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Abstract: This research paper presents a novel structural health monitoring strategy based on a
hybrid machine learning and finite element model updating method for the health monitoring of
bolted connections in steel planer frame structures using vibration data. Towards this, a support
vector machine model is trained with the discriminative features obtained from time history data,
and those features are used to distinguish between damaged and undamaged joints. An FE model
of the planer frame is considered where the fixity factor (FF) of a joint is modeled with rational
springs and the FF of the spring is assumed as the severity level of loosening bolts. The Cat Swarm
Optimization technique is further applied to update the FE model to calculate the fixity factors
of damaged joints. Initially, the method is applied to a laboratory-based experimental model of a
single-story planer frame structure and later extended to a pseudo-numerical four-story planer frame
structure. The results show that the method successfully localizes the damaged joints and estimates
their fixity factors.

Keywords: structural health monitoring; machine learning; model updating; steel frame; loosening
of bolts; Cat Swarm Optimization

1. Introduction

Due to the aesthetic ability of human beings and the exigencies of economic develop-
ment, magnificent infrastructures such as bridges, skyscrapers, tunnels, and dams have
been constructed for centuries. However, structures inevitably degrade over time. Among
these structures, those constructed using steel are more susceptible to damage at connec-
tions between members due to corrosion, cyclic loads, and unexpected loads for which
the structures are not designed. Following connection damage, the performance of the
structure degrades [1]. To avoid sudden failure and to provide the reliability of the struc-
ture, structural health monitoring (SHM) strategies are employed to periodically monitor
the performance of the structure. For the SHM of joints, various local approaches, namely,
acoustic emission (AE) [2], image classification [3,4], and impedance-based techniques [5],
are being applied in practice. However, these local techniques are impractical for civil
engineering structures as a large number of sensors are required and even placing such
sensors is difficult at joints. Therefore, vibration-based global health monitoring tech-
niques, namely, model-based and signal-based, are found to be applied for the health
monitoring of civil engineering structures [6–10]. The ability to quantify damage-sensitive
parameters made the model-updating technique popular with scientists and engineers.
Various approaches to the finite element model updating technique and their applications
to different types of structures can be found [11–15]. The two-phase health monitoring of a
beam and a plate type of structure were found to be carried out using a genetic algorithm
and the Eigen-sensitivity method [11]. A hybrid real genetic algorithm was applied for
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the health monitoring of a space frame structure to the set-up of the GA parameters and
operators. Various objective functions were examined for accuracy [12]. A multi-stage
and multi-objective optimization was also found to be applied in the field of SHM of civil
engineering structures [13,14]. A vision-based FE model updating technique was also
applied to the SHM of a three-storey building frame structure, which was found to reduce
cost and time [15]. However, the success of the technique depends on multiple factors,
namely, the accuracy of the finite element (FE) model, the quality of experimental data,
the optimization algorithm, and the definition of the optimization algorithm. In FE-based
model updating, FE models of the physical systems are developed and updated to achieve
a good agreement with experimental data. In the process, a detailed FE model with a
large number of elements and several updating parameters is required to recognize the
effect of localized damage. However, these may increase the computational cost as well as
may make the solution ill-conditioned. Teughels et al. [16] presented a parameterization
method, namely, a damage function for reducing the number of updating variables. The
technique assumes correction factors for updating parameters that change continuously
over the FE modeling. The technique was applied to an RCC beam [16]. A multi-stage
damage detection technique was proposed by Perera and Ruiz [17] for the monitoring of a
large-scale structure. In the primary stage, expected damage points were approximated
and in the next stage, the exact location of the damage and severity was estimated. Pal and
Banerjee [18] also proposed modal strain energy in combination with FE model updating
for the health monitoring of joints of a planer frame structure to identify accurate damage
location and quantity. Wu and Li [19] proposed a two-step FE model updating. The tech-
nique was applied to the ASC benchmark building, where, in the first stage, connection
stiffness and young’s modulus were identified and then applying the FE model updating,
the estimation of damaged braces was carried out [19]. Wen and Songye [20] developed
a progressive damage identification strategy depending on a multiple-scale wavelet FE
model that was successfully examined on a numerical model of a beam and a frame. An
enhanced substructure-oriented response sensitivity method was proposed for the health
monitoring of a large-scale structure for accurate estimation of damage [21]. However,
directly or indirectly, all the above-mentioned techniques focus on the reduction of the
number of variables or accurate estimation of the damage-sensitive parameters.

Machine learning (ML) algorithms have also recently been found to be applied in the
field of SHM and damage detection. The model updating technique considers a reference
model and updates to represent a damaged structure to determine the damage-sensitive
parameters. However, ML is a data/image-based technique which builds a model for
mapping input patterns to output targets [22]. Sikdar and Pal [23] utilized the Bag of Visual
Words based scalogram image classification approach to classify dis-bonds at different
locations of a composite plate structure. To generate a large number of datasets, they
carried out multiple experimental trials for each of the healthy and damaged cases. In
order to test the learning algorithm, data were collected from a smaller size disbond level.
However, their study was not able to give an idea about the disbond sizes. Liu and
Zhang [24] utilized the convolutional neural network (CNN) technique for the inspection of
post-hazard ultra-low cycle fatigue-related damage in structural steel fuse members. They
defined a micromechanical damage index for various levels of damage to quantitatively
cluster the data. In their study, they considered five classes of damage levels. In Kundu
et al. [25], an Acoustic Emission (AE) signal-based ML algorithm was trained for the
monitoring of a carbon fiber composite panel using various statistical features and the k
nearest neighbor (KNN) algorithm. A Naïve Bayes data fusion scheme and CNN-based
framework were proposed by Chen and Jahanshahi [26] for the crack detection of a metallic
structure. Time-varying damage index-based features were fed into a CNN algorithm
to localize the damages in a plate type of structure by Zhang et al. [27]. A few more
applications of the ML technique in SHM are presented in [28–33]. Again, inside Tsinghua
University, post-seismic event-based damage assessment for 619 buildings was carried out
based on CNN using the time-frequency domain representation of acceleration ground
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motion [34]. A combination of a probabilistic neural network and finite element model
updating was found to assess the condition of a truss bridge structure [35]. Image-based
deep learning and graphical model is used for the detection of the loosening of bolts [36].
Auto-Regressive Integrated Moving-Average Machine Learning for Damage Identification
of Steel Frames has also been found to be available in the domain of SHM under different
EQ excitation. Damages were created by the loosening of bolts of the bracing members [37].
The application of ML is found to be increasing in recent times as automation of SHM
is a felt need. However, studies show that for accurate prediction of damage severity
and location, a large number of damage classes and corresponding training data sets are
required that are somewhat impractical for civil engineering structures.

In this paper, a novel vibration data-based hybrid ML and FE model updating method
for the accurate estimation of joint damage and its severity is presented. The method
is initially applied on an experimental small-scale single-story bolted joint planer frame
model, and further extended to a four-story pseudo numerical model of a steel planer
frame structure. The study is carried out to address the following objectives:

(i) The development of a combined ML and FE model updating technique for the health
monitoring of joints of planer frame structures;

(ii) The accurate localization and quantification of joint damage with a lesser number of
data sets compared to the data sets required if only either the ML-based technique or
model updating technique is employed for the same purpose;

(iii) The effectiveness of standard deviation, skewness, kurtosis, mean absolute devia-
tion, and entropy-based features for the localization of loosening of bolts in planer
frame structures.

2. Methodology

This paper presents a novel vibration data-based hybrid ML and model updating
method to identify the damage location and quantity of the loosening of bolts in a steel
frame structure. Figure 1 describes the working procedure of the method. It has been
found that machine learning techniques require a large number of data sets for each of
the damaged and undamaged cases. For a civil engineering structure, obtaining so much
data is quite a difficult task. Moreover, the model updating techniques produce inaccurate
results in the presence of a large number of variables. Hence the problem was divided
into two parts—(1) localization and (2) quantification. The machine learning algorithm
was used to approximately localize the loosening of bolts. Considering the fixity factors
at the approximate locations as variables, the model updating operation was carried out
to identify the exact location of the loosening of the bolts and quantity. By employing the
machine learning algorithm, the number of variables can be drastically reduced.

2.1. Machine Learning Based Localization

In order to detect the approximate position of the loosening of bolts, the strain data
were categorized as healthy (H) and loosened (L) cases. The H case consists of strain
data collected from the sensors placed at the location where loosening is not there (i.e.,
the sensors are placed far away from the joints). The (L) case represents the strain data
corresponding to the sensors placed near the location of the loosening of bolts. The main
idea of this categorization is that the sensors near the location of the loosening of bolts
will show different features than the other sensors. In this paper, three entropy-based
features, namely, approximate entropy, Shannon entropy and Renyi’s entropy along with
three statistical features, namely, variance, kurtosis and skewness were considered. The
detail of these features is given below.
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2.1.1. Feature Extraction

As the data were categorized into H or L cases, first, the strain data of all sensors
were normalized concerning the highest strain value of data over all the trials. With this
normalization, it could be assumed that the data are stored from an equal energy level.
Therefore, the parameters of the data will be affected because of the loosening of bolts only.

Approximate entropy (ApproximateEnt): The ApproximateEnt is a function that generates
a delayed-reconstruction: y1:n corresponding to ‘n’ data points and embedding dimension
‘d’. The number at a point ‘i’ within the selected range is calculated [38]:

ni =
n

∑
i=1,i 6=j

1
(∥∥yi − yj

∥∥
∞ < r

)
(1)

where ‘r’ depicts the radius of similarity. The approximate entropy is computed as

ApproximateEnt = ϕd − ϕd+1 (2)
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where,

ϕd = (n− d + 1)−1
n−d+1

∑
i=1

log(ni) (3)

Shannon entropy (ShanonEn): In ShanonEn calculation, the power of every frequency
(jf) is multiplied by the logarithm of the inverse power of each frequency and calculated by
summing across all frequencies (Jf) as described in Equation (5) [39].

j f =
J f

∑ J f
(4)

ShanonEn = ∑
f

j f log

(
1
j f

)
(5)

Reniy entropy (RenyEn): Renyi’s entropy is used for the estimation of the spectral
complexity of time-series which is defined as [39]:

RenyiEn(β) =
1

(1− β)
log

(
∑

f
Pβ

f

)
, β > 0, β 6= 1 (6)

In this study, β = 2 is considered to compute Renyi’s quadratic entropy which represents
the uncertainty level about the event, ‘f ’.

Mean Absolute deviation (MAD): It is used to address the statistics of various fundamen-
tal processes. Here, MAD is defined as [40]:

MAD =
1
m

m−1

∑
m=0
|µi[M]− κi| (7)

where ‘κi’ represents the mean of the ith Fourier-intrinsic-band-function, ‘µi[M]’ and
0 ≤ M ≤ m− 1.

Four other statistical features, namely, standard deviation, variance, skewness, and kurtosis
are also considered in this paper as described in [41–43].

The feature sets for all the unloosed and loosened cases were kept separately and
provided as input for the SVM algorithm to train and validate the SVM model. After, the
trained and validated model was employed to test the data sets. In this context, the test
data sets were given as input for the SVM model.

2.1.2. Classification Using SVM

SVM is a machine learning technique used as a supervised classification technique
that produces a model using training data sets and maps new data sets [37]. It can be better
understood by a two-class problem. The main aim of SVM is to find an optimal margin
(hyper-plane) from a set of planes that separates the data point of the two classes. The plane
which has the maximum margin is called a hyper-plane. A large margin decision boundary
tends to generate better generalization error and a smaller margin corresponding to a small
perturbation to the decision boundary can have a significant impact on the classification
performance and may lead to an overfitting problem. More detail about SVM can be found
in [37].

SVM is used to classify the feature set calculated from the data obtained from healthy
and various loosening cases. SVM parameters are picked out by training the model. The
performance of SVM is contingent upon the kernel selection, appropriate kernel parameters,
and soft margin parameter ‘P’. In the study, a Gaussian kernel with a single parameter, ‘η’ is
selected and an optimum combination of ‘P’ and ‘η’ can be selected based on a grid-search
based on the exponentially growing sequences, such as in the given example:
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P ∈
[
2−7, 2−5, . . . 211, 213

]
η ∈

[
2−7, 2−5, . . . 23, 25] (8)

In the process, using cross-validation, the choice of each combination of the parameter
is examined. The parameters having the highest accuracy in cross-validation are culled.
The selected SVM model for testing and classification of a new dataset is further trained
using the entire training dataset based on the chosen parameters [23].

Three-different polynomial kernels with orders 1, 2, and 3 are tested. A tenfold valida-
tion was carried out to check the classifier’s performance. The classification performance of
the trained SVM model is obtained for the test datasets and the unicity of this model is its
decision boundary is dependent on a subset of the training dataset (i.e., support vectors) as
presented in [23]. For the given training set ‘X’ and corresponding labels ‘Y’ (i.e., ±1), the
classification function for the 2-class problem described above can be defined as [23]:

f (X) = sign(wTX + w0) (9)

where ‘w’ and ‘w0’ are the parameters of the hyperplane.
If the data are not linearly separable, an error weighting constant is considered as the

penalty for misclassification and the original data space is mapped to feature space. In the
kernel (C) formulation, the decision function can be given as follows:

f (χ) = sign

[
∑

i
YiζiC(χ, χi) + w0

]
(10)

where ‘χi’ is the training features obtained from data ‘χ’ and the corresponding label is Yi.
ζi is ‘0′ for most ‘i’. The feature vectors are nothing but the support vector. For multi-class
classification, this binary SVM model using the one-versus-one approach is considered. For
the ‘N’ class problem, the number of learners is given by

F = N(N − 1)/2 (11)

2.2. FE Model Updating Using CSO

In the case of the model updating, an FE model as presented in Figure 2a is developed
and updated to determine the optimum value of the damage-sensitive parameters. With
that purpose, 2 node frame elements are utilized to model the steel planer frame. In the
element, each node is considered to have 3 degrees of freedom (two translational and one
rotational). The generation of elemental stiffness and mass matrices are presented below.
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2.2.1. Formulation of the Elemental Mass and Stiffness Matrices

Semi-rigid boundary conditions are assumed to define the loosening of bolts at joints.
At the boundary, the semi-rigidity is ensured by considering rotational springs for each
of the elements. Figure 2b represents the deformed shape of the element. In between the
internal and outer sides of the spring, a relative rotation is considered. On the internal
side of the spring, the rotations are Lθ1, Rθ1 while on the outer face, these rotations are Lθ2,
Rθ2, respectively. Monforton and Wu (1963) [44] provide a relationship among the moment
applied, rotational spring stiffness and internal and outer rotations:

RM
Rrc

= Rθ2 − Rθ1 and
LM
Lrc

= Lθ2 − Lθ1 (12)

In Equation (12) given above, LM, RM, Lrc and Rrc are the moments applied at the
spring and stiffness of rotational spring at the right and left end of each element. Element
level stiffness-matrix and mass-matrix are then generated assuming the semi-rigid support
conditions [45,46]. In [44], the relationship between the fixity factors of rotational springs
with stiffness is defined by

αLrc =
1

1 + 3EI/L
Lrc

and αRrc =
1

1 + 3EI/L
Rrc

(13)

In Equation (13), L, E and I represent element-length, elastic modulus, and the moment
of inertia, respectively. For a different types of connections, Eurocode 3, as given in the
following Table 1, specifies the ranges of the fixity factor.

Table 1. Designation of connections concerning FF as per Eurocode-3.

Quantity Pin Joint Semi-Rigid Joint Rigid Joint Quantity

FF 0–0.143 0.143–0.891 0.891–1 FF

After the numerical modeling, the model updating operation is performed by applying
CSO to quantify the level of FFs at the joints. The model updating procedure for the study
is presented in the following paragraph.

2.2.2. Objective Function Formulation and Parameter Selection

The procedure starts with the formulation of an objective function and the selection
of parameters. The effectiveness of any optimization technique greatly depends on the
formulation of this function. In this paper, the damage-sensitive quantities, namely, natural
frequencies, the maximum amplitude of frequencies and shape correlation between experi-
mental and numerical models of a planer frame structure are considered to formulate the
objective function.

The Newmark-Beta method was used for the calculation of dynamic responses. The
displacement time-histories are calculated to generate strain time responses based on the
strain-displacement relationship:

εn(t) = −yxn(t)′′ (14)

where the extreme fiber distance of a section calculated from the neutral axis is y and a
double dash over x(t) indicates the double derivative of the displacement at that section.
Suffix n represents the numerical FE model. Further, the strain time history is transferred
to the frequency domain using the following expression:

εn(ω) =
1

2π

∫ ∞

−∞
εn(t)e−ietdt (15)
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where ω stands for frequency and εn(ω) indicates amplitude corresponding to the fre-
quency. For the experimental study, the strain dataset can be directly registered and
transformed to the frequency domain using Fourier transform:

εexp(ω) =
1

2π

∞∫
−∞

εexp(t)e−iωtdt (16)

In Equation (16) given above, exp stands for the experimental case. For ith strain
sensor, the frequency shape co-relation utilizing experimental and numerical strain data
are obtained as:

ψi =
∑ εn,i(ω)εexp,i(ω)[

ε2
n,i(ω)

]1/2[
ε2

exp,i(ω)
]1/2 (17)

Equation (17) clearly states that if numerical and experimental structures are in the
same condition then the shape co-relation value is about 1 and if they are not in the same
condition and the value is deviating from 1. Finally, the objective function is formulated as:

OF(αLrc , αRrc) =
NT

∑
j=1

[
NS

∑
i=1

Wi[
{

ε(ω)num − ε(ω)exp

}2
+
{

ω(AMPmax)num −ω(AMPmax)exp

}2
]
i

]
j

(18)

In the objective function (OF) presented by Equation (18), ‘num’ is numerical, ‘exp’ is
experimental, ‘NT’ is number of trials, ‘NS’ is number of sensors, αLrc and αRrc represent
the fixity factors for the left and right of each member. ω(AMPmax) indicates the natural
frequency identified from the maximum amplitude of the frequency domain representation
of the strain signal. A weight factor for each sensor, ‘Wi’ is defined as:

Wi =
ψi

∑ ψ2
i

(19)

2.2.3. Cat Swarm Optimization (CSO)

CSO is an optimization technique, proposed by Chu and Tsai (2007) [47], depending
on the behavior of a cat. It is a population-based search technique and starts with the
generation of the random position of the population over the D dimensional (numbers of
parameters) space. In CSO, each of these populations is termed as cat. Each of the cats
represents a probable solution inside the domain of search space. Along with the initial
position of variables, it also generates initial velocity. The number of populations is decided
based on the convergence test of the solution. For each cat, the objective function value is
computed and the cat that has the best fitness value is stored. It would be better to mention
here that the best cat means the values of the parameters that generate the minimum value
of the objective function. The algorithm performs both local and global search in the name
of seeking mode and tracing mode, respectively. Based on a mixture ratio, the cats are
transferred to seeking and tracing mode. The positions of the cats in the seeking mode
are updated based on the minimum function value of the copies of each cat. The detailed
working procedure of CSO can be found in [44].

3. Experimental Study

In order to verify the effectiveness of the hybrid ML and MU technique, first, an
experimental model of a bolted joint single-story steel planer frame structure as shown in
Figure 3 is considered. The detailed fabrication and experimental procedure are explained
in the experimental modeling section given below.
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A single-storey planer frame structure as depicted in Figure 3 is utilized to estimate
the level of severity of joint damage using the experimental data. The small-scale steel
frame model was developed in the laboratory and the whole experimental study was
conducted in the control environment of the Experimental Mechanics Laboratory of the
Civil Engineering Department at IIT Bombay. The properties of the steel frame are Young’s
modulus = 2.1 GPa, Poisson’s ratio = 0.3, and mass density = 7850 kg/m3. The width and
depth of the members are 0.032 m and 0.006 m, respectively. The height of the column and
the length of the beam are 0.5 m and 0.3 m, respectively. In this context, the members of
the above-mentioned sizes and dimensions were available in the laboratory and utilized
for the fabrication of the frame. In order to make the beam-column connections, angle
sections and nut-bolts were used. At the side of the column face as well as at the side of the
beam face of a joint, one angle and four M-5 nut-bolts are used for the proper beam-column
connection. In order to generate fixed support for the frame, two angles are placed at the
inner and outer faces of the column and tightly connected at the base using nut-bolts. The
experimental study was carried out for unloosed conditions, i.e., all bolts are in full-tight
condition (UL) and also for different loosening conditions at different connections (BL1 to
BL6). The unloosened and different loosened conditions are further explained in detail in
Table 2 and Figure 4. It is better to be mentioned here that unloosened condition means
all bolts are fully-tight represents bolts are tightened using hand plus turned the bolts half
using a spanner and the hand-tight represents that the bolts are tightened using hands.

Table 2. Experimental study case details.

Condition of Structure Details of Loosening

UL Bolts are fully tight
BL1 Right column-beam connection, bolts @ column face is hand tight
BL2 Right column-beam connection, bolts @ column face is full loose
BL3 Left column-beam connection, bolts @ beam face is hand tight
BL4 Right column-beam connection, bolts @ beam face is full loose
BL5 Left column-beam connection, bolts @ column face is hand tight
BL6 Left column-beam connection, bolts @ column face is full loose
BL7 Left column-beam connection, 2 bolts @ column face is full loose
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A B & K made B & K 8202-8200, 31.6 mv/N impact hammer was employed to provide
an impact at the top corner of the right beam-column connection as described in Figure 2b.
The strain time responses were registered using 12-contact type strain sensors (FLA-3),
from SG1 to SG6. Here, the contact type strain gauges were fixed on either side of the
column/beam members at 35mm from the beam-column joints as shown in Figure 3. At
SG1, 1-strain gauge is placed on the outer-face of the member and another strain gauge is
placed inner-face of the member. Strain gauges are fitted in SG2 to SG6 position similarly.
HBM-made MGC-plus data logger was utilized to collect the strain time history data with
600 Hz sampling frequency.

In order to approximately localize joint damage using the ML approach, strain time
history data were categorized into “healthy” and “loosened” cases. In the experimental
case of UL, all 12 strain gauges were provided with healthy data, thus, producing 120
healthy data sets in 10 trials. In cases BL1 and BL2, only the four strain gauges near the
right joint are considered to be loosened data and the rest eight strain gauge data are
considered healthy data. Therefore, each of BL1 and BL2 will produce 40 loosened data and
80 healthy data in 10 trials. Compared to the healthy data set, there were fewer loosened
data; therefore, 10 more trials were carried out for BL1 and BL2 and only the loosened data
were considered. Finally, a data pool was constructed with 280 healthy and 160 loosened
data. The entire data distribution for the classification is given in Table 3. It is assumed
that sensor data reasonably close to the loosening of bolts will have some different features
compared to the sensor data away from the loosened bolted joint because of the local
chattering of bolts, washers, and members.

A sample strain time history collected at the location of SG2 is depicted in Figure 5a
indicating that a significant portion of the data are not useful for this study. Hence, the
informative data recorded after the impact was used for this research work and depicted in
Figure 5b. A typical example of time history data obtained at SG2 for the UL case and its
effective portion is shown in Figure 5a,b.
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Table 3. Arrangement of the experimental data for training, validation, and testing.

Condition of
Structures Healthy Data Loosened Data Usage of Data Remarks

UL 10 (trial) × 12
(sensors) = 120 -

Training +
Validation

Training (100
healthy + 100

loosened)
Validation (180

healthy + 60
loosened)

BL1 10 (trial) × 8
(sensors) = 80

20 (trial) × 4
(sensors) = 80

BL2 10 (trial) × 8
(sensors) = 80

20 (trial) × 4
(sensors) = 80

BL3 10 (trial) × 8
(sensors) = 80

10 (trial) × 4
(sensors) = 40

Testing
Testing (320

healthy + 160
loosened)

BL4 10 (trial) × 8
(sensors) = 80

10 (trial) × 4
(sensors) = 40

BL5 10 (trial) × 8
(sensors) = 80

10 (trial) × 4
(sensors) = 40

BL6 10 (trial) × 8
(sensors) = 80

10 (trial) × 4
(sensors) = 40

BL7 10 (trial) × 8
(sensors) = 80

10 (trial) × 4
(sensors) = 40 Testing
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The normalized time history data were then utilized to determine the features as
discussed in Section 2. After the collection of all feature sets from all the data, SVM was
trained with the feature set distribution as given in Table 3. Finally, the remaining feature
set was utilized for validation. A 10-fold cross-validation experiment was carried out
to check whether the algorithm was really trained or just memorizing information. The
confusion matrix shown in Table 4 indicates its capability to categorize the data into healthy
or loosened cases with a 10-fold average of 93% training and 89% validation accuracy.
The validation was also carried out with uncorrelated data as each trial had its own set
of random errors. The arrangement of data for different damaged and undamaged cases
is given in Table 3. Table 4 depicts that in the case of UL, there are 120 healthy data sets.
Among those 120 data sets, 40 were used for training and the remaining 80 were considered
for validation. The confusion matrix indicates that all 40 data sets were identified as healthy
after training and, the validation results successfully identify all 80 healthy cases.
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Table 4. Confusion charts show the average training and validation accuracy for experimental models.

Case
Training

Case
Validation

Healthy Loosened Healthy Loosened

UL
Healthy 40 0

UL
Healthy 80 0

Loosened 0 0 Loosened 0 0

BL1
Healthy 30 0

BL1
Healthy 40 10

Loosened 15 35 Loosened 11 19

BL2
Healthy 30 0

BL2
Healthy 44 6

Loosened 0 50 Loosened 0 30

Av. Accuracy: 92.5% 88.75%

Similarly, for BL1, there were 80 healthy and 80 loosened data sets. Among 80 healthy
data sets, 30 were considered for training and the remaining 50 were considered for
validation. The training results show that all 30 were identified as healthy. In the case
of validation, out of 50 data sets, 40 were identified as healthy and 10 were incorrectly
identified as loosened.

For the loosened data sets, 50 data sets were considered for training. The training
results indicate that 35 were identified as loosened and 15 were wrongly identified as
healthy. In the case of validation, out of 30 data sets, 19 were identified as loosened and 11
were wrongly identified as healthy. Similarly, the numbers of BL2 represent the training
and validation results. Further, it was also found that some hand-tight cases show bias
towards the healthy case. As four bolts are attached to a very small area and these are
hand-tight, there is little movement between the members which may affect the results.

Further, with this trained algorithm, different loosening cases (BL3 to BL6) as men-
tioned in Table 3 were studied. Table 5 shows that although the network was not trained
with the data obtained from left joint loosened cases, it classifies the data with 79% accuracy.
Therefore, by training the algorithm with a lesser number of classes and with limited
data, the loosened joint can be identified which may not precisely localize the loosened
connection. However, it is found that if the connection is fully loosened, the joint could be
identified with higher accuracy compared to hand tight case. For the hand tight joints, bias
toward the healthy class is observed. Four bolts are hand-tight and placed in a small area
which allows very little movement between the members, causing bias to the healthy class.

Table 5. Classification results show the average testing accuracy for experimental models.

Cases Healthy Loosened

BL3
Healthy 67 13

Loosened 19 21

BL4
Healthy 72 8

Loosened 8 32

BL5
Healthy 65 15

Loosened 18 22

BL6
Healthy 70 10

Loosened 10 30

Accuracy 79.0%

BL7
Healthy 80 0

Loosened 36 4

Again, another case BL7 was studied in which two bolts on the left column side were
fully loosened and the remaining two bolts were fully tight. Table 5 indicates that the same
trained network fails to identify the loosened location. The relative movement between the
members at the loosened location is very small, and the case is classified as unloosed.
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Now, at each joint, there are two connections. Therefore, two probable locations of the
loosening of bolts may be assumed. Considering the fixity factors of these two connections
as updating parameters, the FE model updating operation was performed to exactly localize
the loosening of bolts and their severity.

The fixity factors are directly proportional to joint stiffness, and it is assumed that the
members do not have any material or geometrical degradation. Hence the changes in natural
frequencies are because of joint stiffness only. Finally, it has been found that with the change
in the fixity factor, the natural frequencies are changing significantly and can be considered as
a parameter. After trial and error, the optimum population size was found to be 15 and the
values of the remaining parameters were chosen based on Oruskhani et al. (2011) [48].

Table 6 shows the FE model updating results. Initially, the unloosened fixity factors
of the springs were estimated. Finally, considering only the fixity factors of the probable
locations of the loosening of bolts as the updating variables and the exact location of the
loosening of bolts and its severity was estimated. Table 6 represents the values of fixity
factors at the different connections and the percentage reduction compared to the UL
condition. It is relevant to mention here that initially, an FE model updating operation was
performed to estimate the fixity factors at different connections for the full-tight condition
to get the baseline values. It was found that the fixity factors corresponding to S1 and S6
were 0.57 and 0.59, respectively. The higher percentage reduction of fixity factors indicates
the actual location of the loosening of bolts and their severity. Thus, it should be noted from
the % change shown in bold that the hybrid strategy provides an accurate damage estimate
not only for the fully loosened bolt but for the hand-tightened bolt too (see BL1, BL3 and
BL5 highlighted % change in fixity factors). Thus, even slight damage (hand-tightened) can
be accurately estimated by this method, showing the sensitivity of this SHM strategy.

Table 6. Estimated fixity factors for different springs.

Condition
Fixity Factors

Considering All Fixity
Factors

Change (%)
Fixity Factors Considering
Fixity Factors at Probable

Locations
% Change

S2 S3 S4 S5 S2 S3 S4 S5 S2 S3 S4 S4 S2 S3 S4 S5

UL 0.54 0.66 0.69 0.54 - - - - 0.54 0.66 0.69 0.54 - - - -

BL1 0.44 0.52 0.48 0.39 18.5 21.2 30.4 27.8 0.54 0.66 0.64 0.34 - - 7.25 37.0

BL2 0.51 0.61 0.54 0.31 5.6 7.6 21.7 42.6 0.54 0.66 0.57 0.25 - - 17.40 50.0

BL3 0.32 0.25 0.52 0.44 40.7 62.1 24.6 18.5 0.36 0.17 0.71 0.54 33.33 74.0 - -

BL4 0.41 0.48 0.32 0.41 24.1 27.3 53.6 24.1 0.56 0.66 0.23 0.37 - - 66.67 31.48

BL5 0.41 0.46 0.64 0.49 24.1 30.3 7.2 9.3 0.25 0.65 0.69 0.54 54.00 1.51 - -

BL6 0.29 0.34 0.53 0.42 46.3 48.5 23.2 22.2 0.19 0.63 0.69 0.57 64.00 4.5 - -

UL 0.55 0.66 0.73 0.54 1.9 0.0 5.8 0.0 - - - - - - - -

4. Pseudo-Experimental Investigation

In order to check the robustness of the hybrid ML and MU method, a numerical model
of a four-story steel planer frame structure as depicted in Figure 6a was considered. The
frame is modeled in MATLAB. The material properties of the frame are the same as earlier
and the number of rotational springs at each joint is equal to the number of members
connected to that particular joint. Therefore, a number of springs at a joint connecting three
members consist of three springs while the joint has two members consisting of two springs.
According to Euro code 3, the FF is considered 0.891 (for rigid connection) for undamaged
springs. An impact force was applied at the top right corner and the displacement responses
from different locations marked as SG1 to SG24 are determined using the Newmark–
Beta method (numerical integration scheme) [49]. Finally, the displacement responses
were transformed to strain responses as shown in Equation (14). In this context, one
undamaged and five damaged cases as depicted in Table 7 were studied. To generate
pseudo-experimental data, random noise was added to the numerical strain. Therefore,
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an approximate value of experimental noise was estimated from the one-story structure.
The initial portion of Figure 5a indicates the system noise. The noise was separated from
the time history responses before applying the impact loading as shown in Figure 6b and
the power of noise was estimated. Similarly, the power of the signal is estimated for the
effective part of the data. After that, the signal-to-noise ratio (SNR) in dB was estimated as
per the following equation:

SNRdB = 10 log10

(Psignal

PNoise

)
(20)
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Table 7. Detailed descriptions of numerical cases.

Experimental Cases Description of Loosening

NUL FFs of all the springs are 0.891
NBL1 FF factor of S20 is 0.75
NBL2 FF of S19 is 0.75
NBL3 FF of S13 is 0.70
NBL4 FF of S7 is 0.70
NBL5 FF of S7 and S23 are 0.70

The estimated noise level was found to lie within 20 dB to 25 dB. After the estimation
of the experimental noise levels, randomly, three different levels of signal-to-noise ratio
(SNR) between 20 dB to 25 dB were added to each of the pure healthy data sets. In the case
of loosened data, 20 to 30 different levels of SNR in dB between 20 dB to 30 dB were added
randomly to generate a large number of data sets. Finally, the data set is generated and
shown in Table 8 for the categorization of data to identify the probable locations of damage.

Table 8. Arrangement of the numerical synthetic data for training, validation, and testing.

Healthy Data Loosened Data Usage of Data Remarks

NUL 24 (sensors) × 3 (noise level) = 72 -
Training +
Validation

Training (100 Healthy +
100 Loosened)

Validation (101 Healthy
+ 50 Loosened)

NBL1 22 (sensors) × 3 (noise level) = 66 2 (sensors) × 30 (noise level) =60

NBL2 21(sensors) × 3 (noise level)= 63 3 (sensors) × 30 (noise level) =90

NBL3 21(sensors) × 3 (noise level) = 63 3 (sensors) × 20 (noise level) =60
Testing Testing (183 Healthy +

220 Loosened)
NBL4 21(sensors) × 3 (noise level) = 63 3 (sensors) × 20 (noise level) =60
NBL5 19 (sensors) × 3 (noise level) = 57 5 (sensors) × 20 (noise level) =100
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5. Pseudo-Experimental Results

The entire data were categorized into training, validation, and testing parts as shown
in Table 8. Once the data set was generated, the features set was calculated as mentioned
in Section 2. It is pertinent to mention that to train the network, undamaged cases (NUL)
and two damaged cases (NBL1 and NBL2) are considered for training and validation. As
with experimental studies, damage data are obtained from the locations near to damage.
As an example, for NLC-1, data obtained from SG2, SG3, and SG7 are considered damaged
data while the remaining data obtained from SG1, SG4–SG6, SG8 to SG24 are considered
undamaged data. The feature sets were calculated as estimated for the experimental study
and given as input of the SVM-based ML framework. The training and testing accuracy
after carrying out a 10-fold test was found to be 91.50% and 85.40% as shown in Table 9.
Table 10 depicts average testing accuracy as 77%. The results show the damaged joint
with significant accuracy represents the probable locations of damage (all springs at that
joint). One important observation is that with this algorithm, the probable locations for
multiple damage scenarios can also be identified. As an example, NBL5 can be placed
here in which S7 and S23 are assigned fixity factors 0.7. The confusion matrix as shown
in Table 9 depicts that all the sensors’ data near damaged and undamaged locations are
classified successfully.

Table 9. Confusion charts show the average training and validation accuracy for four storey numeri-
cal model.

Cases
Training

Cases
Validation

Healthy Loosened Healthy Loosened

NUL
Healthy 40 0

NUL
Healthy 32 0

Loosened 0 0 Loosened 0 0

NBL1
Healthy 27 3

NBL1
Healthy 30 6

Loosened 5 35 Loosened 5 15

NBL2
Healthy 26 4

NBL2
Healthy 28 5

Loosened 5 55 Loosened 6 24

Avg. accuracy: 91.50% 85.40%

Table 10. Confusion chart shows the average test performance for four storey numerical model.

Cases Healthy Loosened

NBL3
Healthy 51 12

Loosened 9 51

NBL4
Healthy 56 7

Loosened 11 49

NBL5
Healthy 48 9

Loosened 5 55

Avg. Accuracy: 77.00%

Finally, the fixity factors of these probable damage locations were considered as
updating parameters and fixity factors were estimated to find out the actual damage
quantity and final location of damage. Table 11 represents the model updating results
assuming the fixity factors corresponding to the probable damage locations as an updating
parameter. It was found that all the damage locations were identified successfully by
estimating the lower value of the FF quite accurately. Further, the technique accurately
estimates fixity factors in a multiple damage state (NLB 5).
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Table 11. Estimated fixity factors for four storey numerical model.

Type Probable Locations Actual Fixity Factor Estimated Fixity Factor

NLB1 S20 S21 - 0.75 0.891 - 0.743 0.890 -
NLB2 S14 S15 S19 0.891 0.891 0.75 0.881 0.890 0.694
NLB3 S8 S9 S13 0.891 0.891 0.70 0.889 0.889 0.688
NLB4 S2 S3 S7 0.891 0.891 0.70 0.885 0.887 0.699

NLB5
S2 S3 S7 0.891 0.891 0.70 0.887 0.889 0.689
S22 S23 - 0.891 0.70 - 0.890 0.692 -

6. Conclusions

In this paper, a new vibration data-based hybrid ML using SVM and MU using CSO
for the SHM of joints in planer steel frame structures was presented in order to overcome
the problems of ML and model updating based techniques. The study was carried out to
localize localization and quantification of joint damage with a lesser number of data sets
compared to the data sets required if only either the ML-based technique or model updating
technique is employed for the same purpose. Further, the effectiveness of three entropy-
based features, namely, approximate entropy, Shannon entropy, and Renyi’s entropy along
with statistical features, namely, mean absolute deviation, standard deviation, variance,
kurtosis, and skewness were examined for the identification of probable joint damage
locations. Assuming the fixity factors of these identified probable locations as the updating
variables, FE model updating using CSO was carried out to identify the exact damage
location and its severity. The method was applied to an experimental single-story and one
pseudo-experimental four-story planer frame structure. Based on our observations, the
following conclusions can be drawn:

• The hybrid ML and MU method considered damaged data collected from the sen-
sors surrounding the damage for two loosened cases only and the undamaged data
collected from all the sensors for healthy/un-loosened conditions along with data
obtained from the sensors are far from the loosened locations for the same two loos-
ened conditions.

• The testing was carried out with the data for different locations of loosening of bolts
and different levels of damage to produce uncorrelated data. The confusion matrices
thus identify the damaged joints.

• The average training and validation accuracy for the experimental and numerical
models were found to be 92.5%, 88.75% and 91.50%, 85.40%, respectively, and the
testing results show 79.00% and 77.00% accuracy, respectively.

• The FE model updating technique successfully detects the actual damage (loosening
of bolts) location by calculating the fixity factors.

• The method needs only strain gauge data for finding out the differentiable features in
order to monitor the connections of planer steel frame structures, hence, it reduces the
involvement of skilled labor.
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