
Expert Systems With Applications 215 (2023) 119376

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

DeepProbCEP: A neuro-symbolic approach for complex event processing in
adversarial settings
Marc Roig Vilamala a,∗, Tianwei Xing b, Harrison Taylor a, Luis Garcia c, Mani Srivastava b,
Lance Kaplan d, Alun Preece a, Angelika Kimmig e, Federico Cerutti a,f

a Cardiff University, United Kingdom
b University of California, Los Angeles, United States
c University of Southern California, Information Sciences Institute, United States
d US DEVCOM Army Research Laboratory, United States
e KU Leuven, Department of Computer Science, Leuven.AI, Belgium
f University of Brescia, Italy

A R T I C L E I N F O

Dataset link: https://codeocean.com/capsule/7
055867/tree/v1

Keywords:
Complex Event Processing
Neuro-symbolic architecture
Learning with sparse data
Robustness

A B S T R A C T

Detecting complex events from subsymbolic data streams (such as images, audio recordings or videos) is
a challenging problem, as traditional symbolic approaches cannot be used to process subsymbolic data,
and neural-only approaches usually require larger amounts of training data than available. In this paper,
we present DeepProbCEP, a Complex Event Processing (CEP) approach designed with four objectives: (i)
allowing the use of subsymbolic data as an input, (ii) retaining flexibility and modularity in the definition of
complex event rules, (iii) limiting the cost of obtaining training data and (iv) being robust against adversarial
conditions. DeepProbCEP archives this by using a neuro-symbolic approach, which combines the neural and
symbolic approaches to allow training with sparse data. This is made possible through the injection of human
knowledge. In this paper, we demonstrate that DeepProbCEP outperforms other state-of-the-art approaches
when training using sparse data. We also show that DeepProbCEP is robust in different adversarial settings.
Finally, DeepProbCEP’s flexibility is demonstrated by showing it can be used to process both images and audio
as input.
1. Introduction

Complex Event Processing (CEP) systems process data streams and
detect situations of interest, or complex events, which aggregate atomic
events, or simple events. CEP systems detect complex events by identi-
fying the spatio-temporal relationships between sets of simple events.
CEP systems have been applied in many different areas, such as busi-
ness activity monitoring (Teymourian, Rohde, & Paschke, 2012), sensor
networks (Anicic, Rudolph, Fodor, & Stojanovic, 2012b) and weather
reports (Anicic, Rudolph, Fodor, & Stojanovic, 2012a). Most CEP ap-
proaches allow the user to define rules which express the conditions
under which a complex event occurs. Then, the CEP system uses those
rules to detect when those circumstances happen in the given stream
of input data. However, defining rules over raw streams of data can
be challenging. For example, it is not feasible to define rules directly
over raw images, audio or videos, which makes it impossible to use
most CEP approaches. This paper proposes an approach capable of

∗ Correspondence to: Crime and Security Research Institute, sbarc|spark, Maindy Rd, Cardiff CF24 4HQ, Wales, United Kingdom.
E-mail addresses: RoigVilamalaM@cardiff.ac.uk (M. Roig Vilamala), twxing@ucla.edu (T. Xing), harritaylor@protonmail.com (H. Taylor), lgarcia@isi.edu

(L. Garcia), mbs@ucla.edu (M. Srivastava), lance.m.kaplan.civ@army.mil (L. Kaplan), PreeceAD@cardiff.ac.uk (A. Preece), angelika.kimmig@cs.kuleuven.be
(A. Kimmig), federico.cerutti@unibs.it (F. Cerutti).

performing CEP on types of data for which symbolic rules cannot be
(easily) manually defined. We refer to such types of data as subsymbolic
data.

Some approaches (Xing et al., 2020) allow the user to train the
system to detect complex events based on subsymbolic data. However,
current implementations might benefit from extra engineering for offer-
ing greater flexibility and modularity when defining the rules for the
complex events. Other approaches (Roig Vilamala, Hiley, Hicks, Preece,
& Cerutti, 2019; Roldán, Boubeta-Puig, Luis Martínez, & Ortiz, 2020)
have been created to allow subsymbolic inputs without limiting the
flexibility of rule definitions by using pre-trained neural networks to
parse this input into a symbolic form. However, if such neural networks
are not available, these approaches are not possible. In such cases, the
neural networks could be trained separately. However, it can be costly
to obtain training data for this purpose. In this paper, we propose an
vailable online 1 December 2022
957-4174/© 2022 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.eswa.2022.119376
Received 26 December 2021; Received in revised form 21 November 2022; Accepte
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

d 26 November 2022

https://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
https://codeocean.com/capsule/7055867/tree/v1
mailto:RoigVilamalaM@cardiff.ac.uk
mailto:twxing@ucla.edu
mailto:harritaylor@protonmail.com
mailto:lgarcia@isi.edu
mailto:mbs@ucla.edu
mailto:lance.m.kaplan.civ@army.mil
mailto:PreeceAD@cardiff.ac.uk
mailto:angelika.kimmig@cs.kuleuven.be
mailto:federico.cerutti@unibs.it
https://doi.org/10.1016/j.eswa.2022.119376
https://doi.org/10.1016/j.eswa.2022.119376
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.119376&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Expert Systems With Applications 215 (2023) 119376M. Roig Vilamala et al.

j
a
t
o
e
a
o
t
p
b

approach that can be trained to use new types of subsymbolic data
without limiting the flexibility and modularity of the rule definitions.

As defined in current AI ethical principles (Defense Innovation
Board, 2019), approaches must also be robust against adversarial con-
ditions. These indicate that AI systems should be reliable, meaning that
the systems should behave as expected even in sub-optimal conditions.
For this paper, we focus on situations in which the training data is
noisy, meaning that some of the labels in the training data are incorrect.

From the preceding discussion, it is evident that a CEP system must
fulfil four objectives:

1. Being able to operate on input streams of subsymbolic data.
2. Retaining flexibility and modularity in the definitions of complex

events.
3. Limiting the cost of obtaining training data and labelling.
4. Being robust against adversarial conditions.

Currently, none of the approaches in the literature cover all four
objectives. The contribution of this paper is DeepProbCEP,1 a neuro-
symbolic architecture designed to fulfil all four objectives. DeepProb-
CEP combines a neural network with symbolic rule definitions: the
neural network processes subsymbolic data, fulfilling the first objective.
Then, a probabilistic logic layer encompasses the complex event rules,
which provides us with the flexibility and modularity expressed in the
second objective.

The third objective expresses the aim to limit the costs of obtaining
training data. As such, training data that is easier to obtain and label
will be preferred. One of the ways in which DeepProbCEP archives
this is by allowing end-to-end training. This means that the whole
system can be trained using only labels for the complex events, which
are easier to label than the simple events. For example, it would be
much easier for the people labelling to recognize when the situation
of interest (the complex event) happens in a given video than to
label every frame or short segment of that same video (the simple
events). DeepProbCEP also provides higher accuracy results with fewer
training data than state-of-the-art approaches, as demonstrated by our
experiments.

In order to evaluate how robust DeepProbCEP is (fourth objective),
we have generated a number of synthetic datasets that simulate dif-
ferent types of poison attacks, where the training data contains noisy
labels. DeepProbCEP’s performance after training with such datasets
demonstrates its robustness against these types of attacks.

1.1. Motivating example

As a motivating example, suppose that a user is trying to detect
concerning situations from a microphone, situated in a busy street. CEP
could be used to define the types of situations that could be a concern.
For instance, we could define that the sounds of children playing and
street music are part of a safe environment, whereas sounds like sirens
or gunshots are concerning.

Then, complex events could be defined based on combinations of
the sounds described above. For instance, we could define the complex
event worrying siren to happen when the microphone detects a siren
ust after the sounds of a safe environment. We could then define that
return to the safe sounds stops the worrying siren complex event. On

he other hand, the presence of more concerning sounds (such as sirens
r gunshots) would increase our confidence on saying that the complex
vent worrying siren is happening. DeepProbCEP has been used to create
demonstration for this exact scenario based on real life recordings

f a street (Roig Vilamala, 2022). While we do not go into details on
he implementation of this demonstration in this paper, the training
erformed for it works in the same manner as the experiments shown
elow.

1 Code is available at https://github.com/dais-ita/DeepProbCEP.
2

The rest of the paper is structured as follows: Section 2 contains a
critical analysis of related work. Section 3 explains how DeepProbCEP
was implemented using those tools. Section 4 describes the scenarios
we aim to emulate, and how we have generated synthetic datasets for
that purpose. Section 5 explains how the experiments were designed,
while Section 6 discusses the results obtained in those experiments.
Section 7 provides a discussion of our approach and its limitations,
while Section 8 discusses possible areas for future work taking into
account such limitations, as well as providing the conclusion to the
paper.

2. Related work

Complex Event Processing (CEP) is a technology that allows for the
derivation of conclusions from the events present in a stream of infor-
mation (Burgueño, Boubeta-Puig, & Vallecillo, 2018). In order to derive
these conclusions, CEP allows for the definition of complex events
based on the events produced by the input streams, which allow the sys-
tem to identify the situations of interest—that is, the complex events—
automatically. The process through which the user defines these com-
plex events can change significantly depending on the exact approach
being used, ranging from graphical tools (Roldán et al., 2020), to SQL-
like languages (Bezerra, Teles, Coutinho, & da Silva e Silva, 2021; Bur-
gueño et al., 2018), logic rules (Roig Vilamala et al., 2019; Skarlatidis,
Artikis, Filippou, & Paliouras, 2015) and even languages specifically
designed to define complex events (Chapnik, Kolchinsky, & Schuster,
2021; Yankovitch, Kolchinsky, & Schuster, 2022). However, despite
the varied implementations and the changes in the specifics, all CEP
approaches generally follow the same principles where a complex event
is defined based on combinations of events.

To differentiate between approach types, we have decided to divide
CEP into two groups: declarative and data-driven. The declarative
approaches to CEP provide rules that can be used to define specifically
when complex events occur. The types of input data that they can use
tend to be relatively limited: often these rules need to directly process
the input data, and that can be difficult for subsymbolic types of data,
such as images, audio or video.

The data-driven approaches, instead, are designed to work with
data for which it is hard to directly define rules. They however are
less flexible than the declarative approaches in accommodating user-
defined CEP patterns. Some remove such a possibility completely: while
beneficial in some cases, it does make it harder to detect complex events
with more composite definitions.

2.1. Declarative approaches to CEP

In declarative approaches to CEP, users are expected to provide
aggregation rules by specifying patterns over input data that signify
either the beginning and the end of complex events, or the complex
events themselves (Alevizos, Skarlatidis, Artikis, & Paliouras, 2017;
Giatrakos, Alevizos, Artikis, Deligiannakis, & Garofalakis, 2020). As our
goal is not to provide articulated pattern recognition systems, we rely
on fairly simple pattern matching capabilities.

Such aggregation rules can, in some circumstances, be learnt. For
instance, in Bruns, Dunkel, and Offel (2019) genetic programming is
used to learn CEP rules encoding them as syntax trees. Using this
approach, the authors show that their system can learn rules of vary-
ing complexity with very good accuracy. However, such an approach
falls short of addressing the type of complexity required to deal with
high-bandwidth subsymbolic data streams.

Some CEP approaches use a neural network to transform high-
bandwidth data into symbolic information, allowing the user to define
rules on it. For example, in Roldán et al. (2020) the authors show that
this allows them to reduce the number of false positives in a system
when detecting IoT security attacks. They use a neural network to
predict the length of the suspected packets. If the predicted length does

https://github.com/dais-ita/DeepProbCEP

Expert Systems With Applications 215 (2023) 119376M. Roig Vilamala et al.
not match the actual length of the packet, a complex event is generated
indicating that an attack might be happening. In Roig Vilamala et al.
(2019), we present a system that is able to detect different violent
activities from a CCTV feed. A pre-trained neural network is used
to process short segments of video (16 frames, about half a second)
detecting potential violent acts. Another pre-trained neural network is
used to detect people from the same video feed. The outputs of these
neural networks are then combined using a probabilistic logic program
to detect the complex, violent events. These complex events are defined
in a manner inspired by event calculus, based on the approach used
in Skarlatidis et al. (2015), identifying the conditions for a complex
event to initiate and terminate.

Both Roig Vilamala et al. (2019) and Roldán et al. (2020) use
pre-trained neural networks to parse the simple events. In this paper,
instead, we assume that no such pre-trained neural networks exist. As
such, we assume that only end-to-end training is possible, meaning that
only training labels for the complex events are available, and not for the
simple events. While this does make the training problem harder, it is
undeniably easier to obtain labels for the complex events, thus reducing
the costs associated with the creation of the training set.

2.2. Data-driven approaches to CEP

The data-driven approaches are designed to work with data for
which it is hard to directly define rules. Here we review two no-
table baselines: (i) neural-only approaches—that is, approaches that
rely solely on neural networks— and (ii) an approach embedding
aggregation rules in a neural architecture.

2.2.1. Neural-only approaches
One possible approach is to view the whole CEP problem as a

classification problem, and—for instance—use neural networks to de-
tect when complex events occur. For this paper, these approaches
are referred to as neural-only. These approaches remove the manual
definitions of complex events, and instead attempt to train the neural
network to identify those definitions at the same time as it learns to
classify the subsymbolic data. Due to the relevance of time in the defi-
nition of complex events, a Long Short Term Memory (LSTM) (Mishra,
Jain, Siva Naga Sasank, & Hota, 2018) or a Convolutional 3D layer
(C3D) (Liu, Liu, Gan, Tan, & Ma, 2018) can be used. However, due
to the necessity of learning the complex event rules, these approaches
need very large amounts of data to train. Furthermore, the complexity
of the rules that define the complex events is limited, due to the fact
that the neural networks need to learn those rules. While it is possible
to train these systems to identify complex events with relatively simple
definitions, particularly complex and specific definitions would likely
require infeasible amounts of training data.

2.2.2. Embedding aggregation rules in a neural architecture: Neuroplex
The current state of the art in CEP with subsymbolic data is Neu-

roplex (Xing et al., 2020). Neuroplex is a neuro-symbolic approach
that makes use of human knowledge in order to reduce the amount of
training data required when compared to neural-only approaches. This
is done by dividing the problem into two levels; low-level perception
and high-level reasoning. The high-level reasoning is responsible for
detecting complex events based on manually defined rules, while the
low-level perception is responsible for abstracting the subsymbolic data
into symbolic concepts that can be used by rules later. In Neuroplex, the
user defines the rules for the complex events. Then, a neural network,
called NRLogic, is trained to emulate a logic layer that recognizes those
rules through a process called knowledge distillation (Hinton, Vinyals, &
Dean, 2015; Hu, Ma, Liu, Hovy, & Xing, 2016). This neural network
can be used as the logic layer for high-level reasoning, and can be
combined with another neural network, which performs the task of
low-level perception. During the training, the NRLogic network for
high-level reasoning is frozen, meaning that the weights for this model
3

will not be modified by further training. In this way, the system is
trained in an end-to-end manner, using only labels of the complex
events. This trains the low-level perception neural network to abstract
the input subsymbolic data into symbolic concepts, in the form of the
output classes from the perception neural network. This is done without
requiring any annotations for these classes, meaning that no training
labels for the simple events are required.

The use of knowledge distillation allows Neuroplex to reduce the
amount of data required to train the system. While the architecture
of the neural networks may be very similar to approaches such as Al-
Rakhami et al. (2021), Islam, Islam, and Asraf (2020) and Shi, Bai, and
Yao (2015)—that is, combining CNN and RNN layers to form a neural
network—Neuroplex requires significantly less training data. This is
thanks to the injection of human knowledge in the form of manually
defined rules, as this simplifies the problem into two smaller parts,
which can be trained individually. This makes Neuroplex the state-of-
the-art for CEP on subsymbolic data, particularly when dealing with
data scarcity (Xing et al., 2020).

It is important to note that this approach would not be possible
if the high-level reasoning layer was non-differentiable, as the system
needs to propagate the gradients through the high-level reasoning
layer in order to provide feedback to the low-level perception neural
network. That is why Neuroplex uses a neural network to approximate
the high-level reasoning layer, because of its intrinsic differentiability.
This allows Neuroplex to train in an end-to-end manner to recognize
complex events.

The Neuroplex architecture keeps a dual representation for the high-
level reasoning layer. It uses the DeepCEP framework (Xing et al.,
2019), for the forward inference, and uses NRLogic for the backward
training. In DeepCEP, a logical machine in the form of a CEP engine is
generated from the rule definitions created by the user. It takes simple
events abstracted by perception models and detects complex events
based on definitions. During training, this logical machine can then
be used as the teacher model for transferring the knowledge to the
NRLogic model, which propagates gradients to the low-level perception
layer.

Neuroplex also has some limitations. If the rules for the complex
events are modified, a new CEP engine can be generated to perform
inference. However, if users want to fine-tune the model with the new
set of complex event rules, the high-level reasoning neural network
NRLogic would need to be trained again. This could cause additional
overhead in practice.

Secondly, while Neuroplex can generate synthetic data to train the
neural network to emulate the rules, it is not possible for the user to
know that the neural network will behave exactly as the rules define
in all situations. This is due to the nature of the neural network, which
may give an unexpected answer if the given situation has not been seen
in the training data. The only way to guarantee that the neural network
will always behave as expected is to evaluate every possible situation,
which becomes unfeasible as the complexity of the problem increases.
As a result, there is a risk that Neuroplex will not be robust against some
adversarial conditions. Although this could be avoided by performing
inference with the logic machine as the reasoning layer, it is still an
issue during training for the perception model, as the use of the neural
network is required to perform the backpropagation. Having a sub-
optimal logic model to propagate gradients could lead to poor learning
performance in the perception model. In the experiment section, we
will show examples where Neuroplex fails to get robust results without
careful fine-tuning.

In this paper, we propose the architecture DeepProbCEP, where the
reasoning layer uses differentiable logic programs that are explainable

and robust to adversarial conditions.

Expert Systems With Applications 215 (2023) 119376M. Roig Vilamala et al.
2.3. Tools used

This section introduces the various tools used in building our ap-
proach. We first introduce ProbLog, a probabilistic logic program-
ming language which is used in DeepProbLog, the tool that allows us
to perform end-to-end training in DeepProbCEP as a neuro-symbolic
approach.

2.3.1. ProbLog
ProbLog (De Raedt, Kimmig, & Toivonen, 2007) is a probabilistic

logic programming language. ProbLog allows users to encode complex
interactions between different components. A ProbLog program consists
of a set of probabilistic facts 𝐹 and a set of rules 𝑅. Facts have the form
𝑝 ∶∶ 𝑓 where 𝑓 is an atom that represents a concept that can be true or
false. 𝑝 is a value between 0 and 1 that represents the likelihood of the
fact being true. Rules have the form ℎ ∶− 𝑏1,… , 𝑏𝑛 where ℎ is an atom
and 𝑏𝑖 are literals. A literal is an atom or the negation of an atom.

One convenient syntactic extension is an annotated disjunction
(AD), which is an expression of the form 𝑝1 ∶∶ ℎ1; ...; 𝑝𝑛 ∶∶ ℎ𝑛 ∶− 𝑏1,… ,
𝑏𝑚. where the 𝑝𝑖 are probabilities so that ∑

𝑝𝑖 = 1, and ℎ𝑖 and 𝑏𝑗 are
atoms. ADs allow us to express choices between different categorical
variables. This means that, whenever all the conditions 𝑏𝑖 hold, exactly
one of the atoms ℎ𝑗 will be true, with probability 𝑝𝑗 . All other ℎ𝑖 will
be false (unless other parts of the program make them true).

2.3.2. DeepProbLog
DeepProbLog (Manhaeve, Dumancic, Kimmig, Demeester, &

De Raedt, 2018; Manhaeve, Dumanić, Kimmig, Demeester, & De Raedt,
2021) is a neural probabilistic logic programming language that allows
the user to create neuro-symbolic architectures. DeepProbLog allows
the user to train the neural networks in these architectures as part of
the system in an end-to-end manner.

A DeepProbLog program is a ProbLog program that is extended
with a set of neural ADs (nADs). These nADs work similarly to ADs
in the sense that they provide a mutually-exclusive distribution of
probabilities over a set of clauses. In nADs, however, these probabilities
are generated from the output of a neural network, instead of being
manually defined. For instance, in order to identify the digits in MNIST
images to allow us to perform operations with them, we would specify
the following nAD:

nn(mnist_net,[X],Y,[0,1,2,3,4,5,6,7,8,9]) :: digit(X,Y).

This would then allow us to perform a query of the form
𝚍𝚒𝚐𝚒𝚝(, 𝑌). This query would be transformed into an AD of the form

𝑝0 ∶∶ 𝚍𝚒𝚐𝚒𝚝(, 0); 𝑝1 ∶∶ 𝚍𝚒𝚐𝚒𝚝(, 1); ...; 𝑝9 ∶∶ 𝚍𝚒𝚐𝚒𝚝(, 9)

where the probabilities 𝑝𝑖 are based on the output of the neural net-
work. This neural network can take any shape, as long as its output
satisfies the AD requisite of ∑

𝑝𝑖 = 1. A softmax activation is usually
used in the last layer to guarantee this.

After defining the structure of the neural network and the logic
level, it is possible to use DeepProbLog to infer the answers to our
queries. In order to perform this inference, DeepProbLog transforms
the logic layer into an arithmetic circuit, obtaining the required prob-
abilities from the neural network. Using this arithmetic circuit, the
probability for the given query can be calculated. Each arithmetic
circuit is specific to a given query, meaning that this transformation
needs to be performed each time.

In order to train the neural network, the system first performs infer-
ence as described above. Then, DeepProbLog performs gradient-based
learning of the neural network through the logic layer. This is possible
because the arithmetic circuit is differentiable, which allows for the use
of backpropagation. For a more detailed explanation of the technical
aspects of DeepProblog’s inference and learning, see Manhaeve et al.
(2021).
4

3. DeepProbCEP: a neuro-symbolic approach for CEP

In this paper, we propose DeepProbCEP, a neuro-symbolic approach
to CEP designed to fulfil the objectives defined in Section 1. In par-
ticular, DeepProbCEP is designed to be able to train even with small
amounts of data. This is achieved by allowing us to inject human
knowledge into the system, which facilitates the training process. Deep-
ProbCEP divides the task into two distinct levels; (i) a perception level,
where subsymbolic data is classified into the correct type of simple
event using a neural architecture and (ii) a reasoning level, where
complex events can be detected based on the rules that define them.

In DeepProbCEP, the perception level is implemented by a neural
network, which classifies the subsymbolic data into a pre-defined set
of classes. Thanks to this classification, the system is able to extract
the symbolic information from the input data, which allows the sym-
bolic high-level part of the system to interact with it. This high-level
reasoning consists of a probabilistic logic programming layer, where
the user-defined rules are contained. This reasoning layer is responsible
for detecting the situations under which the complex events occur, as
defined by the user. The following sections explain how both levels
have been implemented.

As explained above in Section 2.2.2, Neuroplex (Xing et al., 2020)
also divides the problem into perception and reasoning levels. How-
ever, in Neuroplex, a neural network is used to emulate the rules for
the high-level reasoning. In contrast, DeepProbCEP uses an explicit
probabilistic logic layer for the reasoning level, which gives Deep-
ProbCEP several advantages. It allows the user to modify the rules
for the complex events in a much easier way, as they only need to
update them in the logic layer. Secondly, it also eliminates the risk
that the reasoning level will behave unexpectedly. While Neuroplex
can generate synthetic data from the manually defined rules to train
the perception level neural network to emulate those rules, there is no
guarantee that this neural network will behave exactly as expected in
all situations. This is particularly the case in complex situations, for
which it might be difficult to evaluate that the neural network does in
fact work as expected. This problem is not present in DeepProbCEP, as
the logic rules are used directly as defined by the user.

3.1. Reasoning level

DeepProbCEP builds on top of DeepProbLog (Manhaeve et al., 2021)
(see Section 2.3.2 above) that allows for end-to-end training. It allows
the user to refine rules for complex events.

To compare the performance of DeepProbCEP against the state-of-
the-art, we define complex events as a pattern of simple events that
happens within a given time window. This is because those other
approaches are capable only of detecting complex events defined in this
way. For this paper, only these type of complex event definitions are
considered, leaving further interpretations to be considered by future
work. However, ProbLog, the logic programming language used in
DeepProbCEP to define the rules, has been previously shown to be
able to detect complex events using more sophisticated rules in Roig
Vilamala et al. (2019) and Skarlatidis et al. (2015). Both of these
approaches take inspiration from event calculus (Kowalski & Sergot,
1986) in order to define the conditions for the complex event to start
and terminate, which allows them to perform all the operations used by
other CEP approaches. As the logic language used is the same, Deep-
ProbCEP also allows users to define complex events in this manner.
While we will not go into details in this paper, the demonstration de-
scribed in Section 1.1 above makes use of this approach. Furthermore,
as ProbLog is Turing complete, users should be able to define complex
events in the manner they find most appropriate.

In order to facilitate the definition of patterns for the complex
events, we have implemented a framework that is able to detect se-

quences of simple events. The code for this framework has been added

Expert Systems With Applications 215 (2023) 119376M. Roig Vilamala et al.

w

b

1 happensAt (overheating , T) :−
2 sequence ([highTemp , highTemp] , 5 , T) .

Listing 1: Example of a complex event definition, specifying the case
of an overheating machine.

as Appendix A, and its functionalities are explained in the following
section.

3.1.1. Sequence framework
The sequence framework provides the clause sequence(L, W, T),

which allows the user to define a list L of the simple events. The clause
will be true if the list L happens, in the provided order, within a given

indow W of time, also provided by the user. Finally, the value of T is
the timestamp at which the sequence is evaluated. This is usually left
as a variable in rule definitions, which allows the user to specify which
timestamp they want to evaluate at run time.

The clause sequence can be used to define complex events where
a set of simple events must happen in order. For instance, in order
to illustrate how the framework can be used, we have defined some
rules to detect if a machine is overheating. For this example, the
complex event the user is trying to detect will be overheating. Let us
assume that there is an input stream that periodically provides us with
events indicating the temperature of the machine. These input events
cover different temperature ranges (lowTemp, mediumTemp, highTemp,
etc.). At the reasoning level, we are not concerned on whether these
classes are the result of the classification performed by the low-level
perception, or if the data from the input stream was already symbolic.
This is because the logic will be the same whether the values come
directly from the input stream or if they have been classified by the
low-level neural network. Listing 1 shows a way in which the rules
for overheating could be defined. First, we define the complex event
overheating (line 1) to be formed by two instances of the simple event
highTemp (line 2). This can be thought of as a regular expression, where
the list provided in line 2 is equivalent to h.*h, where h stands for
highTemp. Note that a .* has been added between the instances of
highTemp. By default, sequence allows other simple events to happen
etween the simple events in the provided list. sequence also adds a

condition where the matched input must be shorter than the given
window W (set to 5 in this example). As such, if two instances of high
temperature arrive from the stream within a window of 5 timestamps, a
complex event will be generated, with the other simple events arriving
in between being irrelevant.

Using this rule would allow us to perform queries of the form
happensAt(overheating, T), where T can be substituted for any times-
tamp. For instance, performing the query happensAt(overheating, 10)
would return a value between 0 and 1. This value would represent the
likelihood of the complex event overheating happening at timestamp 10.
This likelihood would be calculated based on the rules. If the system
knew for a fact that an instance of highTemp has happened between
timestamps 6 and 9, and another timestamp has happened at timestamp
10, the pattern would match and a complex event would be generated
with 100% confidence. If the system is slightly less confident on the fact
that the simple events have happened, the confidence on the complex
event will reflect this. This can happen for a multitude of reasons, but
for our purposes it will generally be because the simple events come
from the classification of a neural network, which generally outputs
a probability distribution across all the classes, without being 100%
certain about any of them.

While, as explained above, sequence allows for other simple events
to happen between the ones defined in the list L, the framework also
offers a functionality to specify exceptions. For instance, imagine that
the user wanted to specify that the temperature should not be fluctuat-
5

ing from high, to low and back to high again in short periods of time
1 happensAt (malfunctioning , T) :−
2 sequence ([highTemp , lowTemp , highTemp] , 5 , T) .
3 happensAt (malfunctioning , T) :−
4 sequence ([lowTemp , highTemp , lowTemp] , 5 , T) .
5
6 happensAt (overheating , T) :−
7 sequence ([highTemp , not (lowTemp) , highTemp] , 5 , T) .

Listing 2: Further examples of complex event definitions, specifying
the case of a malfunctioning sensor and re-defining the overheating

case.

(or vice versa). As such, they want to specify that such fluctuations are
likely to be caused by a malfunctioning sensor, and as such should not
trigger an overheating complex event. Listing 2 defines such a situation.
Lines 1 to 4 define the malfunctioning complex event. Note that lines
1 and 2 define one possible sequence of events, whereas lines 3 and 4
define the other. If either of them happen, a malfunctioning complex
event will be generated. Lines 6 and 7 specify the new definition for the
overheating complex event, where instances of lowTemp are not allowed
to happen between the instances of highTemp. Transformed to a regular
expression, this would be the equivalent of h[ˆl]*h, with h standing
in for highTemp and l for lowTemp. Note that instances of other simple
events—such as mediumTemp— would still be allowed unless explicitly
excluded. This could be done by specifying multiple negated events
between the instances of given events. For instance, the list [highTemp,
not(lowTemp), not(mediumTemp), highTemp] would be the equivalent of
the regular expression h[ˆlm]*h, with m standing for mediumTemp. It
is worth noting that the condition that all the simple events forming
the pattern must happen within the given window W is still present in
these cases.

3.2. Perception level

The other part of the system is the perception level, which is
responsible for transforming the subsymbolic data into information
that can be used to define rules in the reasoning level. This trans-
formation is performed by a neural network, which will classify the
input subsymbolic data into a pre-defined set of classes. The structure
of this neural network can be defined using PyTorch (Paszke et al.,
2017). This allows the user to make use of the most appropriate neural
network architecture for classifying the input data being used. As we
demonstrate in our experiments, DeepProbCEP can be used to detect
complex events from streams of data of two types (images and audio)
just by changing the structure of the neural network and adapting the
rules to the new types of simple events. Other neural network structures
could be used to make use of many other types of subsymbolic data,
which would allow DeepProbCEP to make use of any type of data that
can be classified by a neural network.

DeepProbCEP is also able to make use of types of data that are
already symbolic, meaning types of data that can be directly processed
using rules. This can be done by simply providing the information
directly to the reasoning level, without transforming it in the perception
level.

Once the reasoning and perception levels are defined, DeepProbLog
(Manhaeve et al., 2018, 2021) is used to integrate them. This allows
DeepProbCEP to make the logic layer differentiable, and thus makes it
possible to train the perception level neural network in an end-to-end
manner.

3.3. Setup used in experimentation

In order to compare DeepProbCEP with other approaches in our
experiments, we consider a stream of MNIST digits as input. For the

aggregation rules we define that a complex event consists of two

Expert Systems With Applications 215 (2023) 119376M. Roig Vilamala et al.
Fig. 1. Overall architecture of DeepProbCEP for the MNIST setting. From top to bottom, the stream of numbers is pre-processed and fed into the perception layer (DigitNN). The
reasoning layer uses the outputs from the perception layer to predict when complex events are occurring.
instances of the same digit within the given window. One of these
instances must occur at the last position in the window size and the
other can occur in any other position. Therefore, if a window of simple
events ends with a 0 and there is another 0 somewhere within the
window, that will create 𝑐𝑒0. If the last simple event is a 1 and there
is another 1 within the window, that will create 𝑐𝑒1, and so on. Fig. 1
shows the setup used for DeepProbCEP in all of the MNIST experiments.

As shown in Fig. 1, the first step is to pre-process the input data.
For the case of MNIST digits, we simply normalize them with a mean
of 0.5 and a standard deviation of 0.5. However, more complex pre-
processings can be performed if the type of input data requires it. Then,
the matrix resulting of the pre-processing is fed into the DeepProbCEP
system. More specifically, they are fed through the perception neural
network, DigitNN in the diagram. This neural network identifies the
different types of simple events from the input stream. In the case
of DigitNN, it detects which digit appears in the image, returning a
likelihood value for each of the 10 possible digits (0 to 9). However,
as explained above, any neural network structure can be used for this
6

perception level. In this case, DigitNN is the same neural network
that was used in the paper presenting DeepProbLog (Manhaeve et al.,
2021) for classifying MNIST digits. The architecture of the neural
network, which is based on the PyTorch tutorial, consists of 2 sets of
convolutional layers with MaxPools, followed by linear layers, as shown
in Table 1.

Finally, the prediction from the neural network is then used in the
logic layer, which allows it to predict whether or not a certain complex
event is happening at a certain point in time. This is based on the rules
defined by the user, and any frameworks being used. A snippet of the
code used in experimentation can also be seen in the right side of Fig. 1.
This shows how complex events 𝑐𝑒0, 𝑐𝑒1 and 𝑐𝑒2 are defined, according
to the description for each of the complex events given above. Here, we
use the definitions given above where 𝑐𝑒0 consists of two instances of
a 0.

When using DeepProbCEP for experimentation, we set a maximum
number of epochs of 100. However, in order to avoid overfitting we also
make use of early stopping with a patience of 10 epochs. This means

Expert Systems With Applications 215 (2023) 119376M. Roig Vilamala et al.

s
p

c
s
a
t
a
t
a
e

p
t
a

b

4

i
w

Table 1
Architecture for DigitNN.

Layer type Output channels Kernel size Stride

Conv2D 6 (5, 5) (1, 1)
MaxPool2D 6 (2, 2) (2, 2)
ReLU 6 – –
Conv2D 16 (5, 5) (1, 1)
MaxPool2D 16 (2, 2) (2, 2)
ReLU 16 – –
Reshape 256 – –
Linear (ReLU activation) 120 – –
Linear (ReLU activation) 84 – –
Linear (Softmax activation) 10 – –

that if the performance of the system on the validation dataset does
not improve for 10 epochs, the training finishes early. The weights that
performed the best in the validation dataset are then used for testing.

4. Scenarios and dataset generation

This section explains how we generated synthetic datasets to rep-
resent different real world scenarios in a controlled manner, allowing
us to evaluate how each of the approaches perform under different
circumstances. Table 2 shows a summary of all the types of datasets
used for this paper. Each of those dataset types aims to evaluate how
modifying a specific parameter affects the performance of the different
approaches, allowing us to evaluate how each parameter individually
affects the performance of the approach. These datasets are also de-
signed to allow us to control the severity of each of the parameters,
ranging from ideal circumstances to extremely difficult, thus allowing
us to evaluate up to which degree the approaches are likely to perform
well. The following sections provide more detail on what scenarios are
being emulated by each dataset type, as well as the procedure used to
generate those datasets.

One of the main parameters is the size of the sliding window
within which the system looks for complex events. All the compared
approaches make use of a sliding window to detect the complex events.
In order to generate a complex event, all of the simple events that will
be aggregated need to be within this sliding window at the same time.
As such, the size of the sliding window limits the maximum span of time
for a complex event. The value for the size of the sliding window needs
to be determined before the datasets are generated, as the training
labels need to match that window size. It might seem best to use a
window size as big as possible to detect as many complex events as
possible. However, increasing the window size increases the number of
simple events that are being considered, which makes the problem of
finding a pre-defined pattern harder. This is especially true if we want
the system to be fast. Furthermore, sometimes users might want to limit
the window size as, if two simple events are too distant from each other
temporally, there might not be a relationship between them.

Another parameter is the size of the training dataset: in real sce-
narios, complex events tend to be rare. Therefore, seeing how much
changing the size of a dataset affects the performance of the system will
allow us to predict how well that system will perform when training
with sparse data. In order to evaluate this, we have created the data-
carcity datasets, which allow us to compare how different approaches
erform after training with different amounts of training data.

Finally, we want to see how robust DeepProbCEP is against in-
orrectly labelled training data, as, in some real world scenarios, the
ituations represented by different complex events may quite similar or
mbiguous, making them difficult to differentiate, even for humans. For
his purpose, we have created different types of poisoning adversarial
ttacks by generating new versions of the dataset where a part of the
raining points has been affected by one of the poisoning attacks we
re considering. The random noise datasets are designed to evaluate the
7

ffect of random noise in the labelling. On the other hand, the targeted d
oisoning datasets evaluate the effect of poisoning the training data with
he intent of making the system misclassify either one (single label) or
ll (multiple labels) classes as a substitute one.

For all datasets, the same definitions for the complex events are
eing used, as defined above (𝑐𝑒0 to 𝑐𝑒9).

4.1. Base dataset

This section describes how the base datasets were generated, which
represent scenarios with different window sizes. While these datasets
have not directly been used for training, they are used as the base for
the rest of the datasets in this paper, which were generated through
the modifications described in following sections. The process used
to generate the base dataset allows us to change the window size
by changing the value of 𝑊 𝑖𝑛𝑑𝑜𝑤. 𝑊 𝑖𝑛𝑑𝑜𝑤 is a positive integer that
indicates the number of timestamps between the first and last simple
events that form a complex event. For this paper, we have generated
datasets with window sizes of 2, 3, 4, 5, 10 and 15.

In order to generate the base dataset, MNIST images are used,
which we have split into three datasets; training, validation and testing.
Each dataset has 50,000, 10,000 and 10,000 images, respectively. We
then use these MNIST images datasets to generate the base datasets
for training, validation and testing. However, these datasets are not
directly used for training. Instead, they are used as a base to generate
the other datasets, as explained in the following sections. The steps to
generate the base datasets are shown in Fig. 2, which illustrates the
following steps:

1. We take all the images from the original dataset and randomly
shuffle them into a sequence 𝑆 of simple events, where each
image represents one simple event. Therefore, the length of 𝑆 is
the number of images in the original dataset. Simple events can
be accessed by their index like so 𝑆[𝐼], and for each of them we
can also access their image (which represents a digit from 0 to 9)
and their class (the ground truth of which digit is represented)
using 𝑆[𝐼].𝑖𝑚𝑎𝑔𝑒 and 𝑆[𝐼].𝑑𝑖𝑔𝑖𝑡, respectively.

2. We create a list 𝐶 that will indicate for each timestamp whether
a complex event happens. We initialize this list with null, which
hereinafter represents that no complex event happens at the
specified timestamp.

3. For each timestamp 𝑇 where 0 < 𝑇 < 𝑙𝑒𝑛(𝑆):

(a) If the pattern for one of the complex events occurs, mark
𝐶[𝑇] as the corresponding complex event. More specifi-
cally, if there exists 𝑃 such that 𝑇 − 𝑊 𝑖𝑛𝑑𝑜𝑤 < 𝑃 ≤ 𝑇
and 𝑆[𝑃].𝑑𝑖𝑔𝑖𝑡 = 𝑆[𝑇].𝑑𝑖𝑔𝑖𝑡, mark 𝐶[𝑇] as 𝑐𝑒𝑁 , where 𝑁
is the value of 𝑆[𝑇].𝑑𝑖𝑔𝑖𝑡. This means that if the last digit
in the window is a 0 and there is another 0 within the
window size, we mark the timestamp as 𝑐𝑒0. If the last
digit is a 1 and there is another 1, we mark it as 𝑐𝑒1, and
so on.

(b) Otherwise, leave 𝐶[𝑇] marked as the null class.

4. Finally, if this is the training dataset, generate the training se-
quence of simple events 𝑇𝑆, which will only contain the images,
but not the ground truth of which class they represent, as these
should not be available when performing end-to-end training.
Therefore, 𝑇𝑆[𝐼] = 𝑆[𝐼].𝑖𝑚𝑎𝑔𝑒 for 0 < 𝐼 < 𝑙𝑒𝑛(𝑆).

.2. Data-scarcity datasets

In order to evaluate how the different approaches may perform
n scenarios where training data is sparse, compared to scenarios
ith large amounts of training data, we have created the data-scarcity

atasets. These datasets range in size from 100 to 400,000 training

Expert Systems With Applications 215 (2023) 119376M. Roig Vilamala et al.
Table 2
Summary of the dataset types used in this paper, with a description of the scenarios they represent.

Dataset type Scenario Training dataset Size

Base datasets Used to compare changing window
sizes. Not directly used for training,
but used to generate other datasets.

49,999

Data-scarcity datasets Used to compare training with
different amounts of training data,
ranging from sparse to dense data.

10 different sizes
100, 500, 1000, 2500, 5000, 10,000,
25,000, 50,000, 100,000, 400,000

Random noise datasets Used to evaluate how robust approaches
are to noisy training datasets.

2500

Targeted poisoning datasets

Single label Used to evaluate robustness against
poisoning attacks targeting one class

2500

Multiple labels Used to evaluate robustness against
poisoning attacks targeting all classes

2500
Fig. 2. Diagram representing how the datasets used in this paper are generated. A window of 5 has been used and a complex event ce4 has been detected at timestamp 5.
points.2 For this setting, we consider the datasets with 2500 training
points and less to be sparse, whereas the datasets with more than
50,000 training points are quite dense. These data-scarcity datasets
have been generated by performing either undersampling or oversam-
pling on the base datasets.

The smaller datasets are generated by performing a balanced under-
sampling for the different classes. In this process, we randomly select
only a few of the training examples from the base dataset in order to get
to the total amount of training examples required. In contrast, for the
bigger datasets we perform oversampling on the complex event classes.
The only class that is not oversampled is the null class, which happens
when no complex event occurs. This is because there are many more
cases of the null class in the base dataset, as it is much more likely for
no complex event to happen than any other individual complex event,
given our complex event definition. It is important to note, however,
that all datasets used for training have been balanced. This was done
in order to avoid overfitting for a specific class. The different dataset
sizes we have used, as well as their class distribution, can be seen in
Table 3.

2 A total of 10 different training dataset sizes have been used: 100, 500,
1000, 2500, 5000, 10,000, 25,000, 50,000, 100,000, 400,000.
8

4.3. Random noise datasets

Given the complexity of the definition of some of the complex
events in realistic scenarios, it can sometimes be hard to correctly
label when a certain complex event is happening. This can lead to
errors on the training dataset, which might affect the accuracy of the
system after training. In Section 1, we defined that one of our objectives
was to be robust against adversarial conditions. As such, we want to
evaluate how much of an effect training using a noisy dataset has
on the performance of DeepProbCEP. While synthetic datasets should
not contain unexpected noise, they do allow us to introduce noise
in a controlled manner, making it possible to evaluate how well an
approach may perform when trained under different levels of noise.
This can provide us with information that can be useful when using
the same approaches on real datasets, which might contain unknown
levels of noise.

A poisoning attack is used, where a percentage of the training labels
are randomly changed for another label, also chosen randomly, to
simulate this noise. For instance, assume that, based on the complex
event definitions, a certain timestamp is marked as 𝑐𝑒0. However, if
this case is affected by the noise it will be labelled as another complex
event, which is selected randomly every time. We will call the datasets
generated using this process random noise datasets.

Expert Systems With Applications 215 (2023) 119376M. Roig Vilamala et al.

s
t
e
c
p
w
w
a

t
g
i

a
a
a
t

4

a
i
i
l
e
w
i
a
T
c

4

e
e
t
c
t
S
3
p
f
1
c
c
2

4

w

Table 3
Distribution of instances on the data-scarcity datasets. The distribution is the same for all window sizes. Note that all classes have almost the same number of instances, with a
maximum difference of 1.

Total Null ce0 ce1 ce2 ce3 ce4 ce5 ce6 ce7 ce8 ce9

100 10 9 9 9 9 9 9 9 9 9 9
500 46 45 45 46 45 45 45 46 46 46 45
1000 91 90 91 91 91 91 91 91 91 91 91
2500 228 227 227 227 227 227 227 227 228 228 227
5000 455 454 454 455 454 454 455 455 455 455 454
10000 910 909 909 909 909 909 909 909 909 909 909
25000 2273 2272 2272 2273 2273 2272 2273 2273 2273 2273 2273
50000 4546 4545 4545 4546 4545 4545 4545 4546 4546 4546 4545
100000 9091 9090 9091 9091 9091 9091 9091 9091 9091 9091 9091
400000 36 364 36 363 36 363 36 364 36 364 36 363 36 364 36 364 36 364 36 364 36 363
In order to generate the random noise datasets, we use the same
teps described to generate the base dataset, explained above in Sec-
ion 4.1. However, when labelling a certain timestamp as a complex
vent (Step 3a), there is probability of changing that label to a random
omplex event. This probability is determined by the noise percentage
arameter. We have generated datasets ranging from 0.0 to 1.0 noise,
ith a step of 0.2. For this, 0.0 means that no data has been poisoned,
hile 1.0 means all the data has been poisoned. Finally, the datasets
re balanced and reduced to a size of 2500 training points.

It is important to note that this attack is only performed on the
raining dataset. This means that the testing dataset will maintain the
round truth, which will allow us to see how the system would perform
n a real life scenario.

This kind of noise might appear both due to a malicious agent,
nd to the difficulty of labelling the sophisticated scenarios where
system like DeepProbCEP would be useful: for instance, different

nnotators might be having different consideration on what constitutes
he complex event.

.4. Targeted poisoning attacks

We also want to evaluate how a targeted poisoning attack might
ffect the performance of our approach. More specifically, we are
nterested in poisoning attacks that target specific labels with the
ntention of making the system incorrectly classify them as another
abel. The following sections describe the creation of two datasets,
ach under a different type of targeted attack. These scenarios simulate
hat could happen if an annotator is maliciously trying to provide

ncorrect training data, but they could also happen non-maliciously if
n annotator is confused as to which samples belong to which classes.
his could particularly be the case if the conditions for two different
omplex events are difficult to differentiate.

.4.1. Targeted attack against a single label
In the first targeted attack, we are only targeting one complex

vent class. More specifically, we are choosing the targeted complex
vent and its substitute. This type of attack should cause the system
o incorrectly classify instances of the targeted complex event as the
hosen substitute. Again, in order to generate the training datasets with
his attack we follow the steps to create the base dataset described in
ection 4.1 above. However, when labelling the complex events (Step
a), if we would label the complex event as the target, there is a
robability of changing that label to the substitute class. As is the case
or the random noise attack, we use probabilities ranging from 0.0 to
.0 with a step of 0.2. In this case, with a probability of 1.0 all the
omplex events for the targeted class will be labelled as the substitute
lass. Finally, these datasets are also balanced and reduced to a size of
500.

.4.2. Targeted attack against multiple labels
For this second attack, all complex events are targeted. In this case,

e choose a substitute for each complex event. This attack should cause
9

Fig. 3. Flowchart of the approaches considered for this paper. Rectangular boxes
represent data, using sym for symbolic data and non-s for non-symbolic data. Oval boxes
represent algorithms, using NN for neural network components and KR for knowledge
reasoning (symbolic) components.

the system to incorrectly classify all complex events as another type of
complex event, based on the substitution we are applying. The process
for generating the datasets under this type of attack is very similar to
the previous attack. More specifically, in Step 3a there is a probability
of changing the label for the complex event for its substitute. Again,
probabilities between 0.0 and 1.0 are used. In this case, a probability
of 1.0 would mean that all the training points have the substitute class
label, effectively meaning that we are training for the incorrect class.
These datasets are also balanced and reduced to a size of 2500.

5. Experiment design

In order to evaluate DeepProbCEP and compare it with existing
approaches, a number of experiments have been performed. These
experiments aim to evaluate how well DeepProbCEP fulfils the four
objectives defined in Section 1. Fig. 3 shows a high level flowcharts of
the different approaches. More details for each approach are provided
in the following sections.

In Experiment 1: Performance with sparse data, we aim to find how
much each approach is affected by using small datasets for training.
This allows us to evaluate how well the objective of limiting the cost

Expert Systems With Applications 215 (2023) 119376M. Roig Vilamala et al.

w
T
w
f
c
k
e
o
c
t
a
D
t
s
w
s

P
t
l
t
l
e
t
d

r
d
t
p
o
i

D
w
C
r
d
s
t
a

w
M
t
o

w
t

a
p
S
3

of obtaining training data is fulfilled. The data-scarcity datasets are
used for this experiment. After training each approach with each of the
dataset sizes, we compare their performance in terms of classification
accuracy. Naturally, all approaches are expected to perform worse as
the size of the training dataset is reduced. However, we are interested
in which approach is the least affected by this reduction of the training
dataset size. The approach that is the least affected will be the most
robust when training with sparse data. As complex events tend to be
rare, this would be desirable, because training datasets will tend to be
small in real world scenarios, as explained in Section 1.

Experiment 2: Performance on simple events focuses on the accuracy
hen classifying simple events after training in an end-to-end manner.
his is thanks to another advantage of the neuro-symbolic approaches,
hich allows them to learn how to classify simple events despite the

act that they have only been trained with information about the
omplex events. This is made possible by the introduction of human
nowledge into the system, which allows it to learn to classify simple
vents in a manner understandable by humans. Therefore, a byproduct
f training a neuro-symbolic system is a simple event classifier. This
ould be quite useful in a real world scenario, as we are working under
he assumption that the labels to directly train a simple event classifier
re not available. Our second experiment evaluates the performance of
eepProbCEP and Neuroplex when classifying these simple events. For

hat purpose, as in Experiment 1, this experiment also uses the data-
carcity data training datasets. This also allows us to see how training
ith smaller datasets affects each of the approaches when classifying

imple events.
Experiment 3: Time efficiency compares the time efficiency of Deep-

robCEP and Neuroplex when training. As explained above in Sec-
ion 2.2.2, using a neural network to emulate the behaviour of a logic
ayer does allow Neuroplex to perform training and inference faster
han using the logic layer directly. While the direct use of a logic
ayer in DeepProbCEP does provide other advantages, such as making it
asier to use different rules, it also causes DeepProbCEP to take a longer
ime for each training epoch. Experiment 3 explores how significant the
ifference in time efficiency between Neuroplex and DeepProbCEP is.

After that, in Experiment 4: Robustness against poisoning attack with
andom noise, the robustness of DeepProbCEP against training with ran-
om noise is evaluated, followed by evaluating the robustness against
argeted poisoning datasets (Experiment 5: Robustness against targeted
oisoning attacks). While further experiments should be performed with
ther types of attacks, this allows us to demonstrate that DeepProbCEP
s robust against attacks that focus on the training data.
Experiment 6: Performance when modifying the rules demonstrates that

eepProbCEP allows the user to modify the rules for the complex events
ithout requiring re-training. For that purpose, we first train DeepProb-
EP using one of the data-scarcity datasets. Then, the complex event
ules are changed and the updated system is evaluated against a test
ataset generated under those new complex event rules. DeepProbCEP
hould be expected to still achieve a very high performance when using
hese new rules. This demonstrates that DeepProbCEP is both flexible
nd modular on the rule definitions, as per objective 2.

Finally, Experiment 7: Performance in an audio setting evaluates how
ell DeepProbCEP performs when using a different type of input data.
ore specifically, a stream of audio is used as an input. This allows us

o further evaluate how well the first objective of being able to operate
n different types of subsymbolic data is fulfilled.

It is important to note that, in all cases, the approaches are tested
ith a dataset with the same window size as the dataset they were

rained in.
The following sections describe the architectures for the existing

pproaches against which we are comparing DeepProbCEP. These com-
rise Neuroplex and two neural-only approaches, one using a Long
hort Term Memory (LSTM) architecture and one using a Convolutional
10

D (C3D) architecture. First, we describe the specific neural network
Table 4
Architecture for the LSTM approach. 𝑊 is an input variable that represents the size of
the window.

Layer type Input size Output size

Reshape 𝑊 , 28, 28 𝑊 , 784
LSTM 𝑊 , 784 𝑊 , 100
Linear 100 11
Softmax 11 11

Table 5
Architecture for the C3D approach. 𝑇 1 and 𝑇 2 are variables that change depending
on the 𝑊 𝑖𝑛𝑑𝑜𝑤 that is being used. More specifically, 𝑇 1 = 𝑐𝑒𝑖𝑙(𝑊 𝑖𝑛𝑑𝑜𝑤∕2) and
𝑇 2 = 𝑐𝑒𝑖𝑙((𝑊 𝑖𝑛𝑑𝑜𝑤 + 1)∕2), where 𝑐𝑒𝑖𝑙 rounds up to the nearest integer.

Layer type Output channels Kernel size Stride

Conv3D 16 (𝑇 1, 5, 5) (1, 1, 1)
MaxPool3D 16 (1, 2, 2) (1, 2, 2)
Conv3D 32 (𝑇 2, 5, 5) (1, 1, 1)
MaxPool3D 32 (1, 2, 2) (1, 2, 2)

Linear 256 – –
Linear 128 – –
Linear 64 – –
Linear 32 – –
Linear 11 – –

architecture used by each of the neural-only approaches for experimen-
tation. Then, we describe the adaptations made to Neuroplex to work
with the datasets used for experimentation in this paper.

5.1. LSTM approach

For the LSTM approach, we combine an LSTM cell with a Multi
Layer Perceptron (MLP). As shown in Fig. 4, each of the simple events
in the given window is fed into the LSTM cell. The order in which the
events are fed into the LSTM cell is the same as the order in which they
come in. The hidden state is passed through the LSTM cells and, finally,
the prediction is based on the output of the last LSTM in the window
(see Table 4). When using the LSTM approach, we have set a maximum
number of epochs of 500. However, early stopping is also used with
a patience of 15. This means that, if performance on the validation
dataset does not improve for 15 epochs, the training is stopped early.
Then, the weights that gave the best performance on the validation
dataset are used to test the model. This is done to avoid overfitting
the model. In our experiments, this approach stopped before reaching
500 epochs in all cases.

5.2. C3D approach

For the C3D approach, we used the architecture shown in Table 5.
As it can be seen in the table, the architecture consists of two pairs
of a Conv3D layer plus a MaxPool3D layer. This is followed by a set
of linear layers. Table 5 also shows that the first dimension for the
Convolutional 3D layers depend on the window size. This is because
that is the time dimension, meaning that this part of the architecture
needs to be consistent with the number of simple events that are being
considered within the window.

For this approach we also use a maximum number of epochs of 500
and an early stopping with a patience of 15. In our experiments, this
approach stopped before reaching 500 epochs in all cases as well.

Expert Systems With Applications 215 (2023) 119376M. Roig Vilamala et al.
Fig. 4. Architecture for the LSTM approach for a window of 5. A smaller window would have less input events and a bigger window would have more. As it can be seen in the
figure, each hidden state is passed from each LSTM to the next. Finally, the output for the last LSTM is passed through a linear layer which outputs the prediction for the system.
Fig. 5. Overall architecture for Neuroplex in our experiments. First, the knowledge from the user-provided rules is distilled into the NRLogic Model. Once this step is complete,
the input stream of MNIST digits is fed into the system, going through the perception and reasoning layers. This outputs a prediction for the state of the complex events, which
can be used to train the perception layer based on the ground truth.
5.3. Neuroplex approach

For our experiments, we use the most recent implementation of
Neuroplex,3 at the time of writing. While the Neuroplex architecture is
designed to allow for the use of the full expressivity of DeepCEP (Xing
et al., 2019), the current implementation only supports the detection
of sequences, which is the reason our experiments focus on complex
events that use this type of definition. Fig. 5 shows the architecture
used for Neuroplex.

We have, however, slightly modified this implementation so that it
represents the same problem as the one considered by DeepProbCEP.
This is because, while both problems are quite similar, there are some
small differences. In both problems, we are trying to detect certain pre-
defined patterns that form complex events within a certain window.
Also in both cases, only one type of complex event can happen for a
given window. While both approaches would be capable of dealing with

3 This implementation can be found on https://github.com/nesl/
Neuroplex/tree/938221da14cdc71463775be1f78c1bf95e1bc106 (on 15th
of August 2022).
11
multiple complex events happening at the same time, this has not been
considered in the datasets used to train or test them for simplicity of
evaluation. However, there is a key difference between the problems.
In Neuroplex, the output of the system is the number of times the given
pattern happens in the given window. This means that, for example, if
we are looking for complex event 𝑐𝑒0 in the window [0, 4, 0, 1, 0], the
system would be expected to output that 𝑐𝑒0 happens 2 times. This
is because 𝑐𝑒0 is defined as a 0 at the last position in the window
and at some other point in the window. Since there is a 0 at the last
position and two 0 s earlier in the window, Neuroplex should say that
𝑐𝑒0 is happening 2 times. In reality, the current implementation of
Neuroplex outputs a float for each type of complex event. This float
is then rounded to the nearest integer to generate the prediction that
is shown to the user.

In contrast, for the problem considered in our experiments, we are
not concerned about how many times the pattern for the complex event
happens. Instead, we only consider two options: (i) the complex event
happens (without mattering if it is one or more times) or (ii) it does not
happen. As such, for ease of testing, we treat the system as outputting
which complex event is happening. This allows us to evaluate the

https://github.com/nesl/Neuroplex/tree/938221da14cdc71463775be1f78c1bf95e1bc106
https://github.com/nesl/Neuroplex/tree/938221da14cdc71463775be1f78c1bf95e1bc106

Expert Systems With Applications 215 (2023) 119376M. Roig Vilamala et al.
performance of the system as a multi-class classification problem. As
such, for the dataset used in this paper, 11 classes are used. 10 of these
classes correspond to each of the complex event types. Meanwhile the
last class corresponds to the case where none of the complex events are
occurring, which we refer to as the null class.

In order to compare the accuracies between Neuroplex and the other
approaches, the Neuroplex output is converted into the format used
by other approaches. This is done by finding the complex event for
which Neuroplex predicts the most occurrences (before rounding), and
using that complex event as the predicted class. In the unlikely case
that two complex event classes output the exact same float value, the
first class in alphabetic order would be selected. There is also a special
case if Neuroplex predicts zero occurrences for all complex events after
rounding (that is, if the float outputted for each complex event class
is less than 0.5). In that case, Neuroplex is predicting that none of the
complex events is happening in the given window, so the null class is
used as the prediction. This allows us to treat the output of Neuroplex
as a multi-class classification problem as well, and thus allows us to
calculate the accuracy in the same way as the other approaches.

Another change is also needed in order to train Neuroplex. This is
because, in the same way as the output, Neuroplex uses the number of
times each complex event is happening in order to train. For all other
approaches, we provide the system with the class of complex event
that occurs in the given window (or the null class if no complex event
occurs). However, Neuroplex is also provided with the number of times
it happens in the given window. This may give a slight bias towards
Neuroplex, as it is provided with more information than the other
approaches. However, we preferred to do this instead of changing the
architecture for Neuroplex to work directly with our dataset, as some
experimentation with trying to adapt the Neuroplex architecture to
work as a multi-class classifier significantly worsened its performance.

For the Neuroplex approach, a maximum number of epochs of 200 is
used, with an early stopping with a patience of 20 epochs. For all other
parameters, the default values from the original Neuroplex paper (Xing
et al., 2020) are used. Some experimentation was done on optimizing
these parameters for this problem. However, other configurations either
showed no improvement or provided a worse performance.

6. Results

This section explores the results for the experiments defined in
Section 5. The following sections compare the performance of Deep-
ProbCEP with the state-of-the-art approaches introduced in Section 2.
They also evaluate how well DeepProbCEP fulfils the objectives defined
in Section 1.

All the values displayed on the graphs and tables in the following
sections are the result of averaging the accuracies of 3 different execu-
tions. The standard deviations of these accuracies are also shown in the
graphs as error bars.

6.1. Performance with sparse data

Fig. 6 shows the classification accuracy for each approach in the
different window sizes and after training on the data-scarcity datasets.
As shown in the figure, DeepProbCEP consistently outperforms the
neural-only approaches, obtaining performances of 99.28%, 98.62%,
97.95%, 97.39%, 96.49% and 96.23% for windows 2, 3, 4, 5, 10 and
15 respectively when using 5000 training points. The graphs only show
results for DeepProbCEP with datasets of up to 5000 training points.
This is because DeepProbCEP takes a significantly longer time to train
than the other approaches. Despite this, training DeepProbCEP with just
100 data-points can result in higher complex event classification accu-
racy than either of the neural-only approaches achieve when trained
over 400,000 data-points. This is despite the fact that we are using
the best performing architecture we have been able to find through
12

manual optimization for both the LSTM and C3D approaches, which is
reflected by the performances of both approaches when trained with
enough data. However, by its very nature, any neural-only approach
used to solve this problem will need to learn to differentiate each of
the simple event types at the same time that it is learning the rules
that define the complex events. This is certainly possible given enough
training data, as shown in the graphs. However, in problems where data
is sparse the performance will be severely impacted.

In order to solve this issue, neuro-symbolic approaches make use of
human knowledge, which significantly reduces the amount of training
data required. For this problem, the user must specify the rules that
define a complex event, which allows the system to focus on learning
how to classify the simple events. This is reflected on the performances
obtained by both neuro-symbolic approaches, Neuroplex and Deep-
ProbCEP. As we can see in Fig. 6, both neuro-symbolic approaches
classify complex events with an accuracy significantly higher than
the neural-only approaches. However, we can also see that DeepProb-
CEP significantly outperforms Neuroplex, particularly when consider-
ing small window sizes, see Figs. 6(a), 6(b), 6(c), 6(d) (Window sizes of
2 to 5). Furthermore, even in the bigger window sizes where Neuroplex
performs its best, DeepProbCEP gets slightly better and more consistent
results, as shown in Figs. 6(e) and 6(f) (Window sizes of 10 and 15,
respectively). It is important to remark that, before the experiments in
this paper, Neuroplex had almost exclusively been tested with window
sizes of 10 and bigger. The only exceptions are two cases in Xing
et al. (2020) that are intentionally designed to have significantly less
complexity in order to allow the baseline models to learn. Therefore,
some fine tuning of the architecture might be necessary to get better
performances in smaller window sizes. In contrast, the fact that Deep-
ProbCEP directly uses logic programming for the logic layer means
that it will always perform as expected, without requiring any fine
tuning. This makes DeepProbCEP more robust, as defined in our fourth
objective from Section 1.

6.1.1. Types of error
This section explores what types of error each of the approaches

tend to make by looking at their confusion matrices, shown in Figs. 7,
8, 9, 10, 11, 12. As we can see, for the bigger window sizes the
confusion matrices are not significantly different between DeepProb-
CEP and Neuroplex. However for smaller window sizes Neuroplex
seems to incorrectly classify some of the cases where a complex event
occurs as the null class (represented in the last column and row in the
confusion matrices). This matches our observations that Neuroplex does
not perform as well with smaller window sizes.

The most common mistake in smaller window sizes (between 2 and
5) for both neural-only approaches (LSTM and C3D) is also classifying
cases with a complex event as the null class. However, there is a clear
difference between the approaches as Neuroplex seems to consistently
fail at classifying a few of the classes, but getting the rest of them
correctly almost all of the time. In contrast, the neural-only approaches
tend to incorrectly classify a small percentage of almost every other
class as the null class.

The contrast between the neuro-symbolic and the neural-only ap-
proaches is even clearer in the bigger window sizes (10 and 15), as both
neuro-symbolic approaches classify almost all of the cases correctly, as
shown in Figs. 11(a), 11(b), 12(a), 12(b). Meanwhile, Figs. 11(c), 11(d),
12(c), 12(d) show how the neural-only approaches, and particularly
the LSTM approach, seem to perform very fairly well at classifying the
cases where a complex event is happening. However, both approaches
perform quite badly when classifying a case that belongs to the null
class, where we are trying to identify that none of the patterns that
define a complex event is occurring. The errors shown by Neuroplex,
the LSTM and the C3D are all related to the null class, which indicates
that correctly identifying whether a case is part of this class or not is
the hardest part of the problem.

The fact that it is hard to correctly classify the null class is also

quite relevant in terms of the performance of the whole system as, both

Expert Systems With Applications 215 (2023) 119376M. Roig Vilamala et al.
Fig. 6. Accuracy when detecting complex events for each of the considered approaches in different windows. Horizontal axis indicates the size of the training dataset used (in
number of samples in the dataset).
in real scenarios and in our testing dataset, the null class is the most
prominent, since complex events tend to be rare. This is especially true
for smaller window sizes, as considering less complex events makes it
less likely that a specific pattern will occur. This means that performing
well at classifying the null class is more important for the overall
accuracy than correctly classifying every single type of complex event.
The higher percentage of null classes in the validation dataset for
smaller window sizes, combined with the difficulty of classifying the
null class, might be rewarding the systems for defaulting to the null
class when they are unsure of which class they should decide on, which
would explain why most of the cases that are incorrectly classified
select the null class. However, it is important to note that this is only an
effect of selecting the best performing weights on the validation dataset,
13
as the training dataset is balanced, with the null class appearing the
same number of times as each of the other classes.

6.2. Performance on simple events

Thanks to the fact that the neuro-symbolic approaches use two
distinct levels to solve this problem, we are able to obtain a simple
event classifier as a byproduct of training them. This classifier can be
obtained by extracting the low level perception neural network from
either of the neuro-symbolic approaches after training.

This is not possible in neural-only approaches, as they do not
have an architecture separated into two levels. Furthermore, even if
a similar architecture using a perception level was used, the lack

Expert Systems With Applications 215 (2023) 119376M. Roig Vilamala et al.
Fig. 7. Confusion matrices for Window of 2, using the best performing model from the data-scarcity datasets for each approach.
of human knowledge would prevent it from being able to learn to
classify the simple events in a human intelligible way, as shown in Xing
et al. (2020). Instead, the neural network would simply create its own
representation of the simple events and rules, which would not be
human-interpretable.

In Fig. 13, we can see a comparison on the performance of both
DeepProbCEP and Neuroplex on single events. That is, it shows the
accuracy performance of the low level neural network at classifying
MNIST digits, for both approaches. Interestingly, the performance with
Neuroplex does not seem to be very consistent with smaller windows,
where it provides very poor performances. This is particularly true for a
window size of 2, although it gives accuracy performances around 50%
or lower in almost every case with a window size of 5 or smaller. This
would seem to reinforce the hypothesis that Neuroplex does not work
well with smaller window sizes as it is now. By comparison, we can see
that DeepProbCEP performs quite well in any window size, especially
when trained with 500 training points or more.

Furthermore, Neuroplex seems to have a relatively high standard
deviation when compared to DeepProbCEP, even in the windows of 10
and 15 where Neuroplex seems to perform the best. This matches the
results we saw for the system as a whole, which would seem to indicate
that, at least for the problem we are looking at, DeepProbCEP provides
14
more consistent results. As such, we can also consider DeepProbCEP
more robust, as it will perform closer to our expected accuracy.

6.3. Time efficiency

However, one of the main disadvantages when using probabilistic
logic programming in the architecture is a substantial decrease in speed
when compared to a neural network. This means that DeepProbCEP is
significantly slower in both training time and inference time. This is
the reason why we have not tested how DeepProbCEP performs after
training with the bigger dataset sizes, as this would take a significantly
longer time than with other approaches.

The exact difference on time efficiency between DeepProbCEP and
other approaches can vary depending on a number of factors, with
the most important one seeming to be the window size of the dataset.
Table 6 shows the training time efficiency of DeepProbCEP and Neuro-
plex in iterations per second (number of training points that can be
processed each second). Higher values are better, as they allow the
system to train with larger datasets in a shorter span of time. As we can
see in Table 6, bigger window sizes tend to be slower, as there is more
data to process. Furthermore, for the DeepProbCEP approach the logic
layer will also increase in complexity as the window size increases,

Expert Systems With Applications 215 (2023) 119376M. Roig Vilamala et al.
Fig. 8. Confusion matrices for Window of 3, using the best performing model from the data-scarcity datasets for each approach..
which will also decrease the speed. The same is true for the high level
reasoning neural network used in Neuroplex, but the effect seems to
be slightly lower, as the speed decreases at a slightly slower rate. The
results show that Neuroplex is roughly 15 to 25 times faster than Deep-
ProbCEP on training time. This is because Neuroplex is using a neural
network to perform the high level reasoning, which is implemented
using Tensorflow and Keras frameworks. This allows Neuroplex to
make use of the highly optimized back-end code from this libraries, as
well as easy access to batch training and GPU use to increase the speed
of training. In contrast, DeepProbCEP makes use of DeepProbLog for the
high level reasoning, which does not currently support batch training
and is significantly less optimized for fast training than Tensorflow or
Keras. As we have said, the most significant cost in terms of time comes
from using probabilistic logic programming. More specifically, the cost
of calculating the output probabilities based on the input probabilities
that come from the prediction made by the neural network. In order
to correctly calculate these output probabilities, the system needs to
transform the logic defined by the user into an arithmetic circuit. Due
to the current design of DeepProbLog, this transformation needs to be
performed every epoch for every training case. As this transformation
into an arithmetic circuit is, by far, the most time consuming step of
the training process, this is a very significant time cost.
15
DeepProbLog does offer a cache system that allows us to generate
this arithmetic circuit on the first epoch and then re-use it on further
epochs. Our experiments have shown that using this cache system can
increase the speed by as much as 4 times, and potentially more if
combined with other improvements. While this would be slower than
Neuroplex, the difference would be much less significant. However, this
approach requires us to keep a cache with all of the arithmetic circuits
in memory. This has prevented us from using it on the bigger datasets,
such as data-scarcity datasets of a size bigger than 5000. This is because
the amount of memory needed exceeds the limits of the RAM in our
server. Therefore, we believe that further research is necessary to make
the most out of this approach to increase the speed of the system.

6.4. Robustness against poisoning attack with random noise

After seeing that DeepProbCEP is capable of training even with
small amounts of data, we also want to know how it performs under
different types of adversarial attacks. For this purpose, we have pre-
pared different types of poisoning attacks at different levels of noise,
as explained in Section 4. For all of the graphs, the system has been
tested with levels of noise between 0.0 and 1.0 (both included) with a
step of 0.2. However, in order to make it easier to see the error bars in

Expert Systems With Applications 215 (2023) 119376M. Roig Vilamala et al.
Fig. 9. Confusion matrices for Window of 4, using the best performing model from the data-scarcity datasets for each approach.
Table 6
Training time efficiency in iterations per second. That is, number of training points
that can be processed each second (higher is better). Values obtained by calculating
the training time for a single epoch of training and dividing it by the number of data
points in the training dataset. The data-scarcity dataset of size 2500 was used for this
experiment.

Window size

2 3 4 5 10 15

DeepProbCEP 33.62 23.01 17.31 13.22 6.63 4.39
Neuroplex 500.00 333.33 333.33 333.33 142.86 111.11

the graph, these have been slightly offset in the 𝑥 axis from their actual
value.

In Fig. 14 we explore how the performance of DeepProbCEP is af-
fected by random noise in the training data, meaning that a percentage
of the labels have been randomly changed (as explained in Section 4.3
above). As can be seen in the graphs, DeepProbCEP performs very well
even under significant levels of noise, only starting to be affected when
almost all of the data is poisoned. As it should have been expected,
there is a correlation between the accuracy when detecting the com-
plex events and the accuracy on individual digits. This is because the
16
performance for DeepProbCEP as a whole system is directly linked to
its performance detecting individual events, assuming that the rules are
correct.

Also as expected, with a noise percentage of 1.0 the system obtains a
very bad accuracy, performing like a random classifier. This is because,
in this situation, all of the data is noise, which means that nothing
useful can be learnt from it.

6.5. Robustness against targeted poisoning attacks

The following sections evaluate how DeepProbCEP performs after
training with the targeted poisoning datasets.

6.5.1. Targeted attack against a single label
First, we have a look at the targeted attack for a single label,

where only one of the classes is affected by the attack. As we can see
in Fig. 15, the performance for both the system as a whole and the
individual digits is almost unaffected. In fact, even the performance
on the dataset with a noise percentage of 1.0 might seem acceptable
for some situations. This is because only one of the classes is being
affected, meaning that the other 10 classes (the 9 other patterns plus
the null class) are still performing the same. However, one of the classes

Expert Systems With Applications 215 (2023) 119376M. Roig Vilamala et al.
Fig. 10. Confusion matrices for Window of 5, using the best performing model from the data-scarcity datasets for each approach.
is being incorrectly classified a fairly large percentage of the time,
which would significantly affect how the system performs in a real life
scenario. This can be more clearly seen in the confusion matrices shown
in Fig. 16, which shows the results of this attack on DeepProbCEP with
a window of 4. The confusion matrices show that the targeted class
tends to be miss-classified. With bigger noise percentages (Figs. 16(c)
and 16(d)) the targeted class (in this case, 𝑐𝑒2) tends to be classified as
the substitute class (in this case, 𝑐𝑒6). This is because, with high levels
of noise, we are basically training the targeted class for the wrong label.
Meanwhile, for lower percentages of noise the targeted class is mostly
classified correctly. However, it is sometimes miss-classified as the null
class (Figs. 16(a) and 16(b)). In all cases, the other classes are mostly
unaffected.

Another way in which we are able to see how the different noise
percentages affect the performance of the system is by looking at the
recall for the targeted class, shown in Fig. 17. As we can see, the recall
for both the affected digit and complex event class quickly decrease,
ending up very close to 0 on higher noise levels. This shows that, if
we want to make sure that none of the classes have been targeted it is
necessary to check the performance for each of them individually.
17
6.5.2. Targeted attack over multiple labels

Next we look at the attack that affects all of the labels, the results
of which can be seen in Fig. 18. As can be seen in the graphs,
the performance for DeepProbCEP rapidly decays as we increase the
percentage of noise present in the training data. This could have been
expected since, again, what we are doing once the noise percentage
is higher than 50% is training the neural network to recognize the
incorrect label. This can be seen quite clearly in Fig. 19. Particularly
in Fig. 19(d), where all classes are consistently being classified as their
substitute.

However, it seems unlikely that such a big percentage of incorrect
labels would make it to the training dataset without anyone realizing,
as most of the training data would need to be consistently incorrectly
labelled for this to happen. In contrast, for reasonable amounts of noise
levels (such as 20% and, to a certain degree, 40%) DeepProbCEP still
performs fairly well, which shows us that it should be fairly robust
against this type of attack.

Expert Systems With Applications 215 (2023) 119376M. Roig Vilamala et al.
Fig. 11. Confusion matrices for Window of 10, using the best performing model from the data-scarcity datasets for each approach.
6.6. Performance when modifying the rules

In this experiment, we show how DeepProbCEP allows the user to
modify the rules without requiring any re-training, as long as these
changes do not require new types of simple events. In order to demon-
strate this, we have trained DeepProbCEP with a data-scarcity dataset
of size 5000 and a window of 5. After training with this dataset, the
system archives a 97.5% accuracy when detecting complex events and
97.8% accuracy on simple events.

Then, we modify the complex event rules in the reasoning layer of
DeepProbCEP. The new rules, which can be seen in Listing 3, detect
complex event 𝑐𝑒0 when a 0 appears in the window and a 1 appears in
the last position of the window, without a 9 appearing between them.
𝑐𝑒1 is detected if a 1 appears in the window and a 2 appears in the last
position without a 9 between them, and so on.

Note that the following important points have changed:

• The number of complex event types has been reduced from 10 to
8.

• The window size has changed from 5 to 10. This is defined in the
first line of Listing 3.
18
1 window(10) .
2
3 happensAt (ce0 , T) :− window(Window) ,
4 sequence ([0 , not (9) , 1] , Window, T) .
5 happensAt (ce1 , T) :− window(Window) ,
6 sequence ([1 , not (9) , 2] , Window, T) .
7 happensAt (ce2 , T) :− window(Window) ,
8 sequence ([2 , not (9) , 3] , Window, T) .
9 happensAt (ce3 , T) :− window(Window) ,

10 sequence ([3 , not (9) , 4] , Window, T) .
11 happensAt (ce4 , T) :− window(Window) ,
12 sequence ([4 , not (9) , 5] , Window, T) .
13 happensAt (ce5 , T) :− window(Window) ,
14 sequence ([5 , not (9) , 6] , Window, T) .
15 happensAt (ce6 , T) :− window(Window) ,
16 sequence ([6 , not (9) , 7] , Window, T) .
17 happensAt (ce7 , T) :− window(Window) ,
18 sequence ([7 , not (9) , 8] , Window, T) .

Listing 3: New complex event rules to evaluate how DeepProbCEP
performs after changing the complex event rule definitions.

Expert Systems With Applications 215 (2023) 119376M. Roig Vilamala et al.
Fig. 12. Confusion matrices for Window of 15, using the best performing model from the data-scarcity datasets for each approach.
• The definition for each of the complex events is significantly
different. Most notably, these definitions make use of the negated
value, which indicates that a certain simple event does not occur
between two other complex events. This was not used previously
as the current implementation of Neuroplex does not allow for
this definition.

Finally, the updated system is evaluated against a testing dataset
generated with those complex event rules. It is important to note that
the perception level neural network uses the weights resulting from
the training with the first dataset, and no further training is done
at all. As such, the performance on the simple events remains the
same, as it should have been expected. More interesting, however, is
the fact that the updated system archives a 96.3% accuracy on the
testing dataset with the new complex event rules. This demonstrates
that DeepProbCEP allows the user to modify the rules without requiring
any further training. It would also be possible to make much smaller
modifications to refine the definition for the complex events. However,
for demonstration purposes, we wanted to make it clear that this was
not limited to small changes. In fact, the logic layer can be modified as
much as the user desires as long as the simple event classes remain the
same.
19
6.7. Performance in an audio setting

In this experiment, we show that DeepProbCEP can also be used to
work with other types of input data. In this case, we use it to work
with an audio stream, instead of the MNIST digits used in the previous
sections. For this purpose, we have created another synthetically gen-
erated dataset following the same steps described in Section 4 with the
only difference being that instead of using MNIST images as the simple
events, we are using samples of audio of 1 s of length each. These
audio samples have been obtained from the dataset Urban Sounds
8K (Salamon, Jacoby, & Bello, 2014), which contains short labelled
sound excerpts (4 s or less) of 10 classes of urban sounds. In order to
standardize the length of the sound files, only the first second of each
of the files has been used (with the small number of files shorter than
that length being ignored).

The following changes have been made to use DeepProbCEP with
an audio stream:

• In order to extract as much information from the input data, we
use a more sophisticated pre-processing. More specifically, we are
using a PyTorch implementation of VGGish, a feature embedding

Expert Systems With Applications 215 (2023) 119376M. Roig Vilamala et al.

c

Fig. 13. Accuracy for simple events (individual MNIST digits) for DeepProbCEP and Neuroplex in different windows (the other approaches cannot provide simple event
lassifications). Horizontal axis indicates the size of the training dataset used (in number of samples in the dataset).
frontend for audio classification models (Hershey et al., 2017).4
VGGish takes an audio file as an input and outputs a matrix
128 × 𝑁—with 𝑁 the length of the audio file in seconds—with
values between 1 and 255.

• The neural network used to classify the simple events into their
classes has also been changed. Thanks to the fact that the pre-
processing already extracts most of the information, we are able
to use a simple Multi Layer Perceptron (MLP) to obtain a fairly
good accuracy when classifying the audio segments. This MLP
consists of 5 linear layers, with 100, 80, 50, 25 and 10 neurons

4 Available at https://github.com/harritaylor/torchvggish.
20
each, respectively. A ReLU activation function is used between
each linear layer, and a Softmax activation function is used after
the last layer.

• Finally, the rules for recognizing the complex events have been
changed. Since we have generated the dataset with the same rules
where two instances of the same class within the window size
constitute a complex event, we only needed to change the names
of the identifiers for the different classes. However, if we wanted
to detect other patterns that are more interesting to us this could
also be easily done.

In Table 7 we can see the results of training DeepProbCEP on

a balanced dataset with 1000 training data points. We can see that

https://github.com/harritaylor/torchvggish

Expert Systems With Applications 215 (2023) 119376M. Roig Vilamala et al.

t
i

t
t

Fig. 14. In this scenario, we test the performance of the system with different levels of noise in the training data for window sizes between 2 and 5. The horizontal axis indicates
he percentage of training data points where the class has been randomly selected (0% for none and 100% for all). The vertical axis indicates the accuracy of the system for
ndividual classifications and complex event detection, respectively.
Fig. 15. In this scenario, we test the performance of the system with different levels of noise in the training data for window sizes between 2 and 5. The horizontal axis indicates
he percentage of training data points of the chosen class that have been swapped for its pre-defined substitute class (0% for none and 100% for all). The vertical axis indicates
he accuracy of the system for individual classifications and complex event detection, respectively.
Table 7
Accuracy results (average and standard deviation over 3 executions) for DeepProbCEP
for both complex events and individual sounds.

Window
size

Complex
event Acc

Complex
event STD

Sound
Acc

Sound
STD

2 0.8657 0.0041 0.6696 0.0100
3 0.7645 0.0109 0.6497 0.0265
4 0.7069 0.0191 0.6501 0.0284
5 0.6401 0.0225 0.6410 0.0694

DeepProbCEP still obtains a fairly high accuracy on this dataset, despite
the fact that the problem is significantly more complex. We have also
performed the same robustness experiments described above for the
MNIST approach on this audio case. The results are consistent with
those obtained in the MNIST case, albeit with lower performance, as
expected. These results can be seen in Appendix B.

7. Discussion

In this paper, we have presented DeepProbCEP, a neuro-symbolic
approach capable of performing CEP on subsymbolic data. We have
demonstrated that DeepProbCEP can work with images and audio as
input data, fulfilling the first objective defined in Section 1.
21
We have also shown how the reasoning layer of DeepProbCEP can
be changed even after training, and explained how this reasoning layer
can be used to define any configuration of complex events, as the whole
expressivity of ProbLog is available to describe them. This is further
proven by the demonstration shown as the motivating example, which
makes use of a far more complex definition for the complex event. As
such, we would argue that the second objective has also been fulfilled.

DeepProbCEP has also outperformed the neural-only approaches
and Neuroplex in terms of accuracy, particularly when using sparse
data. This, together with DeepProbCEP’s capability of using end-to-end
training, makes is easy and cheap to obtain enough data to train the
system, thus fulfilling the third objective.

Finally, DeepProbCEP’s robustness against adversarial attacks on the
training data fulfils the fourth objective. This paper has focused on
attacks on the training data, as we believe that these are quite feasible
to happen, even by accident. Despite this, further experiments should
be performed to evaluate DeepProbCEP’s robustness against other types
of attacks.

Furthermore, we have also demonstrated that DeepProbCEP can
train neural networks to classify simple events, even when training in
an end-to-end manner. This could be a useful byproduct, as it means
that we can train neural networks to classify data even when we do
not have direct labelling of this data by injecting human knowledge
into the system.

Expert Systems With Applications 215 (2023) 119376

22

M. Roig Vilamala et al.

Fig. 16. Confusion matrices for DeepProbCEP after being trained with datasets under a Single Label attack with different noise percentages. All confusion matrices show results
for a window of 4. For this case, the targeted class was 𝑐𝑒0 and the substitute was 𝑐𝑒1.

Fig. 17. In this scenario, we test the performance of the system for the chosen class with different levels of noise in the training data for window sizes between 2 and 5. The
horizontal axis indicates the percentage of training data points of the chosen class that have been swapped for its pre-defined substitute class (0% for none and 100% for all). The
vertical axis indicates the recall for the chosen class, either individually or in the pattern formed by that class.

Expert Systems With Applications 215 (2023) 119376

23

M. Roig Vilamala et al.

Fig. 18. In this scenario, we test the performance of the system with different levels of noise in the training data for window sizes between 2 and 5. The horizontal axis indicates
the percentage of training data points where the class has been swapped for its pre-defined substitute (0% for none and 100% for all). The vertical axis indicates the accuracy of
the system for individual classifications and complex event detection, respectively.

Fig. 19. Confusion matrices for DeepProbCEP after being trained with datasets under Multiple Labels attack with different noise percentages. All confusion matrices show results
for a window of 4.

Expert Systems With Applications 215 (2023) 119376M. Roig Vilamala et al.

I

&
e
i
p
s
S

Despite this, DeepProbCEP does have some limitations, which future
work should aim to reduce.

7.1. DeepProbCEP’s limitations

While the use of a logic layer does offer a number of advantages
that make it possible to fulfil the objectives defined above, it does
also introduce some limitations. The most relevant limitation is the
significantly slower training time, which can prevent users from train-
ing with particularly big datasets. These limitations come from the
fact that the logical inference is significantly slower than propagating
the values through a logic layer. This is partly due to implementation
inefficiencies, as the ProbLog inference is likely not as optimized as the
machine learning libraries used to implement Neuroplex. However, a
more significant time loss comes from the fact that the logic program
needs to be complied each time an inference is performed, which is a
time consuming process.

Another of DeepProbCEP’s limitations is the fact that it requires
the user to provide the rules for the complex events, which must be
correctly defined. While this is quite standard for CEP approaches, it
does mean that DeepProbCEP cannot be used in situations where such
rules are incorrect or not available at all. In those cases, DeepProbCEP
would not provide any significant advantage against the neural-only
approaches, as the lack of injected knowledge would make it impossible
to reduce the amount of training data required. Furthermore, in the
case where the provided rules are incorrect this could even negatively
impact the training making it worse than neural-only approaches, as
DeepProbCEP would be learning incorrect values. As such, ensuring
that rules are provided and that such rules are correct is a must when
using DeepProbCEP.

8. Conclusion and future work

As demonstrated above, DeepProbCEP fulfils the four objectives we
defined in Section 1. However, further work could be performed to
reduce the limitations of the approach.

As explained in Section 6.3, we believe that future research could
be done on improving the time efficiency of DeepProbLog, which
could significantly reduce the difference in time efficiency between
DeepProbCEP and Neuroplex.

Another aspect in which future research could be performed is in
automatically learning the rules for complex events, even in situations
where subsymbolic data is used as an input. As explained in Section 2,
some approaches exist that are capable of learning the complex event
rules when using symbolic data. This is useful when experts are not able
to define the rules for the complex events. When using subsymbolic
data, we have shown that a neural network approach can be used.
However, as we have also shown, this requires very large amounts of
training data. As such, we believe that an inductive logic programming
approach, combined with a neuro-symbolic architecture, would be a
better approach when dealing with sparse data. This could reduce the
need for user defined rules, making it possible to use DeepProbCEP in
situations where these are not available.

CRediT authorship contribution statement

Marc Roig Vilamala: Conceptualization, Methodology, Software,
nvestigation, Writing – original draft, Visualization. Tianwei Xing:

Software. Harrison Taylor: Software. Luis Garcia: Writing – review
editing. Mani Srivastava: Conceptualization, Writing – review &

diting. Lance Kaplan: Conceptualization, Writing – review & edit-
ng. Alun Preece: Conceptualization, Writing – review & editing, Su-
ervision. Angelika Kimmig: Writing – review & editing, Supervi-
ion. Federico Cerutti: Conceptualization, Writing – review & editing,
24

upervision.
Declaration of competing interest

One or more of the authors of this paper have disclosed potential or
pertinent conflicts of interest, which may include receipt of payment,
either direct or indirect, institutional support, or association with an
entity in the biomedical field which may be perceived to have potential
conflict of interest with this work. For full disclosure statements refer to
https://doi.org/10.1016/j.eswa.2022.119376. This research was spon-
sored by the U.S. Army Research Laboratory and the U.K. Ministry of
Defence under Agreement Number W911NF-16-3-0001.

Data availability

The data and code have been publicly uploaded to Code Ocean:
https://codeocean.com/capsule/7055867/tree/v1.

Acknowledgements

This research was sponsored by the U.S. Army Research Laboratory
and the U.K. Ministry of Defence under Agreement Number W911NF-
16-3-0001. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the U.S. Army Re-
search Laboratory, the U.S. Government, the U.K. Ministry of Defence
or the U.K. Government. The U.S. and U.K. Governments are autho-
rized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation hereon.

Appendix A. Sequence framework: a tool to detect patterns in
streams of data

% Main interface for the framework.
sequence(L, W, T) :-

% Reverse list to simplify rule definitions
reverse(L, L2),
sequenceEndingAt(L2, W, T).

% An empty sequence will be within if Excluded
% elements is empty or if W is 0
sequenceWithin([], [], _, _).
sequenceWithin([], _, 0, _).
sequenceEndingAt([X | L], W, T) :-

W > 0, T >= 0, happensAt(Y, T), wrapper(Y, X),
NextW is W - 1, allTimeStamps(Timestamps),
previousTimeStamp(T, Timestamps, Tprev),
sequenceWithin(L, [], NextW, Tprev).

% If we have detected all simple events but still
% have Excluded elements, check until the end of the window
sequenceWithin([], E, W, T) :-

W > 0, happensAt(H, T), wrapper(H, Y),
\+ itemIn(Y, E), NextW is W - 1,
allTimeStamps(Timestamps),
previousTimeStamp(T, Timestamps, Tprev),
sequenceWithin([], E, NextW, Tprev).

% A sequence can be within T if it ends at T
sequenceWithin(L, E, W, T) :- sequenceEndingAt(L, W, T).
% If the next element in the list is a negation, add it to E
sequenceWithin([X | L], E, W, T) :-

isNegation(X, Y), sequenceWithin(L, [Y | E], W, T).
% A sequence can be within W of T if it is within NextW of Tprev
sequenceWithin([X | L], E, W, T) :-

W > 0, T >= 0, \+ isNegation(X, _), happensAt(H, T),
wrapper(H, Y), \+ itemIn(Y, E),
NextW is W - 1, allTimeStamps(Timestamps),
previousTimeStamp(T, Timestamps, Tprev),

sequenceWithin([X | L], E, NextW, Tprev).

https://doi.org/10.1016/j.eswa.2022.119376
https://codeocean.com/capsule/7055867/tree/v1

Expert Systems With Applications 215 (2023) 119376M. Roig Vilamala et al.
Appendix B. Audio robustness results

See Figs. B.20–B.23.

Fig. B.20. Accuracy results for Random noise for the UrbanSounds setting.

Fig. B.21. Accuracy results for Targeted attack against a single label for the UrbanSounds setting.

Fig. B.22. Recall results for the targeted simple and complex events under the Targeted attack against a single label for the UrbanSounds setting.

Fig. B.23. Accuracy results for Targeted attack against multiple labels for the UrbanSounds setting.
25

Expert Systems With Applications 215 (2023) 119376M. Roig Vilamala et al.
Appendix C. Supplementary data

The supplementary data for this article contains a video of the
demonstration discussed in Section 1.1.

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.eswa.2022.119376.

References

Al-Rakhami, M. S., Islam, M. M., Islam, M. Z., Asraf, A., Sodhro, A. H., & Ding, W.
(2021). Diagnosis of COVID-19 from X-rays using combined CNN-RNN Architecture
with transfer learning. MedRxiv, http://dx.doi.org/10.1101/2020.08.24.20181339,
URL: https://www.medrxiv.org/content/early/2021/08/09/2020.08.24.20181339.

Alevizos, E., Skarlatidis, A., Artikis, A., & Paliouras, G. (2017). Probabilistic complex
event recognition: A survey. ACM Computing Surveys, 50(5), http://dx.doi.org/10.
1145/3117809.

Anicic, D., Rudolph, S., Fodor, P., & Stojanovic, N. (2012a). Real-time complex
event recognition and reasoning-a logic programming approach. Applied Artificial
Intelligence - AAI, 26, 6–57. http://dx.doi.org/10.1080/08839514.2012.636616.

Anicic, D., Rudolph, S., Fodor, P., & Stojanovic, N. (2012b). Stream reasoning and
complex event processing in ETALIS. Semantic Web, 3, 397–407. http://dx.doi.org/
10.3233/SW-2011-0053, URL: https://content.iospress.com/download/semantic-
web/sw053?id=semantic-web%2Fsw053.

Bezerra, E. D. C., Teles, A. S., Coutinho, L. R., & da Silva e Silva, F. J. (2021). Dempster–
Shafer theory for modeling and treating uncertainty in IoT applications based on
complex event processing. Sensors, 21(5), http://dx.doi.org/10.3390/s21051863,
URL: https://www.mdpi.com/1424-8220/21/5/1863.

Bruns, R., Dunkel, J., & Offel, N. (2019). Learning of complex event processing rules
with genetic programming. Expert Systems with Applications, 129, 186–199. http:
//dx.doi.org/10.1016/j.eswa.2019.04.007, URL: https://www.sciencedirect.com/
science/article/pii/S0957417419302386.

Burgueño, L., Boubeta-Puig, J., & Vallecillo, A. (2018). Formalizing complex event
processing systems in Maude. IEEE Access, 6, 23222–23241. http://dx.doi.org/10.
1109/ACCESS.2018.2831185.

Chapnik, K., Kolchinsky, I., & Schuster, A. (2021). DARLING: Data-aware load shedding
in complex event processing systems. Proceedings of the VLDB Endowment, 15(3),
541–554. http://dx.doi.org/10.14778/3494124.3494137.

De Raedt, L., Kimmig, A., & Toivonen, H. (2007). ProbLog: A probabilistic prolog and
its application in link discovery. In IJCAI international joint conference on artificial
intelligence (pp. 2468–2473). URL: www.ncbi.nlm.nih.gov/Entrez/.

Defense Innovation Board (2019). AI principles: Recommendations on the ethical use of
artificial intelligence by the department of defense. In Supporting document. Defense
Innovation Board.

Giatrakos, N., Alevizos, E., Artikis, A., Deligiannakis, A., & Garofalakis, M. (2020).
Complex event recognition in the Big Data era: a survey. The VLDB Journal, 29(1),
313–352. http://dx.doi.org/10.1007/s00778-019-00557-w.

Hershey, S., Chaudhuri, S., Ellis, D. P., Gemmeke, J. F., Jansen, A., Moore, R.
C., et al. (2017). CNN architectures for large-scale audio classification. In 2017
Ieee international conference on acoustics, speech and signal processing (Icassp) (pp.
131–135). IEEE.

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network.
http://dx.doi.org/10.48550/ARXIV.1503.02531, URL: https://arxiv.org/abs/1503.
02531.

Hu, Z., Ma, X., Liu, Z., Hovy, E. H., & Xing, E. P. (2016). Harnessing deep neural
networks with logic rules. CoRR, arXiv:1603.06318 URL: http://arxiv.org/abs/
1603.06318.

Islam, M. Z., Islam, M. M., & Asraf, A. (2020). A combined deep CNN-LSTM network for
the detection of novel coronavirus (COVID-19) using X-ray images. Informatics in
Medicine Unlocked, 20, http://dx.doi.org/10.1016/j.imu.2020.100412, URL: https:
//www.sciencedirect.com/science/article/pii/S2352914820305621.

Kowalski, R., & Sergot, M. (1986). A logic-based calculus of events. New Generation
Computing, 4(1), 67–95. http://dx.doi.org/10.1007/BF03037383.

Liu, K., Liu, W., Gan, C., Tan, M., & Ma, H. (2018). T-C3D: Temporal convolutional
3D network for real-time action recognition. In Proceedings of the AAAI conference
on artificial intelligence, Vol. 32.

Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., & De Raedt, L.
(2018). DeepProbLog: Neural probabilistic logic programming. In NIPS2018 (pp.
3749–3759).

Manhaeve, R., Dumanić, S., Kimmig, A., Demeester, T., & De Raedt, L. (2021).
Neural probabilistic logic programming in DeepProbLog. Artificial Intelligence, 298,
Article 103504. http://dx.doi.org/10.1016/j.artint.2021.103504, URL: https://
www.sciencedirect.com/science/article/pii/S0004370221000552.

Mishra, S., Jain, M., Siva Naga Sasank, B., & Hota, C. (2018). An ingestion based
analytics framework for complex event processing engine in internet of things. In
A. Mondal, H. Gupta, J. Srivastava, P. K. Reddy, & D. Somayajulu (Eds.), Big data
analytics (pp. 266–281). Cham: Springer International Publishing.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., et al. (2017).
Automatic differentiation in PyTorch. In NIPS workshop.

Roig Vilamala, M. (2022). LiveEvents demo - based on DeepProbCEP training. URL:
https://www.youtube.com/watch?v=dllH0VzppPM.

Roig Vilamala, M., Hiley, L., Hicks, Y., Preece, A., & Cerutti, F. (2019). A pilot study
on detecting violence in videos fusing proxy models. In 2019 22th international
conference on information fusion (FUSION) (pp. 1–8).

Roldán, J., Boubeta-Puig, J., Luis Martínez, J., & Ortiz, G. (2020). Integrating complex
event processing and machine learning: An intelligent architecture for detecting
IoT security attacks. Expert Systems with Applications, 149, Article 113251. http:
//dx.doi.org/10.1016/j.eswa.2020.113251, URL: https://www.sciencedirect.com/
science/article/pii/S0957417420300762.

Salamon, J., Jacoby, C., & Bello, J. P. (2014). A dataset and taxonomy for urban
sound research. In 22nd ACM international conference on multimedia (ACM-MM’14)
(pp. 1041–1044). Orlando, FL, USA.

Shi, B., Bai, X., & Yao, C. (2015). An end-to-end trainable neural network for image-
based sequence recognition and its application to scene text recognition. CoRR,
arXiv:1507.05717 URL: http://arxiv.org/abs/1507.05717.

Skarlatidis, A., Artikis, A., Filippou, J., & Paliouras, G. (2015). A probabilistic logic
programming event calculus. Theory and Practice of Logic Programming, 15(2),
213–245. http://dx.doi.org/10.1017/S1471068413000690.

Teymourian, K., Rohde, M., & Paschke, A. (2012). Knowledge-based processing of
complex stock market events. In Proceedings of the 15th international conference on
extending database technology (pp. 594–597). New York, NY, USA: Association for
Computing Machinery, http://dx.doi.org/10.1145/2247596.2247674.

Xing, T., Garcia, L., Vilamala, M. R., Cerutti, F., Kaplan, L., Preece, A., et al.
(2020). Neuroplex: Learning to detect complex events in sensor networks through
knowledge injection. In Proceedings of the 18th conference on embedded networked
sensor systems (pp. 489–502). New York, NY, USA: Association for Computing
Machinery, URL: https://doi.org/10.1145/3384419.3431158.

Xing, T., Roig Vilamala, M., Garcia, L., Cerutti, F., Kaplan, L., Preece, A., et al. (2019).
DeepCEP: Deep complex event processing using distributed multimodal information.
In 2019 IEEE international conference on smart computing (SMARTCOMP) (pp.
87–92). http://dx.doi.org/10.1109/SMARTCOMP.2019.00034.

Yankovitch, M., Kolchinsky, I., & Schuster, A. (2022). HYPERSONIC: A hybrid
parallelization approach for scalable complex event processing. SIGMOD.
26

https://doi.org/10.1016/j.eswa.2022.119376
http://dx.doi.org/10.1101/2020.08.24.20181339
https://www.medrxiv.org/content/early/2021/08/09/2020.08.24.20181339
http://dx.doi.org/10.1145/3117809
http://dx.doi.org/10.1145/3117809
http://dx.doi.org/10.1145/3117809
http://dx.doi.org/10.1080/08839514.2012.636616
http://dx.doi.org/10.3233/SW-2011-0053
http://dx.doi.org/10.3233/SW-2011-0053
http://dx.doi.org/10.3233/SW-2011-0053
https://content.iospress.com/download/semantic-web/sw053?id=semantic-web%2Fsw053
https://content.iospress.com/download/semantic-web/sw053?id=semantic-web%2Fsw053
https://content.iospress.com/download/semantic-web/sw053?id=semantic-web%2Fsw053
http://dx.doi.org/10.3390/s21051863
https://www.mdpi.com/1424-8220/21/5/1863
http://dx.doi.org/10.1016/j.eswa.2019.04.007
http://dx.doi.org/10.1016/j.eswa.2019.04.007
http://dx.doi.org/10.1016/j.eswa.2019.04.007
https://www.sciencedirect.com/science/article/pii/S0957417419302386
https://www.sciencedirect.com/science/article/pii/S0957417419302386
https://www.sciencedirect.com/science/article/pii/S0957417419302386
http://dx.doi.org/10.1109/ACCESS.2018.2831185
http://dx.doi.org/10.1109/ACCESS.2018.2831185
http://dx.doi.org/10.1109/ACCESS.2018.2831185
http://dx.doi.org/10.14778/3494124.3494137
http://www.ncbi.nlm.nih.gov/Entrez/
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb10
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb10
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb10
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb10
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb10
http://dx.doi.org/10.1007/s00778-019-00557-w
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb12
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb12
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb12
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb12
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb12
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb12
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb12
http://dx.doi.org/10.48550/ARXIV.1503.02531
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1603.06318
http://arxiv.org/abs/1603.06318
http://arxiv.org/abs/1603.06318
http://arxiv.org/abs/1603.06318
http://dx.doi.org/10.1016/j.imu.2020.100412
https://www.sciencedirect.com/science/article/pii/S2352914820305621
https://www.sciencedirect.com/science/article/pii/S2352914820305621
https://www.sciencedirect.com/science/article/pii/S2352914820305621
http://dx.doi.org/10.1007/BF03037383
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb17
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb17
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb17
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb17
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb17
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb18
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb18
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb18
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb18
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb18
http://dx.doi.org/10.1016/j.artint.2021.103504
https://www.sciencedirect.com/science/article/pii/S0004370221000552
https://www.sciencedirect.com/science/article/pii/S0004370221000552
https://www.sciencedirect.com/science/article/pii/S0004370221000552
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb20
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb20
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb20
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb20
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb20
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb20
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb20
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb21
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb21
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb21
https://www.youtube.com/watch?v=dllH0VzppPM
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb23
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb23
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb23
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb23
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb23
http://dx.doi.org/10.1016/j.eswa.2020.113251
http://dx.doi.org/10.1016/j.eswa.2020.113251
http://dx.doi.org/10.1016/j.eswa.2020.113251
https://www.sciencedirect.com/science/article/pii/S0957417420300762
https://www.sciencedirect.com/science/article/pii/S0957417420300762
https://www.sciencedirect.com/science/article/pii/S0957417420300762
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb25
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb25
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb25
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb25
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb25
http://arxiv.org/abs/1507.05717
http://arxiv.org/abs/1507.05717
http://dx.doi.org/10.1017/S1471068413000690
http://dx.doi.org/10.1145/2247596.2247674
https://doi.org/10.1145/3384419.3431158
http://dx.doi.org/10.1109/SMARTCOMP.2019.00034
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb31
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb31
http://refhub.elsevier.com/S0957-4174(22)02394-6/sb31

	DeepProbCEP: A neuro-symbolic approach for complex event processing in adversarial settings
	Introduction
	Motivating example

	Related work
	Declarative approaches to CEP
	Data-driven approaches to CEP
	Neural-only approaches
	Embedding aggregation rules in a neural architecture: Neuroplex

	Tools used
	ProbLog
	DeepProbLog

	DeepProbCEP: a neuro-symbolic approach for CEP
	Reasoning level
	Sequence Framework

	Perception level
	Setup used in experimentation

	Scenarios and dataset generation
	Base dataset
	Data-scarcity datasets
	Random noise datasets
	Targeted poisoning attacks
	Targeted attack against a single label
	Targeted attack against multiple labels

	Experiment design
	LSTM approach
	C3D approach
	Neuroplex approach

	Results
	Performance with sparse data
	Types of error

	Performance on simple events
	Time efficiency
	Robustness against poisoning attack with random noise
	Robustness against targeted poisoning attacks
	Targeted attack against a single label
	Targeted attack over multiple labels

	Performance when modifying the rules
	Performance in an audio setting

	Discussion
	DeepProbCEP's limitations

	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A. Sequence framework: A tool to detect patterns in streams of data
	Appendix B. Audio Robustness Results
	Appendix C. Supplementary data
	References

