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Recent FDA guidance on adaptive clinical trial designs defines bias as “a system-
atic tendency for the estimate of treatment effect to deviate from its true value,”
and states that it is desirable to obtain and report estimates of treatment effects
that reduce or remove this bias. The conventional end-of-trial point estimates of
the treatment effects are prone to bias in many adaptive designs, because they do
not take into account the potential and realized trial adaptations. While much
of the methodological developments on adaptive designs have tended to focus
on control of type I error rates and power considerations, in contrast the ques-
tion of biased estimation has received relatively less attention. This article is the
first in a two-part series that studies the issue of potential bias in point estima-
tion for adaptive trials. Part I provides a comprehensive review of the methods
to remove or reduce the potential bias in point estimation of treatment effects
for adaptive designs, while part II illustrates how to implement these in practice
and proposes a set of guidelines for trial statisticians. The methods reviewed in
this article can be broadly classified into unbiased and bias-reduced estimation,
and we also provide a classification of estimators by the type of adaptive design.
We compare the proposed methods, highlight available software and code, and
discuss potential methodological gaps in the literature.

K E Y W O R D S

adaptive design, bias-correction, conditional bias, flexible design, point estimation

1 INTRODUCTION

Adaptive clinical trials allow for preplanned opportunities to alter the course of the trial on the basis of accruing infor-
mation.1–3 This may include changes such as increasing the recruitment target (in sample size re-estimation designs),
selecting the most promising treatment arms (in multi-arm multi-stage designs) or patient subpopulations (in popu-
lation enrichment designs), shifting the randomization ratio toward more promising arms (in adaptive randomization
designs), or terminating recruitment early for clear evidence of benefit or lack thereof (in group sequential designs).4
Despite some additional complexities when implementing such trials,5 they are increasingly being used in practice due
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to their attractive features, adding flexibility to a trial design while maintaining scientific rigour.6–8 The challenges of the
COVID-19 pandemic have also recently accelerated their use.9,10

To date most of the research undertaken has focused on the design of such studies and the associated question of
maintaining desirable operating characteristics related to hypothesis testing (namely, type I error and power) rather than
estimation. General methods on the basis of P-value combination11,12 and conditional error functions13,14 have been pro-
posed that are applicable to a wide range of adaptive designs as well as specialized methods for specific designs such as
multi-arm multi-stage (MAMS) designs,15,16 adaptive enrichment designs,17,18 response-adaptive randomization (RAR)
designs,19,20 and sample size re-estimation21,22 (see Section 1.1 for definitions of the different adaptive designs considered
in this article).

In contrast, the question of estimation of treatment effects in an adaptive clinical trial has received comparatively
less attention, as reflected in the recent FDA guidance on adaptive designs23 which states “Biased estimation in adaptive
design is currently a less well-studied phenomenon than Type I error probability inflation.” This article is the first in
a two-part series that studies the issue of potential bias in point estimation for adaptive designs. In the current article
(part I), we review methods for unbiased and bias-reduced estimation of treatment effects after an adaptive clinical trial
and critically discuss different approaches. In part II, we consider point estimation for adaptive designs from a practical
perspective, including a set of guidelines for best practice.24

While equally important, the construction of related quantities for inference, such as confidence intervals or regions,
is beyond the scope of this series so we signpost the interested reader to related literature.25,26 Moreover, our focus is on
bias in the statistical sense, and we do not consider issues such as operational bias in adaptive designs2,3,27 or the impact
of publication bias28; see also recent reference articles29,30 for discussion of other types of biases in randomized controlled
trials.

The structure of this article is as follows. After defining different types of adaptive designs in Section 1.1, we
introduce key concepts and the different definitions of bias in Section 2. We describe the search strategy used for a
systematic review of the methodological literature in Section 3. We present a summary of the results of the review
grouped by the type of adaptive design in Section 4. Sections 5 and 6 then provide detailed descriptions and explana-
tions of the different types of point estimators, divided into methods for unbiased estimation (which aims to completely
remove bias) in Section 5 and bias-reduced estimation (which aims to reduce the magnitude of the bias, but not
necessarily to eliminate it) in Section 6. In the Supplementary Information, we provide an annotated bibliography
giving further details of all the papers included in the systematic review. The overall conclusions are discussed in
Section 7.

1.1 Glossary of adaptive designs

Table 1 gives definitions of the different types of adaptive designs considered in this article, including the different ter-
minologies used for them. These definitions are based on those provided by Pallmann et al1 and Burnett et al,4 who note
that there can be ambiguous terminology used in the literature. Adaptive designs can combine multiple adaptive features
within a single trial, see Dimairo et al2 for examples.

2 ESTIMATION BIAS IN ADAPTIVE DESIGNS

The issue with estimation after an adaptive trial is that traditional maximum likelihood (ML) estimators tend to be biased
either because of some selection that took place following an interim analysis (see Bauer et al31 for a detailed explanation
of why selection results in bias) or other mechanisms utilized in an adaptive design, such as early stopping, which might
affect the sampling distribution of the estimator (these depend on the nature of the design). For this reason, the usual ML
estimator (MLE) is sometimes referred to as the “naive” estimator for the trial.

Before considering the issue of estimation further it is worth clarifying what we mean by a biased estimator. The FDA
guidance on adaptive designs23 defines bias as “a systematic tendency for the estimate of treatment effect to deviate from
its true value,” and states that “It is important that clinical trials produce sufficiently reliable treatment effect estimates
to facilitate an evaluation of benefit-risk and to appropriately label new drugs, enabling the practice of evidence-based
medicine.” It is clear that (all else being equal) it is desirable to obtain estimators of treatment effects that are unbiased
in order to make reliable conclusions about the effects of study treatments.
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T A B L E 1 Definitions of the different types of adaptive designs considered in this article

Design a.k.a. Definition

Group sequential Multi-stage design Allows for early stopping of the trial for safety, futility, or efficacy

Group sequential designs can either be two-arm or single-arm trials,
with Simon’s two-stage design being a common example of the
latter. For the generalization to multiple treatment arms, see
“Multi-arm multi-stage designs”

When combined with the option of sample size re-estimation and/or
adjustment of the stopping boundaries during the trial, these
designs are sometimes referred to as “adaptive group sequential”

Sample size
re-estimation

Sample size reassessment/
recalculation/adaptations

Adjustment of the sample size, in either a blinded or unblinded
fashion. This is typically done to help ensure the trial achieves the
desired power

Sample size re-estimation is sometimes combined with other trial
adaptations, such as group sequential testing

Multi-arm multi-stage
(MAMS)

Pick-the-winner/drop-
the-loser/treatment
selection

Compares multiple treatments, doses, durations or combinations to a
common control, allowing for early stopping of treatment arms for
efficacy or futility. In addition, this can include interim treatment
selection of the most promising treatment(s) for further
investigation in the subsequent stages

Variations of MAMS designs include “drop-the-loser” trials, where
inferior treatment arms are dropped from the trial (with the control
group typically retained). “Seamless” trials (such as phase II/III
trials) are also closely related, where the selection and confirmatory
phases of development are combined into one trial. “Platform”
trials can also be viewed as an extension of MAMS designs, by
allowing new treatment arms to be added to the trial over time

Response-adaptive
randomization
(RAR)

Outcome-adaptive
randomization

Shifts allocation ratios toward more promising or informative
treatment(s) based on the accumulating patient response data. RAR
is sometimes combined with options for early stopping (eg, for
futility or efficacy)

Adaptive enrichment Population
enrichment/patient
enrichment/adaptive
population enrichment

Allows for selection of a target population during the trial, typically
using predefined patient subpopulations based on biomarker
information. For example, one class of adaptive enrichment designs
allows the eligibility criteria to be adaptively updated during the
trial based on the estimated treatment-biomarker interactions,
restricting entry in the subsequent trial stage(s) to patients most
likely to benefit from the new treatment

While it is relatively easy to define statistical bias, different definitions of an unbiased estimator are relevant in our
context. To introduce these, let us denote the population parameter of interest, the treatment effect, by 𝜃 and an estimator
thereof by 𝜃.

2.1 Mean-unbiased estimators

An estimator 𝜃 is called mean-unbiased if its expected value is the same as the true value of the parameter of interest, that
is, E(𝜃) = 𝜃. This is the most commonly used definition of unbiasedness.

2.2 Median-unbiased estimators

An estimator 𝜃 is called median-unbiased if P(𝜃 < 𝜃) = P(𝜃 > 𝜃), that is if the probability of overestimation is the same as
the probability of underestimation. Note that for symmetric sampling distributions of 𝜃, a median-unbiased estimator is
also mean-unbiased.
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2.3 Conditionally and unconditionally unbiased estimators

A further distinction of unbiasedness in estimators refers to whether they are conditionally or unconditionally unbiased.
In our context, an estimator is unconditionally unbiased (also known as marginally unbiased), if it is unbiased when
averaged across all possible realizations of an adaptive trial. In contrast, an estimator is conditionally unbiased if it is
unbiased only conditional on the occurrence of a subset of trial realizations. For example, one might be interested in an
estimator only conditional on a particular arm being selected at an interim analysis; as such, the focus becomes on a
conditional unbiased estimator. We discuss the issue of conditional vs unconditional bias further throughout the rest of
this article.

2.4 Bias and mean squared error

When considering estimation after an adaptive trial one is often faced with the following conundrum: precise estimators
can potentially be biased while unbiased estimators tend to be less precise, which reflects the classical bias-variance
trade-off. This means that in many instances the mean squared error (MSE), a measure of precision defined as E((𝜃 − 𝜃)2),
of a biased estimator is often smaller than the MSE of an unbiased estimator. This makes it challenging to find the “best”
estimator that fits a particular trial design.

2.5 The focus of our review

Since bias as defined above is an expectation (or probability) taken over possible realizations of data, it is inherently
a frequentist concept. However, we can still evaluate the frequentist bias of a Bayesian point estimator, such as the
posterior mean. Similarly, it is possible to use frequentist point estimators in the analysis of Bayesian trial designs (ie,
where the adaptations and decision rules are driven by Bayesian analyses). Hence we consider both Bayesian point
estimators and Bayesian adaptive designs in this article. However, we restrict our attention to phase II and III trial
designs, since phase III trial results have a direct impact on health policy and the adoption of new treatments for
wider public use, while phase II trial results directly influence whether further research of a treatment in phase III
is required.

3 METHODOLOGICAL REVIEW: SEARCH STRATEGY AND PAPER
SELECTION

We conducted a database search of Scopus on July 13, 2022 of all available papers up to that date. We used a “title, abstract,
keywords” search, with the predefined search terms for different categories of estimator given in Table 2.

T A B L E 2 Search strategy used for the initial database search of Scopus

Category of estimator Search terms

Unbiased ((((unbiased OR ((conditionally OR mean OR median OR “uniformly minimum variance” OR
“uniformly minimum variance conditionally”) AND unbiased)) AND estim*) OR “median
adjusted” OR umvcue OR umvue) AND (“adaptive design” OR “adaptive trial” OR “adaptive
clinical trial” OR “group-sequential”))

Bias-reduced (((“bias-reduced” OR “bias-adjusted” OR “conditional moment” OR “empirical Bayes” OR
shrinkage) AND estimat*) OR ((corrected OR adjusted OR conditional) AND (mle OR “maximum
likelihood”))) AND (“adaptive design” OR “adaptive trial” OR “adaptive clinical trial” OR
“group-sequential”)

Resampling-based methods (((bootstrap OR nonparametric OR non-parametric OR resampling OR “distribution free” OR
distribution-free OR jackknife OR “Monte Carlo”) AND estim*) AND (“adaptive design” OR
“adaptive trial” OR “adaptive clinical trial” OR “group-sequential”))
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F I G U R E 1 Diagram showing the flow of information through the different phases of the systematic review. The Bayesian and
empirical Bayes methods are included in the “bias-reduced” category

We excluded papers not involving adaptive clinical trial designs, as well as those that did not propose or evaluate unbi-
ased or bias-reduced estimators. Two authors (DSR and PP) separately reviewed the papers, extracted data and checked
each other’s work for accuracy.

Our search strategy retrieved a total of 257 papers, of which 148 were excluded immediately as they were not relevant
based on the title and abstract. We then looked for additional relevant papers citing or cited by these remaining 109, which
added 59 papers. After completing a full text review of these papers, a total of 145 were deemed relevant, and information
about the trial contexts, advantages, limitations, code availability and case studies was extracted for qualitative synthesis
(Figure 1). Full results giving a summary of each paper extracted for qualitative analysis are found in the supporting
materials.

4 COMPARISONS OF ESTIMATORS, TRIAL EXAMPLES AND SOFTWARE

In this section, we summarize the results of our systematic review in Table 3 by classifying them according to the broad
class of adaptive design used. For each design class, we give references to the relevant literature for the different types
of estimators that have been proposed. Where the literature focuses on designs that allow for multiple adaptive features
within a single trial, we have used our judgment to place them into a class of adaptive designs, and refer the reader to
Sections 5 and 6 for further clarifying details. In Table 3, we also give a summary of general pros and cons of the different
estimators and the comparisons between them as given in the literature. Finally, we point out examples of the use of
different estimators on trial data, as well as where software/code is available. Note that this list of software/code is by no
means exhaustive, but only includes those that were specifically mentioned in the reviewed methodological literature or
those of which the authors were already aware.

The systematic review identified mean-unbiased estimators, median unbiased estimators, resampling-based estima-
tors and bias-reduced estimators. The bias-reduced estimators include those that estimate bias and subtract it from the
MLE and those that use shrinkage methods. Detailed descriptions and explanations of the different types of point estima-
tors referenced in Table 3 are given in the following two sections, with Section 5 focusing on unbiased estimation (both
mean-unbiased and median-unbiased) and Section 6 focusing on bias-reduced estimation (including Bayesian approaches
and resampling-based methods).

Looking at the results as a whole, we can see that the literature on unbiased and bias-adjusted estimation for adap-
tive designs has grown rapidly in recent years, reflecting the increased use of adaptive designs in practice. However, only
a few of these methodological papers present real-life trial examples (such as reanalyzes of trials that have already been
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completed), and even fewer provide software/code. In terms of the different classes of adaptive designs, group sequential
designs have received the most attention by far, and some of the estimation methods are implemented in widely avail-
able statistical software such as R or SAS. This reflects the relatively long history of group sequential designs and their
more widespread use in practice. In contrast, we found very little literature on estimation for trials using RAR. With the
increasing use of such trials (see, eg, the ISPY-2138 and BATTLE139 trials), this may be an important gap in the literature
to fill.

Another potential gap is that some of the methods are restricted to two-stage designs (especially for adaptive
enrichment trials), and so a natural extension would be to develop these methods for multi-stage trials. As well,
most of the methodology has focused on binary and normally distributed outcomes, with comparatively few pro-
posals tailored for trials with time to event outcomes. It is also unclear to what extent existing methodology can
apply to longitudinal outcomes (which may be particularly common for interim analyses) or to cluster randomized
trials.

In terms of different types of estimators, generally speaking there is a bias-variance tradeoff (see the start of Section 6)
unbiased estimators may pay the “price” for complete unbiasedness by having a high variance. Conversely, bias-reduced
estimators may have a lower variance than unbiased estimators, but may “overcorrect” and thereby introduce bias
in the opposite direction. Another general observation is that mean-unbiased estimators in the literature require pre-
specified boundaries and decision rules, and so are not applicable to flexible adaptive designs with arbitrary changes.
Finally, resampling-based methods have received comparatively little attention as opposed to other types of bias-reduced
estimation. For example, as far as we could tell, there has not been work looking explicitly at their use for sample
size re-estimation designs. Given that resampling-based methods can be applied even to complex trial designs (see,
eg, Whitehead et al115), their use could potentially provide one solution to the problem of estimation for trials which
combine different types of adaptations together and hence will not fit neatly into the classes of adaptive designs used
above.

5 UNBIASED ESTIMATION

5.1 Mean-unbiased estimation

In order to achieve exact mean-unbiasedness, typically it is necessary to find an estimator whose distribution is indepen-
dent of the trial adaptations. One key setting where this is possible is in classical group sequential trials. Given that there is
a prespecified number of observations at the time of the first interim analysis, then the sample mean (which corresponds
to the MLE) at the end of the first stage is (unconditionally) unbiased as no adaptations to the trial have occurred. How-
ever, this estimator is also clearly inefficient for estimating the overall treatment effect, as it does not use any information
that may arise from later stages of the trial.

Another setting where unbiased estimation is possible is multi-stage trials with ranking and selection from a subset
of candidates, such as candidate treatments or patient subgroups. The sample mean (MLE) for the selected candidate(s)
calculated using only the final stage data will be conditionally unbiased, conditional on the ranking and selection that
has taken place in the previous stages. However, again this estimator is clearly inefficient as it ignores all the information
about the selected candidate(s) from the previous stages of the trial. Moreover, unlike the first stage estimator described
in the previous paragraph, it cannot be used to estimate the effect of a treatment or subpopulation that was dropped at an
interim analysis.

5.1.1 Minimum variance unbiased estimation

One way to obtain a more efficient estimator that uses more of the information from the trial, while still maintaining
exact mean-unbiasedness, is to apply the Rao-Blackwell theorem. This theorem implies that if U is an unbiased estima-
tor of the unknown parameter of interest 𝜃, and T is a sufficient statistic, then the estimator Û = E(U|T) is unbiased
and var(Û)≤ var(U). In certain cases, this “Rao-Blackwellization” technique allows the derivation of the unbiased esti-
mator that has the smallest possible variance, which is known as the uniformly minimum variance unbiased estimator
(UMVUE). The Lehmann-Scheffé theorem140 states that if  is a sufficient and complete statistic, and U is an unbiased
estimator, then the Rao-Blackwellized estimator Û = E(U| ) is the unique UMVUE.
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The derivation of UMVUEs (from an unconditional perspective) has been a focus in the literature on group sequential
trials, with work by Chang et al32 and Jung and Kim37 for binary response data (see also Porcher and Desseaux40 and Zhao
et al41 for Simon’s two-stage designs), and Kim,33 Emerson and Fleming,34 and Emerson and Kittelson35 for normally
distributed endpoints. Liu and Hall36 proved that the sufficient statistic for the latter setting is in fact not complete, but that
the Rao-Blackwellized estimator is still UMVUE among all “truncation-adaptable” unbiased estimators—that is, where
inference following stopping early does not require knowledge of the future analyses. For simplicity, in what follows
we do not make this technical distinction when describing UMVUEs. Similar, more general theoretical results can be
found in Liu et al38 for group sequential tests for distributions in a one-parameter exponential family and Liu et al39 for
multivariate normal group sequential tests. See also Liu et al141 and Liu and Pledger142 for further theoretical results for
general two-stage adaptive designs.

Methodology has also been developed to calculate the UMVUE for secondary parameters or endpoints in group
sequential trials. Liu and Hall43 derived the UMVUE in the context of correlated Brownian motions, while Gorfine42

considered normally distributed endpoints where the secondary parameter is the mean in a subgroup of subjects. Sim-
ilarly, Liu et al44 derived the UMVUE for a secondary probability, such as the rate of toxicity, in group sequential trials
with binary endpoints. Kunz and Kieser45 also derived UMVUEs for secondary endpoints in two-stage trials with binary
endpoints. Further settings include estimating the sensitivity and specificity of a diagnostic test using a group sequential
design, where UMVUEs have been derived by Shu et al46 and Pepe et al.47

Moving away from classical group sequential designs, Liu et al86 derived the UMVUE for a two-stage adaptive
design (with sample size adjustment based on conditional power). Kunzmann and Kieser87 derived the UMVUE gen-
eral two-stage adaptive designs with binary endpoints, where the second stage sample size is determined by a function
of the response rate observed in stage one. Meanwhile, Liu et al85 proposed Rao-Blackwellized unbiased estimators for
both primary and secondary endpoints in the context of a two-stage adaptive trial with sample size re-estimation. Bow-
den and Trippa128 showed how to calculate a Rao-Blackwellized unbiased estimator for trials using RAR with binary
endpoints.

In some trial contexts, it may be more appropriate to find unbiased estimators conditional on the adaptations that
have taken place. For example, in multi-stage trials with treatment selection, typically there would be greater interest in
estimating the properties of the better-performing treatments that are selected at the end of the trial, rather than those
treatments that are dropped for futility. In addition, it may not be possible to find a complete statistic for the parameter of
interest without additionally conditioning on the selection rule used (see, eg, Cohen and Sackrowitz103). For both these
reasons, in settings such as multi-stage trials with ranking and selection, there has been a focus on deriving uniformly
minimum variance conditionally unbiased estimators (UMVCUEs, also known as CUMVUEs), where the conditioning
is on the triggered adaptations.

One of the first papers to take this conditional perspective and calculate the UMVCUE was Cohen and Sackrowitz,103

in the context of a two-stage drop-the-loser trial with treatment selection and normally distributed endpoints (see Tap-
pin104 for the setting with binary endpoints), where only the best-performing treatment is taken forward to the final
stage. This was subsequently extended by Bowden and Glimm105 to allow the calculation of the UMVCUE for treat-
ments that were not the best-performing, Bowden and Glimm106 for multi-stage drop-the-loser trials (this was only a
Rao-Blackwellized estimator) and Robertson and Glimm110 for unknown variances. Meanwhile, Koopmeiners et al107

derived the UMVCUE for a two-stage trial evaluating continuous biomarkers. A similar line of work focused on deriv-
ing UMVCUEs for binary data, with Pepe et al47 looking at two-stage designs testing the sensitivity of a dichotomous
biomarker (this UMVCUE can also be applied for Simon’s two stage designs, see Porcher and Desseaux,40 which was
extended by Robertson et al108).

For seamless phase II/III trials with a normally distributed endpoint, Kimani et al112 showed how to calcu-
late a Rao-Blackwellized conditionally unbiased estimator, which was subsequently extended by Robertson et al.109

More recently, Stallard and Kimani111 derived the UMVCUE for MAMS trials (again with normally distributed end-
points) with treatment selection and early stopping for futility, conditional on any prespecified selection or stopping
rule.

A recent setting where UMVCUEs have been derived is two-stage adaptive enrichment designs, where biomark-
ers are used to select a patient population to investigate in the second stage. Kimani et al132 and Kunzmann
et al135 derived the UMVCUE for such designs with normally distributed endpoints, which was extended by
Kimani et al133 to allow the biomarker cut-off to be determined by the first stage data, and Kimani et al134

and Di Stefano et al136 for time-to-event endpoints. Finally, in the context of two-stage adaptive designs where
the second-stage sample size depends on the result of the first stage through a prespecified function, Kunzmann
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and Kieser87 and Broberg and Miller88 considered UMVCUEs for normally distributed and binary endpoints,
respectively.

5.2 Median-unbiased estimation

While exact mean-unbiasedness is a common criterion to aim for, it is not always feasible or desirable to use
mean-unbiased estimators. The main potential disadvantage is an increase in the MSE when compared with the usual
MLE, due to the bias-variance trade-off. As well, the calculation of Rao-Blackwellized estimators may become difficult or
infeasible for more flexible trial designs, where adaptations are not fully prespecified in advance. For both these reasons,
median-unbiased estimators (MUEs) have been proposed, which can have a lower MSE than mean-unbiased estimators
in some settings, and can be derived for a wider class of adaptive trial designs.

Consider testing a hypothesis about some parameter of interest θ. One common approach to calculating MUEs is as
follows:

1. Define an ordering of the trial design space with respect to evidence against H0. For example, in group sequential trials
the predominant option is stage-wise ordering: this depends on the boundary crossed, the stage at which stopping
occurs and the value of the standardized test statistic (in decreasing order of priority).

2. Using this ordering, define a P-value function P(𝜃) which gives the probability that, at the stage the trial stopped, more
extreme evidence against H0 could have been observed.

3. At the point the trial stops, find the MUE 𝜃MU, which satisfies P(𝜃MU) = 0.5.

The last step is essentially finding a 50% confidence bound for θ, or equivalently the midpoint of a symmet-
ric 100(1− 𝛼)% confidence interval (constructed using the P-value function, which takes into account the previous
adaptations or stopping rules).

A number of papers have derived MUEs for group sequential trials, including Kim,33,48 Emerson and Fleming,34

Todd49 and Troendle and Yu.50 Hall and Liu51 provided MUEs that account for overrunning, while Hall and Yakir55

derived MUEs for secondary parameters. Note also early work by Woodroofe143 showed how to calculate a MUE but in
the context of sequential probability ratio tests. Meanwhile, MUEs for Simon’s two-stage design were derived by Koyama
and Chen.52

For adaptive group sequential trials Wassmer56 and Nelson et al62 showed how to calculate MUEs for normally
distributed endpoints, while Brannath et al57 derived a MUE for survival endpoints. These results were subsequently
extended by Gao et al,59 who presented general theory for point and interval estimation (see also Mehta et al61). Gao
et al58 also derived a MUE for an adaptive group sequential design that tests for noninferiority followed by testing for
superiority.

Moving away from group sequential trials, Wang et al90 and Liu et al86 focused on two-stage adaptive designs with
sample size adjustments based on conditional power considerations, and showed how to calculate MUEs in these settings.
Lawrence and Hung89 proposed a MUE for the setting where the maximum information of a trial is adjusted on the basis
of unblinded data (see also Liu et al85 for an improved version of this estimator). More generally, MUEs for two-stage trials
with an adaptive sample size based on a prespecified function of the interim results are given by Kunzmann and Kieser87

and Nhacolo and Brannath.91 Meanwhile, Li et al144 derived MUEs in the context of “2-in-1” adaptive designs, which
allow for a seamless expansion of a phase II trial into a phase III trial or an expansion of biomarker positive populations,
where the endpoints for the interim and final analyses can be different.

Like for mean-unbiased estimation, the conditional perspective has also been used for median-unbiased estimation.
The previously mentioned work by Hall and Yakir55 for group sequential trials is an early example of this conditional
perspective, while the approach of Koopmeiners et al107 can also be used to calculate a conditional MUE for two-stage
group sequential designs. In the specific context of two-stage group sequential designs with survival endpoints, Shimura
et al54 showed how to calculate conditional MUEs, for the cases where the study stops or does not stop early for either
efficacy or futility. Meanwhile, Broberg and Miller88 considered the general setting of a two-stage sample size adjustable
design based on interim data, and derived the MUE conditional on continuing to the second stage.

MUEs can be derived for flexible adaptive designs, which allow arbitrary changes to the trial at each stage based on the
interim results and/or external information. Bauer et al92 first described the construction of MUEs for two-stage designs
based on combination tests and conditional error functions; see also Liu and Chi,93 Proschan et al,95 and Brannath et al.96
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Finally, Brannath et al94 gave a general method to calculate MUEs when using recursive combination tests for flexible
multi-stage adaptive trials.

6 BIAS-REDUCED ESTIMATION

While using an unbiased estimator whenever there is one available for a particular adaptive design may seem like a
straightforward choice, this may not always be the best option, due to the inherent bias-variance tradeoff: reducing the bias
of an estimator can come at the cost of increasing its variance (thus decreasing its precision) substantially. For example,
estimation procedures that involve conditioning on a statistic that is informative about the parameter of interest (eg,
the stopping time) address the bias, but discard the information that is contained in that statistic and hence lead to a
loss of efficiency. The bias-variance tradeoff can lead to unbiased treatment effect estimates being accompanied by large
standard errors and wide confidence intervals, which may be of little use practically. Therefore, reducing the bias but not
completely eliminating it sometimes proves to be a better solution than aiming for complete unbiasedness.

6.1 Analytical and iterative procedures

Cox recognized as early as 1952145 that in sequential test procedures the option to stop early introduces bias to the MLE.
They proposed a modified MLE which can be used for repeated significance tests146 but not more general group sequential
tests. Whitehead70 focused on the sequential probability ratio test147 and the triangular test,148 and derived an analytic
expression to quantify the bias and proposed a bias-adjusted estimator 𝜃 obtainable by subtracting the bias from the MLE:

𝜃 = 𝜃 − bias(𝜃).

Evaluating the bias at 𝜃 leads to an iterative procedure, and this method can be used for various types of endpoints includ-
ing continuous, binary, and time-to-event. Guo and Liu75 argued that a simpler single-iteration version could be used,
where the estimated bias of the MLE is subtracted rather than the bias at the unknown 𝜃:

𝜃s = 𝜃 − bias(𝜃).

They suggested that this approach could be extended from single-arm phase II trials to more general estimation problems
involving designs with early stopping. Note that these proposals aim to reduce the unconditional bias of the MLE, see
below for the conditional perspective.

Chang et al32 and applied Whitehead’s idea to group sequential designs with binary response data, while Tan and
Xiong71 proposed using the bias-adjusted MLE to estimate response rates in trials using fully sequential and group sequen-
tial conditional probability ratio tests. Li and DeMets72 derived an exact analytical expression for the bias of the MLE
for a group sequentially monitored Brownian motion process with a linear drift, and used it to construct a bias-adjusted
estimator based on the arguments of Whitehead.70 Todd49 studied the bias-adjusted MLE further in simulations of group
sequential designs with a normally distributed endpoint using the O’Brien-Fleming or triangular test. Denne97 postulated
that the same bias-adjusted MLE could also be used to estimate the treatment effect following a two-stage sample size
re-estimation design on the basis of conditional power, which was subsequently investigated by Liu et al85 (who also con-
sidered a bias-adjusted MLE for secondary endpoints). Levin et al60 found that the bias-adjusted MLE could be applied
to a wider class of adaptive group sequential designs with predefined rules.

Whitehead79 extended the idea of the bias-adjusted MLE to the estimation of secondary endpoints in sequential trials
using two different approaches: conditional on the primary endpoint (in which case the MLE is unbiased) and uncon-
ditional. Liu et al44 further extended Whitehead’s approach to estimate secondary probabilities after termination of a
sequential phase II trial with response rate as the primary endpoint. The bias-adjusted MLE has also been proposed for a
group sequential strategy to monitor toxicity incidents in clinical trials by Yu et al,80 for which they noted the bias of the
usual MLE was “considerably large.” Meanwhile, Flight81 showed how to use the bias-adjusted MLE for health economic
outcomes following a group sequential design.

For trials with treatment selection, early work by Coad116 in the setting with two treatments and either a two or
three-stage trial (where only one treatment is selected to be carried forward to the final stage), showed how to derive
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a bias-adjusted MLE. In the context of adaptive enrichment designs with time-to-event endpoints, Di Stefano et al136

derived both single and multiple iteration versions of a bias-adjusted MLE. Finally, for response-adaptive trials, Coad129

and Morgan130 showed how to approximate the bias of the MLE, which then allows the construction of a bias-adjusted
estimator following the idea of Whitehead.70

6.1.1 Conditional perspective

Troendle and Yu50 developed methods for estimating treatment differences in group sequential designs with normally
distributed endpoints that condition on the stopping time S of the trial, thereby reducing the conditional bias, that is, the
discrepancy between the conditional expectation of the estimator and the parameter value:

Conditional bias(𝜃) = E(𝜃|S) − 𝜃.

They used a similar iterative approach as Whitehead70 to compute the estimator. Coburger and Wassmer98 took this one
step further, by conditioning both on stopping time as well as the sample sizes of the stages up to that point; whereas Troen-
dle and Yu had assumed equal sample sizes for all stages. They also considered adaptive group sequential designs, where
the unconditional bias is no longer computable, but the conditional bias can be approximated. Tremmel101 extended
these considerations to stratified binomial and time-to-event endpoints. Coburger and Wassmer78 suggested using a sim-
ilar conditional bias-adjusted estimator not only when a trial stops but also during the course of an adaptive sample size
re-estimation design, to prevent an overestimation of the sample sizes for subsequent stages.

Fan et al73 showed that the conditional bias-reduced estimator for group sequential designs as proposed by Troendle
and Yu50 is equivalent to a conditional MLE as well as to a conditional moment estimator. They also proposed two mod-
ified estimators which are hybrids of the conditional and unconditional MLE that have smaller variance and MSE. The
relationship between the conditional MLE and the conditional bias-reduced estimator was also pointed out by Liu et al,74

who additionally derived the conditional MLE for secondary endpoints in a group sequential design and adaptive group
sequential design. More general theoretical results for sequential trials focusing on the conditional MLE can be found in
Molenberghs et al149 and Milanzi et al.150,151

Marschner131 recently extended this notion of conditional MLEs to more general adaptive designs, as part of a unifying
formulation of adaptive designs and a general approach to their analysis. More specifically, the unconditional likelihood
can be expressed as the product of the design likelihood (ie, the information contained in the realized design) and the
conditional likelihood (conditional on the realized design). Marschner also proposed a penalized MLE, which weights
the design likelihood and can vary between the two extremes of the unconditional and conditional MLEs. Examples of
the conditional and penalized MLEs were given in the context of a RAR design.

Shimura et al76 modified Troendle and Yu’s conditional bias-reduced estimator for two-stage group sequential trials
with normal endpoints by combining it with the shrinkage idea of Thompson152: in the calculation of the bias adjustment
term, they replaced the MLE with a weighted average of the MLE at the interim analysis and a “prior” estimate of the
effect size, 𝜃∗ = c𝜃 + (1 − c)𝜃0, with 𝜃0 the effect size assumed in the initial sample size calculation and shrinkage weights
c determined as a function of the MLE as proposed by Thompson.152 Although the authors presented their idea in a fre-
quentist framework, it can also be interpreted as Bayesian, with 𝜃0 the prior and 𝜃∗ the posterior expectation. Meanwhile,
Li77 proposed using a weighted sum of the MLE and sample proportion for two-stage group sequential designs with binary
responses, where the weight is based on estimates of the MSEs of these estimators. Pepe et al47 and Koopmeiners et al107

considered conditional bias-reduced estimation in the context of group sequential diagnostic biomarker studies with a
single interim analysis for futility, conditional on not stopping early.

Cheng and Shen99 derived an easily computable bias-adjusted estimator of the treatment effect in a “self-designing”
trial (where the sample size is sequentially determined to achieve a target power) with a normally distributed endpoint.153

They further proposed a modified estimator, involving a shrinkage factor, to reduce bias when block sizes are small. For
“self-designing” trials with censored time-to-event endpoints and group sequential sample size re-estimation,154 Shen
and Cheng100 developed bias-adjusted estimators of the hazard ratio. Broberg and Miller88 considered two-stage sample
size adjustable designs with normally distributed endpoints and derived a conditional bias-adjusted MLE. Meanwhile, in
the context of “2-in-1” adaptive trial designs, Li et al144 derived a conditionally bias-adjusted estimator.

Moving on to trial designs with treatment selection, when multiple treatments are compared to a control and the
most promising treatment is selected at the first interim analysis (with or without further early stopping opportunities at
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subsequent interim analyses), Stallard and Todd124 developed a bias-adjusted estimator for the treatment effect. Kimani
et al112 adapted this estimator for the difference between the selected and control treatments in seamless phase II/III
designs with normally distributed endpoints. Unlike Stallard and Todd’s estimator,124 which aimed to be approximately
unbiased conditional on the selected treatment, this new estimator aimed to be approximately unbiased conditional on
both the selected treatment and continuation to the second stage. In the context of selecting the treatment dose with the
highest response rate (using a normal approximation), Shen117 also derived a stepwise bias overcorrection. When there
are two treatments being compared with a control, Stallard et al118 proposed a family of approximately conditionally
unbiased designs.

Brückner et al123 extended Stallard and Todd’s bias-reduced estimator to two-stage multi-arm designs involving a
common control and treatment selection at the interim analysis with time-to-event endpoints. Despite deriving analytical
expressions for the selection bias of the MLE in the selected and stopped treatment arms, respectively, they experienced
computational difficulties and convergence problems. They only defined the resulting bias-reduced estimator for the
interim analysis, and proposed using a two-stage estimator for the final analysis, which is a weighted average of the
bias-reduced estimator at the interim analysis and the MLE.

Luo et al119 used the method of conditional moments to derive a bias-adjusted estimator of the response rate following
a two-stage drop-the-loser design with a binary endpoint. Adopting a stochastic process framework (as opposed to the
conventional random variable viewpoint) for clinical trials with adaptive elements, Luo et al120 proposed approximating
treatment effects based on a general estimating equation to match the first conditional moment. This generic approach
can be used for a variety of adaptive designs with endpoints following any probability distribution. They illustrated it for
two-stage treatment selection designs comparing multiple treatments against a control.

Kunzmann et al135 applied the conditional moment estimator of Luo et al119 to two-stage adaptive enrichment designs
with a normally distributed endpoint and binary biomarker with a prespecified cut-off. Additionally, they studied two
hybrid estimators, one between the UMVCUE and the conditional moment estimator, and the other one combining the
UMVCUE and MLE. Kimani et al133 studied single- and multi-iteration bias-adjusted estimators for the treatment effect
in the selected subpopulation of a two-stage adaptive threshold enrichment design allowing the cut-off of a predictive
biomarker based on first stage data.

Finally, Bebu et al121 devised a bias-corrected conditional MLE for the mean of the selected treatment in two-stage
designs and normally distributed endpoints. They focused on the case of two experimental treatments, but this was
extended by Bebu et al122 to designs involving the selection of more than one treatment arm, selection rules based on both
efficacy and safety, including a control arm, adjusting for covariates, and binomial endpoints. Bowden and Glimm106 fur-
ther extended the method to multi-stage drop-the-loser designs which must always proceed to the final stage (ie, no early
stopping rules).

6.2 Bayesian and empirical Bayes approaches

Several Bayesian approaches to bias-reduced estimation in adaptive designs have been developed, typically for trials using
frequentist frameworks. These differ from fully Bayesian adaptive designs in that they only use the accumulating data,
rather than the posterior, to make decisions about adaptations (eg, stopping or selecting arms) and rely primarily on
classical frequentist inference such as hypothesis testing, but often require additional assumptions or information, such
as the specification of a prior.

Hughes and Pocock83 and Pocock and Hughes84 proposed a Bayesian shrinkage method for estimating treatment
effects in trials stopped at an interim analysis, whereby a prior quantifying the plausibility of different treatment effect
sizes is specified at the outset of the trial and combined with the trial data using Bayes’ rule, producing a posterior estimate
of the treatment effect that is shrunk toward the median of the prior distribution. They acknowledged that this will be
sensitive to the choice of prior and warned against using an overoptimistic prior as this would lead to little or no shrinkage,
saying that their method “works best in the hands of prior specifiers who are realists by nature.”83

Hwang155 proposed using Lindley’s156 shrinkage estimator for estimating the mean of the best treatment in
single-stage multi-arm designs with 4 or more study treatments and a normally distributed endpoint. This was extended
by Carreras and Brannath125 to multi-arm two-stage drop-the-losers designs. Their two-stage version is a weighted mean
of Lindley’s estimator for the first stage and the MLE of the selected treatment for the second stage. It shrinks the
MLE toward the mean across all arms, but only works with a minimum of 4 study treatment arms. For designs with
2 or 3 study treatments, they replaced Lindley’s estimator with the best linear unbiased predictor of a random effects
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model for the first stage estimator. This method also allows for bias-reduced estimation of the second best treatment
mean.

Of note, Lindley’s estimator can be viewed as an empirical Bayes estimator of the posterior mean of the poste-
rior distribution of a specific treatment mean given its MLE. This fact was exploited by Bowden et al,126 who adapted
Carreras and Brannath’s method and replaced their two-stage estimator with a single shrinkage equation for both
stages. This, however, adds both practical and theoretical complications, necessitating further modifications such as esti-
mating a between-arm heterogeneity parameter. The authors suggest this approach could be applied to other MAMS
designs.

Along the lines of Hwang’s approach,155 Brückner et al123 derived two shrinkage estimators for two-stage multi-arm
designs with a common control, treatment selection at the interim analysis, and time-to-event endpoints. They both
shrink the MLE of the selected treatment toward the overall log-hazard ratio. The authors also defined a two-stage esti-
mator similar to that of Carreras and Brannath,125 as well as a bias-corrected Kaplan-Meier estimator for the selected
treatment.

Bunouf and Lecoutre127 derived two Bayesian estimators for multi-stage designs with binary endpoints where after
every stage a decision is made whether to stop or continue recruiting: one estimator is the posterior mean based on a
“design-corrected” prior, the other the posterior mode based on a similarly corrected uniform prior, and for the latter
they also provided an easy-to-use approximation for two-stage designs. Meanwhile, Kunzmann et al135 developed two
empirical Bayes estimators for two-stage adaptive enrichment designs with a single prespecified subgroup and prespeci-
fied decision rule based on a binary biomarker and a normally distributed endpoint with known variance. Kimani et al133

extended this work to adaptive threshold enrichment designs where the biomarker cut-off is determined based on first
stage data.

Finally, Kunzmann and Kieser87 developed an estimator for two-stage single-arm trials with a binary endpoint with
sample size adjustment and early stopping for futility or efficacy. This estimator minimizes the expected MSE subject
to compatibility with the test decision and monotonicity conditions, and can be viewed as a constrained posterior mean
estimate. Similarly, in the same trial context Grayling and Mander102 proposed an optimal estimator that minimizes a
weighted sum of the expected MSE and bias.

6.3 Resampling-based methods

The methods for unbiased and biased-reduced estimation considered in the previous subsections require explicit for-
mulas based on the population response model as well as the trial design and adaptations. For example, UMVUEs and
UMVCUEs can often be given as closed-form expressions, while for MUEs a P-value function is often specified. Mean-
while, bias-reduced estimators tend to have explicit expressions for an estimate of the bias, leading to equations that can
be solved numerically.

An alternative class of methods is based on resampling procedures, where the trial data is resampled or generated
via a parametric bootstrap a large number of times, and the resulting trial replicates can then be used to give empirical
estimates of the bias. One advantage of these methods is that essentially the same procedure can be used under a variety
of different stopping rules and trial designs, including complex designs as detailed below.

In the group sequential setting, Wang and Leung66 showed how to use a parametric bootstrap to calculate a
bias-corrected estimate for the mean of normally distributed endpoints with either known or unknown variance. This
methodology was generalized by Leung and Wang,67 who proposed a generic stochastic approximation approach based
on a parametric bootstrap, which can be used for non-independent and identically distributed (iid) data and a large class
of trial designs, including sequential ones. Cheng and Shen68 proposed a variant of the Wang and Leung66 procedure for
complex group sequential monitoring rules that assess the predicted power and expected loss at each interim analysis.
Magnusson and Turnbull17 proposed a double bootstrap procedure for group sequential enrichment designs incorporat-
ing subgroup selection. Meanwhile, Pinheiro and DeMets65 described a simulation approach to estimate the bias of the
MLE and then proposed constructing a bias-reduced estimator for the treatment difference, although this is equivalent
to Whitehead’s bias-adjusted MLE.70

Kunzmann et al135 carried out further work in the context of adaptive enrichment trials. In the two-stage trial setting
with a binary biomarker and normally distributed endpoints, they considered a number of alternatives to the MLE, includ-
ing a parametric bootstrap procedure. More generally, Simon and Simon137 considered multi-stage enrichment designs
that develop model-based predictive classifiers based on multiple markers, and showed how to use a parametric bootstrap



18 ROBERTSON et al.

method for bias correction for generic response distributions. Finally, in trials with treatment selection, Pickard and
Chang114 considered parametric bootstrap corrections for a two-stage drop-the-losers design, for normally and binomially
distributed endpoints.

Thus far, all the methods presented above are fully parametric, that is, assuming that the trial outcome data comes
from a probability distribution with a fixed set of parameters. An alternative approach is to use nonparametric bootstrap
procedures to correct for bias. An early example of this approach was given by Leblanc and Crowley,69 who proposed a
nonparametric bootstrap in the context of group sequential designs with censored survival data using log rank testing.
Subsequently, Rosenkranz157 described using nonparametric bootstrap to correct the bias of treatment effect estimates
following selection (eg, selecting the treatment with the maximum effect). More recently, Whitehead et al115 proposed
an estimation approach based on the method of Rao-Blackwellization (ie, targeting unbiased estimation), but used a
nonparametric bootstrap procedure to recreate replicate observations in a complicated group sequential trial setting
comparing multiple treatments with a control.

7 DISCUSSION

Motivated by recent FDA guidance on estimation after adaptive designs, this article provides a review of the potential
methodological solutions to biased estimation that exist in the literature. We found that there is a growing body of work
proposing and evaluating a range of unbiased and bias-adjusted estimators for a wide variety of adaptive trial designs.
Our ambition is that this article, combined with the annotated bibliography given in the Supplementary Information,
provides an easily accessible and comprehensive resource for researchers in this rapidly evolving area. However, we note
that statistical software and code to easily calculate adjusted estimators is relatively sparse, which is an obstacle to the
uptake of methods in practice (see Grayling and Wheeler158 and part II of this article series). It also remains the case that
for more complex or novel adaptive designs, adjusted estimators may not exist.

From a methodological perspective, there remain important open questions regarding estimation after adaptive trials,
as already mentioned at the end of Section 6. More generally, an estimator for a parameter of interest should ideally have
all of the following properties:

1. Adequately reflects the adaptive design used.
2. No or small bias.
3. Low MSE (reflecting a favorable bias-variance trade-off).
4. Is easily computable.
5. A procedure for calculating an associated confidence interval that:

a. Has the correct coverage.
b. Is consistent/compatible with the hypothesis test decisions (including early stopping).

Constructing an overarching framework for estimation after adaptive designs that has all these properties would be
very useful, although challenging. Some initial steps in this direction have been taken by Kunzmann and Kieser87,159

in the context of adaptive two-stage single-arm trials with a binary endpoint. Even if such a framework is not feasible
more generally, the issue of constructing confidence intervals remains an important question that has so far received less
attention in the literature than point estimation.

The property that an estimator should “adequately reflect the adaptive design used” also has implications when
considering the Bayesian analysis of adaptive designs, as pointed out by an anonymous reviewer. The likelihood func-
tion will typically be insensitive to the adaptive design and sampling scheme (see, eg, Section 4.1 of Marschner131).
Thus, while the frequentist interpretation will take account of the adaptive design, the pure Bayesian approach fol-
lowing the likelihood principle will not. In practice this would mean that a pure Bayesian analysis would ignore
the adaptive nature of the design and the issues discussed in this article would disappear. However, this (arguably)
is intuitively unappealing and provides a rationale for evaluating Bayesian-motivated approaches from a frequentist
perspective.

In part II of this article series, we explore the practical considerations surrounding the use of unbiased and
bias-reduced estimators for adaptive designs. There, we review the use of such estimators in current practice and illustrate
their application to a real trial design. We also provide a set of guidelines for best practice, considering their use in adaptive
trials from the design stage through to the final reporting of results.
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