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Classical theories for suspensions have been formulated by starting from the
Navier–Stokes equations describing pure liquid flow and then introducing additional
dependencies to account for the presence of suspended particles. These models are often
accurate for low particle concentrations but have lacked a convincing description of the
frictional interactions of particles, which are important at larger solid volume fractions.
The μ(J), Φ(J) rheology, which draws a direct analogy between suspension flow and
dry granular flow, is a recent theory that addresses this issue, but is shown here to
be dynamically ill-posed for large solid volume fractions. An alternative well-posed
theory is introduced that includes additional dependence on the particle-phase dilation
and compression. The new theory, denoted vCIDR, is tested numerically to show
grid convergence for problems in which the μ(J), Φ(J) rheology instead suffers from
catastrophic blow-up. A further well-posed extension provides a framework for handling
the transition between viscous and inertial flows.

Key words: suspensions, particle/fluid flow

1. Introduction

The flow of a composite material consisting of inert non-Brownian solid spheres dispersed
in a background viscous fluid clearly differs from both pure fluid flow and the motion
of dry grains in a vacuum. When the entrained particles are large enough for thermal
fluctuations to be negligible, such composite materials are commonly referred to as
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suspensions, distinguishing them from colloids. Early theoretical descriptions of the
rheology of suspensions treat the material as an effective fluid and aim to describe
the influence of the solid spheres on the viscosity. Einstein (1911) considered a single
suspended sphere, derived the energy dissipated by the sphere, and carried out a
homogenisation to show that the dependence of the effective viscosity η on the fluid
viscosity ηf and the solid volume fraction φ is well approximated by the formula
η ≈ ηf (1 + 5φ/2), which remains accurate at low solid volume fraction. Subsequent
works (Bingham & White 1911; Batchelor & Green 1972) refined this result by using
higher-order expansions and by incorporating additional hydrodynamic effects to motivate
semi-empirical fits (Krieger & Dougherty 1959). However, whilst it is clear that these
theories have the correct limiting behaviour as φ → 0, they predict unphysical behaviour
as φ is increased because in reality a jamming limit is observed at a critical packing
fraction φ = φm, where the effective viscosity apparently tends to infinity (Frankel &
Acrivos 1967; Boyer, Guazzelli & Pouliquen 2011). Even below this critical value,
the interactions between solid particles become increasingly significant and eventually
dominant as the jamming limit is approached.

In the past two decades, the understanding and modelling of the solid-phase dynamics
in suspensions has been greatly improved, through both experimental and theoretical
endeavours. As summarised in the review of Guazzelli & Pouliquen (2018), there are
now a wealth of rheological measurements, in multiple geometries, characterising the
dependence of the effective viscosity over the full range of φ. Amongst these, the
experiments of Boyer et al. (2011) stand out as offering an additional level of insight into
the role of the particle dynamics. In order to isolate the particle-phase rheology from the
mixture response, Boyer et al. (2011) employed a novel shear rheometer in which flow
is driven by a top plate that is permeable to liquid but not particles. These experiments
allowed for the strain rate γ̇ and the particle pressure p to be controlled independently
while φ and the bulk friction μ were measured. The key observation is that at steady state,
a dimensionless strain rate, the viscous number

J = ηf γ̇

p
, (1.1)

controls both the effective friction (via a constitutive relation μ = μ(J)) and the
packing fraction, with a dependence φ = Φ(J). The resulting μ(J), Φ(J) rheology has
subsequently been found to be a reliable description of the steady-state particle rheology
for suspensions in many geometries (Lecampion & Garagash 2014; Rauter 2021).

The structure of the Boyer et al. (2011) μ(J), Φ(J) rheology is similar to corresponding
models for dry granular materials. For steady granular flow, a different dimensionless
strain rate, the inertial number I, is observed in experiments to be the controlling variable.
The significance of the inertial number inspired the incompressible μ(I) rheology of Jop,
Forterre & Pouliquen (2006), in which φ is a constant, and the μ(I), Φ(I) rheology of
Pouliquen et al. (2006), with φ = Φ(I) allowed to vary. The functional forms of the
μ(J) and Φ(J) relations proposed by Boyer et al. (2011) share fundamental properties
with the μ(I), Φ(I) rheology of dry granular materials. Specifically, μ is a strictly
increasing function in both theories, whereas Φ is decreasing, and a static yield stress
with μ = μ1 and φ = φm is recovered as J or I tends to zero. These similarities correspond
to the property that frictional grain contacts dominate suspension rheology at large solid
fractions.

The μ(J), Φ(J) rheology introduces compressibility of the particle phase by allowing
φ to vary as deformation and motion proceed. However, the relation φ = Φ(J) constrains
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Well- and ill-posedness of single-phase suspension models

the evolution and spatial distribution of φ to depend a priori on the viscous number J,
independently of other details of the motion. A consequence of this constraint is that, as in
the μ(I), Φ(I) rheology for dry granular materials, the resulting equations of motion tend
to be dynamically ill-posed (Heyman et al. 2017; Schaeffer et al. 2019). This unsavoury
feature means that high-frequency spatial variations grow exponentially in time, at a
rate that depends quadratically on the frequency or wavenumber. Known technically as
Hadamard ill-posedness (Hadamard 1902), this property is investigated by linearising the
dynamic equations of motion and characterising the growth rates associated with spatial
Fourier modes. As ill-posedness corresponds to unbounded positive growth rates due to
the leading-order terms, nonlinear contributions to the stability (see Goddard & Lee 2017)
are insufficient to regularise the behaviour.

These aspects of ill-posedness contrast physically realistic dispersion relations that have
pure decay, a finite cut-off or an asymptotic limit. Another significant consequence of
dynamic ill-posedness is that although low-resolution numerical simulations are well
behaved, grid refinement corresponds to increasing the wavenumber that is accessible
by the calculation so that sufficiently high-resolution numerical simulations exhibit
large-grid-scale oscillations that are unphysical (see e.g. Barker & Gray 2017; Martin et al.
2017).

Dynamic ill-posedness has long been recognised as a limitation of continuum theories
of time-dependent flow of dry granular materials under the assumption that the material
is incompressible, so that φ is constant (see Pitman & Schaeffer 1987; Schaeffer 1987).
Pertinently, Barker et al. (2015) established that the incompressible μ(I) rheology of Jop
et al. (2006) suffers from ill-posedness in specific regimes, notably large or small values
of I. There was hope that introducing compressibility would stabilise the dynamics, but
as demonstrated by Heyman et al. (2017), the μ(I), Φ(I) rheology changes the conditions
on ill-posedness but does not eliminate it. Similarly, the new analysis in the present paper
demonstrates that the μ(J), Φ(J) rheology for suspensions leads to ill-posed equations
whenever the viscous number J is below a threshold value J = Jcrit. Since φ = Φ(J)

is decreasing, ill-posedness appears for all solid volume fractions above a critical value
φcrit = Φ(Jcrit). Because φcrit < φm = Φ(0), the problematic unphysical behaviour of
ill-posedness is exhibited by the μ(J), Φ(J) rheology, even before the jamming transition
is reached. Crucially, the general aspects of this finding are not limited to the specifics of
the μ(J), Φ(J) rheology because, as discussed by Boyer et al. (2011), classical theories in
which the effective mixture viscosity is a function of the solid volume fraction only can be
reformulated as versions of the μ(J), Φ(J) rheology.

In Barker et al. (2017) and Schaeffer et al. (2019), a substantially different approach was
introduced by generalising the role of φ so that it evolves dynamically in conjunction with
invariants of the strain rate and stress tensors. These ideas derive from soil mechanics,
in particular the theory of critical-state soil mechanics (Jackson 1983). In Barker et al.
(2017), the Coulomb-type friction law used in the μ(I) framework was extended to general
yield-stress functions, and the strict φ = Φ(I) relation was replaced by a dilatancy rule
in which the velocity divergence is specified as a function of the state variables. This
new system of equations is called the compressible I-dependent rheology (CIDR) and,
as shown by Barker et al. (2017), leads to dynamic equations that are well-posed, in the
sense that growth rates of Fourier modes for the linearised equations are bounded above
with respect to wavenumber, provided that the constitutive functions are chosen to satisfy
specific criteria. In the original formulation, CIDR was intended for dry granular flow
beyond the jamming transition φ > φm, in the so-called quasi-static regime. The approach
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was later successfully reformulated for the inertial regime φ < φm, as iCIDR, in Schaeffer
et al. (2019).

In the present paper, two new versions of CIDR are introduced for the particle-phase
rheology in suspensions: vCIDR, which is based around dependence on the viscous
number; and viCIDR, which includes both inertial and viscous scalings. In each of these,
conditions on the yield condition and dilatancy rule that guarantee well-posedness are
formulated that are applicable to all stress states, packing fractions and deformations.
Inclusion of the viscous number J in the CIDR constitutive equations, along with
modifying the role of the function μ, changes the analysis significantly, but the
resulting conditions guaranteeing well-posedness for vCIDR and viCIDR are each
natural generalisations of the results for dry granular materials under CIDR. The
dynamic equations with vCIDR are then tested numerically with an initial velocity
field that oscillates spatially with large wavenumber. It is shown that calculations
using the μ(J), Φ(J) rheology blow up sharply, whereas the vCIDR formulation gives
grid-converged results that are independent of the resolution as it is refined. A further
test demonstrates that an inhomogeneous initial solid fraction distribution homogenises
smoothly over time, even when close to the jamming transition.

In § 2, the tensorial equations of motion of the μ(J), Φ(J) rheology are introduced
as an extension to the dry granular flow equations. These equations are shown to be
ill-posed for small values of the viscous number J in § 3. This result is then demonstrated
in numerical solutions in § 4. In § 5, ideas from Barker et al. (2017) are employed to
formulate the vCIDR rheology for suspensions, and to show that the equations of motion
are well-posed under general conditions on the constitutive functions. This section also
includes an illustration of how the yield condition and dilatancy rule can be formulated in
order to recover the μ(J), Φ(J) rheology for isochoric deformations, i.e. those for which
the flow is steady and the velocity is divergence-free. Numerical simulations in § 6 verify
the well-posed behaviour of vCIDR for a shear flow. In § 7, a further generalisation of the
theory is made to allow for flows with a wider range of strain rates, including those for
which both the viscous number and the inertial number are non-negligible; this theory is
named viCIDR.

2. Equations of motion

In this section, the continuum equations for dry granular flow, with μ(I) rheology, are
summarised alongside the equivalent relations derived from the μ(J) and Φ(J) relations
of Boyer et al. (2011) for particles in suspension. The dependent variables in these systems
of equations in two space dimensions are the volume fraction of particles φ, the velocity
u = (u1, u2), and the particle pressure p. These functions of spatial variables (x1, x2) and
time t satisfy the system of partial differential equations (PDEs) representing conservation
of mass and momentum, augmented by constitutive laws. From the outset, the partial
density of the grains (defined per unit mixture volume) is taken to be ρ = ρ∗φ, where
ρ∗ is the constant intrinsic density of the solid particles. Allowing for compressibility
through φ variation, conservation of mass is then expressed as

∂tφ + ∇ · (φu) = 0, (2.1)

and conservation of momentum is

ρ∗φ(∂tu + (u · ∇)u) = −∇p + ∇ · τ + ρ∗φb, (2.2)

where the vector b represents acceleration due to body forces, such as gravity and drag,
and the deviatoric shear-stress tensor τ comes from decomposing the two-dimensional
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Cauchy stress tensor σ as

σij = −pδij + τij, i, j = 1, 2. (2.3)

The equations of motion are supplemented by constitutive equations and assumptions as
follows. Alignment of shear stress and strain rate, i.e.

τ

‖τ‖ = S
‖S‖ , (2.4)

is assumed here, in which S = (Sij) is the deviatoric part of the strain rate,

Sij = 1
2 (∂iuj + ∂jui) − 1

2 (div u)δij, (2.5)

with second invariant

‖S‖ =

√√√√√1
2

2∑
i,j=1

S2
ij, (2.6)

and the Drucker–Prager type (Lubliner 1990) yield condition during deformation implies

‖τ‖ = μp. (2.7)

If the friction coefficient μ = μs is a constant, then this expression is equivalent to the
classical Drucker–Prager theory, whereas including dependence on the inertial number

I = 2d ‖S‖√
p/ρ∗

(2.8)

leads instead to the μ(I) rheology of Jop et al. (2006) for dry granular materials.

2.1. The μ(J), Φ(J) rheology
To describe the rheology of particles in suspension, Boyer et al. (2011) introduced the
viscous number

J = 2ηf ‖S‖
p

, (2.9)

where ηf is the viscosity of the background fluid. Although different from the inertial
number I, J retains a dependence on the shear rate ‖S‖ and the particle pressure p. It should
be noted that both I and J appear to have an extra factor 2 compared to the corresponding
definitions in Boyer et al. (2011) due to the connection between ‖S‖ and the classical scalar
shear rate: γ̇ = 2‖S‖.

As demonstrated by Boyer et al. (2011), steady isochoric shear flows have μ = μ(J),
with an increasing and unbounded function, with a proposed form

μ(J) = μ1 + μ2 − μ1

1 + J0/J
+ J + 5

2
φmJ1/2, (2.10)

which involves a contact contribution (the first two terms) and a hydrodynamic part (the
last two terms). Combining the μ(J) relation with the yield condition (2.7) and alignment
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ηf = 3.1 Pa s φm = 0.585 J0 = 0.005 μ1 = 0.32 μ2 = 0.7

Table 1. Model parameters from Boyer et al. (2011) that characterise steady uniform flow in their
three-dimensional experiments.

(2.4) specifies the shear-stress tensor

τ = μ(J) p
‖S‖ S, (2.11)

which defines an effective non-Newtonian viscosity for the suspension

ηs = μ(J)p
2‖S‖ . (2.12)

In component form, conservation of momentum becomes

ρ∗φ(∂tui + uj∂jui) = ∂j

[
μ(J) p
‖S‖ Sij

]
− ∂ip + ρ∗φbi, i = 1, 2. (2.13)

Compressibility in Boyer et al. (2011) is included as a constitutive equation by tying φ to
the viscous number:

φ = Φ(J), (2.14)

with Φ being a strictly decreasing function of J. A well-established form for Φ is

Φ(J) = φm

1 + √
J
, (2.15)

with inverse function J :

J (φ) ≡ Φ−1(φ) =
(

φm

φ
− 1

)2

. (2.16)

Typical parameters for these constitutive relations are given in table 1. Solving (2.9) for p
and using J = J (φ) gives

p = 2ηf ‖S‖
J (φ)

, (2.17)

i.e. an equation of state in which stresses depend on the second invariant of the strain rate
tensor and the solid volume fraction.

3. Analysis of well-posedness for the Boyer et al. (2011) model

Here, it is shown that the μ(J), Φ(J) equations are well-posed only when μ(J) > 1.
As demonstrated in § 4, the loss of well-posedness at low viscous number (i.e. high
confining pressure or small strain rate) has catastrophic implications for high-resolution
numerical simulations of time-dependent flow, even though low-resolution simulations
may appear to be well-behaved. Given (2.10), the constraint for well-posedness is
equivalent to requiring J > Jcrit, where for the parameters given in table 1, the critical
value is Jcrit ≈ 0.0417. Similarly, (2.15) implies a corresponding maximal volume fraction
φ = φcrit = Φ(Jcrit) ≈ 0.486, above which the equations are predicted to be ill-posed.
This partitioning of the parameter space is shown graphically in figure 1.
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Figure 1. The ill-posed white region and well-posed grey region for the μ(J), Φ(J) rheology of Boyer et al.
(2011). Vertical black lines are the neutral stability point at J = Jcrit ≈ 0.0417, and the curves are the relations
(2.10) and (2.15) with parameters given in table 1.

3.1. Linearisation of the equations
Equations (2.1) and (2.13) are linearised by appealing to Barker et al. (2015) for some
of the manipulations that simplify the calculation. Note that φ is retained as an evolving
variable, whereas in (2.13), μ = μ(J). Retaining this point of view, the constitutive law

φ = Φ(J) (3.1)

is linearised rather than substituting (3.1) into the PDE system. Consequently, the variables
are φ, u, p. As the intrinsic density ρ∗ is constant, it is actually more compact in the
following to work instead with the scaled pressure

P = p
ρ∗

, (3.2)

in effect dividing both sides of the momentum balance (2.13) by ρ∗. The new variables are
perturbed about a base state φ0 = Φ(J0), u0, P0, in which J = J0 is given by (2.9) with
p = ρ∗P , so that

φ = φ0 + φ̂, u = u0 + û, P = P0 + P̂ . (3.3a–c)

The base state can vary in space, but coefficients involving the base state will be treated
as constant, which is consistent with high wavenumber behaviour. Substituting into the
equations and retaining terms linear in the perturbed fields means that, for instance, mass
balance (2.1) reduces to

∂tφ̂ + φ0 ∇ · û + u0 · ∇φ̂ = 0. (3.4)

Note that some terms, such as φ̂ ∇ · u0, have been dropped since this term will be
dominated at high wavenumber by the term u0 · ∇φ̂, which has derivative φ̂. This
elimination has been carried out with other terms in this equation, and will also be made
in what follows to avoid cluttering the calculation with unnecessary terms. In fact, through
this process, only the terms that contribute to the principal part of the linearised equations
are retained. It is also convenient to write (3.4) in component form:

∂tφ̂ + φ0 ∂jûj + u0
j ∂jφ̂ = 0. (3.5)

To linearise the momentum equation (2.13), there is a complicated collection of the
linearisations of nonlinear terms. These are essentially executed in Barker et al. (2015),
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except that in that paper, use is made of the assumption of incompressibility, ∇ · u = 0,
and the non-dimensional strain rate is different, resulting in slightly different formulas. In
the case of the μ(J), Φ(J) rheology, some useful derivations (summing repeated indices
here and elsewhere) are

∂jSij = 1
2

∂jjui (i = 1, 2), ∂PJ = − J
P , ∂‖S‖J = J

‖S‖ . (3.6a–c)

As in Barker et al. (2015), quantities determined from the base state are introduced,
including the normalized strain rate tensor A = (Aij):

A = S
‖S‖ , η0 = μP0

2‖S‖ , ν = J0 μ′(J0)

μ(J0)
, q = μ(1 − ν), r = 1 − ν. (3.7a–e)

Given these, the principal part of the linearisation of the momentum equations can be
written as

φ0 ∂tûi = η0[∂jjûi − rAijAkl ∂j∂lûk] + [qAij ∂j − ∂i]P̂ + φ̂bi. (3.8)

Finally, to complete the leading-order system, (3.1) is linearised, bearing in mind that J
depends on the dependent variables. Thus

φ̂ = Φ ′(J0)

[
J0

4‖S‖ Ajk(∂jûk + ∂kûj) − J0

P0 P̂
]

. (3.9)

3.2. Eigenvalue problem
In the next step, the coefficients in the linear system (3.5), (3.8) and (3.9) are frozen and
solutions of the normal mode form⎡

⎣φ̂

û
P̂

⎤
⎦ = exp(iξ · x + λt)

⎡
⎣φ̃

ũ
P̃

⎤
⎦ , (3.10)

with constants φ̃, ũ and P̃ , are sought. Here, ξ is the spatial wavenumber, and λ is
the temporal growth or decay rate. Substituting into (3.5), (3.8) and (3.9), a generalised
eigenvalue problem is recovered (dropping the superscript 0 from the base state as in
Barker et al. (2015) for brevity):

λφ̃ + iφξjũj + iujξjφ̃ = 0, (3.11)

φλũi = η[−|ξ |2ũi + rAijAklξjξlũk] + i[qAijξj − ξi]P̃ + φ̃bi, (3.12)

φ̃ = Φ ′(J)

[
i

J
2‖S‖ Ajkξjũk − J

P P̃
]

. (3.13)

These equations form a 4 × 4 generalised eigenvalue problem for λ = λ(ξ). It is
convenient to rotate the coordinates ξ to diagonalise the trace-free symmetric matrix A,
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so that one may take (since ‖A‖ = 1)

A =
[

1 0
0 −1

]
. (3.14)

Naturally, this greatly simplifies the equations:

λφ̃ + iφξjũj + iujξjφ̃ = 0, (3.15)

φλũ1 = η[−|ξ |2ũ1 + rξ1(ξ1ũ1 − ξ2ũ2)] + i(q − 1)ξ1P̃ + φ̃b1, (3.16)

φλũ2 = η[−|ξ |2ũ2 − rξ2(ξ1ũ1 − ξ2ũ2)] − i(q + 1)ξ2P̃ + φ̃b2, (3.17)

φ̃ = Φ ′(J)

[
i

J
2‖S‖ (ξ1ũ1 − ξ2ũ2) − J

P P̃
]

. (3.18)

To find the values of λ for which the system has non-trivial solutions, characteristic
equation det B(λ, ξ) = 0 is solved, where B(λ, ξ) is the coefficient matrix for the system:

B(λ, ξ1, ξ2)

=

⎡
⎢⎢⎢⎢⎢⎣

λ+ i(u1ξ1 + u2ξ2) iφξ1 iφξ2 0

−b1 φλ+ η[(1 − r)ξ2
1 + ξ2

2 ] ηrξ1ξ2 −i(q − 1)ξ1

−b2 ηrξ1ξ2 φλ+ η[ξ2
1 + (1 − r)ξ2

2 ] i(q + 1)ξ2

−1
Φ ′J

2‖S‖ iξ1 − Φ ′J
2‖S‖ iξ2 −Φ ′J

P

⎤
⎥⎥⎥⎥⎥⎦.

(3.19)

The terms with uj, bj, j = 1, 2, do not contribute to the high-frequency regime, so these
constants are set to zero. In particular, inclusion of body forces with arbitrary dependence
on the flow variables, but not their gradients, does not affect this derivation. This may be
important when modelling, for example, drag forces between fluid and particles.

After some simplification, this leads to a cubic equation for λ:

det(B) = 2
aφ2

P λ3 − aφ

‖S‖P k2[2‖S‖η(r − 2) + P(cos(2θ) − q)]λ2

+
(

aη

‖S‖P k4[2‖S‖η(1 − r) + P(q − cos(2θ))] − φ2k2[1 − q cos(2θ)]
)
λ

+ φηk4[1 − r sin2(2θ) − q cos(2θ)] = 0, (3.20)

where a = −Φ ′J/2 > 0 for J > 0, ξ1 = k cos θ , ξ2 = k sin θ .
Equation (3.20) is conveniently written as a polynomial in λ:

ac1λ
3 + ac2k2λ2 + ac3k4λ+ c4k2λ+ c5k4 = 0, (3.21)

in which the coefficients cj, j = 1, . . . , 5, depend on the parameters η, q, r given by (3.7):

c1 = 2φ2

P , c2 = φ

‖S‖ (2μ − cos(2θ)), c4 = φ2[1 − μ(1 − ν) cos(2θ)],

c3 = − η

‖S‖P [2‖S‖η(r − 1) + P(cos(2θ) − q)] = μP
2‖S‖2 (μ − cos(2θ)),

c5 = φη[1 − μ(1 − ν) cos(2θ) − (1 − ν) sin2(2θ)].

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.22a–e)
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The signs of the coefficients are now apparent: c1 > 0, and c2 changes sign as a function
of θ if and only if μ < 1

2 , otherwise c2 ≥ 0. Coefficient c3 changes sign in intervals around
θ = 0 and θ = π if μ < 1, and otherwise (for μ > 1) remains positive. The coefficient
c5 is significant in the incompressible limit a → 0, and may change sign in a narrow
interval of θ . This occurs because ν > 0 approaches zero as J → 0, and tends to unity as
J → ∞. Close to these limits, c5 changes sign for θ in an interval around θ = π/4. This
behaviour corresponds to the analysis of the incompressible granular equations in Barker
et al. (2015).

Of the three eigenvalues λ when a > 0, one is O(1) to leading order (and hence
bounded), and two are O(k2). To see this, consider the asymptotic expansion of λ as a
function of k as k → ∞, bearing in mind that all the coefficients in (3.21) are powers of
k2:

λ = b2k2 + b0 + b−2k−2 + · · · , k → ∞. (3.23)

Substituting into (3.21), we see that (with a > 0) the leading-order terms are either O(k4),
when b2 = 0, or O(k6), when b2 /= 0. In the first case, λ = −c5/(ac3) + O(k−2) is a
constant to leading order. In the second case, the dominant terms are the first three in
the equation, thus b2 /= 0 satisfies the quadratic equation c1b2

2 + c2b2 + c3 = 0, for which
the two solutions are real and explicit, leading to the two values of λ to O(k2):

λ1(ξ) = − Pμ

2φ‖S‖ k2 < 0 and λ2(ξ) = P
φ‖S‖ (cos(2θ) − μ)k2. (3.24a,b)

Incidentally, in this asymptotic analysis of (3.21), we observe that the fourth term is lower
order in both cases λ ∼ b0 and λ ∼ b2k2. For the incompressible granular flow mentioned
earlier, a → 0, and there is a single eigenvalue, which to leading order is λ = −(c5/c4)k2.
Here, the signs of c4 and c5 are significant and are analysed in Barker et al. (2015).

From (3.24b), we observe that the system is linearly ill-posed if and only if there
are wavenumber angles θ satisfying cos(2θ) − μ > 0, which is equivalent to requiring
μ(J) ≥ 1 for well-posedness. The range of ill-posed directions, when μ < 1, is represented
graphically in figure 2. Summarising the result for the μ(J), Φ(J) rheology: assuming
Φ ′(J) < 0, the system of (2.1) and (2.13) is ill-posed in the regime where μ(J) < 1.
Conversely, for μ(J) > 1, all eigenvalues are real and bounded for all sufficiently
large wavenumbers, and are therefore globally bounded as functions of wavenumber.
Consequently, the equations are well-posed for viscous numbers J in this regime. Taking
typical parameters given in table 1, the implications of this condition are now elaborated.
Given (2.10), the ill-posedness condition μ(J) < 1 is equivalent to J < Jcrit, where for
the parameters given in table 1, Jcrit ≈ 0.0417. Similarly, (2.15) gives a corresponding
maximal volume fraction φ = φcrit = Φ(Jcrit) ≈ 0.486 above which the equations are
ill-posed. These conditions, and the related ranges of ill-posedness and well-posedness,
are shown in figure 1.

4. Numerical solutions in a volume-controlled shear cell

Similarly to the experiments of Boyer et al. (2011), flow in a parallel-plate shear cell is
considered here. The assumption is that the fields are invariant of the driving direction
x and depend only on the perpendicular coordinate z. The flow is driven by a top plate
moving at speed V at z = h, and the bottom at z = 0 is held static. Here, the cell height h is
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Figure 2. White regions containing ill-posed perturbation directions, and grey regions with decaying modes
for the μ(J), Φ(J) rheology, separated by black neutral curves. (a) System (3.14), chosen for algebraic ease. (b)
Here, A = [0, 1; 1, 0], which describes planar shearing. We choose μ = μ1 for illustrative purposes.

fixed, so that the volume of material is a constant in this semi-infinite domain. Introducing
the scalings

(x, z) = h(x̃, z̃), (u, w) = V(ũ, w̃), S = (V/h)S̃,

t = (h/V)t̃, ( p, τ ) = ρ∗V2(p̃, τ̃ ),

}
(4.1a–e)

the resultant one-dimensional solutions for φ(z, t) and the non-dimensional velocities
ũ(z, t) and w̃(z, t) (in the x̃ and z̃ directions, respectively) satisfy mass conservation

∂φ

∂ t̃
= −w̃

∂φ

∂ z̃
− φ

∂w̃
∂ z̃

, (4.2)

and momentum balances in x̃,

∂ ũ
∂ t̃

= −w̃
∂ ũ
∂ z̃

+ 1
φ

∂τ̃xz

∂ z̃
, (4.3)

and in z̃,
∂w̃
∂ t̃

= −w̃
∂w̃
∂ z̃

+ 1
φ

(
−∂ p̃

∂ z̃
+ ∂τ̃zz

∂ z̃

)
. (4.4)

These equations are then closed using the constitutive laws (2.7) and (2.17), which specify
the shear-stress components and the pressure in terms of φ and gradients of the velocities.
In non-dimensional variables, these become

τ̃ij = μ(J) p̃

‖S̃‖ S̃ij, p̃ = 2η̃f
‖S̃‖
J (φ)

, (4.5a,b)

where the non-dimensional viscosity is

η̃f = ηf

ρ∗Vh
. (4.6)

To drive the flow and conserve mass, the no-slip and no-penetration conditions in
non-dimensional variables become

ũ =
{

0,

1,
and w̃ =

{
0, at z̃ = 0,

0, at z̃ = 1.
(4.7a,b)
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It should be noted that the full solid pressure p is employed here, and in everything that
follows, rather than the scaled pressure P defined in (3.2).

A trivial steady solution exists that has uniform volume fraction φ = φ0, linear shearing
ũ = z̃, and no vertical motion w̃ = 0. This solution is expected to be stable, representing
the long-time behaviour of solutions with appropriate boundary conditions and for
arbitrary perturbations of the steady solution as initial data. The transient behaviour
away from this case is explored here numerically using the method of lines (MOL)
algorithm (Schiesser 2012) as developed and employed in Schaeffer et al. (2019). This
code takes first-order finite differences for the spatial gradients in the PDEs, generating
a system of coupled ordinary differential equations. These are then solved in time using
MATLAB’s ODE15s routine, which enables fast convergence (typically in seconds) due
to the variable-step, variable-order aspects of the algorithm.

The initial conditions for all of the cases considered in this section consist of a small
perturbation in w away from the steady linear shearing solution

ũ(z̃, t̃ = 0) = z̃, w̃(z̃, t̃ = 0) = ε sin(kz̃), φ(z̃, t̃ = 0) = φ0, (4.8a–c)

where ε is a small parameter and k is a chosen wavenumber. As shown in figures 3 and 4,
these initial data can lead to different temporal behaviour, depending on the mean solid
volume fraction φ0 and the grid resolution, quantified here by the number of nodes per
wavelength

Nλ = Nz

k
, (4.9)

where Nz is the total number of grid points in 0 ≤ z̃ ≤ 1.
As detailed in figures 3(a,b) and 4(a), the solutions exhibit convergence towards the

steady solution for the well-posed case φ0 < φcrit. Conversely, when φ0 > φcrit, there is
extreme grid dependence, with higher resolutions showing a fast divergence, as plotted
in figures 3(c,d) and 4(b), which is a clear indication that the equations being solved are
ill-posed.

5. CIDR for viscous flow: vCIDR

In the context of dry granular flow, a similar argument to that of § 3 shows that the
μ(I), Φ(I) rheology proposed in Pouliquen et al. (2006) also leads to ill-posed dynamic
equations whenever the flow fields satisfy a certain condition, one that cannot be avoided
in general flow conditions. Indeed, the result is published in the papers of Heyman
et al. (2017) and Schaeffer et al. (2019). However, in Barker et al. (2017), it was
shown how to formulate compressible granular flow equations that are well-posed for
all flows, by replacing the φ = Φ(I) constraint by a suitably chosen dilatancy rule. The
resulting general theory, called compressible I-dependent rheology (CIDR), allows for
many different specific choices for the yield-stress and dilatancy functions. In this section,
well-posed equations for suspensions are derived using the approach of CIDR. The new
yield condition and dilatancy rule, which are defined by this procedure, are given alongside
prototype choices for their functional forms. The new theory, for suspensions, is denoted
as vCIDR (‘viscous CIDR’).

For vCIDR, the yield condition (2.7) is replaced by a more general form,

‖τ‖ = Y( p, φ, J), (5.1)

and compressibility is governed by a dilatancy rule (cf. Pailha & Pouliquen 2009)

div u = 2 f ( p, φ, J) ‖S‖. (5.2)
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Figure 3. Snapshots of the flow fields as functions of the vertical coordinate z̃ at progressive times in
simulations with the same initial perturbation (4.8) (ε = 0.01, k = 40π), grid resolution Nλ = 25, and
non-dimensional fluid viscosity η̃f = 3.1. Panels (a,b) are for the well-posed case φ0 = 0.35, and (c,d) are
for an ill-posed initial packing fraction φ0 = 0.55. Note that the output times are different for each case as the
ill-posed simulation fails at t̃ ≈ 1.08 × 10−6. Panels (b) and (d) are of the same vertical velocity fields as in
(a) and (c), respectively, but zoomed into the centre of the domain in a range spanning one wavelength of the
initial perturbation. Animations of these computations can be found in supplementary movies 1 and 2, available
at https://doi.org/10.1017/jfm.2022.1004, and plots of the full transient evolution are given in figure 4.

The yield-stress function Y and dilatancy function f are then to be specified. Physically,
the CIDR constitutive equations imply that for transient flows, both the shear stress and
the pressure should depend on the packing fraction, the shear strain rate and the dilation
rate. Because the Boyer et al. (2011) experiments and the particle simulations of Trulsson,
Andreotti & Claudin (2012) and Ness & Sun (2016) have already verified the steady-state
functional forms of the μ(J), Φ(I) relations, even in the ill-posed range φ > φcrit, this
mechanism of regularisation, by which the structure of the dynamic equations is modified,
is preferred to the method employed by Barker & Gray (2017) in which the functional form
of the steady rheology was modified to generate well-posed equations.

The conditions for well-posedness derived by Barker et al. (2017) for the I-dependent
theory are summarised in Appendix A. For vCIDR, these conditions are modified slightly
because the definition of the viscous number (2.9) is different from that of the inertial
number (2.8) for dry granular materials. An important consequence for vCIDR is that

∂J
∂p

= −J
p
, where as

∂I
∂p

= − I
2p

. (5.3)

Accounting for this difference, it is straightforward to modify (A3) so that the vCIDR
equations are linearly well-posed if the following three conditions on the constitutive
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Figure 4. Comparison of the temporal behaviour of the maximum amplitude of w̃ at different spatial
resolutions with the μ(J), Φ(J) rheology. The cases with Nλ = 25 are those from figure 3. All cases have
the same initial perturbation (4.8) with ε = 0.01 and k = 40π. Panel (a) is for φ0 = 0.35, which lies in the
well-posed range, whereas (b) has φ0 = 0.55, which gives ill-posed equations.

functions Y, f are satisfied:

∂Y
∂p

− J
p

∂Y
∂J

= f + J
∂f
∂J

,
∂Y
∂J

> 0,
∂f
∂p

− J
p

∂f
∂J

< 0. (5.4a–c)

An additional benefit of the structure of the vCIDR equations is that, as discussed
in Goddard & Lee (2018) and Schaeffer et al. (2019), the well-posedness conditions
(5.4) in turn guarantee Onsager symmetry and positive dissipation rates (as illustrated in
Appendix B). These important thermodynamic implications are, however, not present in
the alternative compressible formulation of Heyman et al. (2017) in which the dissipative
terms (∇ · τ ) are instead based upon the inclusion of a φ-dependent volumetric viscosity.

5.1. Connection to μ(J), Φ(J) rheology
Many constitutive functions Y( p, φ, J) and f ( p, φ, J) satisfying (5.4) are possible. The
PDE relating Y and f is independent of φ, as are the inequality constraints. However, in
choosing these functions, it is desirable to maintain consistency with μ(J), Φ(J) rheology
in the case of isochoric deformations, for which φ = Φ(J) when ∇ · u = 0. To accomplish
this property, take

Y( p, φ, J) = μ(J) p and f ( p, φ, J) = 0 if and only if J = J (φ), (5.5)

where the function J is the inverse of Φ, the strictly decreasing function in (2.14), which
represents the viscous number for steady isochoric flow only.
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One strategy for constructing suitable functions Y and f is to first specify Y( p, φ, J)

so that Y( p, Φ(J), J) = μ(J)p and YJ = μ′(J)p > 0, and then construct f ( p, φ, J) by
solving the linear ordinary differential equation Yp − (J/p)YJ = f + JfJ for f as a function
of J, with the side condition from (5.5). This can be achieved by letting

Y( p, φ, J) = μ(J (φ))
α + (1 − α)J

α + (1 − α)J (φ)
p, with 0 < α < 1, (5.6)

where α is a new material parameter. Then

f ( p, φ, J) = μ(J (φ)) α

α + (1 − α)J (φ)

(
1 − J (φ)

J

)
. (5.7)

With these definitions, it is straightforward to check the conditions (5.4) and (5.5). In
summary, with yield-stress and dilatancy specified by (5.6) and (5.7), the vCIDR rheology
for suspensions is well-posed.

Equation (5.7) can be rearranged to isolate the viscous number J:

J = Γ (φ)J (φ)

Γ (φ) − f
, where Γ (φ) = α μ(J (φ))

α + (1 − α)J (φ)
, (5.8a,b)

and f = ∇ · u/(2‖S‖) is used for brevity. From its general definition (2.9), the dynamic
viscous number defines the pressure as

p = P(φ, ‖S‖, ∇ · u) = 2ηf ‖S‖
J

= ηf

Γ (φ)J (φ)
[2Γ (φ) ‖S‖ − ∇ · u]+, (5.9)

where the notation [X]+ = max(X, 0) ensures that the pressure is non-negative, thus
embodying the notion that the granular phase cannot sustain tension and that grains lose
contact if the dilation is sufficiently fast compared to the shearing rate. When this equation
of state for the pressure is substituted into the yield-stress function (5.6), the shear-stress
tensor

τ = Y(P, φ, J)
S

‖S‖ = 2ηf

{
[2Γ (φ) ‖S‖ − ∇ · u]+

2J (φ) ‖S‖ + Γ (φ) (1 − α)

α

}
S (5.10)

is formed, which can then be combined with the mass and momentum balance equations
to generate a complete system of equations in terms of the natural kinematic variables φ

and spatial gradients of u.
As a point of interest, the above formulation can be compared with the classical

equations for compressible fluids. Following Chadwick (1976), the Cauchy stress tensor
of the compressible Navier–Stokes equations may be written

σ ij = {−P + ζ(∇ · u)} δij + 2ηSij, (5.11)

where η is the shear viscosity, ζ is the volumetric viscosity, and P is the thermodynamic
pressure, each of which can depend on the fluid’s local density and temperature (see e.g.
Fine & Millero 1973). For the vCIDR equations, the effective shear viscosity η = Y/‖S‖
depends on both of the strain-rate invariants ‖S‖ and tr(D) = ∇ · u, as well as the packing
fraction, as detailed in (5.10). The equation of state of the effective thermodynamic
pressure and the effective volumetric viscosity can then be found by comparing (5.11)
with (5.9) to reveal that P depends here on ‖S‖ and φ, whereas ζ depends only on φ.
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It is also illuminating to consider various limits of the vCIDR model. First, it
is reassuring to confirm that for the special case of isochoric planar flow (∇ · u =
0), (5.8) and (5.9) recover the Boyer et al. (2011) relations ‖τ‖ = μ(J (φ)) p and
p = 2ηf ‖S‖/J (φ). Then for volume-changing deformations, the new α parameter maps
between distinct material responses: α = 0 corresponds to incompressibility, and α = 1
gives rate-independent behaviour. However, the incompressible limit cannot be reached
since Γ (φ) → 0 as α → 0, from (5.8a), so that the pressure (5.9) in this limit is not
well defined. This is to be expected as for truly incompressible flow, the pressure is
either prescribed by external constraints or a response to the divergence-free velocity,
rather than originating in the kinematics and packing of grains. In the other distinct
limit, α → 1, the vCIDR relations approach a rate-independent bulk friction as Y/p →
μ(J (φ)), irrespective of the dilation rate, which leads to ill-posed dynamic equations.
Consequently, both extreme values of α must be strictly omitted, therefore α = 0.5 will be
used throughout the next section.

6. Numerical tests of vCIDR

Given the promising structure of the new vCIDR equations, in particular the guarantee
of well-posedness, it is now important to explore their spatio-temporal solutions. As
with the μ(J), Φ(J) rheology in § 4 and the iCIDR equation in Schaeffer et al. (2019),
here one-dimensional time-dependent solutions of flow in a shear cell are computed
numerically using the MOL algorithm. The non-dimensional equations (4.2)–(4.4) are
the same as in § 4. The key differences are that the non-dimensional pressure is given by

p̃ = η̃f

Γ (φ)J (φ)
[2Γ (φ) ‖S̃‖ − ∇̃ · ũ]+, (6.1)

and the non-dimensional shear-stress components are

τij = 2η̃f

{
[2Γ (φ) ‖S̃‖ − ∇̃ · ũ]+

2J (φ) ‖S̃‖ + Γ (φ) (1 − α)

α

}
S̃ij, (6.2)

instead of (4.5a,b) for the μ(J), Φ(J) rheology.
The first test of vCIDR considers the same high-frequency modes (4.8) that were

employed as initial data for the μ(J), Φ(J) rheology in § 4. For both the low-packing
fraction φ0 = 0.35 case and the high-packing fraction φ0 = 0.55 case, the solutions using
vCIDR follow qualitatively the trend shown in figures 3(a,b). Specifically, the initial
perturbation decays monotonically towards the uniform steady solution. Animations of
these solutions can be found in supplementary movies 3 and 4, and the decay of the vertical
velocity is tracked via the temporal evolution of its maximum value in figure 5.

Figure 5 also compares the vCIDR predictions directly with the equivalent behaviour
of the μ(J), Φ(J) rheology. The difference made by vCIDR is clear: whilst evolution is
almost identical in the low φ0 case, the vCIDR solutions are grid converged and lead
to long-time stability in the high φ0 case, unlike the grid-dependent blow-up observed
when the μ(J), Φ(J) rheology is solved in the same setting. Whilst expected due to the
well-posedness analysis, this difference in transient behaviour is both striking and suggests
that the new model is a good candidate for the simulation of realistic inhomogeneous flows
for which the volume fraction is likely to span a wide range of values.
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Figure 5. Temporal behaviour of the maximum amplitude of w̃ for the vCIDR model given α = 0.5 and
η̃f = 3.1. The initial conditions are identical to those in figures 3 and 4: (a) φ0 = 0.35, and (b) φ0 = 0.55.
Here, two high-resolution cases are shown, with solid curves corresponding to Nz = 500, and open circles to
Nz = 1000. Also reproduced, as dashed lines, are the equivalent high-resolution cases using the μ(J), Φ(J)

rheology from figure 4.

It is also interesting to consider larger perturbations, away from the steady long-time
solution, as initial data. Taking

ũ(z̃, t̃ = 0) = z̃, w̃(z̃, t̃ = 0) = 0, φ(z̃, t̃ = 0) = φcrit + A sin(2πz̃), (6.3a–c)

means that the bottom half of the domain initially has φ > φcrit, whereas the top half
has φ < φcrit. These initial conditions therefore straddle the point of ill-posedness for the
μ(J), Φ(J) rheology. The evolution away from this initial data, using vCIDR, is plotted in
figure 6. As expected, the steady solution is recovered in the long-time limit, and there
are no spurious oscillations found even when computing using a very fine resolution
(Nz = 401) mesh. An animation of this solution can be found in supplementary movie
5.

As a final numerical comparison, figure 7 plots the straddling simulation from figure 6
as a space–time colour map alongside an equivalent simulation using the μ(J), Φ(J)

rheology. As shown in figure 7(b), the μ(J), Φ(J) rheology code fails at an early time
(t̃ ≈ 2 × 10−4) due to spontaneous instabilities that emerge in the ill-posed high-packing
region at the bottom of the flow. In contrast, the vCIDR case shown in figure 7(a) exhibits
a smooth homogenisation of the initially non-uniform mass. In addition to effectively
demonstrating the connotations for numerical stability, in agreement with the analysis of
§§ 3 and 5, these simulations provide impetus that the vCIDR model would be a preferred
candidate for the simulation of other particle migration problems such as settling (Bang
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Figure 6. Evolution of the straddling initial data (6.3) with amplitude A = 0.05 for the vCIDR model with
α = 0.5 and η̃f = 3.1. Panel (a) shows the flow fields plotted at different times, and (b) is the evolution of the
minimum and maximum values of φ(z̃, t̃) in the domain. Solid lines are with Nz = 401, and open circles are
for Nz = 47.

et al. 2008) and transient channel flow (Lyon & Leal 1998), provided that a realistic drag
model is also employed.

7. Rheology spanning the viscous and inertial regimes

7.1. Formulation and general conditions for well-posedness of single-phase models
depending on both I and J

As described by Trulsson et al. (2012), there is a smooth transition between flow dominated
by I-dependence and flow dominated by J-dependence. This happens because the particle
Stokes number

St ≡ γ̇ρ∗d2

ηf
= I2

J
, (7.1)

which describes the ratio of inertial to viscous effects, varies with strain rate. At large
values of γ̇ , particle collisions become more important than hydrodynamic forces, and the
rheology of the suspension is effectively that of dry material. Trulsson et al. (2012) find a
good collapse for steady homogeneous flows by taking

‖τ‖
p

= μ(I, J) and φ = Φ(I, J), (7.2a,b)

i.e. a synthesis of the μ(I), Φ(I) rheology of Pouliquen et al. (2006) with the μ(J), Φ(J)

rheology of Boyer et al. (2011). Whilst it would be of interest to detail the well-posedness
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Figure 7. A space–time comparison, on a semi-logarithmic axis, of the solid volume fraction evolution from
the straddling initial condition (6.3) with A = 0.05 for (a) the vCIDR model, and (b) the μ(J), Φ(J) rheology.
Inset in (b) is the final solid volume fraction profile in the μ(J), Φ(J) rheology simulation before the failure
of numerical convergence; the dashed curve in that plot is the initial φ profile. The vCIDR simulation uses
Nz = 401 spatial points, whereas the μ(J), Φ(J) rheology is performed with Nz = 201. Animations of these
cases can be found in supplementary movies 5 and 6.

of this mixed rheology, § 3 of the present study and the work of Heyman et al. (2017)
already highlight severe deficiencies when either I- or J-dependence is negligible.

As a generalised synergy of both vCIDR and the previous I-dependent version, take

‖τ‖ = Y( p, φ, I, J), (7.3a)

∇ · u = 2‖S ‖f ( p, φ, I, J). (7.3b)

To ensure that this new rheology gives well-posed equations, the yield-stress function Y
and dilatancy function f should be chosen to satisfy

I
∂Y
∂I

+ J
∂Y
∂J

> 0, (7.4a)

∂f
∂p

− I
2p

∂f
∂I

− J
p

∂f
∂J

< 0, (7.4b)

∂Y
∂p

− I
2p

∂Y
∂I

− J
p

∂Y
∂J

= f + I
∂f
∂I

+ J
∂f
∂J

, (7.4c)

where the strain rate and pressure dependence of I and J enter independently.

7.2. An ill-posed example motivated by the equations of Baumgarten & Kamrin (2019)
Despite the extended system of constitutive functions (7.3) and their related
well-posedness conditions (7.4) appearing cumbersome, recent models can easily be cast
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into this framework. For example, Baumgarten & Kamrin (2019) propose

‖τ‖ =
[
μ1 + μ2 − μ1

1 + J0/
√

I2 + 2J
+ 5

2

(
φJ

aK
√

I2 + 2J

)

+ K3

(
φ − φm

1 + aK
√

I2 + 2J

)]
p (7.5)

and

p = (aKφ)2

(φm − φ)2 [ρ∗d2(2‖S‖ − K4 ∇ · u)2 + 2ηf (2‖S‖ − K4 ∇ · u)], (7.6)

where aK , K3 and K4 are constant material parameters. Incidentally, this formulation is
closely related to the proposed model of Trulsson et al. (2012) when value αK = 1/2
is taken in their combined viscous–inertial number K = J + αKI2. Comparison of these
particle-phase relations with (7.3) is aided as the yield-stress function (7.5) is already in
the form of (7.3a), whereas (7.6) must be rearranged into the form of a CIDR dilatancy
rule. Dividing both sides of (7.6) by p and collecting terms gives

I2(1 − K4f )2 + 2J(1 − K4f ) = A(φ), (7.7)

where f = ∇ · u/(2‖S‖) and

A(φ) = (φm − φ)2

(aKφ)2 . (7.8)

Solving the quadratic equation (7.7) for f and taking the most compressive branch (to
which Baumgarten & Kamrin (2019) limit attention) then gives

f ( p, φ, I, J) = I2 + J −
√

A(φ) I2 + J2

K4I2 . (7.9)

This form satisfies (7.4b) for all K4 > 0, and similarly (7.5) satisfies (7.4a) for typical
parameter values because all terms are increasing functions of I and J. However, these
specific choices do not satisfy the well-posedness consistency condition (7.4c). The
right-hand side is conveniently equal to 1/K4, which clearly is not matched by the left-hand
side as (7.5) is not of a complementary form.

It is important to note that the above analysis does not constitute a proof of ill-posedness
for the full equations of Baumgarten & Kamrin (2019). In that work, the effective
suspension rheology is coupled to a much larger system of equations that model many
additional physical processes. Notably, Baumgarten & Kamrin (2019) present a two-fluid
framework that incorporates explicit coupling to the background liquid motion, including
pore pressure effects, and elasticity to accommodate material below yield. Despite none
of these extensions currently being accommodated by CIDR, the above example still
highlights the pitfalls of constitutive modelling without consideration of well-posedness.

7.3. A well-posed example: viCIDR
Noting that the pressure equation (7.6) recovers the correct inertial scaling p ∝ ‖S‖2 as
ηf → 0, and the correct viscous scaling p ∝ ‖S‖ as St → 0, inspires us to take a similar
form as the starting point and then derive a complementary yield-stress function to replace
(7.5) in order to guarantee well-posedness. The primary modification made here to (7.6)
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is to allow for different φ dependence in the dry limit (ηf → 0) than in the viscous limit
(St → 0).

The pressure is constructed as the additive combination of dry and viscous pressures
such that

p = P(φ, ‖S‖, ∇ · u)

= ρ∗d2

I(φ)2 [2‖S‖ − K ∇ · u]2
+ + ηf

J (φ)
[2‖S‖ − K ∇ · u]+, (7.10)

where K is a constant compressibility factor. For isochoric flows (∇ · u = 0), this form can
be made compatible with the particle simulations of Trulsson et al. (2012) and the recent
experimental work of Tapia et al. (2022) by taking

J (φ) =
(

φc − φ

aφ

)2

and I(φ) = φc − φ

aφ
√

αφ

, (7.11a,b)

where the material constants aφ and αφ follow the notation of Tapia et al. (2022) and work
to scale the relative contributions of the inertial and viscous dynamics. It is also pleasing to
note that the Φ(I) rheology for dry granular flow is recovered precisely in the absence of a
background fluid (ηf = 0). This feature would be vital for modelling complex non-uniform
flows with both saturated and dry regions, as is often the case in debris avalanches (see
Meng, Johnson & Gray 2022).

This formulation is also assisted by the calculation, similar to that in § 7.2, that the
second well-posedness inequality (7.4b) is automatically satisfied for K > 0, and that the
right-hand side of the well-posedness equality (7.4c) is simply equal to 1/K. As in (7.5),
here Y is constructed from the product of p and a general bulk friction μ such that

Y( p, φ, I, J) = μ(φ, I, J) p, (7.12)

which also shares similarity with the vCIDR model (5.6) and the iCIDR equations of
Schaeffer et al. (2019). As such, this new model will be denoted ‘viCIDR’ to highlight the
inclusion of both viscous and inertial regimes.

Limiting attention to homogeneous solutions of (7.4c) reveals that

μ(φ, I, J) = μ1 + B(φ) I2 + C(φ) J, (7.13)

where B and C are free functions of φ, satisfies all of the well-posedness conditions (7.4)
provided that

K = 1
μ1

, B(φ) > 0 and C(φ) > 0. (7.14a–c)

These forms are also shown to have non-negative dissipation rates in Appendix B. The
remaining closures come from matching the J = 0 limit with the steady isochoric (∇ · u =
0) dry granular rheology of Jop et al. (2006):

μ = μ1 + (μ2 − μ1)
I

I0 + I , (7.15)

where I0 and μ2 are rheological constants mediating the transition to dynamic flow, and
matching with the Boyer et al. (2011) form of μ (2.10) for I = 0. However, these choices are
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simply demonstrative rather than adhering to any further empirical results. This procedure
gives

B = μ2 − μ1

I(I0 + I)
and C = 1 + 5

2
φm√J + μ2 − μ1

J0 + J , (7.16a,b)

so that the bulk friction is

μ(I, J, φ) = μ1 + (μ2 − μ1)

[
I

I0 + I(φ)

I
I(φ)

+ J
J0 + J (φ)

]
+ J + 5

2
φm

J√J (φ)
.

(7.17)

8. Conclusions and discussion

In this paper, the single-phase model for flowing suspensions of Boyer et al. (2011),
known as the μ(J), Φ(J) rheology, has been shown to give well-posed evolution equations
only for low solid volume fractions φ < φcrit, and otherwise leads to ill-posed equations
for all flows at higher concentrations, as summarised graphically in figure 1. This
finding therefore strongly limits the applicability of the μ(J), Φ(J) rheology in numerical
calculations of complex time-varying flows of suspensions.

An alternative theory named vCIDR, in which φ is a fully independent variable, has
been introduced, along with conditions which, when satisfied, guarantee well-posedness
in all flow regimes, at any solid concentration. A specific choice for the functions in
vCIDR has been made here to illustrate the regularisation that this framework enables
and to show how the well-established μ(J) and Φ(J) relations may be included for steady
isochoric deformations. Numerical computations of perturbations to shear flow have then
been used to verify the predicted difference in dynamics between the formulations. Since
the framework of vCIDR has been verified both theoretically and numerically to give
robust predictions of dynamic deformations, the theory can now be tested against suitable
experiments. In particular, the precise form of the vCIDR constitutive relations will depend
on the results of prototype experiments and discrete particle simulations designed to test
transient deformations.

Whilst vCIDR represents a complete mathematical theory for suspensions, it is based
on the approximations inherent in the single-phase effective medium hypothesis. The
equations track the particle-phase dynamics assuming that the background fluid does
not evolve in response to this motion, simply mediating hydrodynamics and drag on
the particles. These approximations are employed directly in the particle simulations of
Trulsson et al. (2012) and Ness & Sun (2016), who have reproduced the steady Boyer
et al. (2011) without an explicit background fluid. It remains to be seen, however, whether
regimes exist in which transient flows are similarly matched between these simulations,
physical experiments and vCIDR.

For regimes in which truly de-coupled motion of both fluid and particles is necessary,
one must instead turn to the alternative two-fluid description (see e.g. Guazzelli &
Pouliquen 2018; Baumgarten & Kamrin 2019). Such an approach is more realistic, yet
naturally more complex and requires many further constitutive relations to be chosen, the
forms of which are subject to much debate (see Nott, Guazzelli & Pouliquen (2011) for a
discussion). Moreover, an understanding of the well-posedness of equations for two-phase
phase suspension flow is currently lacking. Because vCIDR includes many of the key
features required of such a theory – well-posedness, Onsager symmetry and a non-negative
dissipation rate – it is hoped that the constitutive relations proposed in this paper can aid
future model development.
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As the formulation of vCIDR in § 5 includes dependence on only the viscous number
J and not the inertial number I, the theory is technically limited to slow flows for which
the inertial rearrangement of grains is negligible. Maurin, Chauchat & Frey (2016) have
instead shown that for relatively fast flows, such as those of importance in bedload
transport, the particle dynamics is well approximated by I-dependent models, without
inclusion of the viscous number. The transition between these distinct scalings, in terms of
strain rate and pressure, is the topic of Trulsson et al. (2012). These findings are addressed
here through the viCIDR model, introduced in § 7.3, which is an augmentation of vCIDR
spanning both the viscous and inertial regimes.

In addition to the extensions to two-phase flow and multiple regimes, there are other
dynamic variables that may be important in a full continuum description of suspensions.
For example, Wyart & Cates (2014) and Gillissen et al. (2019) provide frameworks for
tracking the evolving networks of contact between grains, the details of which are thought
to be vital to describing the jamming transition and hysteretic effects. Coupling vCIDR to
these equations would take the structure of the equations outside the scope of the present
work, but the implications for well-posedness are worth exploring.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.1004.
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Appendix A. Well-posedness analysis for the compressible I-dependent rheology
(CIDR)

The CIDR equations of Barker et al. (2017) were formulated for dry granular materials
as a rate-dependent extension to classical critical-state soil mechanics. In the absence of
a background fluid, the important non-dimensional strain rate is the inertial number I as
defined in (2.8). CIDR was then formulated in terms of a yield-stress function Y such that

‖τ‖ = Y( p, φ, I), (A1)

and a dilatancy function f that sets

div u = 2f ( p, φ, I) ‖S‖. (A2)

Similarly to the analysis presented here in § 3, the well-posedness of the CIDR equations
was ascertained via a linear stability analysis carried out in the high wavenumber limit.
The leading-order eigenvalue problem sets three conditions under which the growth rates
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of high-frequency modes are negative. In particular, Y and f must be chosen to satisfy

∂I
∂‖S‖

∂Y
∂I

> 0,
∂f
∂p

+ ∂I
∂p

∂f
∂I

< 0 and
∂Y
∂p

+ ∂I
∂p

∂Y
∂I

= f + I
∂f
∂I

, (A3a–c)

where the inertial number dependence gives

∂I
∂‖S‖ = I

‖S‖ and
∂I
∂p

= − I
2p

. (A4a,b)

Not only do these relations ensure important mathematical and numerical properties of
the equations, but Goddard & Lee (2018) and Schaeffer et al. (2019) have shown that these
criteria embody the key thermodynamic principle of Onsager symmetry.

Appendix B. Non-negative dissipation rates of vCIDR and viCIDR

In addition to Onsager symmetry, which is a feature inherent in all CIDR models, it is
also important to establish that the proposed constitutive relations lead to non-negative
dissipation rates

D = σ : D ≥ 0, (B1)

i.e. that deformations do not correspond to negative work done. For each CIDR theory, the
dissipation rate may be calculated via

D = (τ − p1) :
(

S + ∇ · u
2

1
)

= Y
‖S‖ S : S − (∇ · u)p

= 2‖S‖ (Y − fp), (B2)

due to the general definitions of the constitutive laws and of the norm (cf. (2.6))

‖S‖ =
√

1
2 S : S. (B3)

B.1. vCIDR dissipation rate
For the vCIDR constitutive functions (5.9) and (5.10), the dissipation rate (B2) is

D = 2‖S‖Γ (φ) p
[

1 − α

α
J + J (φ)

J

]
, (B4)

which is non-negative as p, ‖S‖ and Γ (φ) are non-negative and 0 < α < 1.
It is also important to rule out unbounded dissipation, which could occur in (B4) for

J → 0. However, combining (5.8a) and (5.9) reveals that the potentially problematic term,
which scales with

p
J

= 2ηf ‖S‖
J2 = 2ηf ‖S‖

(Γ (φ)J (φ))2 (Γ (φ) − f )2, (B5)

is well-behaved for all finite values of shear strain rate and compression. In conclusion,
(B4) is non-negative and finite for all flows in the viscous range (φ < φm).
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B.2. viCIDR dissipation rate
Upon substituting the general viscous–inertial functions (7.12) and (7.13) into (B2) one
arrives at

D = 2‖S‖ (μ1P + 4d2ρ∗ B(φ) ‖S‖2 + ηf C(φ) ‖S‖) − (∇ · u)P. (B6)

For this case, the establishment of non-negative D rests on

(2μ1 ‖S‖ − ∇ · u)P ≥ 0. (B7)

Because K = 1/μ1 for well-posedness (7.14), cases in which the round brackets in (B7)
are negative correspond to cases in which P = 0 by (7.10). This ensures that (B7) is always
satisfied and therefore that (B6) is always non-negative.
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