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ABSTRACT

Chemometrics/informatics and data analysis, in general, are increasingly important topics in x-ray photoelectron spectroscopy (XPS)
because of the large amount of information (data/spectra) that are often collected in degradation, depth profiling, operando, and imaging
studies. In this guide, we discuss vital, theoretical aspects and considerations for chemometrics/informatics analyses of XPS data with a
focus on exploratory data analysis tools that can be used to probe XPS datasets. These tools include a summary statistic [pattern recognition
entropy (PRE)], principal component analysis (PCA), multivariate curve resolution (MCR), and cluster analysis. The use of these tools is
explained through the following steps: (A) Gather/use all the available information about one’s samples, (B) examine (plot) the raw data,
(C) developing a general strategy for the chemometrics/informatics analysis, (D) preprocess the data, (E) where to start a chemometrics/
informatics analysis, including identifying outliers or unexpected features in datasets, (F) determine the number of abstract factors to keep
in a model, (G) return to the original data after a chemometrics/informatics analysis to confirm findings, (H) perform MCR, (I) peak fit the
MCR factors, (J) identify intermediates in MCR analyses, (K) perform cluster analysis, and (L) how to start doing chemometrics/informatics
in one’s work. This guide has Paper II [Avval et al., J. Vac. Sci. Technol. A 40, 063205 (2022)] that illustrates these steps/principles by apply-
ing them to two fairly large XPS datasets. In these papers, special emphasis is placed on MCR. Indeed, in this paper and Paper II, we believe
that, for the first time, it is suggested and shown that (1) MCR components/factors can be peak fit as though they were XPS narrow scans
and (2) MCR can reveal intermediates in the degradation of a material. The other chemometrics/informatics methods are also useful in
demonstrating the presence of outliers, a break (irregularity) in one of the datasets, and the general trajectory/evolution of the datasets.
Cluster analysis generated a series of average spectra that describe the evolution of one of the datasets.
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I. INTRODUCTION

Chemometrics/informatics methods have been used for years
to analyze large and complex datasets. However, in spite of previ-
ous work in this area,1–5 this capability has been overlooked by
much of the x-ray photoelectron spectroscopy (XPS) community.
Indeed, multivariate/chemometrics methods may not have been
significantly adopted and employed by XPS practitioners because
of the general unfamiliarity of many scientists with these methods.
Chemometrics/informatics methods are particularly relevant to
XPS because of the trend to collect increasingly large datasets in
degradation, depth profiling, operando, and imaging studies. That
is, the XPS community needs tools to deal with the very large
amounts of information that are generated in these ways. The first
extensive use of chemometrics/informatics algorithms in XPS was in
a degradation study of a PVC/polymethymethacrylate blend using
tools that included principal component analysis (PCA), multivariate
curve resolution (MCR), and image classification.6,7 Chemometrics/
informatics methods reduce the dimensionality of large and complex
datasets and may extract hidden features in data. These techniques
can be used in combination with conventional XPS peak fitting.
Fundamentally, multivariate chemometrics/informatics methods
work in XPS data analysis because of the high degree of correlation
between the spectra in many data sets. Chemometrics/informatics
can also guide experimental design to maximize the interpretability
of experimental results. The time-of-flight secondary ion mass spec-
trometry (ToF-SIMS) community appears to have recognized the
importance of chemometrics methods to a somewhat greater extent
than the XPS community.1,7–13

XPS is the most widely used and important method for chem-
ically analyzing surfaces.14–17 In XPS, a beam of x rays, which is
directed onto a surface, generates photoelectrons via the photoelec-
tric effect. The kinetic energies of these photoelectrons are mea-
sured, converted into binding energies, and used to identify the
elements present at sample surfaces. Relatively small “chemical
shifts” in the resulting peak positions (typically 1–4 eV, but some-
times as large as 10 eV) reveal the chemical (oxidation) states of the
elements.18 While the x rays used in XPS can penetrate ∼1 μm into
a material, the photoelectrons they generate can only escape in an
unattenuated fashion from the upper ∼5–10 nm of it (or deeper
with hard x-ray sources). Accordingly, XPS is surface-sensitive
spectroscopy. Furthermore, while sample damage is often minimal
in XPS, e.g., for many inorganic materials, it does occur in some
cases. Because XPS peak widths and chemical shifts are of similar
magnitudes, peak fitting is often necessary in the XPS data analysis.
For quite a few years, XPS experts have expressed concern over the
quality of some of the XPS peak fitting in the scientific literature.
In response to this issue, which is part of the larger problem of
reproducibility in science,19,20 a group of experts have recently pro-
duced a series of guides that cover multiple aspects of XPS.17,21–30

These guides follow many efforts by XPS experts to educate the
broader community, including through ISO and ASTM standards.
This particular guide is part of a second series of guides that covers
additional topics related to XPS and also other surface analytical
techniques.

This paper is a guide for analyzing large XPS datasets using
chemometrics/informatics methods. It provides instructions for

applying multiple exploratory data analysis (EDA) methods to XPS
spectra, which include a summary statistic (pattern recognition
entropy, PRE), PCA, multivariate curve resolution (MCR), and
cluster analysis. In particular, this guide is developed around 12 key
points/sections that include (A) gathering/using all the available
information about one’s samples, (B) examining (plotting) the raw
data, including looking for outliers and other irregularities in the
data, (C) developing a general strategy for the chemometrics/infor-
matics analysis, (D) preprocessing the data, (E) knowing where to
start a chemometrics/informatics analysis, including identifying
outliers or unexpected features in the data, (F) determining the
number of abstract factors to keep in a model, (G) returning to the
original data after the informatics analysis to confirm findings, (H)
performing MCR, (I) peak fitting the MCR factors, (J) identifying
intermediates in MCR analyses, (K) performing cluster analysis,
and (L) knowing how/where to start doing chemometrics/informat-
ics in one’s technical work. These topics have been organized into a
flowchart (Fig. 1). In this approach, we recommend that PCA and
perhaps a summary statistic first be performed on datasets, and
then MCR and cluster analysis. Also, as suggested by the dashed
lines in the flowchart, we believe that chemometrics/informatics
analyses should always point one back to the original data. By
returning to the original data, chemometrics/informatics predic-
tions can be confirmed, and the original data may be better under-
stood, dissected, and reconsidered so that more correct and refined
chemometrics/informatics analyses can then be undertaken.

Certainly, even with a flowchart to help, the large amount of
information in this work may seem overwhelming. That is,
someone new to chemometrics/informatics may wish to apply
these methods in their work, but be put off by all of the new

FIG. 1. Flowchart of the topics covered in this work (blue, wider boxes). The
red (narrower) boxes indicate important subtopics.
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vocabulary, concepts, and techniques in this paper and the subse-
quent one. Does one really have to master all these concepts and
methods to be able to do chemometrics/informatics, or is there an
easier way? We think there is an easier way. Of course, we believe
that (1) all the methods described in this work are important,
where each has strengths that let it solve certain problems better or
more conveniently than the others and (2) there is value in probing
datasets with different statistical/mathematic tools because the
results from these methods can reinforce each other. Nevertheless,
in our opinion, those who wish to most quickly benefit from che-
mometrics/informatics in their XPS analyses should focus on
MCR, first reading (and following) Sections A and B of the Results
and Discussion below and then skipping to the sections on MCR.
The other sections of this document and the information in the
sequel to this paper can then be referred to as needed. In our
opinion, not only do the most exciting and important results in
this study come from MCR, MCR is easier to apply than PCA, and
its results are generally more intuitive. For example, spectra taken
under identical conditions do not, in general, need to be prepro-
cessed prior to MCR. In contrast, some form of preprocessing is
required before most PCA analyses, and it is not always clear what
that best preprocessing approach is. MCR factors are also much
easier to interpret than PCA loadings because they generally look
like (and very often represent) real spectra. In addition, while PCA
is often used to estimate the number of factors that are needed in
an MCR analysis, one can do this with MCR itself by (1) looking at
the amount of variance captured by different MCR factors (in a
good model, the number of factors that are kept will generally
account for most of the variance in the dataset), (2) examining the
abstract factors to see where they no longer show meaningful struc-
ture, (3) examining trajectories of the scores to see where they
become overly noisy, (4) perhaps reconstructing spectra from one’s
dataset with MCR factors as is done in Figs. 13–15 in Paper II31 for
PCA, and (5) using what one knows about one’s sample to deter-
mine the appropriate number of MCR factors to keep/expect.
While our view may not be shared by all chemometricians/data sci-
entists, we believe that MCR is the most powerful tool discussed in
this work for analyzing many large XPS data, and that if one were
to learn and apply only one of these techniques, it should be MCR.
However, to be effective in this space in the long run, one should
become familiar with at least PCA (and the preprocessing methods
associated with it), and, in time, with other chemometrics/infor-
matics methods as well.

The following are additional recommendations/caveats associ-
ated with this paper. First, as has been noted, this work has Paper
II31 that applies the principles and tools discussed in this work to
two rather large XPS datasets.31 We believe it will be helpful to
those who wish to see the practical application of EDA methods to
XPS data. Second, because the chemometrics/informatics methods
employed in this study have been reviewed and discussed many
times in the literature,4,5,32–37 we do not provide a theory section
for this paper. Third, while we have tried to focus on chemomet-
rics/informatics methods and accompanying preprocessing
methods that are proven and effective, there are other methods that
may be considered for the XPS data analysis—we have not covered
all possible EDA methods in this guide. Fourth, an Appendix
listing the terms in this paper is provided at the end of this work.

We now attempt to answer a question that some readers may
have about doing chemometrics/informatics, which is: What can I
actually get out of chemometrics/informatics analyses? Some of
these benefits (and also limitations) of these tools are as follows:

(1) Better deal with large amounts of information. For decades, a
trend in analytical instrumentation has been for it to produce
more information, spectra, and data. There is every reason to
expect that this trend will continue. However, it can be diffi-
cult to fully understand and explore large amounts of infor-
mation by, for example, comparing individual spectra to each
other. Chemometrics/informatics methods provide a rational,
accepted way of sifting through large amounts of information.

(2) Find outliers in datasets. As shown in Paper II,31 chemomet-
rics/informatics methods are good in finding outliers in data-
sets. Of course, outliers are easy to spot in small data sets but
may be difficult to identify in larger ones.

(3) Find irregularities in datasets. As shown in Paper II,31 chemo-
metrics/informatics methods are good at identifying irregular-
ities in data sets.

(4) Group/identify similar samples. It can be tedious to group/orga-
nize the spectra in large datasets in a spectrum-by-spectrum
fashion, i.e., manually. In contrast, chemometrics/informatics
methods are generally very good at grouping similar spectra/
datasets together—identifying which samples are more similar
and which are more different in a dataset. These grouping are
not always obvious in the raw data. In a recent study,5 we
showed that chemometrics/informatics methods group similar
Fourier transform infrared (FTIR) spectroscopy and XPS
spectra.

(5) Better analyze hyperspectral images. Hyperspectral images are
increasingly collected by analytical techniques like XPS,
ToF-SIMS, low energy ion scattering (LEIS), FTIR, and
Raman. These datasets can be enormous, containing hun-
dreds, thousands, or even tens of thousands of spectra.
Chemometrics/informatics EDA methods can effectively
probe these images, identifying regions that are chemically
similar and different.38

(6) Better combine data from multiple analytical techniques.
Because there is no single surface or material analytical tech-
nique that can fully characterize a material, surfaces and
materials are often characterized with multiple analytical
methods.39 Indeed, chemometrics/informatics methods
provide a natural way of combining and comparing all this
information. For example, chemometrics/informatics methods
allow spectra from multiple methods to be joined together
(concatenated) and then analyzed. In addition, it is common
for different analytical methods to yield different bits of infor-
mation about samples. For example, spectroscopic ellipsome-
try may yield a film’s thickness and refractive index at a
particular wavelength, XPS might give the ratio of two signals
from two different elements, atomic force microscopy (AFM)
might provide the film roughness and/or a step height value,
LEIS may provide the surface concentration of a particular
element, and contact angle goniometry (wetting) may provide
the degree of surface hydrophobicity or hydrophilicity in the
form of a water contact angle. Chemometrics/informatics
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methods provide a natural way of comparing all of these data.
Here, the different pieces of analytical data from a sample can
be made into a vector, and the EDA methods discussed in
this guide (or others) can then be used to analyze these
vectors, where this analysis will reveal which samples are both
most similar and most different. This general approach is also
mentioned below in the section on preprocessing
(autoscaling).

(7) Confirm what is expected. Chemometrics/informatics methods
allow one to either confirm that there are only minimal differ-
ences between samples or that significant differences exist
between them.

(8) Simplify the data. Chemometrics/informatics methods can
simplify datasets. For example, years ago, some of us analyzed
some ToF-SIMS hyperspectral images with a cluster analysis.
Patterns in the data were more easily revealed in the images
that resulted from the data being forced into two, three, or
four clusters.40

(9) Identify the underlying chemistry, e.g., intermediates, in data-
sets. In Paper II,31 we show for the first time that a chemo-
metrics/informatics analysis (MCR) can reveal intermediates
in the degradation of a material. We believe these results con-
stitute a “killer app” for chemometrics/informatics analyses of
XPS datasets.

(10) Explore data at a deeper level. We have almost always found
surprises in the large datasets we have analyzed using cheme-
metrics/informatics methods.

(11) Not every dataset needs a chemometrics/informatics analysis.
Chemometrics/informatics analyses do not need to be applied
to every dataset. Small numbers of spectra usually do not
need chemometrics/informatics analyses. Even for larger data-
sets, a simple analysis may be all that is required to obtain the
information that is desired about a material. For example, one
may only need to know whether a certain element is present
(or not present) at certain locations at a surface. A simple,
false-color map of the intensity of a peak from this element
from a hyperspectral XPS image may answer this question.

This paper is an introduction to the concepts and terminology
associated with chemometrics/informatics as they may be applied
to XPS data analysis. It should be useful to those who are unfamil-
iar with these concepts; those who may be unfamiliar with chemo-
metrics/informatics may wish to read this paper before looking at
Paper II. However, these papers can also be read together—the sec-
tions in the two papers, as numbered, refer to the same concepts,
where the first paper is more conceptual and the second shows the
implementation of the concepts. Of course, the best way to become
familiar with chemometrics/informatics methods is to use them.
Accordingly, the data analyzed in Part II31 have been made avail-
able for readers to download and analyze on their own, allowing
them to cross check their analyses with those in Paper II31 to this
work.

II. RESULTS AND DISCUSSION

This paper is a conceptual guide to perform chemometrics/
informatics analyses of XPS datasets. The following subsections
cover concepts and/or steps that should be followed in performing

these analyses: (A) gathering/using all the available information
about one’s samples, (B) examining (plotting) the raw data, (C)
developing a general strategy for the chemometrics/informatics
analysis, (D) preprocessing the data, (E) knowing where to start a
chemometrics/informatics analysis, including identifying outliers or
unexpected features in datasets, (F) determining the number of
abstract factors to keep in a model, (G) returning to the original
data after a chemometrics/informatics analysis to confirm findings,
(H) performing multivariate curve resolution (MCR), (I) peak
fitting the MCR factors, (J) identifying intermediates in MCR anal-
yses, (K) performing cluster analysis, and (L) knowing how to start
doing chemometrics/informatics in one’s work. The same subsec-
tions are used in Paper II to this one, where, again, this paper
focuses on the more foundational aspects of the concepts in ques-
tion and the other paper shows their implementation. Emphasis in
both papers is placed on MCR as a powerful, intuitive, factor-based
method.

A. Gather/use all the information you have about your
samples

All of the information that is available about a sample should
be considered in a chemometrics/informatics analysis of it; chemo-
metrics/informatics analyses should be performed holistically. The
following information is often available about materials that are
analyzed—it should be considered in a chemometrics/informatics
analysis.

• One often has quite a bit of chemical information about the
samples and materials one is analyzing. For example, one gener-
ally knows which substrate was used in a deposition and the
chemical and elemental natures of the materials that were depos-
ited on it. The chemical structures and elemental natures of the
polymers, molecules, targets, precursors, etc., used to make one’s
surfaces and materials should be looked up and examined, where
one should pay special attention to the oxidation states of the
elements in these materials.18 One should not propose a compo-
sition or chemical identify for a material unless the necessary ele-
ments are both present in appropriate quantities/concentrations
and in their appropriate oxidation states.

• It is common for surfaces to be characterized by multiple analyti-
cal techniques. Some of us have drawn the analogy between the
“fable of the blind men and the elephant” and surface analy-
sis39—a high-level understanding of surfaces and materials often
only comes as a result of employing multiple analytical tech-
niques. This other information should be considered in a chemo-
metrics/informatics analysis. For example, ToF-SIMS will often
give significant clues about a sample’s elemental and molecular
composition;41 LEIS reveals the atomic compositions of the out-
ermost atomic layers of materials;42 contact angle goniometry
(wetting) quantifies a material’s hydrophobicity or hydrophobic-
ity; spectroscopic ellipsometry can yield film thicknesses, rough-
nesses, and film and substrate optical constants,43 and various
AFM modes, e.g., phase images, provide direct or indirect chemi-
cal information about surfaces.44,45

• Additional information in XPS analyses themselves is often over-
looked. For example, were unexpected elements identified in a
survey scan? Do the valence band regions or the Auger peaks in
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the survey spectra provide additional clues about the chemical
nature of the material? Are the baselines (their rises or drops)
consistent with the structure proposed for a material, e.g., buried
materials usually show significant increases in their baselines on
the high binding energy sides of their peaks.

B. Examine (plot) the raw data

There may be a temptation for those new to chemometrics/
informatics to begin an analysis by entering data into a software
package and immediately performing advanced analyses/calcula-
tions on it. The results of these efforts may be complicated-looking
graphs. This approach may be fine if one understands both one’s
data and the chemometrics/informatics methods one applies.
However, for EDA, it is generally better to begin by examining the
raw data itself. Sometimes, simply plotting and inspecting a dataset
may provide enough information about it to answer the questions
at hand—chemometrics/informatics analyses are not needed for
every dataset. For example, in industry, one may simply be looking
for an answer to a question, like whether an impurity is present at
a surface or whether a sample is similar to previously made ones,
i.e., whether it meets spec—in these cases, probing a dataset to its
limits, e.g., by multiple chemometrics/informatics methods, may be
a waste of resources. However, the larger or more complicated a
dataset is, the more likely it is that advanced statistical methods will
be necessary to fully understand it. We have almost always found
that chemometrics/informatics analyses of large datasets yield some
surprises.

One may begin a chemometrics/informatics investigation of a
dataset by plotting the data on top of itself in an overlay plot.
Overlay plots provide a preliminary, big picture, view of a dataset.
They reveal whether the sample/spectra are changing. If the over-
laid spectra look like a single spectrum (to within the noise on the
data), then no changes are occurring and no additional analysis
may be needed of the dataset! However, considerable changes in
these spectra may be observed. Such changes in XPS spectra may
be an indication of sample degradation or charging. They often
suggest that further examination of the dataset is appropriate
through a chemometrics/informatics analysis. However, overlay
plots do not naturally reveal the order in which spectra are col-
lected, and an overlay plot may be confusing or hide features in a
dataset when large numbers of spectra are overlaid/plotted together
[see, for example, Fig. 2(a)]. Waterfall plots show spectra in a
side-by-side, sequential fashion. For example, the waterfall plot in
Fig. 2(b) of the data in Fig. 2(a) shows the changes in the spectra as
a function of scan number. Because of the more three-dimensional
nature of waterfall plots, it can be advantageous to view them from
different angles. Figure 2(c) shows the “low binding energy” view
of the data in Fig. 2(b). In this case, both the high and low binding
energy views are useful for understanding the changes taking place
in the data—changes in the data are taking place from both per-
spectives. We emphasize again that not every dataset needs a thor-
ough chemometrics/informatics analysis. In some cases, overlay or
waterfall plots may provide a sufficient amount of insight into a
dataset to conclude an analysis.

While the spectra in the overlay plot in Fig. 2(a) are colored,
there are so many of them that it is difficult to see any trends in

FIG. 2. (a) Overlay plot and (b) and (c) waterfall plots of 60 C 1s narrow scans
from an XPS analysis of cellulose, where (b) and (c) show different views of the
same data. The arrow in (a) indicates the order in which the data were collected.
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them, although the arrow on the plot helps the reader understand
how the spectra are changing. The C 1s spectra in the overlay plot
of the tartaric acid dataset in Fig. 3 are colored more effectively.
The color scale on the left of the plot shows that the violet-colored
spectra were collected first and the green-colored spectra last.
Accordingly, it is clearer in the presentation of the data that a low-
energy, reduced carbon peak around 285 eV grows in during data
collection.

Unlike Auger spectra in Auger electron spectroscopy, which
are often shown as derivative spectra because of the high back-
ground in this technique (differentiation removes a constant signal/
offset in a spectrum), photoemission spectra are not usually differ-
entiated. However, one can consider this possibility. Figure 4 shows
the first and last C 1s and O 1s narrow scans from the cellulose
dataset shown in Fig. 2 and their derivatives. The derivatives of the
Gaussian-like O 1s peaks essentially produces two new peaks—a
lobe that is positive (above the x-axis) and another that is negative
(below the x-axis) [see Fig. 4(d)]. That is, differentiation essentially
doubles the number of “curves” in the signal—it adds complexity
that can be used to identify and distinguish between spectra. For
example, the derivatives of the C 1s spectra in Fig. 4(a) [in
Fig. 4(b)] are more complex than the original spectra. For a
Gaussianlike signal, the point at which the middle of its derivative
spectrum crosses the x-axis corresponds to the maximum in the
original peak. Indeed, the relatively small difference between the
peak positions of the two O 1s spectra in Fig. 4(c) is more easily
seen in the x-axis crossing points of their derivative spectra in
Fig. 4(d). However, differentiation (especially with finite differ-
ences) can increase the noise in a spectrum. Savitzky–Golay (SG)
smoothing and differentiation filters,46–50 which act via numerical

convolution, reduce this problem. (An SG filter was used to create
Fig. 4.) Another possibility for differentiating spectra is to first fit
the data with a high-order polynomial and to then differentiate the
polynomial. This approach, which has been used to calculate the
so-called D parameter of carbon Auger peaks,51 yields noise-free
derivative spectra.

C. Develop a general strategy for the chemometrics/
informatics analysis

It can be challenging for a beginner in chemometrics/infor-
matics to know which analyses/tools to apply to a dataset.
Accordingly, if an analyst is unsure how to proceed, we recommend
the approach in the flowchart in Fig. 1. Of course, there are other
chemometrics/informatics tools and protocols that the analyst may
learn or develop. However, one new to this area may wish to follow
the approach outlined in Fig. 1 because it is based on three well-
established, proven techniques (PCA, MCR, and cluster analysis).
We have also found summary statistics to be helpful in the initial
evaluation of our data.

D. Preprocess the data (when necessary)

Some sort of preprocessing is applied before most chemomet-
rics/informatics analyses. “Data preprocessing,” or just “preprocess-
ing,” refers to any mathematical treatment of a dataset prior to a
chemometrics/informatics analysis. The objective of data prepro-
cessing is to suppress signal that is not of interest and bring signal
that is of interest to the forefront. Appropriate preprocessing
depends on the objectives of the analysis and how the signal mani-
fests itself. Good practice in data preprocessing uses knowledge of
the science of the measurements and mathematics of the prepro-
cessing techniques to enhance the sum-of-squares (SSQ) of the

FIG. 3. Overlay plot of the C 1s spectra from the tartaric acid dataset, where
the order in which the spectra were collected is indicated by the colors of the
spectra. The scale on the left of the plot indicates that the violet-colored spectra
were collected first and the green-colored spectra were collected last.

FIG. 4. First and the last (60th) undifferentiated (a) and (c) and differentiated/
derivative (b) and (d) C 1s and O 1s narrow scans of the cellulose dataset.
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signal of interest, e.g., data might be preprocessed to remove arti-
facts and/or to improve visualization. That is, the chemometrics/
informatics tools used to analyze multivariate measurements, such
as XPS depth profiles, are often focused on maximizing the capture
of SSQ or minimizing model residual SSQ. For example, principal
components analysis (PCA) is designed to find factors (loadings)
that maximize the capture of SSQ while partial least squares regres-
sion is used to find a factor (regression vector) that minimizes the
estimation error for a predictand. The results of these analyses can
often be improved and clarified by data preprocessing. Some of the
more common ways to preprocess XPS and ToF-SIMS spectra are
now described.52

1. No preprocessing

No preprocessing is often employed when spectra are collected
under essentially identical conditions, e.g., in a depth profile,
image, operando, or damage study. No preprocessing may also be
useful when determining the number of principal components
(PCs) with which to represent a dataset (see Sec. II F below) and
when using an abstract factor-based approach to denoise/smooth
spectra. However, because PCA is essentially a rotation of a coordi-
nate system, where the spectra act as single points in a hyperspace,
when no preprocessing is performed, the first PC (PC1) can
account for a disproportionately large amount of the variance in
the dataset, and the chemical variation in the dataset may not be
well correlated with the scores (projections) on this PC (and even
higher PCs). That is, when no preprocessing is applied, PC1 simply
points in the direction of the “cloud” of data points but does not
usually correlate strongly with the chemical information in the
dataset.

2. Normalization

Spectra are often normalized using the so-called “1-norm,”
which consists of dividing each data point in a spectrum by the
sum of the data points in that spectrum. This form of preprocess-
ing makes sense for spectra that only have positive values.
Normalization is often used to account for different data acquisi-
tion times or conditions. For example, two high-quality (low noise)
XPS spectra taken with different acquisition times may contain the
same information but have significantly different numbers of
counts. Normalization would put them on equal footing/reveal
their equivalence. Other less common forms of normalization (at
least for XPS spectra) may also be considered.

3. Baselining

An important part of XPS peak fitting is defining the baseline/
background of the narrow scan under analysis, where the area fit/
used for quantitation in XPS is almost always taken as that between
the peak envelope and a background. The three most common
backgrounds used in XPS data analysis are the linear, Shirley, and
Tougaard backgrounds.22 Baselining refers to removing a baseline
signal from a spectrum. In general, baselines should not be
removed from peak-fit XPS spectra that are shown in the litera-
ture—it is important to show the original data. However, baselining
of XPS spectra may be appropriate in some chemometrics analyses.

4. Charge correction/peak shifting

XPS spectra and peak positions may be shifted to account for
sample charging. Appendix A of the Paper II to this one31 discusses
this issue for the tartartic acid dataset.

5. Variable selection

In variable selection, one focuses on certain peaks/signals that
are of interest. Accordingly, variable selection can be used to remove
either regions of noise or measurement artifacts from spectra. For
example, it is common in ToF-SIMS data analysis to select and inte-
grate the peaks in a set of spectra while ignoring the noise/baseline
between them. These ToF-SIMS peak areas are then used to repre-
sent the entire spectra, i.e., they may be preprocessed and analyzed
by one of the chemometrics/informatics tools discussed herein. XPS
often uses a similar approach of selecting and integrating a subset of
the peaks from a set of spectra (either the narrow scans or regions in
a survey scan). In some cases, these peaks are ratioed.

6. Mean centering

Mean centering is often employed before PCA. In mean center-
ing, the mean of all the values at each x-axis value in the spectra,
e.g., binding energy for XPS, is subtracted from each value. In
essence, mean centering moves the center of the data points
(spectra) to the origin. Mean centering often allows one to see the
variation between spectra more easily. For example, when the data
are not mean centered in PCA, PC1 points in the average direction
of the spectra. In these cases, PC1 often accounts for a very large
fraction of the variance in the dataset, where it may or may not cor-
relate with meaningful chemical changes in the dataset. In contrast,
PC1 points in the direction of greatest change/variance in the dataset
when it is mean centered. Disadvantages of mean centering and
autoscaling (see below) are that they (1) remove information from a
dataset and (2) add complexity to the data in the sense that mean
centered spectra generally have negative peaks that are more difficult
to interpret than the peaks in traditional spectra. As an example of
mean centering, Fig. 5 shows three C 1s and O 1s spectra from the
beginning, middle, and end of the cellulose dataset before [Figs. 5(a)
and 5(d)] and after mean centering [Figs. 5(b) and 5(e)]. In each
case, the middle spectrum, which is more or less the average of the
other two spectra, has values close to zero after mean centering.

7. Autoscaling

Autoscaling consists of mean centering each column of data
points in a dataset and then dividing each data point by the stan-
dard deviation of all the data points in the column. Autoscaling
gives all the variables in a dataset equal statistical weight (the same
variance of unity). Autoscaling is useful when data from different
techniques are combined in an analysis. For example, one might
compare surfaces/thin films based on their advancing water contact
angles, ellipsometric film thicknesses, and selected XPS, ToF-SIMS,
and/or LEIS peak areas, or, alternatively, some measure of the
peaks like their equivalent widths.53,54 Autoscaling allows the infor-
mation from these different techniques to be more fairly combined.
Otherwise, a chemometrics analysis that minimizes SSQ will favor
the variables with large averages. Autoscaling is not generally
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recommended for XPS narrow scans because it puts the signal and
noise on equal footing. For example, Figs. 5(c) and 5(f) show auto-
scaled versions of the raw spectra in Figs. 5(a) and 5(d). While one
can identify the positions of the original peaks, at least some of the
noise at the baseline has been enlarged to the point that these
spectra/datasets would be of limited value in a chemometrics/infor-
matics analysis. Autoscaling is similarly problematic in ToF-SIMS
when applied to whole spectra. In summary, autoscaling is generally
more appropriate for datasets that consist of integrated peak areas
and specific measurements, while mean centering is generally more
appropriate when complete XPS or ToF-SIMS spectra are analyzed.4

8. Poisson scaling

Poisson scaling consists of dividing each instance of a variable
by the square root of the mean of that variable. It is often appropriate

for pulse-counted data. As shown in Fig. 6, Poisson scaling can
accentuate smaller features in a spectrum. Poisson scaling, autoscal-
ing, and variance scaling are forms of variable weighting, which can
be used to suppress large peaks that have a large SSQ and allow
smaller peaks to have greater influence on a model. Care must be
taken here to avoid dividing by zero (or by a very small number) so
as to not add SSQ due to noise. To avoid this, a small offset is often
added to the values of a dataset before division.

9. Concatenation

Concatenation consists of joining together/combining multiple
spectra. While most data analysis in surface analysis and analytical
chemistry does not employ concatenated data, the concatenation of
spectra can be very helpful in chemometrics/informatics analyses.
Concatenation ensures that the variation in coupled spectra is

FIG. 5. Raw (a) C 1s and (d) O 1s spectra (scans 1, 30, and 60) from the cellulose dataset. (b) and (e) These spectra after mean centering. (c) and (f ) These spectra
after autoscaling.
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simultaneously considered, i.e., that a group of related narrow
scans are considered as a unit. However, one must be cautious in
concatenating XPS spectra. Because different narrow scans come
from photoelectrons with different kinetic energies, they sample
different depths in a material. Accordingly, it is generally better to
reserve concatenation for spectra with similar binding energies.
The C 1s and O 1s narrow scans are relatively close in binding
energy.

10. Spectral differentiation

Spectral differentiation is another form of data preprocessing
(see discussion above). While we mention it here for completeness,
we do not strongly recommend it for XPS spectra.

11. Smoothing

XPS data may be smoothed, which can be useful for revealing
the structure of noisy spectra. However, as discussed below, we gen-
erally discourage the smoothing of XPS spectra.

12. Applying multiple preprocessing methods

It is not uncommon for multiple forms of preprocessing to be
applied to datasets. For example, spectra might be normalized, con-
catenated, and finally mean centered prior to a chemometrics/
informatics analysis.

13. Preprocessing of spectra acquired under the same
conditions

We end this section with some recommendations for prepro-
cessing XPS data acquired either under the same conditions, which
is generally the case for the large datasets we have been discussing
here, or under different experimental conditions or with different
instruments. XPS data acquired under the same experimental con-
ditions often do not need to be preprocessed in any way prior to
PRE, MCR, and cluster analysis. However, it is usually advisable to
mean center them prior to PCA. Data obtained from different XPS
instruments and/or taken under different experimental conditions
might be normalized prior to PRE, MCR, and cluster analysis and
preprocessed by normalization and mean centering prior to PCA.

E. Where to start an informatics analysis, including
identifying outliers or unexpected features in data sets

A summary statistic is a single number that characterizes a
spectrum. Summary statistic analyses are quite easy to perform and
can be helpful in identifying trends in data/spectra. We recommend
that a summary statistic analysis be performed early in a data anal-
ysis. Common examples of summary statistics include the mean,
standard deviation, and range. Some of us recently showed the use-
fulness of the PRE summary statistic (a form of Shannon’s entropy)
in understanding series of XPS spectra and also for probing spectra
from other techniques, including ToF-SIMS.4,55,5,35,56,57 PRE often
clusters spectra and reveals trends in data; its results are often
similar to PCA score plots. (In Paper II,31 Fig. 6 shows PRE results
and Figs. 7–9 show PCA scores plots.) We are early proponents/
adopters of summary statistics—while we believe that summary sta-
tistics will be used to a greater extent in data analysis, widespread
adoption of summary statistics in chemometrics/informatics has
not yet occurred.

As single numbers, summary statistics are limited in the
amount of information they can provide about a spectrum.
Accordingly, we next recommend that a whole-spectrum analysis
be performed. The most common, and probably most important,
of these EDA methods is PCA. In essence, in PCA, the spectra are
represented as single points in a hyperspace, and the coordinate
system for these spectra is rotated to capture the largest amount of
variance possible in the dataset. For XPS spectra, each original axis
corresponds to a different binding energy at which data were col-
lected. The new axes (principal components, PCs) created by the
rotation of the coordinate system are orthogonal to each other and
arranged to account for decreasing amounts of variation in a
dataset. The projections of the data points (spectra) on the new
axes (PCs) are called scores. The loadings are the contributions of
the original axes to the new ones (PCs). It is not always clear how
many PCs (abstract factors) one should keep in the PCA of a
dataset. This issue, which is shared by MCR, is discussed in more
detail below. However, even though most of the variance in a
dataset may be captured by a few PCs, the higher PCs sometimes
contain useful, and even important, information about a dataset.

PCA scores plots are used to represent the relationships, i.e.,
similarities and differences, between spectra. Figure 7 is an example
of a scores plot obtained from the PCA of the concatenated C 1s
and O 1s narrow scans from the cellulose dataset. It shows the

FIG. 6. Raw C 1s spectrum of sucrose (red/bottom) and the same spectrum
preprocessed by Poisson scaling (green/top). See Sec. II D 8 for details on
Poisson scaling.
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scores (projections) of data points (spectra) on the new axes (PCs).
The relationships between data points (spectra) in scores plots are
often revealed by the presence of outliers, trajectories of data
points, groupings of data points, and other irregularities. Each of
these possibilities is discussed below. These features may be present
in XPS spectra for the following reasons:

• Some XPS practitioners begin their depth profiles with the
sputter source turned off, which may result in the first few scans
of a depth profile being different from those that follow.

• The first few spectra in a series of spectra may be different from
those that follow if the electronics of an instrument are not
warmed up.

• Desorption of powder materials may occur during their analysis,
which may cause gradual or abrupt changes in the samples.

• Samples may gradually charge as data are collected either
through sample charging or material damage.58,59

1. Outliers

All of the chemometrics/informatics tools described in this
work can identify outliers in datasets. An outlier is a spectrum or
data point (or other form of information) that is inconsistent with
the rest of the data and perhaps even incorrect. The presence of
outliers may complicate or confound data interpretation. Of course,
strong justification must be present before outliers can be removed
from datasets. For example, one may be justified in removing a
spectrum from a dataset if the equipment that produced it was mal-
functioning or the person who prepared the sample failed to follow

the appropriate protocol for its preparation. For transparency, the
authors of a study should report if one or more outliers has been
removed from a dataset. Outlier identification is an early step in a
chemometrics/informatics analysis. Outliers often appear in scores
plots as “points” that are in some way different/separated from
those around them. The point by itself on the right side of Fig. 7
may be an outlier. In general, one should return to the original
data to confirm such an interpretation.

2. Trajectories

Figure 7 shows a series of continuously varying data points
(spectra) that form a horseshoe-shaped trajectory. Such trajectories
are observed in many PCA scores plots. They usually indicate that
there is a steady change taking place in a series of spectra. The
spectra in Fig. 7 change because the material that produced them is
steadily degrading.

3. Groupings of data points (spectra)

Sometimes scores plots show groupings of data points
(spectra). These are usually interpreted to mean that the spectra in
these groups are similar to each other. Such interpretations should
be confirmed in the original data.

4. Other irregularities

An example of an irregularity in a PCA scores plot is the
rather large break on the left side of the trajectory in Fig. 7. This
break is present because there was a break in data collection during
which time another analysis was performed. After this analysis,
acquisition of this dataset resumed.

Finally, additional information may be added to PCA scores
plots. Most scores plots do not have colored data points, as in
Fig. 7. However, the elapsed time of the analysis has been added to
the scores plot in Fig. 7 as the color of the data points. This
approach allows additional information/another dimension to be
rather easily added to a graph.

F. Determine the number of abstract factors to keep in
a model

One of the challenges associated with PCA and MCR is deter-
mining the “right” number of abstract factors to keep, i.e., the
number that appropriately describes/captures the relevant variance
in a dataset. If too few abstract factors are kept, important varia-
tion/information in the dataset will be omitted. If too many are
kept, unnecessary noise will be included in the model. (Although
overfitting, i.e., having too many abstract factors in a model, is not
always a problem in EDA, it can be quite problematic for models
used for process monitoring and control.) While there is no simple
formula or approach for determining the appropriate number of
abstract factors to keep, there are accepted tools that can be used
for this purpose. In this section, we describe three methods for
determining the number of abstract factors that describe a dataset:
scree plots, cross-validation, and reconstructing the spectra from
abstract factors. Sec II H describes yet another approach to this
problem, which is to create models with increasing numbers of
abstract factors and to then evaluate these models based on their

FIG. 7. Two-dimensional PCA score plots of the concatenated C 1s and O 1s
narrow scans of the cellulose dataset with the elapsed time shown as the color
of the data points. In PCA, the spectra are, in essence, plotted as single points
in a hyperspace, where the axes of this coordinate system are rotated to align
with the greatest amount of variance in the data. The “scores” of the data points
(spectra) are the projections of the data points (spectra) on the new (rotated)
axes, where these new axes as called “principal components” or “PCs.”
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chemical and statistical reasonableness. It is important to be famil-
iar with, and to use, multiple methods for finding the best number
of abstract factors that describe a dataset. Indeed, in a study of dif-
ferent methods used to determine the number of abstract factors
that describe datasets, Jackson36 concluded that “no one method is
good for all datasets.”

Scree plots are plots of the variance captured by the series of
ranked PCs, where, in general, the amount of variance captured per
PC decreases as higher PCs are considered. (For examples of scree
plots, see Figs. 10 and 11 in Paper II31 to this one.) Scree plots may
appear in different ways. For example, they may show the cumula-
tive variance captured by the PCs or the log of the eigenvalues (the
eigenvalues are proportional to the amount of variance captured by
a PC). In a scree plot, e.g., where the log of the eigenvalues is
plotted versus the PC number, one often looks for a discontinuity
or “knee” in the plot where the slope of the results (as viewed from
right to left) changes. This point is often taken as the number of
PCs that describe the dataset. Scree plots have pros and cons. That
is, while they do not always provide clear guidance regarding the
number of PCs to keep, they are usually easy to produce. Also, as
noted above, it is not uncommon for a small number of PCs to
capture most of the variance in the dataset, but higher PCs to still
contain meaningful information/variance (not just noise). Indeed,
in some cases, the variance/variation in a dataset captured by one
or more of the higher PCs is the most useful information in an
analysis.

Cross-validation methods are also commonly used to deter-
mine the number of PCs to keep in PCA. Cross-validation is a pro-
cedure in which subsets of the data are left out during the
chemometrics/informatics modeling and then used to test/estimate
the prediction error of the model. That is, a model built with a frac-
tion of the data is applied to the data that have been left out. One
then evaluates the ability of this model to describe the left-out data.
Typically, each possible subset of the data is left out and modeled,
but other cross-validation methods, such as with random subsets,
are also used.

A more graphical approach for finding the number of abstract
factors that describe a dataset is to first perform PCA on the data
and then to reconstruct the spectra from increasing numbers of
PCs. Both the reconstructed spectra and the loadings (abstract
factors) are then examined. In general, the number of abstract
factors to keep is determined by the point at which the recon-
structed spectra no longer change substantially when they are
reconstructed with additional abstract factors and also when the
loadings cease to show chemically meaningful structure. (This
approach is illustrated in Figs. 12–14 of Paper II31 to this one.) In
general, one should not preprocess the data (spectra) before doing
this or only minimally preprocess it. If one were to mean center or
autoscale spectra prior to this approach, one would create spectra
with both positive and negative peaks—it is generally easier to rec-
ognize when spectra have been adequately reconstructed when they
look like real spectra.

This paragraph contains five additional comments/observa-
tions about the reconstruction of data from abstract factors and
abstract factors in general. First, this approach should be applied to
different spectra in a dataset because a given spectrum may be for-
tuitously described by the first few abstract factors, i.e., the number

of abstract factors needed to reconstruct a given spectrum may not
be representative of the number of abstract factors needed to recon-
struct all the spectra. Second, abstract factors (PCs) in PCA may be
hard to interpret because of negative peaks in them, which are a
consequence of the forced orthogonality of the factors. MCR,
which is discussed next, generally yields abstract factors that look
like real spectra and are, therefore, easier to interpret. Third, if XPS
spectra are corrected/shifted, e.g., to the maximum of one of their
signals, fewer abstract factors will generally be needed to describe
them. Fourth, preprocessing can influence the number of abstract
factors that describe a dataset. For example, mean centering a
dataset removes the average from it. Accordingly, one might expect
that it would take one abstract factor (PC) less to describe such a
dataset. Fifth, the number of abstract factors that describe a dataset
modeled by PCA is about the same as the number needed to
describe the dataset modeled by MCR (these numbers of abstract
factors usually agree to plus or minus one).

Finally, there are other reasons for reconstructing data from
abstract factors. For example, one can denoise/smooth a spectrum
by reconstructing it from a limited number of abstract factors.
(Other approaches for smoothing spectra include Savitzky–Golay
smooths,48 Fourier analysis,46,60 and high-order polynomial
smooths. In the Fourier approach, the higher frequency compo-
nents of a Fourier transform are excluded before the data are back
transformed. This approach also allows specific frequency compo-
nents to be excluded/removed from the spectra.) However, we dis-
courage people from smoothing their XPS spectra prior to fitting/
analyzing it because this form of preprocessing can distort the data.
Nevertheless, series of spectra with high noise levels may benefit
from denoising because high levels of noise obscure the underlying
structure of the data, which may become more apparent when it is
denoised. That is, smoothing may help determine the number of fit
components/synthetic peaks to include in a fit, where an advantage
of using a tool-like PCA to reconstruct/smooth spectra is that it
can receive input from a large number of spectra, which can allow
it to better discriminate between the signal and noise. However, if
at all possible, one should endeavor to collect high-quality data.
One should not attempt to “fix” poor quality/noisy results with
chemometrics/informatics. Subtle features in datasets are best
revealed (and believed by others) when the data are of high quality.
As an aside, a related error, which is sometimes seen in the scien-
tific literature, is for only the fit components or the sum of the fit
components of a fit, and not the original data, to be shown in a
figure—in some sense, the data are presented as completely
smoothed/entirely noise free. Unfortunately, such a representation
of the results provides the reader with no information about the
quality of either the original data or the fit to it. The original XPS
data should always be shown with any fit of it.

G. Return to the original data after a chemometrics/
informatics analysis to confirm findings

It is easy to perform many different analyses on datasets with
modern chemometrics/informatics software. However, the predic-
tions and findings from these analyses should always be confirmed
in the originally data; one should never stray too far from the origi-
nal data in a chemometrics/informatics analysis. The second, Paper
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II31 to this one, provides an example of confirming predictions
made in chemometrics/informatics analyses in the original data
(see Fig. 15 of Paper II31).

H. Perform multivariate curve resolution

MCR has become popular among chemometricians as it offers
various advantages over PCA. Indeed, because of the non-
negativity constraints that are usually applied in MCR, MCR load-
ings/components have the appearance of real spectra, making them
easier to interpret, while PCA loadings often have negative peaks.
In addition, because MCR loadings are not forced to be orthogonal
to each other, as they are in PCA, MCR loadings often reveal
the true, underlying spectra of datasets. (Fig. 16 of Paper II31 to
this one shows an MCR analysis of the cellulose dataset.) MCR is
often performed on unpreprocessed, or minimally preprocessed,
data—preprocessing by mean centering or autoscaling would create
negative peaks, which, again, are not allowed in the typical
implementation of MCR. Of course, as in all chemometrics/
informatics analyses, preprocessing may strongly affect MCR
results. XPS narrow scans may be better analyzed by MCR when
they are concatenated. For example, a more easily interpreted
narrow scan, e.g., C 1s, may be paired/concatenated with a less
easily interpreted one, e.g., O 1s. Variations/trends in the more
easily interpreted narrow scan may then be used to understand the
less easily interpreted narrow scan. Differentiated spectra concate-
nated with undifferentiated spectra may be considered in MCR if
its non-negativity constraints are relaxed.

In addition to the methods mentioned in Sec. II F, one can
determine the number of abstract factors that describe a dataset in
MCR by creating models from increasing numbers of abstract
factors and then evaluating the chemical and statistical reasonable-
ness of these models. Two aspects of the statistical reasonableness
of a model are the amount of noise in its scores and loadings and
also the amount of structure (information that appears to be chem-
ically meaningful) in its loadings. Higher abstract factors, i.e., those
accounting for less variance in a dataset, generally contain more
noise than the earlier abstract factors. Accordingly, reconstructed
spectra typically become noisier as more abstract factors are used to
create them. In summary, one option for determining the number
of abstract factors to keep in an MCR model is to increase the
number of abstract factors in the model until (1) the abstract
factors cease to have meaningful structure, (2) the scores, e.g., tra-
jectories in scores plots, are overly noisy, and/or (3) the models
become chemically unreasonable. Obviously, there is some subjec-
tivity in this process.

The reader may ask why more than one chemometrics/infor-
matics method is described in this guide. Isn’t one method good
enough? It is often advantageous to probe datasets with multiple
chemometrics/informatics methods because the analyses can
confirm and complement each other. That is, the results of a che-
mometrics/informatics analysis are more believable when different
methods with different underlying mathematical bases yield the
same results. For example, a significant anomaly suggested in one
chemometrics/informatics analysis ought to be present in other
analyses. In addition, the groupings of spectra, e.g., in scores plots,
suggested by different chemometrics/informatics methods should

usually be the same or at least very similar. As a final example of
using multiple chemometrics/informatics analyses to analyze data-
sets, note that PCA is often applied to datasets before MCR to get a
sense for the number of abstract factors to keep in the subsequent
MCR analysis.

I. Peak fit the MCR factors

We believe that, in this work, we are the first to observe that
chemical information can be extracted from MCR factors of XPS
datasets by peak fitting them. (See Fig. 17 of Paper II31 to this one
for an example of peak fitting MCR factors.) Such fits should help
reveal the chemical changes taking place in a material. We believe
the C 1s narrow scan is a particularly good candidate for this type
of peak fitting because

(1) C 1s spectra are often fairly simple [they exhibit neither spin-orbit
splitting (the signal originates from a 1s orbital) nor multiplet
splitting (as do some metals in some oxidation states)], although
conjugated organic materials often show shake-up signals.

(2) They can often be fit with symmetric (not asymmetric) peaks.
(3) When there is no peak tailing/asymmetry, the peak width for a

given chemical state of carbon is usually fairly narrow,
(4) The baselines below them are often relatively straightforward

(many organic materials, e.g., many common polymers, are
insulators),

(5) The range of chemical shifts for carbon is large (in contrast,
oxygen shows much less chemical shifting, which often makes
it harder to peak fit in a meaningful fashion).

However, one should be aware that MCR components may
contain artifacts. For example, there may be small peaks or distor-
tions that are not present in the spectra, e.g., the MCR components
may not be well fit in places with typical Gaussian/Lorentzian/
Voigt signals. Nevertheless, MCR is an extremely powerful tool for
understanding series of spectra. Indeed, the possibility of artifacts,
which are usually small, underscores the importance of utilizing all
the information available in an analysis, i.e., from both the raw data
and (ideally) multiple informatics analyses of it. That is, an artifact
in one chemometrics/informatics analysis will probably not be
present in the results of a different one.

J. Identify intermediates in MCR analyses

To the best of our knowledge, Paper II31 to this one is the first
time that intermediates have been observed by MCR in the degra-
dation of a material during XPS (see Fig. 19 in Paper II31 to this
one). That is, some of the MCR factors describe the data at inter-
mediate stages of the analysis. These results showcase the power of
MCR to reveal the underlying chemistry of datasets. We are not
aware of another technique or approach that can extract this type
of information from an analysis.

K. Perform cluster analysis

Cluster analysis is another widely used EDA method. Cluster
analysis groups similar samples/spectra according to their distances
in a multidimensional/multivariate space. Different measures of
distance may be applied to the points (spectra) in a cluster analysis,
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where two of the most common of these distance measures are the
Euclidean and Manhattan (city block) distances. The relationships
between the spectra in a cluster analysis are often shown as a den-
drogram, where a dendrogram shows spectra that are closer in a
multidimensional space as clustered together. For example, Fig. 8
shows a dendrogram with five selected/color coded clusters.
Figure 22 in Paper II31 to this one shows the average spectra in
each of these clusters. The dendrogram in Fig. 8 was obtained from
a cluster analysis of the C 1s spectra in the tartaric acid dataset. It
shows a significant amount of clustering of the spectra. Indeed, five
groupings of similar spectra are identified in this cluster analysis,
where, again, the spectra in these clusters are closer to each other
in a multivariate space than they are to the spectra in other clusters.
Cluster analysis has advantages and disadvantages. It is relatively
easy to apply and conceptually simpler than some other informatic
methods. Indeed, it can be a good starting point for an EDA. It can
also be useful for identifying outliers, which might appear as a
cluster that only contains one sample (or a few samples), where
these clusters are significantly different from the others. However,
cluster analysis does not generally provide as much insight or infor-
mation as MCR or PCA. Cluster analysis itself could lead to addi-
tional multivariate analyses and/or XPS peak fitting. For example,
one might perform MCR or PCA on the spectra in a specific
cluster. In addition, the average XPS spectrum of the data points
(spectra) in a cluster might be peak fit.

L. How to start doing chemometrics/informatics

The reader who wishes to learn more about chemometrics/
informatics and incorporate it into their technical work may wish
to consider the following:

(1) Read and study the subject. There are many useful guides,
papers, and books61 on chemometrics/informatics.

(2) Attend a short course. Short courses on chemometrics/infor-
matics are given by various companies and professional organi-
zations. They can provide quite a bit of information about the
subject in just a few days. Short courses can create useful con-
nections to experts (the instructors), who may be willing to
consult or collaborate on future projects. In our opinion, the
best short courses have both theoretical and “hands on” com-
ponents, i.e., they both teach the theory and provide students
with sample datasets that they fit/work up themselves with a
software package.

(3) Collaborate with an expert. Collaborating with an expert can be
an excellent way to gain more knowledge about a field and
avoid making mistakes in it.

III. CONCLUSIONS

XPS is the most common and important technique for chemi-
cally analyzing surfaces. The current trend to collect increasingly
large datasets in degradation, operando, depth profiling, and imag-
ining studies should make chemometrics/informatics techniques
increasingly relevant in XPS. Multiple chemometrics/informatics
methods, including summary statistics, PCA, MCR, and cluster
analysis, can be used to analyze complex XPS datasets. It is often
advantageous to apply more than one chemometrics/informatics
tool to a dataset. In this guide, we discuss considerations associated
with the use of chemometrics/informatics EDA tools in analyzing
XPS datasets. We have not mentioned or discussed all the possible
EDA methods that might be applied to them. There are many.
Rather, the purpose of this article has been to (1) give the reader an
introduction to some of the more common EDA methods that
might be used in XPS spectral analyses and (2) introduce the
reader to some of the thinking that should accompany these analy-
ses. Paper II to this guide31 provides examples of applications of
chemometrics/informatics EDA methods to two real XPS data sets,
explaining additional considerations and principles associated with
these analyses.

We now repeat and comment on the steps we recommend for
performing a chemometrics/informatics analysis of XPS data sets.

(A) Gather and consider whatever information is available about
one’s material. This information should include what is
known about the sample chemistry and the preparation of the
sample. One should also consider information from other
characterization techniques and additional information from
XPS.

(B) Examine and plot the raw data in different ways. We recom-
mend both so-called overlay and waterfall plots. A less con-
ventional method of plotting the data may be with first (and
even second) derivatives.

FIG. 8. Example of a dendrogram. The numbers on the left side of the figure
correspond to spectra in a dataset. The user selects the number of clusters in a
cluster analysis. That is, imagine moving a vertical line back and forth across
the dendrogram. The number of horizontal lines crossed by the vertical line is
the number of clusters selected, e.g., if the line were at 3 × 105 on the x-axis,
two clusters would have been selected. Five clusters (classes) have been
selected here, which are color coded and numbered. The distance between the
left edge of the plot and the point where the clusters meet is proportional to the
distance between them.
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(C) Develop a general strategy for a chemometrics/informatics anal-
ysis. Those newer to chemometrics/informatics may wish to
follow the suggestions in this paper and Paper II31 (see flow-
chart in Fig. 1). As one becomes more experienced in chemo-
metrics/informatics, it will become easier to determine the
types of analyses that are best suited for a given dataset.

(D) Preprocess the data. Preprocessing plays an important role in
many chemometrics/informatics analyses; data preprocessing
can sometimes strongly affect these analyses. A partial list of
the possible data preprocessing methods is included in this
work, which include no preprocessing at all, normalization,
baselining, variable selection, mean centering, autoscaling,
Poisson scaling, concatenation of datasets, spectral differentia-
tion, and smoothing. It is common for more than one prepro-
cessing method to be applied to data.

(E) Know where to start a chemometrics/informatics analysis. We
recommend that PCA and perhaps a summary statistic first be
applied to data. In this initial analysis, one should look for
outliers and/or other anomalies in the data. However, as noted
in the Introduction, readers may wish to start with MCR—we
strongly recommend MCR.

(F) Determine the number of abstract factors to keep in PCA and
MCR analyses. In general, there is no simple method for deter-
mining the number of abstract factors to keep in a PCA or
MCR analysis, although this process can be somewhat easier
for MCR than for PCA. Various methods, including scree
plots, cross-validation, reconstructing the data from increasing
numbers of abstract factors, and evaluating models based on
their chemical reasonableness should be employed/considered.
Sometimes, higher abstract factors may contain useful infor-
mation about a dataset, even when a strong majority of the
variance in a dataset is captured by a few of the earlier factors.

(G) Return to the original data after a chemometrics/informatics
analysis. The original data should confirm what is found in a
chemometrics/informatics analysis; one should never be too
far from the original data in chemometrics/informatics analy-
ses. Indeed, one may need to return to the original data multi-
ple times. As more information is revealed about a dataset,
additional chemometrics analyses may then need to be per-
formed on it. The process of performing a high-quality che-
mometrics/informatics analysis is often iterative.

(H) Perform MCR. MCR is a powerful chemometrics/informatics
method. It does not force abstract factors/loadings to be
orthogonal as in PCA. Accordingly, it produces abstract
factors that look like real spectra so MCR results are often
easier to interpret than those from PCA. Because of MCR’s
(typical) non-negativity constraints, mean centering and
autoscaling are not appropriate preprocessing methods for
MCR.

(I) Peak fit MCR factors. Because MCR spectra look like “real”
spectra, MCR factors of XPS data may be peak fit, which can
increase the amount of information that can be derived from
this technique. We believe Paper II31 to this one shows the
first time the evolution of an XPS dataset has been revealed in
this manner.31 The protocols for peak fitting MCR factors
may be based on fits to the raw XPS data. Concatenation of
data can be useful in MCR (and PCA) analyses—by linking

two or more spectra to become a single spectrum, the ratios of
the peaks in each spectrum are “locked,” which can lead to
more meaningful results.

(J) Identify intermediates in MCR analyses. To the best of our
knowledge, Paper II31 to this one shows the first time that an
MCR analysis of an XPS dataset has revealed intermediates in
the evolution (degradation) of a material. Intermediates are
common in complex chemical reactions—we do not believe it
should come as a surprise that they have been identified here.
A criterion used in this analysis was the level of noise on the
scores and loadings. Excessively noisy loadings suggest that
noise (not signal) is being incorporated into them, i.e., that
the maximum number of abstract factors/loadings that should
be kept in a model may have been exceeded. Excessively noisy
trajectories for the scores similarly suggest that useful infor-
mation is no longer being added to the analysis.

(K) Perform cluster analysis. Cluster analysis is a widely used EDA
method. Cluster analysis results are summarized in dendro-
grams. Dendrograms can allow outliers to be easily spotted. In
Paper II to this one,31 we calculate the average XPS spectrum
of each cluster in a cluster analysis. The resulting series of
average spectra allows us to follow the evolution of a material
as it degrades.

(L) Know how/where to start doing chemometrics/informatics in
one’s technical work. Those wishing to use chemometrics/
informatics methods will probably want to read other tutorial
papers and books on this subject and may also wish to attend
a short course or take a class on this subject. “Hands-on”
short courses and classes that provide the students with
sample datasets that they fit/work up themselves can be partic-
ularly helpful. Those interested in incorporating chemometrics
into their research may also wish to hire a consultant (if they
are in industry) or find an academic collaborator (if they are
at a university).

APPENDIX: GLOSSARY

Abstract factor: In the case of PCA, the abstract factors are (1)
the new, rotated axes (PCA loadings), (2) linear combinations of
the original axes, and (3) orthogonal to each other. In the case of
MCR, the abstract factors (1) often represent chemical states and
(2) generally are not orthogonal to each other.

Autoscaling: A chemometrics preprocessing method that con-
sists of mean centering a set of numbers, e.g., those in a column of
a data matrix, and then dividing these results by the standard devi-
ation of the numbers.

Chemometrics: The use of statistical (often multivariate)
methods to analyze chemical data and spectra.

Classical least squares (CLS): A chemometrics/informatics tool
based on the equation S = Pc + e, where S refers to measured
spectra, P to pure-component spectra, c to the concentrations of
the pure-component spectra in the spectra, and e to the errors.

Cluster analysis: A chemometrics/informatics method that
compares, differentiates, and clusters spectra based on the distances
between them in a multivariate space.

Concatenation: The uniting/combining of two or more spectra
to make a single spectrum. For example, the concatenation of the
vectors [1 5 3] and [2 6 9 0] is [1 5 3 2 6 9 0].
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Cross-validation: A process by which a fraction of a dataset is
modeled (analyzed with a chemometrics/informatics tool) and the
remainder of the data is then represented with the model. The quality
of the model is judged based on its ability to represent the left-out data.

Dendrogram: Dendrograms are plots used to represent the
results from cluster analyses. Typically, the spectra are listed in a
column on the left side of a dendrogram. The lengths of the hori-
zontal lines in a dendrogram correspond to the similarities between
spectra. One can select the number of clusters to keep in a cluster
analysis by drawing a vertical line through the dendrogram—the
number of horizontal lines that the vertical line cuts through is the
number of clusters kept in the analysis.

Depth profiling: In general, the processing of repeatedly
removing a small layer of material from a surface with an ion beam
and then probing it with an analytical method like XPS.

Exploratory data analysis (EDA): The use of chemometrics/
informatics methods to explore the structure of datasets where no
prior knowledge, information, or categorization of datasets is
included in the analysis.

Hyperspace: A space with more than three dimensions.
Chemometrics/informatics methods often treat spectra as single
points (vectors) in a hyperspace (multivariate space).

Hyperspectral image: An image obtained by analyzing a surface
at a pattern of points on it, collecting a spectrum at each point/pixel.
The resulting data “cubes” (parallelepipeds) have two spatial dimen-
sions and a third dimension containing individual spectra.

Informatics: The use of statistical and multivariate methods to
analyze data and spectra.

Loadings plot: In PCA, a plot showing the contributions of the
original axes to a given rotated axis (loading). That is, loadings
plots reveal the degree to which the original axes/variables, e.g.,
energies or wavelengths, contribute to a loading (new axis created
by the rotation of the original coordinate system). Loadings provide
chemical information in PCA. For example, a loading (and its
underlying chemistry) contribute significantly to spectra (data
points) that have high scores on that loading and vice versa.

Mean centering: A preprocessing method that consists of sub-
tracting the mean of a set of numbers from each number. When a
series of XPS spectra are mean centered, this process is repeated at
each binding energy. Mean centering centers a set of data points
(spectra) about the origin.

Multivariate curve resolution (MCR): A chemometrics/infor-
matics tool that finds underlying components/factors that describe
spectra. It is based on solving the governing equation of CLS twice
and then iterating to find the components/factors, where an initial
guess is made for the factors/components. In general, MCR is
applied with non-negativity constraints such that the new compo-
nents/factors only contain positive values.

Operando: This term usually refers to the analysis of materials
under their working conditions.

Outlier: A piece of data or measured spectrum that is signifi-
cantly different from the general trends/values in a dataset. Outliers
describe an unusual signal that may be anomalous or incorrect.

Overlay plot: A plot in which spectra are plotted on top of
each other. They can be useful for assessing whether changes are
taking place in spectra. Overlay plots can be difficult to interpret
when a large number of spectra are plotted on top of each other.

Pattern recognition entropy (PRE): An EDA technique that is
based on Shannon’s concept of entropy. PRE is a summary statistic.

Peak fitting: The process of fitting XPS narrow scans with a
baseline and one or more synthetic (mathematical) peaks that rep-
resent chemical states.

Preprocessing: A mathematical treatment or modification of
raw data that is used to prepare it for a subsequent chemometrics/
informatics analysis. Preprocessing is often used to remove or sup-
press signal that is not of interest, e.g., baselines or clutter.

Principal component (PC): Factors estimated in principal com-
ponents analysis. PCs are factors that define an orthogonal coordi-
nate system that maximize capture of variance (or sum-of squares)
in a dataset. Each PC has associated scores and loadings.

Principal component analysis (PCA): One of the most important
EDA methods. In essence, in PCA, spectra are considered to be
single points in a multivariate space. PCA is designed to capture the
maximum sum-of-squares in a dataset with the fewest factors; the
coordinates of the original space are rotated to capture the greatest
possible amount of variance in the spectra. The loadings are the con-
tributions of the old axes to the new ones, and the projections of the
data points (spectra) onto the new axes (PCs) are called “scores.” In
PCA, the new axes (PCs) are orthogonal to each other.

Scores plot: A plot of the projections (scores) of the spectra
(data points) on the new axes (principal components/abstract
factors). Two- and three-dimensional scores plots are plots of the
scores of the spectra (data points) on two or three principal com-
ponents, respectively. Scores plots often reveal various features of
datasets, including groupings of spectra, outliers, anomalies in data-
sets, and trajectories in datasets.

Scree plot: A plot of the variance captured per abstract factor,
often represented as the log of the variance captured per abstract
factor (the eigenvalues of the cross-product of the data matrix are
proportional to variance captured by each PCA. Scree plots may
also be plotted as the cumulative variance captured by the factors.
A discontinuity or “knee” in a scree plot often indicates the
number of abstract factors that describe a dataset.

Summary statistic: A single number that is used to characterize
a dataset or spectrum. The mean, median, mode, standard devia-
tion, variance, and PRE are examples of summary statistics.

Three-dimensional scores plot: See “Scores plot.”
Time-of-flight secondary ion mass spectrometry (ToF-SIMS): A

mass spectrometric surface analytical technique that probes sur-
faces with primary ions and detects the resulting secondary ions.

Two-dimensional scores plot: See “Scores plot.”
Waterfall plot: Waterfall plots show spectra in a side-by-side,

sequential fashion. In general, the sequence of the spectra will be
the same as the order in which they were acquired.

X-ray photoelectron spectroscopy (XPS): A surface sensitive analyti-
cal technique based on the photoelectric effect in which surfaces are
irradiated with x rays and the resulting photoelectrons are detected.
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