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We apply the functional Renormalisation Group (fRG) to study relaxation in a stochastic process
governed by an overdamped Langevin equation with one degree of freedom, exploiting the connec-
tion with supersymmetric quantum mechanics in imaginary time. After reviewing the functional
integral formulation of the system and its underlying symmetries, including the resulting Ward-
Takahashi identities for arbitrary initial conditions, we compute the effective action I' from the
fRG, approximated in terms of the leading and subleading terms in the gradient expansion: the
Local Potential Approximation and Wavefunction Renormalisation respectively. This is achieved by
coarse-graining the thermal fluctuations in time resulting in e.g. an effective potential incorporating
fluctuations at all timescales. We then use the resulting effective equations of motion to describe
the decay of the covariance, and the relaxation of the average position and variance towards their
equilibrium values at different temperatures. We use as examples a simple polynomial potential, an
unequal Lennard-Jones type potential and a more complex potential with multiple trapping wells
and barriers. We find that these are all handled well, with the accuracy of the approximations
improving as the relaxation’s spectral representation shifts to lower eigenvalues, in line with ex-
pectations about the validity of the gradient expansion. The spectral representation’s range also
correlates with temperature, leading to the conclusion that the gradient expansion works better for
higher temperatures than lower ones. This work demonstrates the ability of the fRG to expedite
the computation of statistical objects in otherwise long-timescale simulations, acting as a first step

to more complicated systems.

I. INTRODUCTION

Stochastic processes appear in all kinds of contexts in
physics: from the Brownian motion of small particles in
a thermal bath [Il 2] to exotic scalar fields experiencing
quantum fluctuations in the early inflationary universe
[3], many problems of interest can be described by the
overdamped Langevin equation . In this work we em-
ploy an effective description of the stochastic dynamics
that captures the aggregate effect of fluctuations embod-
ied in an effective action T'[x(t)], a functional of the av-
erage position x(t) = (z(t)) which can be thought of as
an analogue to the statistical free energy and can be de-
rived from the partition function or generating functional
via a Legendre transform. Once obtained, the effective
action can be used to compute n-point correlation func-
tions of the particle’s position (z(t1)x(t2) ... z(t,)), char-
acterizing the system’s statistical properties. To obtain
this effective action we will be coarse-graining the system
in time such that we obtain e.g. an effective potential
that incorporates thermal fluctuations on all timescales.
To achieve this we will use a technique known as the
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functional, or exact, or non-perturbative Renormalisa-
tion Group [4, 5] — see [6] for a review and an entry point
to the literature on the subject, [7] for a comprehensive
overview of applications as well as e.g. [8 9] for more
elementary introductions.

The renormalisation group (RG) was brought to full
force through the work of K. Wilson [10] who used it to
understand phase transitions and since then the RG has
become a widely used technique in modern physics with
many applications in both particle physics [I1] and con-
densed matter physics [12,[13]. The RG is relevant when-
ever fluctuations significantly influence the state (static
or dynamical) of a physical system. A recent popular in-
carnation of this programme is the functional RG (fRG)
formulation. Wetterich showed [4] - see also [5] - how
one can define I' at some particular energy or momentum
scale A in the UV (for us this will correspond to small
timestep/high frequency) where the theory is known and
then create an RG flow that interpolates through all en-
ergy (frequency/momentum) scales down to the IR (i.e.
decreasing fluctuation frequency/increasing characteris-
tic timestep of fluctuation here). This change of the effec-
tive theory at different scales, the fundamental idea be-
hind the RG, can be formulated in an integro-differential
equation known as the Wetterich equation:
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where T’y is the effective action at scale k, Tr denotes a
trace over spatio-temporal points (an integral over space-
time) and a trace over all other relevant indices, Ry, is an
IR regulator that acts as a cut-off for fluctuations below

(momentum/frequency) scale k, and F,(f) is the second
functional derivative of I'y. A simple zero-dimensional
manifestation of this flow equation in the context of the
Boltzmann equilibrium distribution is illuminating and
is reviewed in Appendix [A] At the end of the flow, as
k — 0, all fluctuations are included and the full effective
action I' is obtained.

In this work we solve equation in the context of
the dynamics of particles under the influence of a deter-
ministic force, stemming from an arbitrary potential, and
thermal fluctuations. We will study a simple polynomial
potential, a double Lennard-Jones (LJ) potential, as well
as one containing multiple barriers/trapping wells, serv-
ing as a toy model of an energy landscape on which par-
ticles can diffuse. To solve we employ a widely used
approximation scheme, the gradient expansion, to second
order. We find good agreement with simulations (and
the Fokker-Planck equation where it proved amenable to
a numerical solution) at moderate to high temperatures
and that this correlates with the spectral representation
of the relaxation process, i.e. the overlap between the ini-
tial condition (a delta function initial probability distri-
bution) and the spectrum of the Fokker Planck operator.
In particular, the more the resulting spectrum is shifted
towards lower-lying eigenvalues, the better the gradient
expansion agrees with the exact evolution. This is in
line with expectations about the validity of the gradient
expansion, namely that it better captures slower evolu-
tion which should be associated with the lower eigen-
values. Furthermore, we expect that for a fixed initial
condition lower temperatures correspond to a spectrum
shifted towards higher eigenvalues and, correspondingly,
worst performance of the gradient expansion.

We start in Sec. [[] by reviewing the connection be-
tween Langevin dynamics and Supersymmetric Quantum
Mechanics in imaginary time, first shown in [14] - see e.g.
[15] for a review of this connection. The path integral
formulation then allows us to apply the fRG program di-
rectly. We include a brief summary of how the Langevin
equation can be reformulated in terms of a probability
distribution function whose evolution is described by the
Fokker-Planck equation and how the latter relates
to a Euclidean Schrodinger equation. We close the sec-
tion by discussing the symmetries of the resulting theory
and their implications through Ward-Takahashi type re-
lations, paying attention to the fact that the initial state
may not be that of equilibrium.

In Sec. [ we present the flow equations for the ef-
fective action utilising a slight modification of the re-
sults of [I6] for supersymmetric RG flows. As we ex-
plain, the flow equation derived from the supersymmetric
formulation ensures compatibility with the equilibrium
Boltzmann distribution, a feature not directly obvious
from the application of the renormalisation group to the

Onsager-Machlup form of the generating functional. To
turn the functional integro-differential equation into
a mathematically more tractable form we employ two
commonly used approximations for the effective action
T'j: the Local Potential Approximation (LPA) as well as
the LPA augmented by Wavefunction Renormalisation
(WFR). In the LPA, the effect of fluctuations is progres-
sively taken into account during the flow by the effective
potential Vi (x) experienced by the particle, which is al-
tered compared to the bare, fundamental potential V(z).
Wavefunction Renormalisation (WFR) involves a second
function Zi(x) which can be interpreted as a redefini-
tion of position x — Z(z). These are also known as the
first two (leading and subleading) orders in a gradient
expansion of T'.

In Sec. [[V] we derive the effective equations of motion
(EEOM) through variational derivatives of the effective
action I'. We do this first for the one point function,
or average position x, whose equation of motion simply
reduces to an over-damped equation in an effective poten-
tial with no noise i.e. purely classical. We then obtain an
equation for the evolution of the two point function; this
Green’s function equation allows us to solve for the Vari-
ance and Covariance of the stochastic process. Solutions
to these deterministic equations with appropriate initial
conditions can then approximate the relaxation towards
equilibrium.

In Sec. [V] we present numerical solutions to the flow
equations for three types of potential: a simple polyno-
mial one, an unequal LJ type potential and a “rugged”
potential consisting of an underlying harmonic 22 poten-
tial with the addition of six Gaussian bumps and dips.
We also consider different temperatures, effectively con-
trolling the strength of thermal fluctuations compared
to the classical force. Naturally, we find that the end
results of the flow equations differ, with higher tempera-
tures resulting in potentials that carry less memory of the
bare potentials’ morphology. In section [VI|the numerical
solution of the LPA flow equation accurately reproduces
static equilibrium quantities, as it should. We also exam-
ine the characteristic decay behaviour of the connected
2-point function (x(0)z(t)) or covariance at equilibrium
by utilizing both the effective potential Vj_,o and the
WEFR function Zj_,o and find good agreement with exact
results down to relatively low temperatures when devia-
tions start becoming pronounced.

In Sec. [VII] we examine how well the LPA + WFR
approximation to the effective action can handle relax-
ation towards equilibrium in our potentials starting from
a fixed initial condition (Pni(z) = 6(z — ini)). Numer-
ical solutions to the EEOM for the one- and two-point
functions are compared to direct numerical simulation of
equation and/or numerical solutions to the Fokker
Planck equation. We find that under the LPA + WFR
approximations, the fRG solutions give a good descrip-
tion of the relaxational evolution and are able to capture
overshoots of the variance in the potentials we exam-
ine. Similarly to equilibrium, the approximations fare



worse as the temperature is decreased and the classical
force determined by the potential’s slope becomes dom-
inant. We suggest that this behaviour is correlated to
the spectral decomposition of the relaxation in terms of
eigenvalues of the relevant Fokker-Planck operator: the
more the spectral decomposition of (z(t)), (z(tini)z(t))
and (x?(t)) is shifted towards lower eigenvalues, the bet-
ter the LPA4+WFR approximation performs.

We conclude in Sec. [VITT} Appendix[A]derives the zero-
dimensional analogue of the Wetterich equation for
the effective potential corresponding to the equilibrium
Boltzmann distribution while in Appendix[B]we include a
derivation of the solution of ([113)) that provides the two-
point function. In Appendix [C| we explicitly show that
the determinant appearing in the path integral directly
follows from the boundary conditions imposed in [[TA]

II. BROWNIAN MOTION AS
SUPERSYMMETRIC QUANTUM MECHANICS

This section reviews Brownian motion and its path in-
tegral formulation in terms of the action functional of Su-
persymmetric Quantum Mechanics. In the next section
we will exploit this link to derive the RG flow equations.

Brownian motion for a single particle of mass m mov-
ing in a potential V (x), coupled to an external heat bath
with temperature T', can be described by the Langevin
equation:

mi + i = —md;V(z) + f(t) (2)
(f(OF(t)) = 2Dyt —t') 3)

where v is a frictional coefficient, f(¢) is a gaussian
“noise” term and V'(x) is the potential in which the par-
ticle moves. D = kT/~ is the diffusion constant, given
so as to match the Boltzmann equilibrium distribution
(should an equilibrium state exists). Hereafter, we will
be concerned with the overdamped limit:

i = —20,V(2) +n(t) (4)
(n(tn(t')) = 2D5(t — t') (5)

to which the system settles over a timescale ¢ = m/y
which we assume to be short. Note that the overdamped
equations are a consistent approximation to the full dy-
namics as long as €2V" <« 1.

We will be examining the impact of changing the tem-
perature, and hence changing the strength of the fluctu-
ating force 7, on the coarse-grained effective theory. Let
us therefore introduce a reference temperature T and a
dimensionless parameter T which allows us to dial the
temperature around Ty. Writing D = DyT, we further
define dimensionless variables

r=+/2Dge®, t=ct (6)
V)= 22006, an =200 ()

in terms of which the dynamical equation becomes

d# o .
T- +70(t) (8)
(HB)A")) = 1ot —1) 9)

From here onwards we will be dropping the hats for sim-
plicity of notation but generally refer to dimensionless
quantities unless otherwise stated.

A. The Brownian Motion Path Integral

In order to bring the tools of Quantum Field Theory
[11, 7] to bear, we will need to reformulate the stochas-
tic differential equation (8] in terms of a path integral. In
this subsection we will outline one known way to obtain
this path integral, aiming to link this to Supersymmet-
ric Quantum Mechanics. Our final expression, and the
starting point of our subsequent analysis, is the Brownian
Motion transition probability , expressed in terms of
an integral over possible histories weighted by the action
, to which the busy reader may progress if uninter-
ested in the details of the derivation. We will be using
a condensed functional notation of infinite dimensional
functional integrals but all expressions can be considered
as limits of finite, high dimensional ordinary integrals.
This derivation is based on the path integral reformula-
tion by De Dominicis, Peliti and Janssen [I8-20] of the
well known Martin-Siggia-Rose approach for stochastic
dynamics, first developed in [2T]. More details on these
path integrals, including the corresponding finite discreti-
sation of the stochastic process can be found in [22] - see
also [23] for a pedagogical exposition.

The dynamics of the (dimensionless) Langevin equa-
tion can be captured in terms of the Probability Dis-
tribution Function (PDF) P(zs|x;) of observing the par-
ticle at x ¢ at time t = ¢y given that initially, at ¢t = ¢;, the
particle was at x;. By definition this can be expressed
as:

P(xglw:) = (0 (x(ty) —xy)) (10)

where the expectation value is taken over all possible re-
alisations of the noise 7(¢) and ¢ (z(t;) — xy) is the Dirac
delta function. Put another way, x(ty) is the position at
ts for a given noise history 7(t) and the brackets indicate
averaging over all possible noise histories, or stochastic
paths, which start at x; and end up at z(t;) =z at t.
To express this in a path integral form, we can rewrite
the PDF using a Gaussian measure for the noise and
express the average as

(1)

where each noise history is weighted by the exponential
factor in the above expression. We now consider the iden-

Playla) = /Dn(t)5($(tf) — &) exp [_/dt 772'(;)



tity (see e.g. [I5]):
- / da; f Da(t) 5 (x(t) — (1)) (12)

- / de; :f Da(t) 5 (i + Vo — () detM
. / Dx(t)lé (& + Vo — (1)) detM (13)

where the r:atrix M(t, 1) is:
sl Vol _ (4

o =4 v,m> S(t —t').(14)

M=
dt

This identity expresses the obvious fact that, if the par-
ticle starts at some x; and follows a particular history
x,(t) dictated by the Langevin equation without disap-
pearing, it will end up somewhere after time ¢y. We have
used the standard subscript notation to denote derivative
with respect to that variable e.g. V3, = 0.,V . Note that
the path integral in is over all paths starting at z;
at ¢; and ending at any x at ¢;. Inserting this ‘fat unity’
factor into and noting that the delta function
there restricts z(t;) to be xy we obtain:

a(ty)=my
Plasla;) = DnDxd [z + V, —n] detM

:E(tl)::E,L

X exp {/dt ’ig)] (15)

where the Dz (t) integral is taken over all paths beginning
at z; and ending at x¢. We can rewrite the delta function
as a functional Fourier transform using a new variable
which is usually called the response field:

6[9b+‘/,x—n]=/7)iexp {z’/dtfc(a’c—l—vﬂ;—n)]
(16)

There are a couple of standard ways we can incorporate
detM into an exponential. We can formally write

M= () <1+ (jt)V> (&)™ an

where

d

(dt)_ (t’t/):)‘@(t_t/)—(l—)\)@(t’_t)_ (18)

Imposing retarded (causal) boundary conditions, which
are appropriate for the problem at hand, requires that
we set A = 1 and we find

detM = det <jt> x detM exp {’I‘r log (1\7[)}

x exp [; / at vm} (19)

where we used the Stratonovich prescription (6(0) =
1/2). Alternatively, and to make the link with SUSY,
we can use anticommuting Grassmann variables ¢ and ¢
such that:

detM = /DCDE exp [/ dt e (0 + Vi) c} (20)

The determination of detM then requires appropriate
boundary conditions for ¢ and ¢, which are

c(tin) =0, ¢c(tr) =0. (21)
Other choices are possible but lead to determinant val-
ues that are different from , corresponding to non-
causal boundary conditions for the stochastic problem.
The boundary condition is implied by the discretised
form of the path integral, see [23]. Its appropriateness is
verified by direct computation in Appendix [C] The dis-
cretised path integral can also be consulted to infer that
we must further impose

F(t) = 0. (22)

Although introducing ¢ and ¢ is not strictly necessary,
it pays to keep the determinant expressed in this form
since, as we see below, it allows us to conveniently ex-
press hidden symmetries of the resulting action. Insert-

ing equations & into we obtain:

Pxyl|z;) = /DanDiDcDE
”o
exp /dt{ - ﬁ—#zx(JH—V,x -n)
120+ Vi) c}] (23)

We can now trivially perform the gaussian integral over
7 to obtain the path integral in terms of the Brownian
Motion (BM) action Spu(z, Z, ¢, ¢):

P(zysle;) = /DxDi“DcDE exp [-Spm (2, T, ¢, )]
(24)

Spm(w, 7,6 c) = /dt[§i2 — & (i + V)
—C¢ (0 + Vias) c} (25)

Computing this path integral, which henceforth shall be
called the Brownian Path Integral (BPI), without resort-
ing to some approximation is in general impossible an-
alytically. Instead, we will be using numerical solutions
to the fRG flow equations to compute it in the LPA +
WEFR approximations.



Redefining our fields as :

z(t) = VT o(t)
V(z)=TW(p)
SO S
= Wes (ip — F)
cc=1ipp
(26)
we obtain
Spule, F.p,pl = W (o) = W(p)l + Ssusy  (27)
where

~ 1
SSUSY[QDJFup7p]:/dt|: SD + F2+ZFW ( )
—ip(0c + Wepo(@))p| (28)

Action describes the dynamics of Euclidean, or
imaginary time, Supersymmetric Quantum Mechanics
where p & p are the fermionic fields and ¢ & F are
the bosonic fields [I6]. The same action also describes
Brownian motion and the BM action is equivalent to the
SUSY QM one up to a factor depending on the initial and
final positions x; & x; these terms can be simply taken
outside the path integral as an exponential prefactor.

Variation of Sgyysy with respect to F yields its “equa-
tion of motion” F' = —iW , which when substituted back
into Ssysy yields the “on mass-shell” action

1
Sonmle, p, ]—/dt{ +§Ww2

—ip(0 +Wep)p|  (29)

We will keep working with the auxiliary field F and
as it allows for the symmetry transformations to take on
a simpler form, linear in all fields.

It is illuminating to express the above action in terms
of the original dimensional variables and perform the in-
tegration over p and p, leading to the alternative form of
the term stemming from the determinant:

dt |1 )
SOM[JU]—/2D [ ma:? +§E mV — DmeV 4,

(30)

Note that 2Dm has the dimensions of action and there-
fore plays in the thermal problem a role analogous to
A in quantum mechanics - see also section |1T_E| in this
respect. Unlike & of course, it can be varied by chang-
ing the temperature, therefore controlling the strength of
fluctuations.

B. The Fokker-Planck equation and the spectral
expansion

Before moving on to the fRG we outline the more stan-
dard procedure as to how the on-mass shell action
can be obtained from the Fokker-Planck equation which
resembles a Fuclidean Schrédinger equation. We will see
later — in section [VIID] — that the spectral expansion
method outlined here confirms the validity of the fRG
approach at moderate to high temperatures.

Instead of working with the Langevin equation directly
once can deal with the probability distribution of posi-
tion:

P(z,t) = (0(x — z)) (31)

where z,, is the solution to for a given noise function
n (i.e. a specific particle trajectory). It can be shown
that this evolves according to the following PDE:
OP(z,t)
ot
which is known as the Fokker-Planck (F-P) equation. It
is usually more useful however to rescale the PDF like so:
P(x,t) = e V/TP(x,t) (33)
This leads to the F-P equation taking the form:

g% _ G) 2, P(x,t) + UP(z,1) (34)

= 0,(P(x,t)0,V) + g&mP(x, t) (32)

2 1L 2
which resembles a Euclidean Schrodinger equation with
T /2 playing the role of & in controlling the fluctuation
amplitude, as one might expect.

Equation can be solved in terms of a spectral ex-
pansion (sec e.g. [2, [24]). Writing

)= cupn(x)e” " (36)
n=0

we find that p,, satisfy the corresponding, time indepen-
dent Euclidean Schrodinger equation

Y d?p, 1 [ (V)
P + <( :r) ,mm) Dn = Enpn (37)

2 da? 2

The lowest eigenfunction with Eg = 0 is
po(z) = Ne V@/T (38)

corresponding to the equilibrium distribution Poq(z) =
po(x)?. The p,(x) eigenfunctions are complete and or-
thonormal

/ dJUpn(J?)pm(ﬂf) = Omn (39)

)pn(x0) = 6(x — ) (40)

an



The conditional probability, a quantity akin to the evolu-
tion operator or propagator in quantum mechanics, can
be expressed in terms of the spectral expansion as

P(x,t|zo,0)

an pn xO ~Eat (41)

P(x,t|z0,0) = e_V(I)/TP(JU,7f|93o,O)BJFV(IO)/T (42)

Any correlation function can then be expressed by using
(2). An economic notation can be achieved by using
Dirac bra-ket notation in terms of which e.g.

= Z |n>e_E"t<n’ (43)
n=0

Correlation functions can then be expressed in the spec-
tral expansion as:

(F(t)g(2(0)) = 3 (0] £ [n) et (n] g [im) (44)
n=0
where, explicitly
(0] £ n) = / dz po(z) f(2)pn () (45)
(lgln) = [ depa(@)g@Pz0)  (40)

Note that the “out state” in the stochastic problem is
always (0| and the “in state” is defined in terms of
P(z,t=0).
We can also write the conditional probability
P(z,t|z0,0) = (x| e”V /T P(t,0)e TV /T |z0)  (47)

governed by the above Euclidean Schrodinger equation,
as a path integral

P(z,t|z0,0) = Nexp( [V(m)—V(mo)])

2D
xx(t/)_;x(f) exp (—/ 22;1 {;m(aﬁrﬁ - U(ff)})
2(0)=xo

(48)

where we have reinstated the dimensionful variables. We
therefore recover the “on mass-shell” path integral
obtained earlier. Note the importance of including the
determinant in order to obtain the 92,V term in
the Schrodinger potential U.

Before proceeding to the next sections we should add
a comment regarding the above path integrals. Beyond
being expressions that allow formal manipulations, they
can also be understood as limits of large multi-variate
integrals arising from the discretization of time evolu-
tion into small discrete time intervals. In general, this

6

discretization results into apparent ambiguities [25]|H In
our case this can also be linked to the discretization of
the Langevin equation (the index 7 refers to the i*®
time interval)

zi =xi—1 + V'(z))At + / ds&(s) (49)

ti—1

where 27 = az; + (1 —a)x;—1. In the above discus-
sions and manipulations we have tacitly assumed oo = 1/2
(Stratonovich) which, in the continuous limit is equiva-
lent to setting ©(0) = 1/2 [22]. It is well known however
that, as long as the noise amplitude does not depend on
z (known as additive noise), the solution to the Langevin
equation is unique, as is the corresponding Fokker-Planck
equation. Our path integrals respect this and all results
derived from them are independent of the choice of a.
Calculations with the discrete version, show that contri-
butions from terms involving « cancel. For example, one
can start from the discretized path integral with an ar-
bitrary choice of « and obtain a unique Fokker-Planck
equation - see e.g. [22]. In the continuum formulation,
the supersymmetry discussed in subsection [[TD] below
imposes the cancellation of terms where the ambiguous
quantity ©(¢ = 0) appears. This is also reflected in the
path integral through the special form of the poten-
tial U(x) in terms of the “superpotential” V' (z). Overall,
this non-dependence on a ultimately stems from the in-
clusion of the determinant detM in . These consid-
erations support the view that the formal path integrals
considered here are well defined and free from any ambi-

guity.

C. Correlation functions from the generating
functional

One way to compute correlation functions is through
the use of objects called generating functionals. In this
subsection we will outline how these generating function-
als yield correlators in practice. We will then outline in
section [[T]] how the fRG can be used to compute these
generating functionals in the first place and therefore how
to obtain correlation functions in section [Vl

The first generating functional we examine is the parti-
tion functional Z(J) which depends on source terms J(¢)
(in analogy with a magnetic field source term M(x) in

spin systems)
+/dtJ<I)} . (50)

J will give any required
In the above functional integral, ® stands

= /D(I) exp [—SBM[q)]
which, under variation w.r.t.

correlator.

1 We would like to thank the anonymous referee for highlighting
this point.



collectively for (p(t), F(t), p(t), p(t)) and J(t) for all the

corresponding currents

/dthI> = /dt (J¢¢+Jpﬁ+ﬁ<+§p) (51)

The only constraint we will require of the currents is that
they satisfy J(tin) = J(tf) = 0 at the initial and final
times t;, and t;.

The averages of the fields are defined by

(@ (1)) = / DD B(t) exp|-Spu[@]]  (52)
_0Z2[J]
BROIS (53)

the two point correlation function is:

_ [ D® B(t1)P(t2) exp[-S[P]]

(@) B() = T (54)
_8°2(J)
= 5Tt |,y (55)

and similarly for higher correlation functions. Note that
the usual normalization by a factor Z(0)~! that is in-
cluded in general, is omitted here since for this theory
Z(0) =1 by construction.

Defining

W] = In (2(J)) (56)

allows us to compute connected correlation functions (or
Ursell functions) as:

(B(t1)..B(tn)) (s = 5J(5nW[J]

)0 (E) (57)

J=0

For instance the connected 2-point function (more com-
monly known as covariance) G(t1,t2) is:

G(t1,t2) = (2(t1)P(t2)) ¢ = (D(t1)D(t2)) — (P(t1)) (D(t2))

R
—0J(t1)6(t2)

J=0

D. Symmetry transformations for Sgy and
‘Ward-Takahashi identities

In this subsection we recall the transformations that
leave the action Spps invariant, up to boundary terms.
We comment on the implications of such symmetries, also
paying attention to the boundary terms that are usually
dropped under the assumption of equilibrium, or, equiv-
alently, a corresponding infinite amount of elapsed time
between initial and final states [26]. For us to later use
SUSY fRG flow equations in section[[I]it is crucial to ver-
ify the presence of this symmetry in an out-of-equilibrium
context.

(58)

In general, invariances of the action imply relations be-
tween various correlation functions in field theory, gener-
ally known as Ward-Takahashi (W-T) identities. Their
derivation can be summarized as follows: A general in-
finitesimal transformation of the fields ® — &' = ®+A®
will generically change the action S — &’ = S+AS. Also
shifting J — J + AJ leads to

dté—ZAJ(t) :/Dq>e—5[¢]+fd“¢’

AZ = 5J(t)

x (=AS + JAD + AJ ) (59)

where we used that a) ® is simply an integration variable
in and Z is not altered by a change in ® but only
via J and b) D® = D’ i.e. the transformation involves
no non-trivial Jacobian determinant. Symmetries of the
dynamical system comprise of transformations for which
AS is, at most, a total derivative (or a total divergence

for higher dimensions): AS = fdt%/l = A(ty)—A(t;) =

[A]if . Further choosing AJ such that, for a given A®,
JAD + AJP =0, leads to

9z _ ty —S[]+[ dt I®
/ 5o AI(0) = / DB A" e (60)

Differentiating this master equation w.r.t. J and setting
= 0, gives relations between correlations functions that
are necessitated by the symmetry under ® — & + Ad.
For our case, given two independent, infinitesimal
Grassmann variables € and €, the following transforma-
tions of the fields [16]

© — p+ i€p — ipe (61)
F—F—é& — pe (62)
p—>p+(¢)—iﬁ)e (63)
ﬁ—>ﬁ+€(¢+z’ﬁ) (64)

leave Spjs invariant up to a boundary term at the initial
time t;,:

Spv = Sout + pun (i9+ F4+2W,) e (65)
where a subscript ‘in 'denotes the initial time ¢;,. The
boundary term at ¢y has been eliminated using the
boundary condition . Note that the € transforma-
tion leaves Sp)s invariant identically, irrespective of the
boundary conditions. B

Adding source currents (J@, Jz, ¢, C) to the action [27]

Spar — Spar — /dt (J@go IR F 4 5+ g‘p) (66)

and requiring appropriate transformations of those cur-
rents,

Jp— J,+ Cet e
JF—)JF+’L'<_€72'€C
¢ ¢re(ide—Jp)

> C—e(ido+Jp)



we have

& (oap Qe (1)

We therefore see that the transformations result in

I — I — 65 (pJ5 — oC) —

Spy—J® — Spy — JP+ pin (ZLp + F + QiW’Sa)_ € (72)
and the exponent in the integrand of only changes
by a lower boundary term that is also independent of €.

The field transformation - are linear shifts
that leave the integration measure in the path integral
invariant. Coupled with the shift in the currents we find,
setting e =0

§Z . .6 52 /. -
/ dat [th)c - 16J§t>< B 55@) (i + ‘]Fﬂ =0
(73)

while for € = 0 we obtain

5Z - . 6Z . 5
/dt[éth)C—'—zéJP:Z(t)C 5(2) (i, J)}

— [P0 [~ (i + B 2005, )| e Smre 17y

These are the master equations from which so-called
Ward-Takahashi identities between various correlators
can be obtained. For example, differentiating w.r.t.
J,(t'), ¢(7) and setting J = 0 gives

% () () + (et YW (o(7))) —i{p(t)) p(T))

which, along with the original Langevin equation, allows
us to infer that

i{p(t")p(r)) =

=0 (75)

— (p(t)n(1)) , 76
Ve {e(t)n(7)) (76)
meaning that (p(¢')p(7)) is proportional to the response
of p(t) to noise n(7) (clearly a retarded quantity o< O(t'—
7)). Furthermore, equation can be rewritten as

VT (#(r)e(t") = —{p(r)p(t") (77)

which confirms that (p(¢')Z(7)) is the retarded response
function or propagator. Importantly, equation also
establishes that in a diagrammatic expansion closed
ghost loops act to cancel closed loops involving the re-
tarded propagator. This ensures Z[J = 0] = 1, which
simply reflects conservation of probability, and further-
more that correlators do not depend on the ill-defined
quantity ©(0), reflecting the well-known fact that, for
additive noise, the discretization of the stochastic differ-
ential equation (Ito, Stratonovic etc) does not matter.

Differentiating w.r.t. Jo(¥'), {(7) and setting J =
0 gives, with the use of and recalling that integration
over I gives F — —iW,

2L (ot)p(r)) — VT (EP)(t) + VT E(E)p(r)

dr
= =i (Fin (7)) (Fme(t')) (78)

This is a modified Fluctuation-Dissipation relation with
the term on the rhs accounting for the initial condition.
Sending t;, — —oo makes the rhs vanish and we recover
the Fluctuation-Dissipation relation at equilibrium [26]:

({@(M)e(t)) = (Z()e(7))) (79)

III. APPLYING THE FUNCTIONAL
RENORMALISATION GROUP

The fRG has already been applied to study non-
equilibrium physics, see e.g. [28H39] for an incomplete se-
lection of references. Recently, the fRG has further been
used for averaging fluctuations in the temporal domain
of Langevin dynamics in [40] but without direct use of
the supersymmetry. As discussed in [41], the physically
inspired conditions the authors of [40] require of their
flow equations are straightforwardly imposed by the Su-
persymmetric flow. The Supersymmetric flow equation
itself was first derived in [I6] but without making any
connection to stochastic dynamics. This connection was
made independently in [35] — see also [27] — which how-
ever considered a field theory in extended spatial dimen-
sions and smoothing the corresponding spatial fluctua-
tions, not temporal fluctuations as we do here. In fact,
the authors of [16] obtain a slightly different flow equa-
tion when wavefunction renormalisation is included since
they do not connect the action functional they study
to Brownian motion and the corresponding equilibrium
Boltzamnn distribution. This Supersymmetric fRG flow
has only been very recently utilized in the context of
stochastic dynamics in early universe inflation [41H43].

The formulation of the fRG involves the Wetterich
equation [4] which is a functional (infinite dimensional)
integro-differential equation describing the flow of the ef-
fective action between the microscopic and macroscopic
scale. This flow is controlled by a parameter k that
ranges from the UV cutoff A down to the IR regime as
k — 0. In our Brownian motion scenario, microscopic
regime refers to a small timestep and macroscopic to a
long timestep. The definition of A ~ 1/At is analogous to
the Condensed Matter interpretation of the cutoff being
inversely proportional to the lattice size, the only differ-
ence here being that the Condensed Matter lattice is in
space and ours is in time. We will use the fRG ultimately
to calculate correlation functions of the particle position.
As this derivation uses known techniques and results we
refer the busy reader to our basic equations and main re-
sults of this section: equation for the Local Potential
Approximation to the RG flow and when we also include
Wavefunction Renormalisation they are and .

The fRG formulation adds a regulating term to the
action in our definition of the generating functional:

/J@] (80)

J) = /D@ exp [— — AS[®



where the regulating term ASy[®] is quadratic in ®:

AS[P] = %/ D(t) Ry (t, )P (1) (81)
£t/

Crucially Ry is an IR regulator that depends on a Renor-

malisation scale k and the momentum/frequency p of the

modes. The precise form of Ry is not crucially impor-

tant and it is chosen in order to optimize calculations

but it should suppress IR modes and vanish as k — 0,

%in}) Ri = 0, ensuring that the full effective action is
—

recovered in this limit. By defining the mean field as
X(t) = (®(t)) we can construct the Regulated Effective
Action:
T [X] = / IX — W] — AS[X] (82)
t

where Wi [J] = In(Z) and X refers to all the relevant
mean fields.

From the Regulated Effective Action one can obtain
the Wetterich equation [4, [5]:

1 —1
OTe[X] = 5 STr{ O Ry (t, 1) [Rk + F;(f)} }

(83)
which is a functional equation determining how I'j
changes as k — 0. I'® is the second functional deriva-
tive w.r.t. the relevant fields and STr refers to the su-
pertrace - see [16] for details. The equation evolves T'j
from the microscopic scale (k = A), where 'y = S, down
to the IR regime (k = 0) where the full effective action
T'[x] = Tk=o[x], encoding the effect of all fluctuations,
is obtained. A simplified derivation for one degree of
freedom at equilibrium, which however captures all the
relevant manipulations, can be found in Appendix [A]
As demonstrated in the previous section, our Brownian
motion problem is actually SUSY QM. We can therefore
apply the fRG technology and incorporate the effect of
thermal fluctuations by following the flow of the effective
action I'y, via the Wetterich equation. Synatschke et. al
have analysed a system with action Sgygy in light of its
underlying symmetries in [16] - see also [35]. We adopt
their results here. They find that from a supersymmetric
perspective, the appropriate regulating term takes the
form

A= [ ra(k. A7) [~6(n)9() + FOF(r) = ib(r)i(r)
+ 2ir1(k, AT) [6(r) (') = $(r)(7))]

where AT = 7 — 7/. Such a form was also suggested
n [40], however we will see that compatibility with the
Boltzmann distribution suggests setting ro — 0. The
flow equations of [I6] are discussed below.

tt!

A. Local Potential Approximation

In practice, calculating 'y exactly is usually impos-
sible and we must consider a truncation to make the

(84)

functional equation tractable. The most common
approximation is the so-called derivative expansion. The
Local Potential Approximation (LPA), the leading order
in the derivative expansion, is the assumption that the
only part of the effective action that depends on our mo-
mentum scale k is the superpotential W. The effective
action then takes the form:

Dilp, Fap, o) = / dr[ % P + %FQ + iFWy,4(9)

— it (0 + Wi,op) ¥ (85)
such that T'p—p =
Wi=n(¢) = W(¢) with

o=(p), F=(F), v={(p), ¥=(p

are the mean fields, and we also denote y = (z) = VT¢.
In this approximation the only thing changing with &
directly, progressively incorporating the effect of fluctua-
tions on different timescales, is Wj. This means we only

have one flow equation to solve which turns out to be
[16]:

Ssuysy under the condition

(86)

> dp (14 79)0kry — Okra (11 + QiWk(d)))
7 4 W)

O Wi(¢) = /

oo 4T

We notice that if we set 79 = 0 and choose a local-in-time
ri(k,7 — 7') = kd(7 — 7') the so-called Callan-Symanzik
regulator then this choiceE| effectively adds a quadratic
term to the potential W — W + k¢? and leads to a
relatively simple flow equation:

1 1
O Wi(¢) = 1 W' (87)
In terms of the physical variables we have
T 1
Vi (x) (88)

T4 Er(x)

which shows explicitly the effect of dialling the tempera-
ture Y: the higher the temperature the faster the flow as
a result of stronger thermal fluctuations. Equation
can be discretised in the x direction and become a set of
coupled ODEs that can be solved in the k direction in
order to obtain a numerical solution.

It is important to note that equation is identical
to the flow of the effective potential that corresponds to
the equilibrium Boltzmann distribution, see [44] and Ap-
pendix C with R — k. We therefore see that the form of

2 Physically speaking the final results should be independent of
the regulator chosen. This is a subtlety we will not address in
this work as it was shown in [I6] that even for other choice of
regulators the difference in the final results was negligible, at
least for the LPA.



Ssusy and deriving flow equations that respect its sym-
metries establishes automatic consistency with the equi-
librium Boltzmann distribution. If one started directly
from the Onsager-Machlup functional and naively
treated it as an N = 1 Euclidean scalar theory in one-
dimension with the combination U = % (VI)2 — %Vm as
the scalar potential to be evolved along the RG flow, one
would have obtained a different flow equation

1 [ dp O P
OUk(¢) = 5 /_Oo 21 p? + Ry, + O3Uk(0)

(89)

The corresponding Callan-Symanzik regulator would be
Ry, = k?, giving

AT P S— (90)
k2 4 agUk(d))

It is unclear how or if the end-of-the-flow potential Uy—_q
from this equation would relate to the physical potential
Vi=o.

B. Wave Function Renormalisation

In the previous subsection we assumed that the effec-
tive action I'y, only depends on the renormalisation scale
through the form of the potential. We now allow for the
field ¢ itself to be renormalised which results in a scaling
of the kinetic term. The new effective action in the SUSY
formalism is [I6]:

n . w 2
ol = [ 3256+ 5 (52)

)

— (Zi,at + Z,¢Zy¢¢(;5 — Zﬁ¢¢ I;/Z + W7¢¢> P (91)
where we have suppressed the explicit dependence on k
of W & Z to avoid overly cluttered notation. From now
on we will in general drop this explicit dependence on k
for W, V, Z & (, defined below, only restoring it when
we are directly comparing it to the original cutoff value.
We introduce another identiﬁcatiorﬂ in addition to :

(@) =VYZ($) = Co = Zy (92)
cc= 77’@7"1/_”/} (93>

such that the (on-shell) effective action for Brownian mo-
tion is now written as:

_ 1, . 1 (Vi)
Lk[x, ¢ c = /dt WC,ZXXQ o7 <C7X>
s X

. \%4
—C (C?xat + CxCxxX — € X 4 'VXX) c (94)

;XXT
X

3 This ¢ is unrelated to the one appearing in 1j
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The regulator term becomes more complicated for this
action and we do not reproduce it here, see [L6] for details
of this. Following their approach one arrives at the LPA
+ WFR flow equations:

T 1
V(X)) = — 57— (95)
4 k+ 02, Vi(x)
T P
OCx = 1D (96)
D=V +k( (97)
4Cn Y 3¢ Va
P= 7XXD'XXX = (Gl — 7ZD§XX (98)

which now consist of the previous LPA equation for the
effective potential as expected, augmented by one
more flow equation for the wavefunction renormalisation
Cx-

XAS before we will integrate the LPA equation by
discretising along the y direction and solving the result-
ing set of coupled ODEs in k. Once the effective potential
Vi(x) has been obtained the second PDE can be solved
for ¢ in a similar way. It is worth pointing out here
that our approach differs slightly from [I6] in that the ef-
fective potential obeys the same equation as in the LPA
approximation even with the inclusion of WFREI This
is because the equilibrium state is described exactly by
the LPA equation [43H45], as we mentioned above and
explicitly recall in Appendix [A] The LPA flow equation
was first solved in [16, 44, 45], while more recently WFR
was included for a double well potential in [43].

IV. THE EFFECTIVE EQUATIONS OF
MOTION

A standard formulation of classical mechanics involves
the principle of least action. If one considers the classical
action S:

S = / dt (L(z,7) — j) (99)

where L(xz, %) is the Lagrangian and a source term has
been added, one can obtain the equations of motion by
requiring the variational derivative of S to be zero:

S

or Y (100)

4 For the WFR approximation the authors of [I6] use a spectrally
adjusted regulator which is evaluated on a background field &.
They make the simple choice of identifying this background field
with the fluctuation field (i.e. ¢ = ¢). This approach however
modifies the flow of Vj: equation differs from the LPA ver-
sion and the flow no longer correctly approaches the Boltz-
mann equilibrium distribution’s effective potential. In the ap-
proach of [45] which uses a simplified version of the WFR, this
can be corrected by a further rescaling of k.



The Effective Action (EA) T' is so named because its
definition makes it look like a classical action but includes
the effect of fluctuations that have been integrated out.
Defining

W] _ /DfI) oSl + [ dtia (101)
the effective action I'[X] is then defined as
TX] = / IX = W] (102)
t
where
X = (). (103)
We then have
or
- = 104
5% =Y (104)

Therefore I', the central object of the fRG, leads to effec-
tive equations of motion that incorporate the aggregate
effects of the thermal fluctuations

A. The EEOM for the one point function

In a similar way to how the classical action S(x) can
yield the classical equations of motion through varia-
tional derivatives, so too does T'[x] yield the effective
equation of motion for the one point function (or average
position) x:

or

FROR

Here we have assumed there are no external sourcesﬂ (J
= 0). Under the LPA equation (|105) is:
0l k=0
ox(t)

where the final equality comes by assuming that source
terms have been set to zero (i.e J(t) = 0). The WFR

version of (105) reads:

(105)

=X — V=0 (X) 93 Vi—o(x) = 0 (106)

. Oy Vi=
(CxX) — X520 (3>2<XV1<_0 - ilm@ka_o> =0 (107)
s X sX

where 0, ¢ and 5’;%4 are also evaluated at k = 0. Both of
these second order differential equations can actually be
reduced to a first order differential equation like so:

X =—Vy(x) (108)

5 These equations are equivalent to those obtained by the 1-PI
generating functional [I3].

6 Note that this is not the same as assuming that the noise term
is zero as this is true for I' by definition
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where we have introduced the effective dynamical poten-
tial V defined by

Vi(k=0,x), for LPA

V) = Vilk=0,%)
2 (k=0,x)"

(109)
for WFR

Here we can clearly see that for LPA the effective and ef-
fective dynamical potentials are equivalent whereas WFR
provides an additional factor for the latter.

Equation tells us that the equation of motion
for the average position y is an extremely simple first
order differential equation that appears like a Langevin
equation with no noise. This means that once you have
obtained the effective dynamical potential you can com-
pute the evolution of the average position y trivially from
any starting position.

At equilibrium the average position of the particle
should not change, this means that x = 0. It naturally
follows from this condition and the EEOM for yx
that equilibrium is defined for both LPA & WFR by the
condition

8XVk:O(Xeq) =0 (110)
As the potential Vi—o(x) should be convex (by definition
of ') equation tells us that x.q corresponds to the
minimum of Vi—o(x). Or more concretely:

tlim (x(t)) = = that minimises Vy=o(x)

(111)
The equilibrium position is obviously the same for both
LPA and WFR as they both lead to the same effective po-
tential. As the equilibrium position is straightforwardly
computed from the Boltzmann distribution verifying that
the minimum of the effective potential matches the pre-
dicted equilibrium position is a good first test for the
numerical solution of Vi—q(x), at least close to its mini-
mum.

B. The EEOM for the two point function

The connected 2-point function G(t,t') =
(z)zt))e = 0°W/6J(t)6J(f') and the second
functional derivative of the effective action I'y—g are
inverse to each other

2Wi—o

5T —o o
/dT Sx(t)ox () 6J(T)0J () ot —t)

(112)

Concretely, this means that the connected 2-point func-
tion G(t,t’) satisfies the following equation:

& , :
(dtQ —L{(X(t))) G(t,t') = —2A6(t — 1) (113)



where U(x) is:

Vfcx +VaVoooo for LPA
V2 V.V V2
U) = G+ G T (114)
BV VoCr  5V2CE
_ sX 1;(XC7XX + ,X6 XX ’ for WFR
s X »X
and
—, for LPA
A=4 ¢ (115)
——, for WFR
2%

The derivation of the full solution to can be found
in Appendix [B] but here we just highlight the two main
results:

The EEOM for the Variance t' — t:

Var(a) = G(t.0) = g Vi (0720
P(0) T e
Myz0) [GOO B 2AP(0)} iy
(116)
and the EEOM for the Covariance t' — 0, t > 0:
Cov(z(0)z(t)) = G(t,0) = GooYa(t) (117)

where Y;(t) = Y;(t)/Y;(0) are the ‘normalised’ solutions
to the homogeneous equation which can be obtained
numerically. P(t) = 1 or ¢, (x(¢t)) for LPA and WFR
respectively and A is defined below by . Goo =
G(0,0) is the initial variance at t =0

If we take the equilibrium limit x — x4 of the full
EEOM for the 2-point function we find that it sim-
plifies to:

<d2 — >\2> Geq(ti,t2) = —2A[6(ta —t1)  (118)

dt?
where
2
Vil for LPA
N =10 (119)
’ZX| , for WFR
X

and A is defined as in . The notation | means we
have evaluated the function at k£ = 0 and at equilibrium
X = Xeg:

The appropriate solution to providing the con-
nected correlation function at equilibrium is

T
Geq(tl,tg) = Coveq(x(tl)x(tg)) = T' —Altr—tol
S XX
(120)
T

= G4t t) = Varg(v) = ———
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As the equilibrium variance is also easily computed from
the Boltzmann distribution, equation gives us a
second test to verify that the effective potential has been
computed correctly, at least around the minimum.

In the LPA approximation the variance and the de-
cay rate of the autocorrelation function are both directly
given by the curvature of the effective potential at its
minimum. The inclusion of WFR however alters the de-
cay rate without changing the equilibrium variance. This
is as it should be since the latter is fixed by the equi-
librium Boltzmann distribution. As we will see, WFR
improves the decay rate which is indeed not exactly de-
termined by the effective potential’s curvature alone.

V. SOLUTIONS TO THE FLOW EQUATIONS

In this section we obtain the resulting effective poten-
tial and wave function renormalisation for 3 types of po-
tential. The first we consider is a simple polynomial in
line with [16]:

2 2% ot

Vi)=1+z+ 7 T 3 +

We will also consider a doublewell made by two LJ po-
tentials back to back:

V(@) =dea <(a: f;)w @ iﬁs)ﬁ)

12 o6

+1e (5w~ )
where o will be taken to be 1 from here on in and ¢;
& €5 represents the depth of each well. We will choose
€1 = 1, e = 10 meaning the left well is 1 unit deep and
the right well is 10 units deep (in 2Dg/e units) and the
potential is asymmetric. Clearly here the domain of in-
terest is « € (—3, 3) as the potential diverges at = 3.
Finally we also consider a “bumpy” bare potential con-
sisting of a simple 22 underlying potential with additional
gaussian bumps (or dips):

(122)

(123)

- (z — B:)?
V(z) =2® + Z Qi €Xp [—xl} (124)
i=1 H
where there are n bumps or dips with the prefactor «;
being positive or negative respectively. We will focus on
an x2 plus 3 bumps and 3 dips in an asymmetrical setup.
This potential could represent a rudimentary toy model
for motion over a “potential energy landscape” with a se-
ries of local energy minima. This serves to clearly demon-
strate the effect of local extrema on the final shape of the
effective potential since the underlying z? potential does
not alter its shape under the RG flow. We chose the
parameters to be for 22 + 6 bumps/dips:

ap =a4 =a5=-15

as = ag = ag = 1.5, u = 0.06

pr=—02=07,83=—P4=14,05 = —fFs = 2.1
(125)



FIG. 1: The flow of the polynomial Langevin potential V
in the LPA for (a) T = 10 (High temperature/strong
fluctuations) and (b) T =1 (Low temperature/Weak

fluctuations). The dotted blue curve indicates the bare
potential which is progressively changed, through
dot-dashed green and dashed yellow, into the solid red,
effective potential, as fluctuations are integrated out.

expressed in dimensionless units (we have set & — z to
avoid notational clutter).

We solve the LPA flow equation on a grid in
the x direction and using an adaptive step size Runge-
Kutta ODE solver to evolve in the k direction. A similar
approach was used for including . The numerical
derivatives in the y direction were based on a finite dif-
ference scheme using the Fornberg method with a stencil
size of 5 for the potentials under study. While increas-
ing the grid size improves the accuracy of the numerical
derivative it also increases the number of coupled ODEs
to be solved, making the integration much more com-
putationally expensive. A balance must be drawn de-
pending on the potential in question. For our cases we
considered 1001 points and = € (—3,3) for the unequal
L-J potential and = € (—5,5) for the other two. Figs.
and [B] display the results.

Figs. [I] and 2] show the flow from the bare to the ef-
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FIG. 2: The flow of the unequal L-J Langevin potential V

in the LPA for (a) T = 10 and (b) T = 1. Again, the bare

potential is denoted by the dotted blue curve and the £ =0
effective potential by the solid red one.

fective potential for a high, T = 10, and a low, T = 1,
temperature for the polynomial and unequal L-J poten-
tials respectively. As k — 0 is approached, a distinct
single minimum develops, indicating the average position
of the particle. As expected, the lower the temperature,
the closest the effective minimum is to the bare poten-
tial’s global minimum, reflecting the relative weakness
of fluctuations to force the particle to spend time away
from it. As one might expect, it takes ‘longer’ in k evo-
lution for local features — e.g. barriers — to disappear
in the T = 1 case as fluctuations at each k scale have
less energy than their equivalent for the T = 10 case
and the particle’s stochastic motion between barriers is
less frequent. Physically this means that the fluctuations
we have integrated out up to scale k do not contribute
significantly to the particle moving between minima.

We see a similar phenomenon in Fig. 3| for the flow
from the bare to the effective potential for T = 3, and
T = 1 for an 22 potential with 6 gaussian bumps/dips.
Here the original Langevin potential is much more com-
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FIG. 3: The flow of the z? potential with 3 additional
gaussian bumps and 3 dips in the LPA for (a) T = 3 and (b)
T = 1. As before, the bare potential is denoted by the
dotted blue curve and the k = 0 effective potential by the
solid red one.

plicated than in the previous two cases but the fRG is still
able to smoothen out these features in a non-trivial way.
This example further demonstrates how the flow of the
effective potential is driven by the local curvature, the
gaussian features imposed here, since for an 22 potential
the fRG flow equation yields no change beyond an
unphysical shift by an overall additive constant.

It is clear in all three figures that at the high temper-
ature there is not much change in the shape of the po-
tential when k has reached the value given by the green,
dot-dashed line. Physically this means that the fluctua-
tions integrated out in this range do not contribute signif-
icantly to the particle evolution and transition between
minima. However, by the time k has been lowered to the
value of the yellow, dashed line we have started to inte-
grate over fluctuations over timescales relevant for inter-
minima transitions. Naturally, when k = 0 is reached the
potential is fully convex (as it must be by definition of
I') with no local features to overcome. Similar behaviour
is obtained where again we consider the corresponding
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FIG. 4: The flow of (;, for of the unequal L-J Langevin
potential for (a) T = 10 and (b) T = 2.
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FIG. 5: The flow of ¢, for an z2 potential with 6 gaussian
bumps/dips for T = 3.

lower temperature. As one might expect it takes ‘longer’
in k evolution for the barrier to disappear as fluctuations
at each k scale have less energy than their equivalent for
the high temperature case. Of note is that not only is



the evolution different but the final shape of Vi—o(x) is
different for the two different temperature regimes. Both
the position and gradient near the global minimum are
changed. This is suggestive of longer time scales required
at lower temperatures to reach equilibrium. It also indi-
cates longer times for the equilibrium covariance to decay,
as we discuss below.

Regarding WFR, the full numerical solutions to
for the unequal L-J potential at T = 10, 2 and for an
22 potential with 6 gaussian bumps/dips at T = 3, are
shown in Figs. [] and [f] respectively. We see that from
the initial condition, {, = 1 everywhere, features appear
as k — 0 in direct contrast with the evolution of the
effective potential. At higher temperatures it is clear
that at £ = 0 a local minima appears at the same place
as the global minimum for the effective potential where
the height of the local minima is linked to the equilibrium
covariance — see equation (I19). Looking at Fig. [4] (b)
however we can see that this is no longer the case and the
features generated by the fRG flow are much greater than
in the high temperature case. We will see later that the
neighbouring features in (, will help to better describe
dynamical evolution than the bare potential alone.

VI. EQUILIBRIUM

As mentioned above and recalled in Appendix [A] the
LPA flow equation exactly corresponds to the effec-
tive potential of the equilibrium Boltzmann distribution

2v§x))

P(z) = Nexp (— (126)

We have verified that both the equilibrium position, given
by the minimum of the effective potential,

8ka=0(Xeq) =0

and the equilibrium variance, defined from the effective
potential’s curvature through

(127)

Var,(z) = _r

128
2V ] (128)

are reproduced to sub-percent accuracy, indicating the
accuracy of the numerical solution to the LPA flow equa-
tion, at least around the minimum of the effective poten-
tial.

In addition to the static variance at equilibrium, the
curvature of the effective potential around the minimum
also determines the time dependence of correlations in
equilibrium, quantified by the time dependent covariance
or connected 2-point function

T e—)\‘tl—tg‘ .

Covey(z(tr)x(t2)) = Vo

(129)

Here, A corresponds to V,,| within the LPA but the
solution to the WFR, flow equation for ¢, also con-
tributes, providing a correction to A according to ([119)).
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FIG. 6: The decay of the (normalised) covariance
(z(0)z(t)) at equilibrium in a polynomial potential for (a)
T=10and (b) T =1.

In Table. [[] we collect the values of A\ obtained using
the fRG under LPA & WEFR for different Y values, and
compare this directly to high accuracy numerical simu-
lations of the Langevin equation . We can clearly see
from Table. [[] that the LPA can have good agreement
with the simulation value for simple potentials at high
temperature but can deviate drastically as temperature
is lowered. Inclusion of the WFR factor {, reduces the
deviation error from the value obtained in the simula-
tions substantially to ~ 1% for the simplest cases and
order of magnitude agreement for the most complicated,
low temperature systems.

The decay of the equilibrium covariance is shown in
Figs. |§| & [7|for the polynomial and z? plus 6 bumps/dips
potentials respectively. We can see — for the polynomial
potential — in Fig. |§| (a), T = 10, that the LPA and WFR
are both in good agreement with simulations and in Fig. [f]
(b), T = 1, that the WFR offers better agreement than
the LPA. In Fig.[7] (a) we can see that for T = 3 the WFR
prediction closely matches the simulations offering signif-
icant improvement over the LPA which closely matches
the bare 22 potential. This indicates that even for highly
non-trivial systems — where the computation of eigenval-
ues for these potentials is a non-trivial exercise — that
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FIG. 7: The decay of the (normalised) covariance
(z(0)z(t)), at equilibrium in an z? plus 6 gaussian
bumps/dips potential for (a) T =3 and (b) T = 2.

T LPA WFR Sim

10 3.1857 2.9101 2.9191
4 2.0842 1.8664 1.8767
1 1.7112 1.3381 1.3585
Unequal L-J 10 2.9655 2.0146 1.8783

2 50.93 0.4806 0.3691
x>+ 6b/d 3 1.9199 1.4529 1.3977
2 1.8185 1.1552 0.9710

Potentials

Poly

TABLE I: Value of the autocorrelation decay rate at
different temperatures. The LPA & WFR columns display A
as calculated from the fRG flow. The simulation values were

generated by averaging over 50,000 runs.

the simulated decay is vastly different from the bare z?2

potential — see Table. and compare to the 22 prediction
for A/2 which is 1 — the fRG can appropriately capture
these effects.

It is also worth pointing out that the simulated decay
rate does not follow a pure exponential at all times in all
cases. This can be best seen in the top plot of Fig. [6] (b)
where the decay is initially close to the LPA, then the
WFR decay before moving towards the eigen decay rate
at late times. This sort of behaviour has been identified
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FIG. 8: Comparison of V for unequal LJ potential at
T = 10 as calculated using fRG methods LPA and WFR,
compared to the Boltzmann “near-equilibrium”
approximation given by equation . All potentials have
been vertically shifted so that their minima (corresponding
to the equilibrium position) coincide.

in similar systems in the early universe [46] where it was
noticed that the smallest non-zero eigenvalue’s spectral
coefficient was sufficiently small that higher order eigen-
values would dominate the decay at earlier times. As
LPA matches the decay rate predicted by the Boltzmann
distribution and WFR is closer to the decay predicted by
E1. We discuss this further below.

VII. RELAXATION TOWARDS EQUILIBRIUM

In order to solve the equations of motion for the one
point function x(¢) and two point function G(t,t") we
must first solve the PDEs for the LPA & WEFR to obtain
the dynamical effective potential V' and the function U.
We will use the solutions obtained in Section[V]in order to
compute these parameters and then solve the appropriate
Effective Equation of Motion (EEOM).

A. The dynamical effective potentials

In section [[V] we introduced the notion of the dynam-
ical effective potential V' given by equation which
together with describes the evolution of the aver-
age position, x. As the fRG guarantees that the fully
effective potential V will be convex this implies that the
dynamical effective potential V' will also be either fully
or extremely close to fully convex for LPA and WFR
respectively thus greatly simplifying dynamical calcula-
tions. In the previous section we emphasised how the
fRG LPA effective potential gives us the Boltzmann equi-
librium quantities such as equilibrium position and vari-
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FIG. 9: The trajectory of the average position x in a
polynomial potential V' by direct simulation & solving the
EEOM using LPA and WFR for T = 10. The
horizontal dotted line is the equilibrium value.

ance. What we would like to emphasise now however
is that away from the minimum of the effective poten-
tial the fRG gives us information that the near equilib-
rium Boltzmann assumption does not. To be concrete,
an approximate Gaussian Boltzmann distribution would
assume that the potential is of the form:

T

VBoltz (l’) = m
eq

(X - Xeq)2 (130)

where Xx., and Var., are the equilibrium position and
variance respectively. We show in Fig. [§lhow this approx-
imation can break down dramatically as one moves away
from the equilibrium position suggesting that the fRG
captures the far away from equilibrium dynamics well.
In principle one could attempt to include higher order
cumulants of the Boltzmann distribution such as skew-
ness and kurtosis into an approximate effective poten-
tial, however the relationship between these cumulants
and higher derivatives of the effective potential is non-
trivial and cumbersome to include. In any case it is not
expected including these corrections would lead to signif-
icant improvement away from equilibrium.

B. Accelerated trajectories

Having solved the appropriate flow equations to obtain
the dynamical effective potentials we can now solve .
Given the dynamical effective potential V it only takes a
couple of seconds to obtain the full trajectory of x from
some initial position x; = y; to the equilibrium position.
For the polynomial potential we initialised the particle
far away from the equilibrium position at * = 4. In
Fig. [9] we show how the average position of the particle
changes with time using direct simulation of the Langevin
equation over 50,000 runs, by numerically solving the
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FIG. 10: The trajectory of the average position x in an
unequal LJ potential V' by direct simulation & solving the
EEOM using LPA and WFR for T = 10. The
horizontal dotted line is the equilibrium value.

F-P equation and as calculated by the evolution in
the dynamical effective potentials V given using the LPA
and WFR methods at T = 10. All four trajectories agree
to a very high precision.

In Fig. [10] we plot the evolution of x(¢) for the unequal
LJ potential where the particle begins in the smaller well
at x = —1.878 and moves towards its equilibrium posi-
tion. We see as before that the WFR trajectory closely
matches the simulated trajectory offering significant im-
provement over the LPA computation. Note that for this
system it was impossible to get convergent numerics for
the evolution of the F-P equation This ability of the
fRG to capture the non-trivial evolution of average po-
sition is also shown in Fig. for the z2 potential plus
6 bumps/dips which is a much more complex potential
landscape at three different temperatures. Here the LPA
trajectory offers improvement over the 2 “prediction” by
converging to the correct equilibrium position and includ-
ing WFR more closely matches the true simulated tra-
jectory. Lowering the temperature generically decreases
the accuracy of the fRG results. It is noteworthy that
the fRG is able to reasonably capture these difficult dy-
namics well in systems where the F-P solution is difficult
to obtain.

It is important to note the time advantage offered by
the fRG. Solving the fRG flow equations is comparable in
computation time to direct simulation while solving the
F-P equation (34]) takes longer than both. However the
latter two methods obtain solutions that are only valid
for a single initial condition. A huge advantage of the
fRG is that once the dynamical effective potential V' is
obtained it is trivial to solve the EEOM in a couple
of seconds for any initial position whereas for both direct
numerical simulation of and solving the F-P equation
one has to start again from scratch.



05, (a)
O L
-0.5+
=
=< /
5L f' —Simulation
’ / - -LPA
WFR
ol 5
..... .
-2.5 :
0 0.5 1 1.5 2 2.5 3
t
b
05 (b)
0F o
0.5 yy
ff!
= ar
=< :i(
15l ,.", —Simulation
2T - -LPA
WFR
9L 5
..... .
-2.5 .
0 1 2 3 4
t
05 (c)
05 7
7
7
= a /
=< {!
150 & —Simulation
' (.‘. - -LPA
g WFR
ol 4
..... z
25 ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5
t

FIG. 11: The trajectory of the average position x for z?
potential plus 6 gaussian bumps/dips V' by direct simulation
& solving the EEOM using LPA and WFR for (a)
T =4, (b) T =3and (¢c) T = 2. For comparison the
predicted evolution for the “bare” z? potential is shown by
the dotted red curve. The horizontal dotted line is the
equilibrium value.

C. Evolution of Var(x)

For our accelerated trajectories we initialised the par-
ticles at the exact same point every time. This means
that at t = 0 the probability distribution of the particles
had zero variance Var(x) = 0. Using this as our initial
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FIG. 12: The evolution of the variance Var(x) in a
polynomial potential by direct simulation, solving the
Fokker-Plank equation & solving the EEOM for

YT = 10. The horizontal dotted line is the equilibrium value.

condition we solved numerically the EEOM for the vari-
ance , derived in appendix |[B| In Fig. we show
how the variance evolves with time for the polynomial
potential for T = 10. We can see that the LPA closely
matches the numerical and F-P evolution until ¢ = 0.5
before departing slightly although it still tends towards
the correct equilibrium distribution.

In Fig. [13| we show how the variance evolves with time
for an unequal LJ. As with the one-point function the F-
P was unable to give sensible statistics however the LPA
is able to very well match the early simulated trajectory
even capturing the overshooting of the variance. The
WFR on the other hand is better at capturing the late-
time decay to equilibrium.

Finally in Fig. we show how the variance evolves
for the 22 plus 6 gaussian bumps/dips potential at three
different temperatures. As before, lowering the temper-
ature decreases accuracy. In Fig. (c) the fRG once
again clearly captures the overshooting which is a fea-
ture of the gaussian bumps’ existence; the bare z2 evolu-
tion does not capture this behaviour and overall describes
the evolution poorly, converging to the wrong equilibrium
variance. Again as before the LPA much better describes
the early evolution while WFR more accurately describes
late time evolution.

D. Comparison with the spectral expansion

The above results for the change in the relative perfor-
mance of LPA + WFR as temperature is lowered can
be interpreted by resorting to the spectral expansion.
In section [[IBl we recalled how all observables can be
computed in a standard way from the Schrédinger-like,
Fokker-Planck equation using an expansion in eigen-
functions and eigenenergies. It is straightforward to show
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FIG. 13: The evolution of the variance Var(x) in an
unequal LJ potential by direct simulation & solving the
EEOM for T = 10. The horizontal dotted line is the
equilibrium value.

that — given our initial conditions considered above — the
average position and the two-point function can be ex-
pressed as:

(@(0) = Xea + 3 [V O X o)

></ dz e*V("”)/Tpn(x)} (131)

— 00

and

(a%( <x2>eq+z[ ~EnteV @) T, ()

pn( )}
(132)

where the subscript eq indicates the equilibrium value,
and E, and p,(z) are respectively the eigenvalues
and normalised eigenfunctions of the corresponding
Schrodinger-like problem. Obtaining the spectrum FE,
and p,, (z) may be complicated by the fact that the actual
Schrédinger potential U can develop temperature
dependent features as the temperature is decreased— see
Fig. Even for the simple polynomial potential in the
Langevin equation it is clear that at low temperatures
U becomes non-trivial, developing highly asymmetrical
trapping wells. The increasing energy gap between the
two minima indicates that, for a fixed initial condition,
higher order terms in the spectral expansion can become
important as the temperature is lowered.

To illustrate the importance of these higher-order
terms for the two-point function evolution in the polyno-
mial potential we examine the accuracy of a finite trun-
cation of the spectral expansion at two temperatures,
T = 10 and T = 2, for the evolution of (z%(¢)), ini-
tializing trajectories at z = 1: P(z,t =0) =d(x —1). In
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FIG. 14: The evolution of the (normalised) variance
(z(t)z(t)), in an 2” plus six Gaussian bumps/dips potential
for (a) T =4, (b) T =3 and (¢) T = 2. The horizontal
dotted line is the equilibrium value.

Fig. [L6] we plot the error associated with a finite trunca-
tion of the spectral expansion, keeping only the first two
(dashed line) or fifty (solid line) terms, at two different
temperatures T = 2 (green, top curve) or T = 10 (blue,
bottom curve). This error is computed by comparing
the truncated expansion to the numerical solution of the
Fokker-Planck equation. At early times, the error asso-
ciated with keeping only two terms is larger than when
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FIG. 15: The dependence of the Schrodinger potential —U
on the temperature Y for the polynomial potential.
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FIG. 16: The error in (2°(t)) for a finite truncation of the
spectral expansion compared to the full F-P equation
initialised at x(0) = 1 for the polynomial potential. The
dashed (solid) lines correspond to keeping the first two (50)

non-zero terms. The bottom (blue) curve corresponds to
T = 10 and the top (green) curve to T = 2.

50 terms are kept, as one would expect, the discrepancy
being more pronounced at lower temperatures. As the
system relaxes, the contribution form the higher order
terms decreases and the errors of the two truncations
converge, until they are essentially indistinguishable at
later times, as expected. This decay of the contribution
from the higher eigenvalues occurs faster for the higher
temperature, making the two-term truncation more ac-
curate earlier. This observation reinforces our inference
from the previous paragraph that as temperature is low-
ered, higher order terms in the spectral expansion become
more important for accurately describing the evolution,
at least for a fixed initial condition. Crucially, this offers
an explanation for why the the LPA + WFR offers poorer
agreement as temperature is lowered since it would be ex-
pected to most accurately describe circumstance where
the lowest order terms in a spectral expansion dominate.

The relation between the spectral expansion and the
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range of validity of the effective action’s derivative expan-
sion is not entirely straightforward however, as it would
also depend on the initial condition. The quantification
of this relation would be an interesting undertaking which
we leave for future work.

VIII. SUMMARY

Collecting results scattered in the existing literature,
we have recalled how Brownian motion can be formally
described by a path integral involving a Euclidean Su-
persymmetric action and how an effective average ac-
tion functional T'[x] of the average position Yy, incor-
porating the effects of the fluctuating force and encod-
ing all statistical properties of the process, can be cal-
culated using functional Renormalisation Group (fRG)
methods. We emphasised the importance of utilising the
underlying symmetries of the problem, paying attention
to the boundary terms which are often dropped, and
showed how these can correctly incorporate any initial
condition and, correspondingly, non-equilibrium evolu-
tion. The fRG flow equations were written down for the
first two orders of the widely used derivative expansion
of the effective action, referred to as the Local Poten-
tial Approximation (LPA) and Wavefunction Renormali-
sation (WFR). We used a particular type of regulator,
the frequency independent Callan-Symanzik regulator,
for which the flow equations take on a relatively simple
form, and further recalled that obtaining flow equations
within the supersymmetric framework is convenient for
ensuring compatibility with the Boltzmann equilibrium
distribution, something that is not a priori obvious or
guaranteed if one starts with the Onsager-Machlup form
of the action and considers it a Euclidean N =1
scalar theory in one dimension with the Schrédinger po-
tential U = Y/4V"” —1/4(V")2. We also reviewed how
Brownian motion can be solved using a spectral expan-
sion method of the Fokker-Planck (F-P) equation in a
standard way.

The Effective Action (EA) T' allows one to derive ef-
fective equations of motion (EEOMs) for the average po-
sition x(t) = (z(t)) and variance (z2(t)) in an analogous
manner to the classical equations of motion, by taking
variational derivatives. We used the LPA and WFR to
compute the elements entering the EEOM, for instance
the dynamical effective potential. We verified the accu-
racy of the equilibrium limit to these equations, further
emphasising the physical significance of certain aspects
of the effective potential Vi—_g: namely how the mini-
mum of Vi_g corresponds to the equilibrium position and
its second derivative evaluated at this point to the vari-
ance through equation . We noted here that while
the LPA reproduces these equilibrium quantities, the ac-
curacy of covariance’s temporal evolution diminished as
temperature was lowered.

Going beyond equilibrium, we
LPA4+WFR handle relaxation towards

examined how
it for the



average position x(t) in potentials such as a polynomial,
a doublewell comprised of two LJ type interactions, or a
bare 22 plus gaussian bumps. The latter potential clearly
demonstrates that the fRG is capable of capturing the
effect of the non-trivial local features of this potential. In
fact, the fRG could still offer reasonable approximations
even in those cases where the Fokker-Planck numerics
failed to converge. We have also shown how the fRG can
closely match the relaxation of the variance (z2(t)) to its
equilibrium value: for both the unequal Lennard-Jones
type potential and the z? plus gaussian bumps, the
LPA variance has reasonable accuracy and still cap-
tures highly non-trivial behaviour such as the variance
overshooting its equilibrium value before settling to
it. This is in a system where numerically solving the
Fokker-Planck equation failed to provide good results,
at least using standard methods. Again, we find that
accuracy decreases with decreasing temperature.

A clear conclusion that can be drawn from the above
investigations is that decreasing the temperature nega-
tively impacts the accuracy of using the LPA + WFR
derivative expansion for the fRG to describe Brownian
motion in the potentials we examined. This appears to
correlate with the increasing importance at lower tem-
peratures of higher order terms in the spectral expan-
sion; indeed, it is expected that the lowest order terms in
the derivative expansion (LPA + WFR) are best placed
to describe evolution dominated by the lowest non-zero
eigenvalues of the Fokker-Planck spectral expansion. It
would seem that the derivative expansion of the fRG for
studying thermal fluctuations has utility in the range
from moderate temperatures (roughly when the classi-
cal force is comparable to the noise), up to the very high
temperature regime where the small local features of the
potential become less relevant.

Although our conclusions on the temperature depen-
dent relation between the spectral expansion and the
derivative expansion of the fRG are suggestive, and rea-
sonable given the premise of the latter, a more precise
quantitative comparison would be called for and should
be addressed in future work. The insights gained from
a more detailed, quantitative understanding of the fRG’s
range of validity when applied to the dynamical studies of
thermally driven systems may lead to interesting and im-
portant applications. There are also issues relevant to the
technicalities of applying the fRG programme and which
may lead to better convergence properties. For example,
the recent findings of [47, 48] suggest that an appropri-
ately optimized regulator, which also excludes the regime
w > k from contributing to the flow, can ensure good con-
vergence properties and a sizeable radius of convergence.
Comparisons with [47], [48] are non-trivial because the su-
persymmetry of the Brownian motion problem makes the
structure of the flow equations different to that of a sim-
ple scalar theory. This is an important question to be
resolved however and we hope to return to it in future
work.

Future work could also examine if higher order approx-
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imations beyond the WFR offer any advantage, as these
might better capture higher order terms in a spectral ex-
pansion. One could further investigate an ensemble of
initial conditions and try to quantify better the compu-
tational time gain the fRG offers. It is worthwhile trying
to see if there is a more concrete way to determine a
priori which systems will be well described by the fRG
before having to compare to numerical simulations or do-
ing a spectral expansion analysis. An interesting appli-
cation that we didn’t touch upon here might be thermal
barrier escape, which in this formulation seems to be
more akin to tunnelling in the corresponding euclidean
quantum mechanics [49-51]; it would indeed be interest-
ing to flesh out any analogies, if they exist. Most im-
portantly, further understanding the application of fRG
techniques to stochastically driven systems may allow ex-
tension to systems with more degrees of freedom, such
as field theories and/or systems with a large number of
particles. Advances in the above directions may lead to
progress in theoretically tackling a broad range of physi-
cal phenomena with large separation between fundamen-
tal timescales of thermal fluctuations and long emergent
timescales of macroscopic change, addressing what is now
a major barrier for predictive simulations across scien-
tific and engineering disciplines including materials sci-
ence [52], drug design [53], protein folding [54], and cos-
mology.

ACKNOWLEDGEMENTS

AW would like to thank George Stagg for his numer-
ical insight on solving the flow equations and .
AW is funded by the EPSRC under Project 2120421. GR
would like to especially thank Nikos Tetradis for very use-
ful discussions at the early stages of this project, Julien
Serreau for providing much insight on fRG computations
and Gabriel Moreau for sharing his PhD thesis, contain-
ing many new results on the application of the fRG to
the Langevin equation. We would also like to thank the
referees of an earlier partial version of this work for very
useful criticisms, comments and suggestions which helped
improve it substantially, and also for bringing to our at-
tention the recent works [47, 48] and for prompting us to
clarify the possible relation to [49H51].

Appendix A: The equilibrium flow equation

In equilibrium, all equal-time expectation values can
be obtained from the generating function

Z(J) — /d{E e—2V(w)/T+Jac (Al)

in a manner directly analogous to that described in the
text but with functional derivatives replaced by ordinary



derivatives w.r.t. J. In a spirit identical to the renormal-
isation group but in the much simpler setting of one just
degree of freedom, we can define a modified generating
functional [44]

Zk(J) _ /dx e—2V(x)/T—%R(k)m2+Jw (A2)
with an additional quadratic term controlled by an

arbitrary function R(k) of a parameter k, satisfying
;irr%) R(k) = 0, giving back the original Z(J). Correla-
—

tion functions are generated by Wy (J) = In Zx(J) via

_ OWi(J) PWi(J)
Xk = (T)r = a7 <$2>k—Xi:T

e.t.c. In the limit £ = 0 and after setting J = 0 the usual
predictions of the equilibrium Boltzmann distribution are
recovered.

The source J has been considered as an external, inde-
pendent variable controlling expectation values such as
x and higher correlators. One could also consider x as
the independent variable, solving x = 0W/9J for J(x)
and defining the effective potential U(x) via a Legendre
transform

(A3)

To(x) + Wie(J) = Jx — %R(k)XQ (A4)
with
L(x) =2U0(x)/Y (A5)
Note that
%’“ — Ju — R(k)x (A6)

implying that the minimum of the effective potential de-
fines the equilibrium expectation value of = (at J = 0
and k = 0).

The dependence of the generating function Wy (J) on
k can be easily obtained as

PWi(J) [ OWr(J)\°
EXE +( 57 )

1
OWi(J) = =50 (AT)

which is an “RG equation” for Wy (J). We can also obtain
an equation determining how 'y (x) runs with k. Recip-
rocally, taking x as the independent variable, J becomes
a function of x and k. Taking a k derivative of at
fixed x we obtain

1 9*W,
HTh(X) = SR s

27 g (48)

To express the rhs in terms of I'y(x), consider the first
relation of (A3). Taking a x derivative we find

92T, 92W,
<8X2 +R> o7z

(A9)
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Hence, the “RG flow” of I' is determined by

1 8T -
Note also that, at £k — 0
T
) == ———— All
< > X 2 8>2<U(Xeq) ( )

and hence the variance at equilibrium is determined by
the curvature of the effective potential around its mini-
mum.

All the above manipulations can be generalized to
many or even infinite degrees of freedom and continuum
actions, leading to the Wetterich equation , which is
directly equivalent to , and the relations of section
(IV AJ). For this work it is important to note that the
equilibrium effective potential U(x) discussed here obeys
the LPA flow equation ezactly if we choose R(k) = k.

Appendix B: Derivation of the two point function

We start from equation (113)) repeated here for clarity:

L )| G(t,t') = —ié(t—t’) (B1)
dt? P

Where Q(t) = U(x(t)) is given by (114) and P(t) = 1
or Ci(x(t)) for LPA and WFR respectively. If we now
consider the homogeneous version of (B1)):

O Q) =0 (B2)

it will have a growing and a decaying solution since
Q(t) > 0, and its Wronskian W will simply be a con-
stant:

W(t) = Yi(t)Ya(t) — Y1(t)Ya(t) = constant (B3)

We take Y7 (t) to be the growing solution and Y3(t) to be

the decaying solution. Substituting the ansatz G(t,t') =

Y1(t)F(t,t') where F is some function to be determined

into we obtain:
. 1

F(t,t') = Y20 -7

Yi(t') / /
B =)+ Gt
(B4)

where 0(t — ') is the Heaviside step function and C(t)
is a ‘constant-of-integration’ function of ¢’ to be deter-
mined. If we now integrate we obtain the following
expression for G(¢,t'):

Yi(t) YLt

G(t,t) = _TP(t’) {e(t —t) Y2 (0) du + Ca(t")
+ (YA () Y?(uu) (B5)



where Cy(t') is another ‘constant-of-integration’ function
of t' to be determined. To compute the integrals in (B5|)
we note that by the definition of the Wronskian:

no | ;"% du= i)+ Ya(t)  (B6)

where p is simply a constant of integration. As the Wron-
skian is constant here we can simply write:

tdu 1
N0 [ gt = 5 0+ n0] ()
such that becomes:

G(t,1) = W;t,){clu')n(t) WANA0

+0(t - ) M (OYa(t) - Va()Va ()] |
(B8)
where Cy and Cs have been rescaled to Cy and Cs in order
to absorb some irrelevant constant factors. We note that

the functions C; can only be linear combinations of Y;
and Ys:

Ci(t) =a Y1i(t) + B Ya(t) (B9)
Co(t) =y Yi(t) + 6 Ya(t) (B10)
where the constants «, 8, v and § will be determined

laterﬂ Combining all this together we obtain the most
general solution:

Glt.t) =y pe{ la = 8~ Vi) Ta(t)

AVl )Yalt) +7 Yi(E V(1)
B0 =] Y)Y (0)}
(B11)

To obtain the values of the constants we must now impose
physical conditions:

1. G(t,t) should remain finite as ¢ — oo i.e. an equi-
librium distribution exists at late times
=7=0

2. Covariance G(t,0) should remain finite as ¢t — oo
=0=-1

3. The equilibrium form of G(t,t’) should be symmet-
ric under ¢ <> ¢
=a=0

4. Setting the initial condition to be G(0,0) = Gy
L BT __P() T

W = B0 |C0 T OR0)5EG

7 N.B. the § here should not to be confused with the dirac delta
function
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These give us the two point function:

Glt.t) = gpry [P0 = 1ITA(E)Talt) + 60— Ta()Ti )]
+ e G0~ a0 @12

)
where Y;(t) = Y;(t)/Y;(0) and we have normalized the
Wronskian as

W = —2AY7(0)Y>(0) (B13)
which is the value at equilibrium when Q(t) — A2,
Equation (B12)) has two important limits:
The Variance t' — t:
T . .
Var(z) = G(t,t) = NP Yi(t)Ya(t)
P(0) 9
S v
P %0~ 3y H O
(B14)
and the Covariance t' — 0, t > 0:
Cov(z(0)z(t)) = G(t,0) = GooYa(t) (B15)

Equations (B14]) & (B15|) are the main results of this
appendix.

Appendix C: Explicit computation of the
determinant

In this appendix we recall the computations of [55]
explicitly showing that

det M = /DCDE exp {/ dt e (0 + Vaa) c}

1
X exp [2 /dt Vm} (C1)
when the boundary conditions
(tm) =0, clte) =0 (C2)
are chosen. We first work with the more general condition
c(tin) = e "e(ty), e ™e(t) = c(tr) (C3)

From here onwards we will be working in the time interval
t € [0, T to simplify notation. Note that such a boundary
condition ensures that

T

d
/dta (¢c)=0 (C4)

0

allowing us to write

det M = / DcDe exp

DO =
o\
o,
~
—
Ry
(o]
—
/
o
|
S|
3
N———
—
[e1ke}
S~—



where

F=08+Vas, F'=-0,+Vu (C6)
Therefore the operator in the exponent of (C5)) is self-
adjoint and the path integral is properly defined. The

eigenfunctions and eigenvalues of F' and F'f

Fu, = antn, Flo, =anu, (Cn
are
@ty 1 [
1(2mn +v
0
n=0,+1,42,... and
. t
Up(t) = — ex dr (oy, — V pa C9
(1) = = / (On=Var)p (CO)
. t
vp(t) = —=ex — | dr (g, — V ga C10
(1) = Zmex / (an—Va) p (C10)
They form an orthonormal and complete set
T
/dt U, (£) 0, () = O (C11)
0
> un(on(t') =t —t') (C12)
n=—oo
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Expanding ¢ in u, and ¢ in v, with (Grassmann) co-

efficients b,, and b, respectively, we can represent the
determinant as

det M = / H dbndénexp{ Z aanbn}

= [ on (C13)
n=-—oo
Using (C8)) we have
T
e { 11 (5} il
" T T
n=-—oo n=-—oo
2
T
- (w—l—fdt Vm>
0
<[] |1+ ywm (C14)
n=1

which gives

= 2 11 (33*9)
I o

T

sinh 1 iu—l—/dt Ve
n=—oo 2 0

(C15)
With the infinite constant absorbed in the definition of
the path integral measure, the choice v — —ico gives the
required result Note that other, perhaps more obvi-
ous choices, e.g. periodic (v = 0) or anti-periodic (v = )
boundary conditions do not reproduce the determinant
which corresponds to the causal stochastic problem.
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