVaR value,
which means a more conservative assessment result.

2) Risk analysis of IES considering interactions between subsystems
It is assumed that the EB adjusts its output power to help consume the fluctuating renewable energy. The CHPs also

need to adjust their output power to maintain the balance between the supply and demand in the IES. Uncertainties in
the source and load are transmitted among the three subsystems of electricity, gas, and heat, causing risks and changes
in the system operating state. The CVaR values of each energy subsystem and the overall IES are obtained.

As shown in Fig. 8, when the output power of EB is raised up to accommodate more renewable energy, the CVaR
of the heat subsystem increases. Meanwhile, the CVaR of the electric subsystem decreases. The CVaR of the gas
subsystem shows a smooth growth owing to the changes in the output power of the energy stations. Moreover, it can
be found that the CVaR of the overall IES decreases as the accommodation level increases, which proves the benefit
of interactions among multiple energy carriers.

3) Risk analysis of IES considering different operation strategies
The CVaR value of the risk indices can be used to compare and analyze the risks under different operation strategies,

which is a useful guidance for the decision makers. Taking the heat subsystem as an example, ES1 works as the slack
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Figure 8: CVaR values of energy subsystems and IES under different output power levels of EB

Figure 9: CVaR values of heat subsystem under different operation strategies

source. The output power of the CHP in ES2 and the EB in ES3 are determined according to the operation strategies
of heat network. The CVaR value of the risk indices is shown in Fig. 9.

As shown in Fig. 9, the sum of the output power of the CHP and EB is always maintained less than the load demand,
that is, 2.8 MW. The CVaR reaches its maximum value when all the load demand is supplied by the slack source, which
brings severe flow rate violation risks to the pipelines near ES1. The minimum CVaR value occurs when the output
power of CHP is 1.3 MW and that of the EB is 1.4 MW. The relatively balanced output of the three sources at this
point results in an even distribution of the flows, which reduces the risk of flow rate violation..

6. Conclusion
In this paper, a non-intrusive probabilistic multi-energy flow calculation method is presented, and its application

in the operation risk analysis of an IES is explored. Considering the correlated random variables, the proposed sPCE-
BCS method can effectively calculate the probabilistic multi-energy flow and obtain the probabilistic features of the
selected output response. The proposed method with different orders is compared with the MCS and gPC methods,
which proved its correctness and accuracy. Moreover, the sPCE-BCS method with a higher order has a significantly
higher calculation speed of probabilistic multi-energy flow with a higher accuracy compared with other methods, where
sPCE-BCS-5 requires 96% less computation time than the MCS method, and 76.9% less than that of the gPC method.
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The CVaR-based risk analysis is further applied to the probabilistic multi-energy flow calculation of the IES to realize
the risk analysis. The results demonstrate that the risks of each energy subsystem as well as the overall IES can be
effectively obtained for a quantified analysis. The calculation results also provide a reference for the secure dispatch of
energy subsystems and are useful for facilitating the interactions in the IES.

In future research, a data-driven arbitrary sPCE method could be considered. The sPCE method proposed in
this study needs to design probabilistic density functions for all random input variables, which cannot be realized
in actual applications. Relying on large amounts of real operation data, the data-driven sPCE method can eliminate the
dependence on a specific distribution and make the calculation results more realistic, which is promising for further
study.

Appendix A
Let 𝑓 (𝑍) be a scalar function of a random variable 𝑍, then the 𝑁-order gPC expansion of 𝑓 (𝑍) is defined as:

𝑓 (𝑍) ≈ 𝑓𝑁 (𝑍) =
𝑁
∑

𝑖=0
𝑓𝑖Φ𝑖(𝑍) (A1)

where Φ𝑖(𝑍) is the orthogonal polynomial basis function and satisfies:
𝐸
[

Φ𝑖(𝑍)Φ𝑗(𝑍)
]

= 𝛾𝑖𝛿𝑖𝑗 (A2)
With (A1) and (A2), the gPC expansion coefficient 𝑓𝑖 can be derived as follows:

𝑓𝑖 =
1
𝛾𝑖
𝐸
[

𝑓 (𝑍)Φ𝑖(𝑍)
] (A3)

Consider the following stochastic nonlinear scalar equation:
𝑔(𝑥, 𝑝(𝑍)) = 0 (A4)

where 𝑥 is an unknown random variable, 𝑍 is an independent random variable with known distribution, and 𝑝(𝑍) is a
known input function. With a properly chosen basis Φ𝑘(𝑍), the 𝑁-order gPC expansions of 𝑥 and 𝑝(𝑍) can be written
as:

𝑥(𝑍) =
𝑁
∑

𝑘=0
𝑥𝑘Φ𝑘(𝑍) (A5)

𝑝(𝑍) =
𝑁
∑

𝑘=0
𝑝𝑘Φ𝑘(𝑍) (A6)

where 𝑥𝑘 and 𝑝𝑘 are the expansion coefficients. Because 𝑝(𝑍) is known, 𝑝𝑘 can be directly obtained by using (A3). By
substituting (A5) and (A6) into (A4) and projecting the equation onto each basis Φ𝑚(𝑍) (𝑚=0,1,2,. . . ,𝑁), we have:

𝐸

[

𝑔

( 𝑁
∑

𝑘=0
𝑥𝑘Φ𝑘(𝑍),

𝑁
∑

𝑘=0
𝑝𝑘Φ𝑘(𝑍)

)]

= 0 (A7)

After evaluation of the expectation, 𝑍 disappears and 𝑁 + 1 deterministic equations are formed. Meanwhile, the
unknown random variable has been transformed into 𝑁 + 1 unknown coefficients 𝑥𝑘. Then Newton-Raphson method
can be used to solve the equations for 𝑥𝑘.

Appendix B
Let 𝑪𝒀 be the correlations matrix of the input random variables 𝒀 = [𝑌1, 𝑌2,… , 𝑌𝑛]T

𝑪𝒀 =

⎡

⎢

⎢

⎢

⎣

1 𝜌12 ⋯ 𝜌1𝑛
𝜌21 1 ⋯ 𝜌2𝑛
⋮ ⋮ ⋮
𝜌𝑛1 𝜌𝑛2 ⋯ 1

⎤

⎥

⎥

⎥

⎦

(A8)
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The standard normal random variables 𝝃 = [𝜉1, 𝜉2,… , 𝜉𝑛]T are introduced which satisfy:
𝜉𝑘 = Φ−1 (𝐹𝑘

(

𝑌𝑘
)) (A9)

where 𝐹𝑘 is the CDF of 𝑌𝑘, and Φ(⋅) is the CDF of 𝜉𝑘. Let 𝑪𝜉 be the correlation coefficient matrix of 𝜉.

𝑪𝜉 =

⎡

⎢

⎢

⎢

⎣

1 𝜌′12 ⋯ 𝜌′1𝑛
𝜌′21 1 ⋯ 𝜌′2𝑛
⋮ ⋮ ⋮
𝜌′𝑛1 𝜌′𝑛2 ⋯ 1

⎤

⎥

⎥

⎥

⎦

(A10)

According to the Nataf transformation, non-diagonal elements of 𝑪𝒀 and 𝑪𝝃 satisfy the following relations:

𝜌′𝑖𝑗 = 𝑇
(

𝜌𝑖𝑗
)

𝜌𝑖𝑗𝑪𝜉 =

⎡

⎢

⎢

⎢

⎣

1 𝜌′12 ⋯ 𝜌′1𝑛
𝜌′21 1 ⋯ 𝜌′2𝑛
⋮ ⋮ ⋮
𝜌′𝑛1 𝜌′𝑛2 ⋯ 1

⎤

⎥

⎥

⎥

⎦

(A11)

It can be seen from the above analysis that once the standard normal distribution samples 𝝃 and the correlation
matrix 𝑪𝝃 are obtained, the samples of 𝒀 with correlation matrix 𝑪𝒀 can be obtained by using 𝑌𝑘 = 𝐹𝑘

−1(Φ(𝜉𝑘)).Let 𝜼 = [𝜂1, 𝜂2,… , 𝜂𝑛] be the independent standard normal variables. A lower triangular matrix 𝑩 is obtained by
Cholesky decomposition of 𝑪𝝃 . Let

𝜉 =

⎡

⎢

⎢

⎢

⎣

𝜉1
𝜉2
⋮
𝜉𝑛

⎤

⎥

⎥

⎥

⎦

= 𝑩𝜼 =
⎡

⎢

⎢

⎣

𝑏11
⋮ ⋱
𝑏𝑛1 ⋯ 𝑏𝑛𝑛

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝜂1
𝜂2
⋮
𝜂𝑛

⎤

⎥

⎥

⎥

⎦

(A12)

Thus, we can obtain the equation of random input variable 𝒀 expressed by independent random variables 𝜼 =
[𝜂1, 𝜂2,… , 𝜂𝑛]:

𝒀 = 𝑭 −1(𝚽(𝑩𝜼)) (A13)
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