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Abstract 
Background: Marked reductions in serum iron concentrations are 
commonly induced during the acute phase of infection. This 
phenomenon, termed hypoferremia of inflammation, leads to 
inflammatory anemia, but could also have broader pathophysiological 
implications. In patients with coronavirus disease 2019 (COVID-19), 
hypoferremia is associated with disease severity and poorer 
outcomes, although there are few reported cohorts. 
Methods: In this study, we leverage a well characterised prospective 
cohort of hospitalised COVID-19 patients and perform a set of 
analyses focussing on iron and related biomarkers and both acute 
severity of COVID-19 and longer-term symptomatology. 
Results: We observed no associations between acute serum iron and 
long-term outcomes (including fatigue, breathlessness or quality of 
life); however, lower haemoglobin was associated with poorer quality 
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of life. We also quantified iron homeostasis associated parameters, 
demonstrating that among 50 circulating mediators of inflammation 
IL-6 concentrations were strongly associated with serum iron, 
consistent with its central role in inflammatory control of iron 
homeostasis. Surprisingly, we observed no association between 
serum hepcidin and serum iron concentrations. We also observed 
elevated erythroferrone concentrations in COVID-19 patients with 
anaemia of inflammation. 
Conclusions: These results enhance our understanding of the 
regulation and pathophysiological consequences of disturbed iron 
homeostasis during SARS-CoV-2 infection.
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Introduction
Systemic hypoferremia commonly occurs during the acute 
phase of infection (Drakesmith & Prentice, 2012) and is well- 
established to contribute to the anaemia of inflammation. 
However, iron is not only important for erythropoiesis and 
plays essential roles in cellular biochemistry (Andreini et al.,  
2018). In animal models reduced iron availability can antago-
nise the development of a protective antiviral immune response 
(Frost et al., 2021) and influence tissue repair (Recalcati et al.,  
2019). 

We have previously demonstrated that serum iron concentra-
tion within 24 hours of a critical care admission is inversely 
associated with disease severity in coronavirus disease 2019  
(COVID-19), a result which has also subsequently been con-
firmed in other cohorts including a wider range of disease 
severities (Hippchen et al., 2020; Lv et al., 2021; Moreira et al.,  
2021; Shah et al., 2020; Zhao et al., 2020). Elevated levels of 
the iron regulatory hormone hepcidin (Nai et al., 2021) and 
anaemia (Bellmann-Weiler et al., 2020) have also been associ-
ated with worse outcomes. This contrasts with findings in sep-
sis where low serum iron concentrations may be associated 
with better outcomes (Brandtner et al., 2020; Lan et al., 2018;  
Tacke et al., 2016).

It remains unclear to what extent perturbed iron status, at an 
early time point, may predict later outcomes such as survival 
in COVID-19. Furthermore only a few studies have consid-
ered if iron status is perturbed long term in COVID-19 patients  
(Sonnweber et al., 2020), and whether disturbed iron status 
plays a role in the persistent symptoms a proportion of patients 
often continue to suffer with, such as fatigue and difficulty con-
centrating (Carfì et al., 2020). Furthermore, multiple physi-
ological inputs and regulatory factors (inflammation, iron status,  
hypoxia and erythropoietic drive) can potentially influence sys-
temic iron status during inflammation both, dependent and inde-
pendent, of serum hepcidin – the master regulator of iron status 
(Weiss et al., 2019). Given the important role of iron in immu-
nity and erythropoiesis, an understanding of the factors driving  
disturbed iron homeostasis in COVID-19 is necessary.

We undertook deep phenotyping of iron homeostasis by inte-
grating data between two prospective cohorts of COVID19  
patients to investigate: (i) associations between patient sever-
ity and outcome with iron parameters; (ii) immunological fac-
tors associating with altered iron homeostasis during the acute 
stages of infection and; (iii) the extent to which iron status is  
perturbed in convalescence.

Methods
Cohorts
This was a retrospective analysis based on data collected 
prospectively. We report our findings in accordance with  
STROBE guidance.

In this study, two cohorts of patients were recruited. Patients 
in the DISCOVER (DIagnostic and Severity markers of 

COVID-19 to Enable Rapid triage) cohort were prospectively  
recruited at two NHS sites, North Bristol NHS Trust and 
Gloucester Royal Infirmary. Detailed description of the inclu-
sion, exclusion, criteria and a summary of patient characteristics 
are available with the original publication (Arnold et al., 2021a). 
Ethical approval was given by the South Yorkshire REC (Ref: 
20/YH/0121). Briefly, patients who presented to either site were  
prospectively recruited with either polymerase chain reaction 
(PCR) confirmed or clinically suspected COVID-19. Clinical 
details were extracted from the medical notes and blood sam-
pling was taken as soon as possible after recruitment, usually 
on the day of recruitment. Acute outcomes were recorded in  
line with the RECOVERY trial (Abani et al., 2021), and included 
intensive care utilisation, oxygen requirements, and mortal-
ity. Severity was defined as severe (requirement for ITU admis-
sion, non-invasive ventilation, or death), moderate (requirement 
for oxygen only), or mild (no requirement for oxygen), or using 
a binary outcome of severe disease (NIV, ITU, or death), as per 
Arnold et al. (2021a). Patients were subsequently followed up in 
person at 3 and 9 months to assess functional recovery; details  
of these assessments are provided here (Arnold et al., 2021b).

A second cohort of severe COVID-19 patients, termed the Aspi-
Flu cohort previously published in (Youngs et al., 2021), pro-
vided serum for iron and cytokine analysis. The prospective 
observational study AspiFlu (ISRCTN51287266) has national 
HRA (CPMS 43440/IRAS 271269) and REC (19/WA/0310)  
approval.

Serum analysis
Serum iron in both cohorts was quantified using the Abbott 
Architect c16000 automated analyser (Abbott Laboratories) 
and the Abbott MULTIGENT Iron Kit (6K95-30) at Oxford  
John Radcliffe Hospital, UK.

Erythroferrone (ERFE) and serum hepcidin were measured in 
patient serum from the DISCOVER cohort using Intrinsic Eryth-
roferrone IE ELISA Kit (ERF-001) and Intrinsic Hepcidin IDx 
ELISA Kit (ICE-007), respectively, in accordance with the  
manufacturer’s instructions.

Details on sample preparation and serum cytokine measure-
ments for the AspiFlu cohort are available in the original  
publication (Youngs et al., 2021).

Statistical analysis
For visualisation in the DISCOVER dataset, one way ANOVA 
or Welches T-test conducted in GraphPad Prism version 9 
(RRID:SCR_002798) was used on log-transformed parameters. 
R (R Foundation, Vienna) could also be used to replicate this 
analysis. For all downstream analysis, log-transformation was  
performed when data was visually log-normal.

For association of iron and haemoglobin status on admis-
sion and the binary outcome of severe disease and/or death, 
we used logistic regression in both unadjusted analyses, and 
adjusted for age and sex. To estimate the associations across iron  
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markers and other inflammatory biomarkers, Pearson’s cor-
relation was calculated the cor function in R v 4.0.4 Project for  
Statistical Computing (RRID:SCR_001905).

Linear regression was used to estimate the effect on continu-
ous outcomes (e.g. quality of life metrics), adjusting for age and 
sex. Analysis was performed using the lm function in R with  
the “tidyverse” package used for data manipulation and plot-
ting, while correlation plots and matrixes were generated using 
ggcorrplot. We performed a complete-case analyses for all  
analyses.

For the ASPIFLU cohort, Spearmen’s R (non-parametric cor-
relation) and adjusted p value (Holm-Sidak alpha = 0.05) were 
calculated in Graph Pad Prism for analysis of associations 
between serum cytokines (each with different distributions)  
and serum iron.

Results
In total, 321 participants were recruited to DISCOVER, of 
which 246 participants had serum stored and had at least one 
analysis of an iron biomarker performed. Table 1 describes this 
cohort, stratified by disease severity. The cohort was middle aged  

Table 1. Characteristics of the DISCOVER cohort.

Characteristic Mild, N = 58 Moderate, 
N = 146

Severe,  
N = 42

p-value

Age 54 (36, 67) 59 (47, 74) 62 (55, 75) 0.002

Unknown 0 1 0

Sex 0.014

Male 26 (45%) 97 (66%) 23 (55%)

Female 32 (55%) 49 (34%) 19 (45%)

Proven or suspected COVID-19 0.028

Proven 43 (74%) 129 (89%) 36 (86%)

Suspected 15 (26%) 16 (11%) 6 (14%)

Unknown 0 1 0

Inpatient or outpatient on 
recruitment

<0.001

Inpatient 48 (83%) 140 (96%) 42 (100%)

Outpatient 10 (17%) 6 (4.1%) 0 (0%)

adm_diabetes.factor >0.9

No 48 (83%) 124 (85%) 32 (80%)

Type 1 diabetes 1 (1.7%) 3 (2.1%) 1 (2.5%)

Type 2 diabetes 9 (16%) 19 (13%) 7 (18%)

Unknown 0 0 2

Heart disease? 9 (16%) 32 (22%) 10 (25%) 0.5

Unknown 0 2 2

Chronic Lung disease? 8 (14%) 33 (23%) 20 (49%) <0.001

Unknown 2 1 1

Severe Liver disease? 1 (1.7%) 4 (2.8%) 0 (0%) 0.8

Unknown 0 1 0

Severe kidney impairment 
(eGFR< 30 or dialysis)

4 (6.9%) 14 (9.7%) 2 (4.8%) 0.7

Unknown 0 2 0
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(median age 59, IQR 47-74), and had a male predominance 
(59% male). The majority had proven COVID-19, with 15% 
having suspected COVID-19 with negative PCR testing. Com-
mon to other UK cohorts, comorbidities were common and 
higher in those with severe disease, with 25% of patients having  
chronic lung disease (Hamilton, 2022).

Higher serum iron concentration associates with 
better outcomes and survival following severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) 
infection
Serum iron concentrations within 24 hours of admission in the 
DISCOVER cohort were profoundly decreased in all sever-
ity groups relative to the normal patient range of 10-30µmol/L  
(Table 1, Figure 1) (Ritchie et al., 2002). Analysis by ANOVA 
with Tukey’s multiple comparisons highlighted that serum iron 
levels were suppressed in patients with the most severe dis-
ease, with hepcidin elevated in patients with moderate or severe  
disease relative to mild presentation.

Using the previous binary outcome of severe disease and/or 
death (Arnold et al., 2021a), lower serum iron was associated 

with worse outcomes (OR 0.42 for each increase in logged 
serum iron; 95% CI 0.22-0.78, p= 0.008), with a similar effect 
size in the analyses adjusted for age and sex (OR 0.47; 95%  
CI 0.24-0.85, p = 0.017), although we did not identify any  
association with haemoglobin (both p > 0.1).

Haemoglobin and Erythroferrone (ERFE) showed no signifi-
cant differences across disease presentation states (Figure 1A)  
suggesting that disturbed erythropoiesis does not associate 
with disease severity. Whilst the DISCOVER cohort had a low 
mortality, patients who did not survive had significantly lower  
serum iron levels and haemoglobin at admission (Figure 1B). 
Our data confirms in a prospective trial setting that serum iron 
levels are lower in patients with the most adverse outcomes from  
COVID-19 infection. 

Interactions between inflammatory biomarkers, 
cytokines and iron status
To understand the factors controlling iron homeostasis in this 
cohort we calculated associations for selected iron parameters  
(Haemoglobin, Haptoglobin, Lactate Dehydrodgenase (LDH), 
serum iron, total iron binding capacity, ferritin, hepcidin and 

Characteristic Mild, N = 58 Moderate, 
N = 146

Severe,  
N = 42

p-value

Hypertension? 13 (24%) 30 (23%) 14 (34%) 0.3

Unknown 3 15 1

HIV on admission 1 (1.7%) 2 (1.4%) 1 (2.4%) 0.8

Unknown 0 1 0

Non white ethnicity 2 (6.2%) 12 (15%) 4 (19%) 0.4

Unknown 26 64 21

Serum iron (umol/L) 9.0 (4.5, 
12.3)

7.0 (4.9, 
11.2)

5.0 (4.0, 
8.8)

0.03

Unknown 7 16 3

Serum UIBC (umol/L) 38 (30, 46) 32 (26, 37) 31 (25, 40) 0.003

Unknown 7 16 3

Serum TIBC (umol/L) 48 (40, 54) 39 (35, 45) 39 (32, 46) <0.001

Unknown 7 16 3

ERFE (ng/mL) 2.0 (1.2, 5.8) 1.9 (1.3, 
3.6)

3.0 (0.8, 
8.0)

0.7

Unknown 43 93 28

Hepcidin (ng/ml) 133 (87, 
221)

350 (206, 
458)

242 (142, 
401)

0.005

Unknown 39 85 27

Haptoglobin (g/L) 2.35 (1.55, 
3.40)

3.63 (2.95, 
4.30)

3.80 (3.16, 
4.32)

<0.001

Unknown 9 20 3

1. Median (IQR); n (%) 
      1 Kruskal-Wallis rank sum test; Pearson’s Chi-squared test; Fisher’s exact test
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ERFE) and selected inflammatory markers (CRP, IL-6, suPAR, 
PCT, neutrophil and lymphocyte count) across all severities. A 
correlation matrix is shown in Figure 2, with only nominally 
significant results (p <0.05) shown. A table in the Extended 
data shows all correlation coefficients and associated P values  
(Hamilton, 2022).

Serum iron and IL-6 had a negative association in line with the 
role of IL-6 in controlling the acute phase response (Pearson’s 
correlation, R -0.29, p = 0.003) (Nemeth et al., 2004); similar 
results were observed for CRP (R = -0.14, p = 0.007) consist-
ent with both being prototypical acute phase proteins in humans.  
Hepcidin levels were negatively associated with serum iron 
(R = -0.24, p = 0.04), but were as expected positively asso-
ciated with both IL-6 (R = 0.25, p = 0.03) and CRP (R = 0.46,  
p = 3 x 10-6), although the association was much stronger with  
CRP.

We also identified an association between other inflammatory 
markers and iron status, with both suPAR (R = -0.19, p = 0.03), 
and procalcitonin (R = -0.24, p = 0.009) having negative asso-
ciations with iron status. As far as we are aware, this is the first  
reported association between procalcitonin and serum iron.

Despite its role as a negative regulator of hepcidin (Kautz  
et al., 2014), ERFE did not associate with hepcidin in COVID-19  
patients with inflammation, despite a strong association with  
iron (R = -0.45, p = 2 × 10-4). Unexpectedly, patients with the 
lowest serum iron had the highest ERFE (one may expect ERFE 
to drive increased serum iron through hepcidin suppression)  
causing us to consider the upstream control of ERFE. ERFE  
levels were highest in the patients with the lowest haemoglobin  
(R = -0.43, p = 9 × 10-7) supporting the hypothesis that  
anaemia leading to increased erythropoietic activity may 
be contributing to raised ERFE in this patient cohort (2B).  

Figure 1. (A) Serum iron, hepcidin and erythroferrone in DISCOVER cohort split by severity. One way ANOVA on log transformed data. 
Median, upper/ lower quartiles and range. (B) Serum iron split by outcome. Welches T-test. Hb split by outcome. Mann-Whitney Test. 
Median, upper/ lower quartiles and range.
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Consistent with the proposal that ERFE levels reflect anaemia  
and therefore negatively associated with serum iron, Hb and  
serum iron were also positively correlated (R = 0.25, p = 2 × 10-4).

Multiple inflammatory cytokines (including IL-6, type I inter-
ferons, IL-22) have been proposed to induce hepatic hepcidin 
production to reduce serum iron, but the relative importance 
of these cytokines for particular infections in vivo is unknown  
(Armitage et al., 2011; Nemeth et al., 2004; Ryan et al., 2012). 
In parallel to our analysis of outcomes, biomarkers and iron 
homeostasis in the DISCOVER cohort we measured serum iron 
concentration in samples from the deeply immunophenotyped  
AspiFlu study (Youngs et al., 2021) to ask which serum inflam-
matory analytes during severe COVID-19 associated with 
serum iron suggesting possible links with its regulation. 
Patients in the critically ill hospitalised AspiFlu cohort showed  

significantly reduced serum iron compared to healthy controls  
(Figure 2C). Among 50 serum analytes we found that only IL-6 
presented a near significant p-value after multiple comparisons 
testing (p= 0.0583), with an unadjusted p-value of 0.0012 and  
r = -0.5008 (Table 2, Figure 2D) highlighting IL-6 as a likely  
major driver of hypoferremia during human COVID-19.

Serum iron during acute infection does not robustly 
associate with long term quality of life metrics
Returning to the DISCOVER cohort, we prospectively collected  
quality of life data at 3,8, and 12 months using the validated  
SF-36 questionnaire and explored potential associations  
between hypoferraemia and quality of life.

In logistic regression adjusted for age and sex, we found no 
association with serum iron at admission (logged to normalise  

Figure 2. (A) Correlation matrix for each biomarker. The colour and size are determined by the correlation coefficient, while the number 
of stars determines the signifance by Pearson’s correlation. Significance stars at 0.05, 0.01, 0.001. (B) Circulating ERFE split by anaemia. 
T-test on logged data. Median, upper/ lower quartiles and range. Anaemia defined as a Hb below 12g/dL in females and 13g/dL in males.  
(C) Serum iron concentration in AspiFlu cohort comparing patients with healthy controls. Mann-Whitney Test. Median, upper/ lower quartiles 
and range. (D) Correlation between IL-6 and serum iron in AspiFlu cohort. Spearman’s correlation co-efficient.
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the data) and physical composite scores (Figure 3A, all  
p values > 0.4). However, for mental (Figure 4A.) composite 
scores, we identified a weak association with increasing serum 
iron and reduced mental composite scores (beta -5.31 reduction  
in MSC score per log10 increase in serum iron, p = 0.04 at 
3 months, - 6.39, p = 0.06) at 8 months, and -18.8, p = 0.15) at  
12 months).

In univariate regression, admission haemoglobin had a positive  
association with physical and composite score at 8 months (beta 
0.17, p = 0.01, Figure 3b), but when adjusted for age and sex, 
this association was lost (beta 0.08, p = 0.21). We did not identify  
any robust associations with the mental composite score 
and initial Hb, although all estimates suggested a negative  
correlation, in contrast to the physical composite scores  
(Figure 4B).

In regression adjusted for age and sex, Hb measured at 3 months  
was associated with physical composite score at this time 
(beta 0.09, p = 0.03), suggesting that haemoglobin status is 
more relevant for longer term recovery than initial iron status  
during acute infection (Figure 3C and D). Again, we found in  
univariate regression an association between Hb measured at 
8 months and 8 month physical composite score (beta 0.22,  
p = 0.04), but this effect did not hold once adjusting for age  
and sex (beta 0.14, p = 0.25)

Table 2. Serum analyte and p value (Spearmans r) for 
correlation with iron and adjusted p value (Holm-Sidak 
alpha = 0.05) for patient samples from the AspiFlu trial 
cohort.

Analyte P value 
(Spearman’s r)

Adjusted 
P Value

IL-6 0.0012 0.0583

S100A9 0.0149 0.5208

CD163 0.0206 0.6318

CXCL1/GRO alpha/KC/CINC-1 0.0242 0.6838

Myeloperoxidase/MPO 0.0295 0.7478

Complement Component C5a 0.0591 0.9355

Lactoferrin 0.0857 0.9806

G-CSF 0.1295 0.9974

TREM-1 0.1312 0.9974

IL-33 0.1346 0.9974

beta-NGF 0.1361 0.9974

CCL11/Eotaxin 0.1441 0.9977

CCL18/PARC 0.1659 0.999

Coagulation Factor III/Tissue 
Factor

0.1691 0.999

IL-23 0.1698 0.999

CCL19/MIP-3 beta 0.173 0.999

TFPI 0.19 0.9992

FGF basic/FGF2/bFGF 0.2 0.9994

IFN-gamma 0.2091 0.9995

CXCL5/ENA-78 0.21 0.9995

Granzyme B 0.2473 0.9998

IL-5 0.2864 0.9999

CCL3/MIP-1 alpha 0.3194 1

TNF-alpha 0.3392 1

Lipocalin-2/NGAL 0.3706 1

CCL20/MIP-3 alpha 0.379 1

Thrombopoietin/Tpo 0.4383 1

IL-15 0.4442 1

IFN-alpha 0.4597 1

IL-1 beta/IL-1F2 0.4942 1

Oncostatin M/OSM 0.5238 1

CCL2/JE/MCP-1 0.5513 1

IL-2 0.5631 1

Analyte P value 
(Spearman’s r)

Adjusted 
P Value

CCL17/TARC 0.5996 1

CD40 Ligand/TNFSF5 0.6407 1

IL-12 p70 0.6539 1

SCGF/CLEC11a 0.67 1

CCL4/MIP-1 beta 0.6987 1

GM-CSF 0.7543 1

TGF-alpha 0.7887 1

IL-3 0.794 1

IL-1 alpha/IL-1F1 0.798 1

M-CSF 0.8041 1

IL-17/IL-17A 0.8277 1

IL-8/CXCL8 0.8295 1

IL-13 0.8341 1

IL-10 0.8373 1

EGF 0.8506 1

CXCL10/IP-10/CRG-2 0.96 1

IFN-beta 0.9796 1
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In summary, we did not identify any strong association between 
serum iron levels and functional status at 8 months, but did 
identify a weak and unexpected association with increasing  
iron status and reduced mental composite score.

Alongside this, we identified an expected association between 
haemoglobin and the physical composite score. Once adjusting 
for age and sex, which are known predictors of both haemoglobin  
and quality of life, the effect of Hb was not relevant.

Discussion
Here, we have undertaken a deep phenotypic characterisation 
of iron homeostasis upon admission in a cohort of COVID-19 

patients presenting with a range of severities in illness. In 
line with other published COVID-19 studies (Hippchen et al.,  
2020; James et al., 2021; Lv et al., 2021; Shah et al., 2020;  
Zhao et al., 2020) we observe lower serum iron upon admission 
of patients presenting with more severe disease, despite vari-
ability between studies regarding sampling time and how disease 
severity is defined. This is consistent with experimental stud-
ies showing that replete serum iron levels promotes antiviral  
immunity (Frost et al., 2021)

Our investigation confirms in a prospective observational study 
that those patients who did not survive exhibited, on admis-
sion, significantly lower serum iron (Zhao et al., 2020) and 

Figure 3. Physical Composite Score component of SF-36 vs iron biomarkers. (A) Iron at admission, (B) Hb at admission, (C) Hb at  
3 months, (D) Hb at 8 months.
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haemoglobin (Bellmann-Weiler et al., 2020; Faghih Dinevari  
et al., 2021; Oh et al., 2021; Tao et al., 2021; Tremblay et al., 
2021). We did not consider the aetiology of anaemia at this time 
point as this is difficult to characterise in a setting of severe  
acute inflammation. Further work is required to understand 
how the iron levels dynamically shift during SARS-CoV-2 
infection in relation to therapy and in the context of disease  
progression (Bolondi et al., 2020; Chakurkar et al., 2021;  
Hippchen et al., 2020). We were unable to identify any robust 
association between serum iron and persistent symptoms or 
quality of life after COVID-19 but did find an unexpected asso-
ciation with serum iron and the mental component of the  
SF-36 quality of life metrics.

Limitations
This study has several limitations. Firstly, the cohorts included 
are small, and they were sample at a time without widespread 

vaccination. Secondly, serum iron is also a predictor of sever-
ity of disease, therefore the selected cohort (that by nature were  
alive at follow up) may be biased with respect to iron status.

Further phenotyping of patients at follow-up time points will 
be required to identify the factors driving anaemia and the  
therapeutic utility of iron supplementation in this setting. Treat-
ing anaemia of inflammation, particularly during the recovery 
phase of critical illness, with intravenous iron has been shown 
to be efficacious (Shah et al., 2022) but there are no comparable  
data in patients recovering from COVID-19.

Multiple inflammatory mediators have been proposed to control  
iron status, but their relative importance in different human 
infections remains unclear. Our comprehensive profiling of 
serum cytokines highlights IL-6, above 50 other inflammatory  
mediators, as a likely driver of hypoferraemia in COVID-19;  

Figure 4. Mental Composite Score component of SF-36 vs iron biomarkers. (A) Iron at admission, (B) Hb at admission, (C) Hb at  
3 months, (D) Hb at 8 months.
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the strong association of IL-6 with serum iron is confirmed 
in our prospective cohort. IL-6 is the canonical regulator the 
acute phase response, well established to control hepcidin and 
serum iron levels (Nemeth et al., 2004) and has been previously  
reported to associate with serum iron in COVID-19 (Hippchen 
et al., 2020; Lv et al., 2021; Moreira et al., 2021). This finding  
is particularly interesting in light of the clinical evidence for 
efficacy of tocilizumab in COVID-19 patients (Abani et al.,  
2021; The REMAP-CAP Investigators, 2021).

Alongside Hippchen et al we only observed a weak associa-
tion between serum hepcidin and serum iron, at odds with the 
strong association observed in experimental Salmonella typhi 
and Plasmodium falciparum challenge (Darton et al., 2015;  
Spottiswoode et al., 2017). In part this could be the age, frailty, 
variable iron stores and relatively high frequency of anaemia 
observed in COVID-19 cohorts. In addition it is possible inflam-
mation is driving reduced serum iron in a hepcidin-independent  
manner (Guida et al., 2015). We also highlight a novel negative 
association between both procalcitonin and suPAR, and serum 
iron. Positive associations between ferritin and serum iron sug-
gest that even in COVID patients with elevated ferritin due to 
inflammation, some of the variability in ferritin levels reflects 
iron stores. These results highlight the complexity of inter-
preting interactions between ferritin and iron in the context of  
inflammation.

The respiratory failure and severe hypoxaemia observed in  
COVID-19 patients could contribute to the control of iron 
homeostasis through modulation of erythropoiesis and ERFE  
production. We found no association between ERFE and  
hepcidin or IL-6 suggesting that ERFE and erythropoiesis are not  
dominantly controlling hepcidin in this setting. However, 
we did find evidence of raised ERFE in patients with lower  
haemoglobin and serum iron, with a striking elevation in  
anaemic patients, suggesting that even in this setting of profound 
inflammation ERFE is raised in patients attempting to resolve a  
haemoglobin deficit, perhaps due to underlying iron deficiency.

The association of low serum iron with COVID-19 severity  
contrasts with bacterial sepsis where increased Tsat or serum iron 
associates with increased mortality, consistent with the hypof-
erremia of inflammation as an innate immune defence against 

siderophilic bacterial infection (Arezes et al., 2015; Brandtner  
et al., 2020; Lan et al., 2018; Tacke et al., 2016). Interestingly  
in this study and previously we observe a positive association  
between blood lymphocyte counts and iron concentration  
(Shah et al., 2020). Low serum iron availability impairs  
development of effective adaptive immunity to viral infection in  
animal models (Frost et al., 2021; Preston et al., 2021). These 
observations warrant consideration of whether reduced iron 
availability could play a role in driving pathophysiology, and  
exploration of whether normalisation of iron status plays a role 
in the efficacy of therapeutics targeting innate immunity (such 
as Tocilizumab) and supports the funding of trials exploring 
iron supplementation in patients recovering from COVID-19  
infection.

Data availability
Underlying data
The AspiFlu cohort is under licence to a third party (St George’s  
University of London). However, access to this can be 
arranged by contact with the AspiFlu team (whurt@sgul.ac.uk,  
tbicanic@sgul.ac.uk). Interested readers or reviewers can contact 
the above to access the underlying data.

Zenodo: Underlying Data from DISCOVER cohort. https://doi.
org/10.5281/zenodo.6587479 (Hamilton, 2022).

This project contains the following underlying data:

- wellcome_open_res_data.rds

Extended data
Zenodo: Underlying Data from DISCOVER cohort. https://doi.
org/10.5281/zenodo.6587479 (Hamilton, 2022).

This project contains the following extended data:

- S2_correlation_coefficents.csv

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).
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Table 1 illustrates the characteristics of patients of the DISCOVER cohort. It is noteworthy 
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suPAR is listed among inflammatory markers but it is not defined.○
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Minor: Table 1/Figure 1 - were these data obtained upon admission to the hospital? Please 
clarify in the legends. 
 

○

The authors describe that 15% had suspicion for COVID-19 but initially negative PCR tests. 
Were these patients tested PCR positive for SARS-CoV2 later on? If not, did the results, 
shown in table 1, differ, when such patients were excluded? 
 

○

The authors report on the unexpected results of low iron associated with high Erfe. 
However, it may well be that high Erfe is a consequence of increased Epo formation due to 
hypoxia/iron deficiency. In addition, the effects of Erfe on hepcidin regulation may be 
blunted due to stimulation of hepcidin expression by cytokines and/or cytokine mediated 
modulation of Erfe signaling in hepatocytes. The authors may comment on this. If Epo levels 
are available, their presentation would be of great interest. 
 

○

They authors may also emphasize their finding of a lacking association between alteration 
of iron/hematological parameters and persisting problems post COVID-19 (as shown by 
physical and mental composite scores).

○
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