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Abstract
Human performance shows substantial endogenous variability over time, and this variability is a robust marker of individual 
differences. Of growing interest to psychologists is the realisation that variability is not fully random, but often exhibits 
temporal dependencies. However, their measurement and interpretation come with several controversies. Furthermore, their 
potential benefit for studying individual differences in healthy and clinical populations remains unclear. Here, we gather new 
and archival datasets featuring 11 sensorimotor and cognitive tasks across 526 participants, to examine individual differences 
in temporal structures. We first investigate intra-individual repeatability of the most common measures of temporal struc-
tures — to test their potential for capturing stable individual differences. Secondly, we examine inter-individual differences 
in these measures using: (1) task performance assessed from the same data, (2) meta-cognitive ratings of on-taskness from 
thought probes occasionally presented throughout the task, and (3) self-assessed attention-deficit related traits. Across all 
datasets, autocorrelation at lag 1 and Power Spectra Density slope showed high intra-individual repeatability across sessions 
and correlated with task performance. The Detrended Fluctuation Analysis slope showed the same pattern, but less reliably. 
The long-term component (d) of the ARFIMA(1,d,1) model showed poor repeatability and no correlation to performance. 
Overall, these measures failed to show external validity when correlated with either mean subjective attentional state or 
self-assessed traits between participants. Thus, some measures of serial dependencies may be stable individual traits, but 
their usefulness in capturing individual differences in other constructs typically associated with variability in performance 
seems limited. We conclude with comprehensive recommendations for researchers.
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Introduction

For any action that one repeatedly executes over time, dif-
ferent iterations will show a large amount of variability in 
their time of execution. Such ‘intra-individual variability’ 
— variability within the same individual over time — man-
ifests itself prominently during cognitive testing, as partici-
pants are commonly instructed to repeat the same actions 
over a large number of trials. Even in very simple reaction 
time (RT) tasks, participants’ performance over the tri-
als shows large fluctuations over time (see Fig. 1, top-left 
panel for an example of the RT series from one participant 
over 1000 trials). It is clear though that variability reflects 
more than measurement noise: it is a stable individual trait 
that transfers across tasks and modalities (Hultsch et al., 
2000, 2002; Saville et al., 2011, 2012), evolves with age 
and neurodegenerative disorders (e.g. Tales et al., 2012; 
Tse et al., 2010) , and is considered a robust marker of 
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attention-deficit and/or hyperactivity disorder (ADHD; see 
Kofler et al., 2013 for a meta-analysis; see Tamm et al., 
2012 for a review). Variability has thus proven itself to be a 
strong candidate for studying individual differences across 
various neuro-cognitive disciplines.

In experimental data, RT variability is often measured 
by calculating the standard deviation (SD) or coefficient of 
variability (SD divided by mean) over whole sessions (e.g. 
Perquin et al., 2020), but these measures only reflect the 
overall amount of variance in the data. Instead, quantifying 
the correlation of an RT series with itself across trials (i.e. 
autocorrelation) reveals that RT is indeed not independent 
over time, but often shows a dependency with itself that per-
sist over many trials (see for instance Gilden, 2001; Torre 
et al., 2019; Torre & Wagenmakers, 2009; Van Orden et al., 
2003; Wagenmakers et al., 2004). This means that the RT 
on trial n is more similar to trial n + 1 or to trial n + 8 than to 
trial n + 300, for example. Such dependency is also revealed 
in plots featuring RT series from a single participant across 
trials, which do not show a completely random pattern of 
data points, but rather show (noisy) clusters of fast and slow 
performance. It may seem probable that quantifications of the 
trial-to-trial dynamics can give additional information beyond 
‘simple’ variability measures.

Hinting towards the fruitfulness of this approach, it has 
been suggested that these temporal structures differ between 
individuals (Gilden & Hancock, 2007; Madison, 2004; 
Simola et al., 2017;  Torre et al., 2011), but this has not been 
investigated systematically. More specifically, it has been 
proposed that they reflect the ability for the brain to flex-
ibly adapt and should be a marker of brain health (Simola 
et al., 2017; Torre et al., 2019). Related to this (although 
not in direct support of this claim), the temporal structures 
of brain activity (e.g. oscillatory power at rest) have been 
shown to be altered compared to healthy controls across dif-
ferent neuropsychiatric diseases, including schizophrenia, 
epilepsy, depression, Alzheimer’s disease, Parkinson’s dis-
ease, and autism (see Zimmern, 2020, for an overview). For 
example, the temporal structures of oscillatory power at rest 
have been shown to be reduced in schizophrenia (Golnoush 
et al., 2020; Nikulin et al., 2012; Slezin et al., 2009; Sun 
et al., 2014; but see Cruz et al., 2021)  and epilepsy patients 
(Adda & Benoudnine, 2016), and increased in depression 
patients (Gärtner et al., 2017), compared to healthy controls.

However, temporal structures also come with contro-
versies regarding the best way to measure them, their time 
scale, and their origins and interpretation. It has been argued 
they might reflect switches in mental states or mental flex-
ibility, but empirical evidence for this claim is lacking. It is 

Fig. 1  Examples of time series data over 1000 samples (left) and their 
corresponding temporal structures from lag 0 to lag 50. Shown are a 
reaction time series (showing small but clear temporal dependency), 
a white noise series (no temporal dependency), a brown noise series 

(i.e. a random walk, very high temporal dependency), and pink noise 
(high temporal dependency with slow decay). The extracted temporal 
dependency measures (shown in blue) are the autocorrelation at lag 1, 
the slope of the PSD, and the slope of the DFA
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also unknown if the temporal structures show intra-individ-
ual reliability over sessions and tasks, a necessary require-
ment for them to be useful biomarkers and to help us char-
acterising individual differences (Hedge et al., 2018, 2020; 
Mayeux, 2004). In the current study, we conduct a large-
scale analysis of temporal structures in RT series across vari-
ous sensorimotor and cognitive tasks from new and archival 
datasets. First, we quantify short- and long-term structures 
in RT series across different tasks. Next, we test the repeat-
ability of temporal structures over sessions, and across tasks 
to examine the extent to which the structures can be used to 
study (stable) individual differences. In the third part, we 
test if individual differences in temporal structures show any 
relationship to other constructs related to behavioural vari-
ability, elaborated on in the following section.

Fluctuations in Behaviour and Attentional 
State

The causes of variability in performance remain largely 
mysterious, attracting both physiological and cognitive 
interpretations. Intuitively, we are quick to associate fluc-
tuations in our behaviour with fluctuations in our attentional 
state — e.g. “I was too slow because I was not focused on 
my task”. Indeed, variability is often thought to be causally 
related to occasional disengagement from the task (Ander-
son et al., 2021;  Laflamme et al., 2018; Seli et al., 2013; 
Thomson et al., 2014), and both are known to be increased 
in ADHD patients (ADHD and off-taskness: Shaw & Giam-
bra, 1993; ADHD and variability: Kofler et al., 2013; Tamm 
et al., 2012). As our attentional state waxes and wanes over 
time between being on- and off-task, it makes sense that the 
fluctuations in performance are not random, but likewise 
temporally structured.

Given the intuitive link between temporal structure and 
attentional state, one may specifically expect individual dif-
ferences in the strength of serial dependencies to be informa-
tive of people’s ability to sustain attention and high per-
formance over time. In the present research, we therefore 
link individual differences in variability, and more specifi-
cally temporal dependencies, with subjective ratings of on-
taskness and self-reported traits associated with attention 
deficits.

Before tackling this, let us first introduce to less familiar 
readers what temporal dependencies are about, and review 
the main methods used to quantify them. To aid interpre-
tation, we compare the effect of each measure on white, 
brown, and pink noise — each of which is characterised 
by its own typical time structure, as well as on example RT 
series (see Fig. 1 for an overview). Readers familiar with 
these concepts may go straight to the next sections “Why 
might temporal structures be interesting?” and “Individual 

differences in temporal dependencies”. We then introduce 
our novel study, as well as archival datasets brought-in to 
strengthen and broaden specific aspects of our conclusions.

Temporal Structures and Quantification

One difficulty in navigating the literature is the variety of 
measures used by researchers, some simple, others more 
complex. These are introduced briefly here (details on all 
four quantification methods can be found in the ‘Methods’ 
section).

Autocorrelations are the most straightforward charac-
terisation of temporal dependency and can be estimated for 
any delay (Box et al., 2016, with delay referring to trials 
in experimental RT series). RT data typically show posi-
tive autocorrelations at short lags (Fig. 1, top row). This 
is inconsistent with a completely random process in which 
the observations are fully independent from each other (i.e. 
white noise), and which would show no autocorrelation at 
any lag (Fig. 1, second row). In contrast, a process in which 
each observation is just the combination of the preceding 
observation n-1 plus random error (i.e. ‘brown noise’), the 
autocorrelation at lag 1 (AC1) is high (near one), and shows 
a very slow decay over the subsequent lags — theoretically 
never reaching zero.

Most studies use more complex methods to study tem-
poral dependencies, the most common being the Power 
Spectrum Density (PSD; Box et al., 2016) and Detrended 
Fluctuation Analysis (DFA; Peng et al., 1995) . For the PSD, 
the RT series is analysed in the frequency domain through 
Fourier-transform (Box et al., 2016), and a regression line 
is fitted between the inverse of trial number and the power 
spectrum, after both have been log-transformed. The slope 
of this regression line represents the amount of temporal 
structure: a slope of 0 indicates the absence of any structure 
(white noise with an SD of 1), while brown noise series 
result in a slope of 2 (Fig. 1). For DFA, the entire series is 
divided into windows, which size and amount of overlap is 
determined by the researcher. The datapoints in these win-
dows are detrended and reduced to an ‘average fluctuation’, 
that reflects the distance of each data point to the trend line. 
Similar to the PSD, the linear slope fitted in the log–log 
space of window size and average fluctuation (Peng et al., 
1995) represents the temporal structure. A white noise series 
with an SD of 1 will be reflected in slope α = 0.5, brown 
noise in α =  ~ 2–3, and anticorrelated series in α < 0.5. 
Rather than giving an estimate for each delay separately, 
these methods thus provide one parameter reflecting the 
degree of temporal dependency across the entire RT series.

While white noise shows no temporal dependency and 
brown noise shows high temporal dependencies, pink noise 
lies in-between the two. Pink noise is also known as ‘1/f 
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noise’, with its power being equal to 1 over frequency (Fig. 1; 
although anything between ‘1/f.5 to ‘1/f1.5 noise’ still typi-
cally considered as 1/f noise). It is characterised by relatively 
high autocorrelation at short lags, which slowly but gradually 
decreases to zero over the larger lags. Pink noise is an impor-
tant concept within the literature on temporal structure, as it 
has been claimed to best match behavioural time series. We 
come back to this in the ‘Criticality’ section below.

Although PSD and DFA have been popular for analysing 
RT, the methods have an important limitation: they can be 
ambiguous about what drives the observation of temporal 
dependency: merely the correlation between trials close 
together (‘short-term dependency’), or (also) the correla-
tion between more distant trials (‘long-term dependency’). 
As pointed out in prior literature (see Wagenmakers et al., 
2004 for a first detailed exposition of the problem), non-zero 
(or for DFA, non-0.5) slopes are not necessarily indicative 
of long-term dependencies. Indeed, although short-term 
dependencies should theoretically lead to shallower slopes, 
in practice they can resemble pink noise. To solve this ambi-
guity, the use of autoregressive fractionally integrated mov-
ing-average (ARFIMA) models has been suggested, which 
can explicitly test the necessity of a long-term dependency 
parameter over short-term parameters only (Torre et al., 
2007; Wagenmakers et al., 2004).

Why Might Temporal Structures Be 
Interesting?

Attentional State

Just as our behaviour shows fluctuations over time, so do 
our meta-cognitive states. For example, throughout a task, 
we may feel more on-task on some moments and more off-
task on others. It has been found that these fluctuations in 
subjective attentional state correlate locally with fluctua-
tions in performance (e.g. consistency during synchronised 
tapping), which deteriorates when one feels more off-task 
(Anderson et al., 2021; Laflamme et al., 2018; Seli et al., 
2013; Thomson et al., 2014). These findings seem to match 
common intuitions about our own functioning, namely that 
we may show streaks of good performance during which 
we feel extremely focused as well as streaks of poor per-
formance in which we feel less on-task (e.g. Gilden & Wil-
son, 1995; Smith, 2003). It has been argued that increased 
fluctuations from on-taskness to off-taskness are reflected 
in increased temporal structures (Irrmischer et al., 2018a, 
b). Indeed, a mechanistic model has been proposed, where 
the combination of short-term dependencies (first order 
autoregressive term) and (comparatively slower) alternation 
between two response modes or strategies suffice to capture 
empirically observed temporal dependencies in synchronised 

tapping (Torre & Delignières, 2008; Torre & Wagenmakers, 
2009; Torre et al., 2010, see also Bastian & Sackur, 2013). 
Although it is tempting to associate the two modes to subjec-
tive judgements of being on-task and off-task, note that they 
can also be conceived as two states of an internal parameter 
(e.g. response threshold) which may not have meta-cognitive 
counterparts.

If temporal structures are indeed related to the pace at 
which such an internal variable fluctuates, they may be dif-
ferent in people who show low consistency in task perfor-
mance. ADHD has previously been associated with higher 
RT variability, which has been attributed to more attentional 
lapses, but also with a lack of response inhibition, the com-
bination of which may lead to a pattern of extremely slow 
and extremely fast responses (Kofler et al., 2013; Tamm 
et al., 2012). Some previous work has examined temporal 
structures in performance of ADHD patients (e.g. Castella-
nos et al., 2005; Geurts et al., 2008; Johnson et al., 2007; see 
Karalunas et al., 2013;  Karalunas et al., 2014 for reviews; 
see Kofler et al., 2013 for a meta-analysis). While these stud-
ies do not report the PSD slope (nor any of the time series 
analyses mentioned above), they found increased power in 
the low frequency of the spectrum (< 1.5 Hz) in ADHD 
patients (although it is unclear whether these would translate 
into higher PSD slopes for ADHD patients; see the ‘Discus-
sion’ section more details).

Criticality

One common reason why the existence of temporal struc-
tures in behaviour has piqued interest is because they may 
provide fundamental insights into how cognition emerges 
from dynamical brain systems. Most commonly, they have 
been studied in the framework of criticality although of 
course, they could be informative of our functioning regard-
less of its link with one particular framework.

In short, critical systems are thought to reflect an opti-
mal balance between predictability and randomness. In 
physics, a system that has converged to the border between 
order and chaos is called critical, and natural fluctuations 
within such metastable systems exhibit a 1/ƒ spectrum 
(Thornton & Gilden, 2005). It has been argued that neu-
ral networks self-organise to operate around the critical 
point, giving them maximum sensitivity to perturbation 
(e.g. from sensory inputs) without activity imploding 
(see e.g. Beggs & Timme, 2012; Shew & Plenz, 2013 for 
detailed reviews). To the extent that these theories apply 
to human behaviour and cognition (note the big con-
ceptual jump), the presence of 1/f noise in behavioural 
time series could be taken to imply that (1) the brain-
body system approaches criticality and (2) the system is 
affected by very slow fluctuations that “cause a cascade of 
energy dissipation at all length scales” (Bak et al., 1987). 
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This cascading means that critical systems display some 
amount of correlation (here we focus on temporal cor-
relations), with trials close in time showing the strongest 
correlation, which decreases as the time lag increases. As 
the dependency over time is neither perfect nor random, 
this is most similar to the pink noise described above. 
Indeed, critical systems are thought to show such pink 
noise. Within the literature, this is often referred to as a 
‘power law’ — the PSD shows up as a constant negative 
slope throughout. This line reflects that the relationship is 
‘scale-free’: one can take any subpart of the spectrum and 
find the same straight line; it has no specific time scales. 
Although not all critical systems adhere to the power law, 
and power laws can show up in non-critical systems, it 
is generally seen as a highly important characteristic of 
critical systems.

Behaviour over time also shows 1/f noise and it has 
therefore been argued that cognition is a self-organised 
critical system (e.g. Gilden, 2001; Kello et  al., 2007; 
Thornton and Gilden, 2005; Van Orden et al., 2003). How-
ever, whether or not the magnitudes of time structures 
are actually high enough to be considered pink noise or 
whether they provide the best fit to the temporal dynamics 
in behaviour remain controversial topics (see Farrell et al., 
2006; Pressing & Jolley-Rogers, 1997; Wagenmakers 
et al., 2004, 2005; Wagenmakers et al., 2012 for critiques) 
— and may be dependent on the analysis method. None-
theless, the interest in human cognition as a critical system 
partly explains why the literature has mainly focused on 
measuring temporal structure (as opposed to manipulating 
it, or examining its individual differences): the interest 
often starts and stops at the mere existence of pink noise in 
the data, focusing on the ‘ubiquitousness’ of this phenom-
enon, as a main concern of the framework lies with gener-
ality across fields (e.g. physics, economics, biology) rather 
than with finding underlying neuro-cognitive processes 
(Wagenmakers et al., 2012). As such, temporal structure 
has, among other examples, been found in simple RT (Van 
Orden et al., 2003; Wagenmakers et al., 2004), choice RT 
(Kelly et al., 2001; Wagenmakers et al., 2004), mental 
rotation (Gilden, 2001), visual search, lexical decision, 
word naming, shape discrimination, and colour discrimi-
nation (Gilden, 2001; Van Orden et al., 2003), go/no-go 
(Simola et al., 2017), racial implicit bias tasks (Correll, 
2008; Madurski & LeBel, 2015) , and speech (Kello et al., 
2008) — although evidence for the non-universality of 
temporal structure has also been found previously (see 
Wagenmakers et al., 2004 for an overview). Its existence is 
particularly clear in specific tasks, including the task used 
in the present article: finger tapping in synchrony with a 
tone (Torre et al., 2010). The present research therefore 
addresses the usefulness of this phenomenon in under-
standing individual differences.

Predicting Behaviour

Even if the temporal structures do not relate to criticality or 
attentional state, one may still agree that RT series carry a 
predictable component—carried by these measures—and an 
error component. However, while prior studies have used time 
series analyses to quantify the structure in an existing series, it 
remains unknown to what extent these structures are informa-
tive for future behaviour. In other words, if one can find that 
behaviour on trial n is correlated to trial n − 1, is it also pos-
sible to predict behaviour on yet-unobserved trial n + 1?

Such ‘forecasting’ lies within the possibilities of the 
time series analysis, particularly of the ARFIMA models. 
These have been used to forecast weather or economic 
trends, and a recent article outlines a method to assess the 
feasibility of this approach to forecasting human behaviour 
on the next trial (Wagenmakers et al., 2006). This may be 
complementary to calls to make psychology a more predic-
tive science in order to better understand human behaviour 
(Yarkoni & Westfall, 2017). Aside from a theoretical inter-
est, such behavioural forecasting may also have a practical 
use: given that real-life behaviour also fluctuates over time 
and occasionally fluctuates to extremely poor responses 
(car accidents would be real-life equivalents of very long 
RT, errors, or omissions), it would be desirable to pre-
vent these poor responses by predicting them before they 
occur, based on past behaviour. Of course, the fruitfulness 
of this approach is dependent on the existence of temporal 
structures.

Individual Differences in Temporal 
Dependencies

A few recent studies have reported weak to moderate cor-
relations between DFA slopes and individual differences in 
performance during cognitive tasks. First, Smit et al. (2013) 
reported a negative correlation in a tapping task involving 
pressing a key every second without an auditory reference 
— indicating that a high DFA slope (i.e. more temporal 
dependency) was associated with poorer task performance. 
Irrmischer et al. (2018b) also found a negative correlation 
with performance in a sustained attention task, as measured 
by RT to rare target stimuli. In a second study using the 
same task, RT and slopes were higher after negative mood 
induction (thought to increase mind wandering, Smallwood 
et al., 2009)  compared to positive but not to neutral mood 
induction (note that the study did not include a pre-manipu-
lation measure of the task). In contrast, Simola et al. (2017) 
reported a positive correlation with performance in the Go/
No-Go task — indicating more temporal dependency was 
associated with fewer commission errors — with no correla-
tion with mean RT or standard deviation of RT.



 Computational Brain & Behavior

1 3

Despite the varied findings, their interpretations rely on 
the same theoretical viewpoint: brains which operate closer 
to the critical point show higher long-term correlations. 
While Simola et al. (2017) take their positive correlations 
as evidence that criticality allows for the mental flexibility 
demanded by some tasks, Irrmischer et al. (2018b) interpret 
their negative correlations as evidence that criticality allows 
for the successful dynamics of switching attention from task-
related to task-unrelated thoughts on their sustained atten-
tion task. We come back to the role of task demands in the 
‘Discussion’ section.

Few studies have looked at the intra-individual reliability 
of temporal dependency in task performance, both within 
and across sessions and tasks. Smit et al. (2013) observed 
poor to moderate split-half reliability of the PSD and DFA 
slopes. Torre et al. (2011) reported moderate repeatability 
of the DFA slopes on two tasks (a circle drawing and a tap-
ping task), but found no cross-task correlations. This relative 
stability of temporal structures in behavioural performance 
over time is consistent with the stability observed in neural 
oscillations (Nikulin and Brismar, 2004; Smit et al., 2013; 
see the ‘Discussion’ section for more details).

Current Research

Here, we examine individual differences in temporal depend-
encies, to assess (1) to what extent these structures repeat 
in individuals over time, (2) to what extent these structures 
repeat in individuals across different tasks, (3) how these 
structures relate to objective and subjective task measures, 
and (4) how these structures relate to self-assessed attention-
deficit related traits. Prior to investigating these questions, 
we first verify the presence of the temporal structures in our 
data, as this is a necessary condition for examining any indi-
vidual differences. We analysed data from two cohorts which 
we specifically collected for the current project, as well as 
archival datasets previously collected for other purposes. Our 
study used the Metronome Response Task (MRT; Seli et al., 
2013), in which participants are instructed to press a button 
in synchrony with a regular tone. Throughout the MRT, par-
ticipants are pseudo-randomly presented with thought probes 
asking them to judge their attentional state. This task comes 
with several benefits for our current interests.

First, the behavioural task relies minimally on the external 
environment while still providing a behavioural measure and 
is therefore particularly suited to assess endogenous fluctua-
tions in performance. The rhythmic reaction time provided 
on each trial offers continuous access to fast fluctuations 
in the underlying cognitive functions (as opposed to tasks 
featuring accuracy scores, where a continuous performance 
measure can only be obtained over multiple trials that are 
each much longer than the responses in the MRT). Secondly, 

the MRT also provides an online measure of attentional state 
(i.e. measured during the experiment), which is known to 
correlate locally to fluctuations in RT. Thirdly, tapping- and 
time-estimation based tasks (both with and without metro-
nome) have been used extensively in the motor literature and 
show clear temporal structures (e.g. Chen et al., 2002; Del-
ignières et al., 2004; Ding et al., 2002; Gilden et al., 1995; 
Lemoine et al., 2006;  Madison, 2004;  Wagenmakers et al., 
2004). Last, the main performance measure is straightfor-
ward to interpret, in contrast to tasks such as Go/No-Go, 
that require both withholding and responding, and provide 
multiple measures of performance, such as ‘omission errors’, 
‘commission errors’, and ‘RT to target stimuli’. To get a 
full picture of performance, these different performance 
measures must be interpreted together to take into account 
factors such as speed-accuracy trade-offs. For instance, if a 
participant produces only few commission errors (she does 
not respond when she shouldn’t) but also many omission 
errors (she also does not respond when she should), it is 
unclear whether this constitutes good or poor performance. 
This complexity allows arguably too much flexibility in 
results interpretation. In contrast, the metronome task pro-
duces one main measure (asynchronies, or rhythmic RT) 
with only very few omissions (< 1% for most participants), 
that can be safely ignored. All in all, this means that, if one 
does not find consistency and external validity of temporal 
structures in MRT performance, it is unlikely one would find 
it on other tasks.

To generalise our result patterns, we also analysed three 
archival datasets. The first dataset contains behavioural 
data from seven tasks, which were collected for a study on 
intra-individual reliability of task performance in different 
tasks related to cognitive control (Hedge et al., 2018). This 
includes the data of 104 participants who performed two 
sessions of the Eriksen Flanker, Stroop, Go/No-go, and 
Stop-signal tasks, and 40 participants who performed two 
sessions of the NAVON, SNARC, and Posner tasks. The 
second dataset contains behavioural data from a SART and 
a Visual Search task (30 participants). This dataset was col-
lected for a study on EEG markers of subjective attentional 
states, both within and across tasks (Jin et al., 2019), and 
thus contains subjective ratings from occasionally presented 
thought probes. The third dataset also uses the MRT (Ander-
son et al., 2021) and consists of a large-N study (N = 375) 
investigating the reproducibility of previously reported rela-
tionships between subjective attentional states and behav-
ioural variability, intentionality, and motivation. None of 
these are a perfect match for our aims, but each provides 
valuable contributions in a different way.

We present our results in three parts (see Table 1 for an 
overview). In the first part of the results section, we validate 
the existence of temporal dependencies, including long-
range correlations, in the individual data series of each of 
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these tasks. The second part relates to the within-subject 
repeatability of temporal structures (across different time 
points and different paradigms), and the third part relates 
to their potential between-subject correlations with perfor-
mance and metacognitive attentional state ratings. Below we 
elaborate on these research aims, and specify which datasets 
are suited for which particular questions.

Part I. Validating the Presence of Temporal 
Dependencies

Separately for each dataset (and where relevant, each ses-
sion), the temporal dependency measures (AC1, PSD slope, 
DFA slope, and ARFIMA parameters) were quantified on 
each participant’s RT series, and statistically compared 
to chance. Furthermore, fit values from the ARMA and 
ARFIMA models were compared for each participant, to 
specifically validate the presence of long-term dependency.

Part II. Intra‑individual Repeatability of Temporal 
Dependency

For temporal dependencies to be informative for any indi-
vidual differences, they need to be a stable trait, i.e. show 
consistency within individuals. We report the intra-indi-
vidual repeatability of the temporal dependency measures 
(AC1, PSD slope, DFA slope, and ARFIMA parameters) 
over two sessions of the MRT (conducted about 30–50 min 
apart). The measures were calculated separately for each 
session (time 1 vs time 2). For comparison, the same analy-
sis was applied to task performance (as measured by behav-
ioural variability) and subjective attentional state ratings.

To anticipate our results, we indeed found the temporal 
structures in MRT data to be repeatable over time. These 
findings beg the question to what extent stable temporal 
dependencies are found in tasks that are used more com-
monly in the neuro-cognitive literature. Therefore, we also 
examined the intra-individual repeatability of the tempo-
ral dependency measures in RT series of a diverse set of 
well-established cognitive control/impulsivity related tasks 
(Hedge et al., 2018).

As a next step, we examined if the temporal dependencies 
are also stable across different tasks, i.e. if the temporal depend-
ency of an individual on one task is informative for their tempo-
ral dependency on another task. For this question, we used the 
seven cognitive tasks as well as a SART and Visual Search data 
(Jin et al., 2019) of a different dataset — both cases in which the 
same participants performed multiple tasks. Temporal depend-
ency was correlated between subjects across the cognitive tasks 
(i.e. across each pair of the Eriksen Flanker, Stroop, Go/No-go, 
and Stop-signal tasks, and across each pair of the NAVON, 
SNARC, and Posner tasks), as well as across RT series in a 
SART and Visual Search task (30 participants).

Part III. Between‑Subject Correlates of Temporal 
Dependency

In the third part, we report the extent to which temporal 
structures derived from RT series relate to individual dif-
ferences in (1) task performance measures calculated on the 
same data, (2) subjective reports of attentional state from 
thought probes, and (3) self-assessed personality traits from 
attention-deficit related questionnaires. For these between-
subject analyses, we always use measures from the first ses-
sion, for consistency across datasets.

Table 1  Overview of our current research questions and corresponding methods, and the datasets used to answer each question

Research question Method Datasets

Part I. Validation
Do RT series show short- and long-term temporal struc-

tures?

- One-sample t-tests on distributions of temporal 
structure measures to test against null-hypothesis of no 
structure

- ARMA/ARFIMA modelling to test for presence of 
long-term structure

New data
Anderson et al., 2021
Jin et al., 2019
Hedge et al., 2018
Wagenmakers et al., 2004

Part II. Intra-individual repeatability Pairwise correlation analyses
A. Are temporal structures repeatable over time? New data
B. Are temporal structures generalisable across tasks? Jin et al., 2019

Hedge et al., 2018
Part III. Inter-individual differences Pairwise correlation analyses
A. Do temporal structures correlate with task performance 

calculated on the same data series?
New data
Anderson et al., 2021

B. Do temporal structures correlate with subjective ratings 
on attentional state measured throughout the same task?

New data
Anderson et al., 2021

C. Do temporal structures correlate with self-assessed 
traits from attention-deficit related questionnaires?

New data
Anderson et al., 2021
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Performance While performance on the MRT task is 
straightforwardly quantified, performance on the neurocog-
nitive tasks can be computed in many different ways (mean 
RT or accuracy across all trials, or in each subcondition — 
congruent or incongruent, or the difference between them 
etc.). To keep the analysis feasible, we therefore used only the 
MRT data (both our own and Anderson et al.) to examine the 
relationship between temporal dependency and performance.

Subjective Attentional State To examine the between-sub-
ject relationship between temporal structure and subjective 
attentional state, we used all the datasets that contained 
subjective ratings of such attentional states. These are both 
MRT datasets, the SART, and the Visual Search data.

Self‑Assessed Traits For the relationship between temporal 
structure and self-assessed attention-deficit related traits, we 
used both MRT datasets, as these included relevant ques-
tionnaires. In our current design, all participants completed 
a questionnaire on ADHD tendency. As ADHD is a multi-
faceted condition, potential correlations between temporal 
structure and ADHD tendency would reveal little about the 
driving mechanism. For the first cohort, we therefore also 
included a questionnaire on impulsivity (one of the main 
two facets of ADHD) and a questionnaire on mind wan-
dering tendencies, which has been associated with ADHD 
tendencies both in healthy and clinical participants (Per-
quin & Bompas, 2019; Seli et al., 2015; Shaw & Giambra, 
1993; Unsworth et al., 2019) and may reflect an individual 
tendency towards getting off-task. However, anticipating 
on our results, we found clear statistical evidence against 
between-subject correlations across all three questionnaires 
and temporal dependency on the first cohort. For the second 
cohort, we therefore only included the ADHD questionnaire.

Participants from the Anderson et al. (2021) study com-
pleted the Attention-Related Cognitive Errors Scale (Cheyne 
et al., 2006), which aims to measure an individual tendency 
to make cognitive errors in daily life that are caused by 
lapses of attention. This questionnaire has been found to 
positively correlate with ADHD tendencies in healthy par-
ticipants (Malkovsky et al., 2012). Anderson et al. (2021) 
found a modest between-subject correlation between the 
ARCES scores and behavioural variability on the MRT.

Methods

Here, we report a short summary for the new and archival 
datasets we have analysed for the current study (see Table 2 
for an overview with the key features of each dataset). An 

extensive description of the methods can be found in the 
Appendix.

Collected Data

The Metronome Task (Seli et al., 2013) was used to obtain 
a RT series for each participant (Fig. 2). From these series, 
we calculated for each participant: (1) the standard devia-
tion of the RT, reflecting an overall measure of performance 
on the task, and (2) temporal dependency in the RT series. 
The MRT also measured participants’ subjective ratings of 
attentional state quasi-randomly throughout the experiment. 
Although the original MRT task offered only three levels 
of responses (“on task”, “tuned out”, and “zoned out”), 
we offered instead a scale from 1 (completely on task) to 
9 (completely off task) to get a more gradual response. For 
participants who performed the MRT twice, these measures 
were extracted separately for both occasions.

Time Series Analyses

We quantified temporal structures in the RT series using 
AC1, PSD, DFA, and ARFIMA(1,d,1). Although one might 
expect that missing data are problematic for time series anal-
yses, the most common method in the literature is to ignore 
missed responses altogether. In line with this, we excluded 
omissions from the RT series for all analyses, but verify 
our results with two alternative imputation approaches (see 
the ‘Control Analyses’ section; also see the ‘Missing Data’ 
section).

Autocorrelation Autocorrelation quantifies the correlation 
of a time series with itself over a specified lag (Box et al., 
2016). Here, and throughout our analyses, time refers to tri-
als, as typical in the field when dealing with reaction time 
data series. The autocorrelation ρ at lag k is given by:

with xnreflecting observation n in time series x, μ reflecting 
the mean of the complete time series, and E reflecting the 
expected value.

We focus on the autocorrelation at lag 1 (correlation 
of trial n with trial n + 1, AC1), representing the temporal 
structure at the shortest delay possible in RT series. The 
AC1 (i.e.) was calculated for each participant in R (R Core 
Team, 2013) on their RT series with the acf function in the 
Forecast package (Hyndman & Khandakar, 2008; Hyndman 
et al., 2018).

�k =
E
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xn − �
��

xn+k − �
��
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Power Spectral Density By Fourier-transforming the RT 
series and calculating the squared amplitude, one can 
obtain the power spectrum of the series, or equivalently, 

the power spectrum can be calculated with a Fourier trans-
form on the autocorrelation function (Box et al., 2016). In 
a variety of natural measures, including typical RT series, 
the frequency f and power S(f) are proportional:

Table 2  Overview of the datasets analysed in the current research, 
showing both our new collected data and the archival datasets. Listed 
are the source (‘dataset’), the total number of subjects before exclu-
sion (‘# subjects’), the tasks (‘tasks’), the total number of trials for 

each task (‘# trials’), whether the participants performed the tasks 
once or twice (‘# sessions’), whether thought probes on attentional 
state were included, and if so, on what scale (‘thought probes?’), and 
the questionnaires we analysed in the current study (‘questionnaires’)

* 73 out of 139 participants were tested for the second session.

Dataset # subjects Tasks # trials # sessions Thought probes? Questionnaires

New data 139 Metronome Response Task 
(MRT)

1050 2* Yes, on scale from 1–9 Adult ADHD 
Self-Report 
Scale (ASRS)

Daydreaming 
Frequency 
Scale (DFS)

UPPS-P Impul-
sive Behav-
iour Scale 
(UPPS-P)

Jin et al., 2019 30 Sustained Attention to 
Response Task (SART)

Visual Search

378–486
420

1 Yes, categorical responses

Anderson et al., 2021 375 Metronome Response Task 900 1 Yes, on scale from 1–6 Attention-
Related 
Cognitive 
Errors Scale 
(ARCES)

Hedge et al., 2018, Exp. 1 + 2 107 Eriksen Flanker
Stroop
Stop-signal
Go/No-Go

720
720
720
720

2 No

Hedge et al, 2018, Exp 3 40 NAVON
Spatial-Numerical Association 

of Response Codes (SNAR)
Posner Cuing

640
640
640

2 No

Wagenmakers et al., 2004 6 Simple RT (short and long ITI)
Choice RT (short and long ITI)
Fixed temporal estimation 

(short and long ITI)

1024
1024
1024

1 No

Fig. 2  Overview of the task and thought probes
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To estimate α, both the frequency and power are log-
transformed, and a linear regression line is fit in this log–log 
space. The linear slope indicates the α value. The power 
spectrum density was calculated on the entire RT series, 
using the inverse of the trial number as frequency (following 
Wagenmakers et al., 2004).

While white noise with an SD of 1 shows a flat power 
spectrum centred on zero, this is not the case for higher 
SDs. Instead, when shuffling RT data or when generat-
ing random data series with the same variance (Perquin 
et al., 2020; see https:// osf. io/ a6zsv/ for simulations), the 
intercept is dependent upon the overall variance in the 
series — which is particularly problematic when looking 
at intra- and inter-individual correlations. To correct for 
these differences, each RT series was randomly shuffled 
100 times. The mean power spectrum of these 100 itera-
tions was subtracted from the original RT power spec-
trum. Next, the linear regression slope was calculated 
in log–log space — with the absolute value of the slope 
representing the exponent α in 1/fα. In contrast, the AC1 
on the shuffled RT series did behave like white noise 
(centred around zero).

Detrended Fluctuations Analysis While PSD is meant for 
‘stationary time series — time series that have a constant 
mean and variance throughout (e.g. white noise) — DFA is 
supposed to be more robust against non-stationarity’ (e.g. 
brown noise; Stadnitski, 2012). Indeed, sensorimotor data 
series may often be non-stationary — for example, partici-
pants may be faster in the latter part of the experiment due to 
practice effects, meaning that their mean RT is not constant 
throughout. DFA has gained popularity in cognitive neu-
roscience in the recent years (e.g. Irrmischer et al., 2018a;  
Simola et al., 2017).

To estimate DFA, the time series x of total length N is 
integrated into y(k) by calculating the cumulative sum of 
each observation n relative to the mean of the time series μ:

Next, y(k) is divided into b number of windows yb(k). Each 
yb(k) value is detrended by the linear trend of that window. 
Note that if the window sizes are logarithmically spaced, this 
puts less emphasis on the shorter time scales compared to 
PSD. On the detrended values, the root mean square error — 
also called ‘average fluctuation’ F — can be calculated as a 
function of b with:

S(f ) ∝
1

f �

y(k) =
∑k

n=1
(xn − �)

Both F(b) and b are log-transformed and linearly fit. 
Regression slope α is interpreted as amount of temporal 
dependency.

DFA was performed on each RT series with the Fractal 
package (Constantine & Percival, 2017), following the pro-
cedure of Stadnitski (2012), over non-overlapping blocks log-
linearly from a minimum of 4 trials (as lower window sizes are 
not recommended for linear detrending; Peng et al., 1995)  to 
512 trials (maximum window size we were able to use). The 
linear regression slope was calculated in log–log space. Simi-
larly, for each RT series, DFA was performed on 100 randomly 
shuffled series. The slope of the original RT series was cor-
rected by the difference between the mean slope of the shuffled 
series and white noise (0.5), because the uncorrected values 
were clearly above chance level for all participants (median 
value = 0.57, ranged 0.56-0.58), although we note they were 
not correlated with the overall variance of the series. In some 
papers, the lower frequencies (for PSD) and smallest windows 
(for DFA) have been excluded, we will address these analysis 
choices in the ‘Control Analyses’ section.

ARFIMA Models Although PSD and DFA have been popular 
for analysing RT, the methods have an important limitation: 
they have difficulties differentiating long- from short-term 
dependencies. The use of autoregressive fractionally inte-
grated moving-average (ARFIMA) models has been suggested 
(Torre et al., 2007; Wagenmakers et al., 2004) as an alterna-
tive to statistically test the benefit of a long-term parameter 
and, as detailed above, ARFIMA allow for predictions which 
the other dependency measures do not allow. The ARFIMA 
model is an extension of the ARIMA model, which consists 
of a combination of three processes, as detailed below.

The first process of the model is the autoregressive process 
(AR), which aims to capture short-term dependencies. The 
model takes on an ‘order’ p, reflecting how many AR param-
eters are being estimated. For an AR model of order p, AR(p), 
observation n in time series x is predicted by its preceding 
observations xn-1 to xn-p, with φ1 to φp reflecting the weight for 
each observation. The model also includes an independently 
drawn error term εn. As such, the model can be described as:

The second process refers to the moving-average pro-
cess (MA), which also captures short-term dependencies. 
For a MA model of order q, MA(q), observation n in time 
series x is predicted by a combination of random error εn 

F(b) =

√

√

√

√
1

N

N
∑

k=1

[y(k) − yb(k)]
2

xn = �
1
xn−1 + �

2
xn−2 +⋯ + �pxn−p + �n

https://osf.io/a6zsv/
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and the error terms of the preceding observations, εn-1 to 
εn-q, with θ1 to θq reflecting the weight for each error term:

These two processes can be combined into a mixed 
ARMA(p,q) model:

For example, an ARMA(1,1) model can be described 
as:

AR, MA, and ARMA are all meant for stationary time 
series. If a time series is not stationary, an ARIMA(p,d,q) 
model should be used instead. This model includes a long-
term process d, referring to the number of times a time series 
should be ‘differenced’ to make it (approximately) station-
ary. In the process of differencing, each observation in the 
time series is subtracted from its subsequent observation. For 
instance, an ARIMA(1,1,1) model then takes the form of:

Importantly, in an ARIMA model, d refers to a discrete 
value. Most typical values for d are 1 or 2, which can remove 
respectively linear and quadratic trends. Instead, in the 
ARFIMA model, the series is instead ‘fractionally differ-
enced’ — such that d can take on any value between − 0.5 
and 0.5. Similarly, d in the ARFIMA model refers to a long-
term process. One advantage of ARMA/ARFIMA is that they 
are nested models — which means that the best model can be 
selected using goodness-of-fit measures such as the Akaike 
Information Criterion (AIC; Akaike, 1974)  and/or Bayesian 
Information Criterion (BIC; Schwarz, 1978). As such, one 
can fit both ARMA and ARFIMA on a time series, and test if 
the long-term parameter d sufficiently adds new information 
(Torre et al., 2007; Wagenmakers et al., 2004).

An ARFIMA(1,d,1) model was fitted on each of the RT 
series using the Fracdiff package (Fraley et al., 2006) , follow-
ing the procedure of Wagenmakers et al. (2004), to extract the 
long-term parameter d, together with the weight of the two 
short-term (first-order) parameters AR and MA (referred to 
as φ1 and θ1 in Introduction). These parameters as well as the 
fit measures (AIC/BIC) are stable across iterations (i.e. when 
running the pipeline twice, one would get the same values). On 
the shuffled series, the distributions of d, AR, and MA were 
all higher than chance (median values respectively 0.03, 0.31, 
and 0.35), and for the d parameter, these values were weakly 
correlated with the overall variance of the series. Hence, all 
three parameters were corrected by subtracting the value of 
the mean parameters of the shuffled series. The corrected value 
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1
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of AR from five participants and MA from four participants 
exceeded the theoretical limit (− 1) by a small amount (maxi-
mum values − 1.06 and − 1.08). Because we are interested in 
individual differences, we did not fix these to − 1, as to reduce 
the variation between individuals. To keep the inter-measure 
correlations as fair as possible, the same 100 shuffled RT series 
were used for the PSD, DFA, and ARFIMA corrections.

Archival Datasets

The archival MRT data from Anderson et al. (2021) includes 
a single session of the same task plus an attention-deficit 
related traits questionnaire on a larger sample. The data from 
Jin et al. (2019) uses another paradigm traditional in the mind 
wandering literature (the sustained attention task—SART), in 
conjunction with a Visual Search, very common in the visual 
and cognitive literatures. Both tasks include thought probes on 
attentional state, which allows us to examine their relationship 
with temporal structure in tasks other than the MRT. Finally, 
the data from Hedge et al. (2018) are particularly suited for 
studying reliability, as it includes multiple tasks that all have 
two sessions. Wagenmakers et al. (2004) is a key paper in the 
literature on temporal structures, and we show the temporal 
structures in RT series on each of the six tasks as comparison 
for our current estimates. Details on methods and data prepa-
ration for all datasets can be found in the Appendix.

Bayesian Analyses

Bayesian statistics were conducted in JASP (JASP Team, 
2017), using equal prior probabilities for each model and 
10,000 Monte Carlo simulation iterations. We report the 
Bayes factor (BF), which indicates the ratio of the likelihood 
of the data under the alternative hypothesis (e.g. the pres-
ence of a correlation) compared to the null hypothesis. For 
example, a  BF10 of 3 in a correlation analysis means that the 
likelihood for the data is 3 times larger under the correla-
tion/alternative hypothesis than under the null-hypothesis, 
and would start to be interpreted as evidence in favour of 
a correlation. On the other hand, a  BF10 of 0.33 means that 
the data is (1/.33) three times more likely under the null than 
under the correlation hypothesis, which would start to be 
interpreted as evidence for the null hypothesis. This can also 
be written as  BF01 = 3, representing the inverse of  BF10. A 
 BF10 between 0.33 and 3 is typically referred to as ‘indeter-
minate’. For interpretation purposes, we report  BF10 when the 
alternative hypothesis is favoured and report  BF01 when the 
null hypothesis is favoured across our main analyses.

In these analyses, the magnitude of the BF refers to the evi-
dence regarding a presence/absence of a correlation. To also get 
an estimate of the precision of the correlation coefficient, we 
report the 95% credible intervals (CI) of the posterior distribution 
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alongside our main analyses, which reflects that there is a 95% 
probability that the correlation coefficient is in said interval.

Data Availability

Our own raw data from the reported analyses is available at 
https:// osf. io/ pez34/, alongside the analysis code and jasp files. 
Any of our other reported measures are available upon request.

Results

Part 1: Establishing the Presence of Temporal 
Dependencies

Before examining the intra- and inter-individual corre-
lates of temporal structures in RT series, we first tested 
whether these series unambiguously showed any tempo-
ral structures. Figure 3 shows the distributions of the six 

temporal dependency measures (AC1, PSD, DFA, and three 
ARFIMA(1,d,1) parameters) for each task separately. Distri-
butions with the same colour indicate that these tasks were 
performed by the same group of participants.

In each subplot, the null-hypothesis (i.e. absence of tem-
poral dependency) is reflected by the horizontal line. For 
AC1, PSD, AR, MA, and d, this corresponds to 0, and for 
DFA, the null-hypothesis is 0.5. Bayesian one sample t-tests 
were conducted on AC1 and PSD slopes — to test if they 
were statistically different from zero — and DFA slopes — 
to test if they were statistically different from 0.5. On our 
MRT data and on the cognitive tasks, this was done sepa-
rately for the first and the second session. We found extreme 
evidence for the existence of temporal structures for all tasks 
except the Stop-Signal task in both sessions (Table 3). We 
performed the same analysis on the ARFIMA(1,d,1) param-
eters and found extreme evidence for each distribution of d 
values being higher from zero (see below for formal com-
parison between ARFIMA and ARMA model). The AR and 
MA parameters were less consistent across datasets. At first 

Fig. 3  Overview of the temporal structure measures (AC1, PSD 
slope, DFA slope, and the three ARFIMA(1,d,1) parameters — AR, 
MA, and d) across all participants of each dataset. Each dot repre-
sents a measure from one participant, with the group median of each 
distribution in white. In each subplot, the horizontal line reflects 
the null-hypothesis of the featured temporal dependency measure. 
Colours represent the different datasets: participants from the MRT 
data are shown in green (our current data, both cohorts combined, 
from the first MRT session only) and yellow (from Anderson et al., 
2021), participants who did both the SART and Visual Search task 

(Jin et  al., 2019) are shown in purple. For the cognitive tasks, par-
ticipants who performed the Eriksen Flanker, Stroop, Go/No-Go, and 
Stop-signal tasks are shown in red, while participants who performed 
the NAVON, SNARC, and Posner cuing tasks are shown in purple. 
For comparison, participants on the simple RT, choice RT, and time 
estimation tasks from Wagenmakers et  al. (2004) were also added. 
We conclude that the AC1, PSD, DFA, and d reflect a clear presence 
of temporal structure and that, consistent with previous literature, the 
timing-based tasks show the strongest dependency

https://osf.io/pez34/
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glance, the different measures mostly seem similar to each 
other, despite their different interpretations, with exception 
of the AR and MA, which one would expect to resemble 
AC1. We run inter-measure correlation analyses as sanity 
check (see the ‘Control Analyses’ section) and return to the 
interpretation of the AR and MA parameters in the Discus-
sion. For now, we conclude that there is clear temporal struc-
ture in our collected and archival datasets.

Wagenmakers et al. (2004) found that the temporal esti-
mation task elicited stronger dependency than the simple 
and choice RT tasks. Consistent with this, we find that data 
the MRT, which is also time-estimation-based, showed rela-
tively high structure.

Long‑Term Dependencies

One benefit of the ARFIMA(1,d,1) model is its direct way 
to test the benefit of a long-term parameter over only short-
term parameters. To test this, the difference in Akaike infor-
mation criterion (AIC) between the ARMA(1,1), which does 
not include long-term dependencies, and ARFIMA(1,d,1), 
which does include long-term dependencies, models was 
calculated (following the procedure of Wagenmakers et al., 
2004). Figure 4 shows this difference for each participant 

of our MRT data, ordered according to the value of their d 
parameter. Values above 0 indicate a better (lower) AIC for 
the ARFIMA model, while values below 0 indicate a bet-
ter AIC for the ARMA model. In practice, however, only 
differences larger than 2 are taken as clear support for one 
model over the other (blue area in Fig. 5; Wagenmakers 
et al., 2004).

Amongst the first MRT session of the 139 analysed par-
ticipants, the long-term model was clearly favoured for 102 
of them (~ 73%). When using the Bayesian information cri-
terion (BIC) instead, a more conservative goodness-of-fit 
measure (as recommended by Torre et al., 2007), the long-
term model was still clearly favoured for 76 participants 
(~ 55%; right panel). The same analyses performed on shuf-
fled RT series show no clear preference for either model for 
all participants (red area on Fig. 5). In the MRT series from 
Anderson et al. (2021) and the Visual Search and SART RT 
series, we find similar patterns (Table 4). We conclude that 
in these tasks, long-term correlations were likely presents 
in a majority of participants, but still note this was not the 
case for all of them. Below, we assess the stability of these 
individual differences and explore their potential relevance.

In contrast, for the cognitive tasks, the long-term model 
was only favoured for the Flanker, Stroop, Go/No-go, and 

Table 3  Bayes’ Factors in 
favour of the existence of 
temporal structures in the 
RT in the different measures: 
AC1, the linear fitted slope of 
the spectral power, the linear 
fitted slope on the detrended 
fluctuation analysis, and the 
ARFIMA(1,d,1) parameters 
(AR, MA, and d). Italics and 
bold indicate clear evidence 
against and for the null 
respectively

* BFvalue=0.
** BFvalue=0.5

AC1* Spectral slope* DFA slope** AR* MA* d*

MRT data from both cohorts
Session 1  > 1000  > 1000  > 1000  > 1000  > 1000  > 1000
Session 2  > 1000  > 1000  > 1000 26  > 1000  > 1000
Data from Anderson et al., 2021

 > 1000  > 1000  > 1000  > 1000  > 1000  > 1000
Data from Jin et al., 2019
SART  > 1000  > 1000  > 1000 0.91 1.33  > 1000
Visual search  > 1000  > 1000  > 1000 0.22 0.23  > 1000
Data from Hedge et al., 2018
Flanker S1  > 1000  > 1000  > 1000  > 1000  > 1000  > 1000
S2  > 1000  > 1000  > 1000  > 1000  > 1000  > 1000
Stroop S1  > 1000  > 1000  > 1000 0.24 0.23  > 1000
S2  > 1000  > 1000  > 1000  > 1000  > 1000  > 1000
Go/No-go S1  > 1000  > 1000  > 1000  > 1000  > 1000  > 1000
S2  > 1000  > 1000  > 1000  > 1000  > 1000  > 1000
Stop-Signal S1 3.18 2.11  > 1000 0.12 0.19  > 1000
S2 7.87 0.33  > 1000 1.27 0.30  > 1000
NAVON S1  > 1000  > 1000  > 1000 0.24 0.30  > 1000
S2  > 1000  > 1000  > 1000 0.24 6.44  > 1000
SNARC S1  > 1000  > 1000  > 1000 0.20 0.17  > 1000
S2  > 1000  > 1000  > 1000 0.20 0.18  > 1000
Posner S1  > 1000  > 1000  > 1000  > 1000 40  > 1000
S2  > 1000  > 1000  > 1000  > 1000 63  > 1000
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Fig. 4  Difference in AIC (left) and BIC (right) between the 
ARMA(1,1) and ARFIMA(1,d,1) models for the MRT data, with 
each dot representing one individual subject. For points above the 
blue-shaded (difference score of 2) and red-shaded (difference score 

on the shuffled data series) area, the AIC/BIC clearly favours the 
ARFIMA(1,d,1) model — indicating that the d parameter adds sub-
stantial explanation to the model. This was true for most of the par-
ticipants

Fig. 5  Within-subject correlations between MRT sessions 1 and 2 
for performance (RT variability, logged), subjective attentional state 
ratings (mean and variability), and temporal dependency measures 
(AC1, PSD slope, DFA slope, and the three ARFIMA(1,d,1) param-
eters — AR, MA, and d). Values within superscripted brackets indi-
cate 95% credible intervals. Corresponding Bayes factors above 3 

are shaded in green and marked with an asterisk (indicating clear 
evidence in favour of that correlation), while Bayes factors below 0.3 
are shaded in red and marked with a triangle (indicating clear evi-
dence against that correlation). For illustrative purposes, PSD slope 
has been multiplied by − 1, meaning that for all temporal dependency 
measures, higher values indicate more dependency



Computational Brain & Behavior 

1 3

Posner tasks when using the AIC. When using the BIC, 
the (more parsimonious) short-term model was favoured 
for all tasks (Table 4). As the one-sided t-tests (Table 3) 
showed, the temporal dependency measures were clearly 
different from their null-hypothesis, we can still assess 
the repeatability and generalisation of these measures. We 
return to their conceptual value in the ‘Discussion’ section.

Part II: Repeatability of Temporal Dependencies

Test–Retest Repeatability in the MRT

Having established that there is substantial temporal depend-
ence in the different tasks we tested, we then sought to deter-
mine how stable these temporal dependencies were. To test 
the intra-individual repeatability of our MRT measures (RT 
variability, mean and SD of subjective attentional state, and 

temporal dependency of the RT series), Bayesian Pearson 
correlation pairs were computed for each measure between 
time one and two (Fig. 5).

Overall, performance (as measured by RT variability over 
the entire session) and subjective attentional state ratings 
(mean and variability) showed high repeatability over time. 
Looking at the temporal structure measures, AC1 and PSD 
were the most repeatable (equally high as the performance 
measures). The ARFIMA parameters were unreliable, while 
the DFA slope fell in-between with the correlation between 
the two sessions indicating modest repeatability.

Test–Retest Repeatability in Cognitive Tasks

To test the intra-individual repeatability of temporal depend-
ency of the RT series from two sessions in seven well-
known cognitive tasks (with 104 participants in the Flanker, 
Stroop, Go/No-go, and Signal task, and 40 participants in 
the NAVON, SNARC, and Posner cuing task), Bayesian 
analyses of Pearson correlations were conducted separately 
for each measure between time one and two. Figure 6 (left 
panels) shows the distribution of within-task correlation 
coefficients (top-left) across all tasks and all measures, with 
the corresponding BF values (bottom-left), with each task 
denoted by a different symbol and the median denoted by 
the white dot.

Similar to our MRT data, AC1 and PSD are the most 
repeatable of the temporal dependency measures, while the 
ARFIMA(1,d,1) parameters are clearly not repeatable. How-
ever, the repeatability of AC1 and PSD was much lower 
compared to the MRT, and not consistent across tasks (with 
only RT series of the NAVON and Posner Cuing task show-
ing moderate repeatability. The DFA slope was not repeat-
able overall.

Generalisation of Temporal Dependencies Across Tasks

To test the intra-individual generalisation of temporal 
dependency in RT series between different tasks, Pearson 
correlation coefficients and corresponding Bayes factors 
were calculated for each pair of tasks using the first session 
of the Flanker, Stroop, Stop-signal, and Go/No-go tasks (104 
participants), the first session of the NAVON, SNARC, and 
Posner cuing task (40 participants), and SART and Visual 
Search data (30 participants) — all three denoted by a dif-
ferent symbol (Fig. 6, right panels).

Out of 60 BF-values relating to temporal dependency, 
only 5 indicated clear evidence for a correlation, with low 
to moderate r-values (0.25–0.43): the AC1 and MA param-
eter between the NAVON and SNARC, the AC1 and PSD 
between the Go/No-Go and Stroop, and the d parameter 
between Flanker and Stroop task. Overall, Bayesian evidence 
clearly favoured the absence of repeatability across tasks for 

Table 4  Percentages of participants for whom the fit values clearly 
favoured the ARFIMA(1,d,1) model (as indicated by a difference 
of 2 or higher) and for whom the fit values clearly favoured the 
ARMA(1,1) model (as indicated by a difference of − 2 or lower) — 
separately for the AIC and BIC. For each dataset and each session, 
the favoured model is shown in bold, and the non-favoured model is 
shown in grey. S1/S2 indicate the session numbers

Task Favouring ARFIMA Favouring 
ARMA

AIC BIC AIC BIC

Data from MRT, both cohorts
Session 1 73% 55% 6% 32%
Session 2 66% 44% 12% 36%
Archival MRT data from Anderson et al., 2021

64% 49% 12% 35%
Archival data from Jin et al., 2019
SART 30% 90% 13% 0%
Visual Search 52% 90% 3% 0%
Archival data from Hedge et al., 2018
Flanker S1 54% 38% 13% 51%
S2 57% 34% 10% 48%
Stroop S1 25% 11% 29% 75%
S2 29% 6% 23% 75%
Go/No-go S1 43% 26% 12% 57%
S2 47% 14% 17% 55%
Stop-Signal S1 14% 5% 25% 86%
S2 11% 4% 32% 90%
NAVON S1 20% 10% 53% 80%
S2 25% 8% 45% 80%
SNARC S1 25% 18% 25% 80%
S2 13% 8% 40% 90%
Posner S1 50% 23% 10% 53%
S2 35% 18% 15% 75%
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all measures (Fig. 6; bottom-right, with corresponding cor-
relation coefficients shown top-right).

Part III: Between‑Subject Correlates of Temporal 
Dependencies

Task Performance

We then asked whether the various measures of temporal 
correlation were correlated with task performance. Pearson 
correlation coefficients and Bayes factors were calculated 
between each temporal dependency measure and RT vari-
ability on our MRT data (Fig. 7, left). We found that partici-
pants who performed well (low SD) on the task displayed 
on average low temporal dependency (as indicated by strong 
correlations with AC1, PSD and DFA slopes). Crucially, 
these correlations cannot depend on the variance of the time 
series, as we correct for this by subtracting the shuffled data 
series. In the absence of correlation with the d parameter, 
we cannot conclude that the relationships between RT vari-
ability and temporal dependencies are carried by long-range 
correlations.

Figure 8 shows these dynamics in more detail for four 
example participants. Good performance (left column), as 
indicated by low variability, was associated with a low AC1, 
that appears to quickly decay over the increasing lags, as 
well as with relatively shallow PSD and DFA slopes (note 
that DFA slopes for white noise are 0.5). Poor performance 
on the other hand (right column), as indicated by a high SD, 
was associated with high AC1, that appears to decay only 
slowly over the next lags, as well as with relatively steep 
PSD and DFA slopes. Average performance (respectively 
showing SD around median and mean values) showed inter-
mediate temporal structures.

To verify if our results were not confounded by strat-
egy (e.g. trying to anticipate the tone versus responding to 
the tone), we first reran our analyses after excluding those 
participants who had a mean RT below − 100 ms or above 
100 ms (28 participants in total), leaving only the partici-
pants who are good at the task. This approach gave highly 
similar results. Next, we created four subgroups based on 
low/high variability (< 45th and > 55th percentile of the 
group distribution) and high/low autocorrelation (similar 
rule). Each subgroup showed the same overall patterns. Our 
results thus held up well across different strategies.

Fig. 6  Distributions of correlation coefficients for the within-task 
(left) and across-task (right) repeatability for the six temporal 
dependency measures. In each distribution, the white dot represents 
the median value. The within-task distributions show the correlations 
between session 1 and session 2 (upper panel) across 104 participants 
in seven cognitive tasks, with the corresponding Bayes Factors in the 
lower panel. These reflect stability. The between-subject distributions 
show the correlations between each combination of tasks for the four 

cognitive tasks from exps. 1 and 2 and the three cognitive tasks from 
experiment 3 from Hedge et al., (2018) as well as from the SART and 
Visual Search task from Jin et al. (2019). These reflect generalisabil-
ity. We found that on average, the AC1 and PSD slope were moder-
ately repeatable, while the DFA and ARFIMA parameters were not 
repeatable. None of the measures were generalisable across tasks. 
The precise r-values, BF, and 95% credible intervals can be found in 
the Supplementary Materials
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Archival MRT Data As discussed in the ‘Data preparation and 
Analysis’ section, the RT variability from the Anderson et al. 
(2021) is not a pure measure of performance, but rather mixes 
performance and strategy. For consistency, we also computed 
Bayesian Pearson correlation analyses between the temporal 
dependency measures and the RT variability on these MRT 
data, but these should be interpreted with caution.

The correlation patterns in these MRT series were 
mixed: the AC1 was not correlated to SD, the PSD 
showed a weak positive correlation, and the DFA showed 
a weak negative correlation (Fig.  9). Reflecting strat-
egy, mean RT was also considered, and showed overall 
negative correlations with temporal dependency meas-
ures (r =  − 0.31, − 0.38, − 0.11;  BF10 > 1000, > 1000, and 

0.53 for AC1, PSD, and DFA respectively) — indicat-
ing that participants who were less instruction-compliant 
(i.e. higher RT) had on average less temporal structure. 
Again, RT variability was not correlated with any of the 
ARFIMA(1,d,1) parameters (Fig. 9).

Subjective Attentional State

Bayesian Pearson correlation analyses were conducted 
between each temporal dependency measure and the mean 
and SD of the attentional state ratings on our MRT data 
(Fig. 7, right), and consistently indicated evidence against 
any correlations. For comparison, the correlation between 
RT variability and subjective ratings was also included.

Fig. 7  Between-subject correlations between temporal dependency 
and MRT measures. Values within superscripted brackets indicate 
95% credible intervals. Corresponding Bayes Factors above 3 are 
shaded in green and accompanied by an * (indicating clear evidence 
in favour of that correlation), while Bayes factors below 0.3 are 
shaded in red and accompanied by a triangle (indicating clear evi-

dence against that correlation). RT variability correlates moderately 
to strongly with the three repeatable temporal dependency measures 
(AC1, PSD, and DFA), but not with the ARFIMA(1,d,1) parameters. 
Bayes factors show evidence against correlations between subjective 
attentional state ratings and temporal dependency
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Archival MRT Data When running the same correlation anal-
yses on the archival MRT data, there was clear evidence 
that mean attentional state ratings correlated negatively with 
the AC1, PSD, and DFA measures (Fig. 9, middle two col-
umns) — indicating that higher reports of being off-task 
were associated with less temporal structure — but not with 
the ARFIMA(1,d,1) parameters. Numerically, this correla-
tion was strongest for AC1, although all three coefficients 
were in the low range. Neither AC1, PSD, nor DFA was 
correlated with the SD of attentional state ratings.

Visual Search and SART  The same correlations were run 
between the proportion of off-task probes and each tempo-
ral dependency measure separately for the SART and the 
Visual Search data. There was evidence against any correla-
tions  (BF10 ranging 0.22–0.46 for the SART, with 5 out of 6 
showing determinate evidence;  BF10 ranging 0.23–0.54 for 
the Visual Search, also with 5 out of 6 showing determinate 
evidence).

Self‑Assessed Attention‑Deficit‑Related Traits

After examining correlations with objective and subjective 
task-based attention measures, we then asked whether the 
temporal dependencies correlated with more global self-
reported attentional traits. To this end, Bayesian Pearson 
correlation analyses were conducted between self-assessed 
attention-deficit related traits and the repeatable temporal 

dependency measures (AC1, PSD, and DFA). For compari-
son, RT variability was again included. Neither self-assessed 
ADHD traits (both cohorts) nor daydreaming and impulsivity 
in daily life (cohort 1) correlated with RT variability (Fig. 10).

Archival MRT Data The self-assessed scores of attention-
related cognitive errors in daily life modestly correlated with 
RT variability (Fig. 9). However, the scores did not correlate 
to any of the repeatable (AC1, PSD, DFA) temporal depend-
ency measures.

Control Analyses

Conceptual Check: Inter‑measure Correlations

As we were interested to see how well the different measures 
of temporal dependency correlated to each other, Bayesian 
Pearson correlations across the different temporal depend-
ency measures of our MRT data (performed on the data 
from session 1) revealed that the measures that showed some 
within-individual repeatability (AC1, PSD slope, and DFA 
slope) strongly correlated with each other (Table 5). Coun-
terintuitively maybe, although the AR and MA parameters 
from the ARFIMA model were not repeatable, they still cor-
related highly with each other (but not to any of the other 
measures, including the conceptually similar AC1).

Fig. 8  Examples from four participants with (from left to right) good, 
close-to-median, close-to-mean, and poor performance. Shown for 
each participant are (from top to bottom) their RT distribution, auto-

correlations at the first 10 lags, power spectral density with fitted 
slope, and detrended fluctuations with fitted slopes
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The high correlations of AC1 with PSD and DFA and 
that between AR and MA were also consistently present in 
the archival datasets (Supplementary Materials B). The d 
parameter showed more volatile correlations with the other 
measures.

Analysis Choices

Here we discuss how the current results patterns hold up 
with different analysis choices. It is impossible to validate 
the current against all possible analysis choices, so we lim-
ited ourselves to two factors that we deemed most impor-
tant (see Discussion): the choice of frequency or length 
in the long-range estimates, and the method to deal with 
missing data and/or outliers.

Firstly, we calculated PSD over all the possible frequen-
cies. However, log–log spectra of behaviour tend not to be 
linear all the way through, but instead increase in power 
at the highest frequencies — resulting in a small curve at 

the high end of the spectrum (see Torre & Delignières, 
2008 Fig. 1, for instance). Some previous studies therefore 
exclude the highest frequencies, to fit the slope only on the 
linear part of the spectrum. In line with Torre et al. (2019), 
we excluded 1/8th of the highest frequencies and reran the 
within- and between-subject analyses. Similarly, we recal-
culated the DFA measures with a minimum window of 16 
trials (e.g. 16–512 trials instead of 4–512).

Secondly, the current results are based on the time series 
with the missing values excluded. For the MRT data, we 
reran the analyses with two different methods: 1) replacing 
the missing values with each individual’s median RT, and 
2) replacing with an RT of 650 ms (reflecting the maximum 
time a participant had to respond). For the cognitive, SART, 
and Visual Search tasks, we only reran the analyses with a 
median imputation, as there is no obvious ‘extreme value’ 
in any of these tasks.

Overall, the patterns were fairly robust to the different 
analysis choices, though least so when the missing values 

Fig. 9  Between-subject correlations of temporal dependency with 
objective and subjective MRT measures and the ARCES scores, 
using the MRT data from Anderson et  al. (2021). Values within 
superscripted brackets indicate 95% credible intervals. Corresponding 
Bayes Factors above 3 are shaded in green and accompanied by an 
asterisk (indicating clear evidence in favour of that correlation), while 
Bayes Factors below 0.3 are shaded in red and accompanied by a tri-

angle (indicating clear evidence against that correlation). Mean sub-
jective attention correlated negatively with AC1, PSD, and DFA. The 
self-assessed attention-deficit traits correlated positively with RT var-
iability, but not with the temporal dependency measures. ARFIMA 
parameters were not included in external validity analyses, as they 
were not repeatable
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were replaced with the highest possible value (0.650, for the 
MRT data only). The full results are shown in Supplemen-
tary Materials C, in which all noteworthy exceptions (i.e. 
with correlation coefficients being at least 0.10 higher or 
lower than the original value, or correlation coefficients of 
which the corresponding Bayes factor switched our evidence 
categories) are highlighted.

General Discussion

We provide the first large-scale investigation of the repeat-
ability and inter-individual correlates of temporal structures 
in behavioural time series. To do this, we contrast the most 
commonly used methods, applied to rich multi-measures 

data that allow us to conjunctly assess, on the same partici-
pants, performance and their temporal structure, subjective 
attentional state, test–retest repeatability, and personality 
traits. The take-home message, based on our own data, is 
illustrated in Fig. 11, where repeatable variables are shown 
in bold, and the proximity between two variables captures 
the strength of their correlation.

We found that temporal dependency showed repeatability 
over time, though this was dependent on which measure was 
used. AC1 and PSD were highly repeatable, and were the 
only measures that showed the same strength of correla-
tion as the objective measure of behavioural variability and 
the subjective measure of mean attentional state. Instead, 
the DFA slope was only moderately repeatable, and the 
ARFIMA parameters not at all. The temporal dependency 

Fig.10  Between-subject correlations between the repeatable tempo-
ral dependency measures (AC1, PSD, and DFA) and self-assessed 
attention-deficit related traits. Corresponding Bayes Factors above 3 
are shaded in green and accompanied by an asterisk (indicating clear 

evidence in favour of that correlation), while Bayes factors below 0.3 
are shaded in red and accompanied by a triangle (indicating clear 
evidence against that correlation). Eleven out of twelve pairs showed 
clear absence of correlation (one indeterminate)

Table 5  Pearson correlations 
with 95% credible intervals 
within superscripted brackets, 
and corresponding  BF10 
between the different measures 
of temporal dependency on 
our MRT data. Italics and 
bold indicate clear evidence 
against and for the null 
respectively

PSD DFA AR MA d

AC1 0.96 [.94, .97]

(1.3e+72)
0.82 [.75, .86]

(2.2e+31)
0.16 [−.01, .32]

(0.63)
 − 0.01 [−.18, .15]

(0.11)
0.38 [.22, .51]

(3139)
PSD slope – 0.74 [.65, .81]

(2.9e+22)
0.18 [.01, .33]

(0.90)
 − 0.04 [−.20, .13]

(0.12)
0.26 [.10, .41]

(14.4)
DFA slope – –  − 0.04 [−.20, .13]

(0.12)
 − 0.06 [−.22, .11]

(0.14)
0.62 [.50, .71]

(2.2e+13)
AR – – – 0.93 [.90, .95]

(3.3e+57)
 − 0.19 [−.34, −.03]

(1.32)
MA – – – – 0.04 [−.13, .20]

(0.12)
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measures (with exception of the ARFIMA(1,d,1) param-
eters) did correlate with performance — such that good 
performance was associated with less temporal structures. 
However, there was Bayesian evidence against correlations 
of the temporal dependency measures with both subjec-
tive attentional state and self-assessed personality traits. In 
Fig. 11, this is reflected by ‘cluster forming’ of the different 
variables: a cluster of questionnaire-measures, a cluster of 
attentional state ratings, and a cluster of behavioural RT and 
its features — indicating poor external validity.

To investigate the generalisability of our results, we fur-
ther considered three archival datasets. While these were 
designed for very different purposes, each of them could 
contribute to a subset of our research aims. These showed 
that temporal structures are observable in most other cogni-
tive tasks, though with a substantially lower magnitude com-
pared to the MRT, that they are overall repeatable but not 
generalisable across tasks, nor correlated with self-assessed 
attention-deficit traits.

Intra‑individual Repeatability

Our conclusions that DFA slopes show moderate within-
task repeatability at best and does not translate across para-
digms is consistent with previous work (Smit et al., 2013; 
Torre et al., 2011). Computing a Cronbach’s α on our MRT 
data between the two sessions gives a value (α = 0.47) in the 
same range as Torre et al.’s. Here, we extend their results 
by including other measures of temporal dependency. Our 
results indicate that AC1 and PSD measures were more 
repeatable (with respectively ~ 64 and 59% of shared vari-
ance across sessions, while the DFA slopes only share ~ 22% 
of variance), but also did not translate across paradigms. By 
extending this conclusion to more reliable measures, we can 
make a stronger case for the lack of generalisation.

These repeatability scores are comparable to those 
reported in the neural domain for temporal structures of 
alpha and beta power in resting-state EEG recordings (split-
half reliability: Smit et al., 2013; test–retest reliability: 

Fig. 11  Illustration of the repeatability and relationships across all 
the measures from our MRT data. Measures written in bold show at 
good intra-individual repeatability (or moderate for DFA), as found 
either by present between-session correlations, or from the literature 
for the questionnaires. Positively correlated variables are linked by a 
blue arrow with a length proportional to 1 – r, with r being the Pear-
son’s r correlation coefficient (see Figs. 3–7, 9, 10) i.e. strongly cor-
related variables are shown close together. The most notable absences 

of correlations are flagged with a red line and cross. These may have 
been expected based on literature — such as the relationship between 
ADHD tendencies and RT variability — or on the supposed similar-
ity between the measures — such as within-task attentional state rat-
ings and general mind wandering tendencies (DFS). Note that none 
of the archival datasets considered offered a broad enough range of 
measures to justify a similar figure
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Nikulin & Brismar, 2004). Interestingly, individual vari-
ations in these measures seem partially driven by genetic 
factors, as shown in two adolescent twin studies which esti-
mated the heritability of DFA slopes (Linkenkaer-Hansen 
et al., 2006; Smit & Anokhin, 2016). To what extent these 
heritability estimates extend to temporal structure in behav-
ioural data remains an open question.

Temporal Dependencies, Performance, 
and Attentional State

Temporal dependency (as indicated by higher AC1, PSD, 
and DFA) increased with poorer performance. Superficially, 
this appears in line with Smit et al. (2013) and Irrmischer 
et al. (2018b) and at odds with Simola et al. (2017). One 
way to bring all results in line with each other is by assum-
ing that the temporal dependencies reflect mental flexibility, 
rather than task performance per se. We can speculate that 
participants with low mental flexibility perform better on 
the Metronome Task because they stick to the consistent 
action throughout — resulting in a negative between-subject 
correlation between good task performance and temporal 
structure. In turn, participants with low mental flexibility 
would be perform poorly on the Go/No-Go task because 
they are bad at switching between responses — resulting in 
a positive between-subject correlation between good task 
performance and temporal structure.

In practice however, it can be difficult to distinguish 
which tasks require ‘flexibility’ and which require ‘con-
sistency’, as performing most psychological tasks requires 
a careful balance of different — often clashing — task 
demands (e.g. we want to be as fast as possible, but also not 
make any mistakes). For example, in the Go/No-Go task 
from Simola et al. (2017), participants are required to make a 
response on 75% of the trials (Go-trials) and to abstain from 
responding on all other trials — and good performance may 
therefore rely heavily on response inhibition. In the Con-
tinuous Temporal Expectations Task from Irrmischer et al. 
(2018b), participants also only respond to Go-trials, but 
these targets were rare, appearing only every fourth to tenth 
trial — and good performance may therefore rely heavily on 
sustained attention. Still, either task clearly requires some 
of both elements, and it is difficult to see how the different 
task demands would lead to this particular pattern of results.

Findings across different tasks may also be difficult to 
compare because switches between different experimen-
tal conditions across trials might affect the measurement 
of temporal dependency. This could affect different tasks 
to different extents (or not at all in tasks such as tapping 
which feature no experimental condition). To check for 
these effects, we corrected RT series for differences in con-
ditional mean RTs in the Flanker and Stroop tasks, as well 
as the NAVON, SNARC, and Posner tasks, by subtracting 

the difference between the condition mean and the grand 
mean from each RT (e.g. if the grand mean = 400 ms, the 
mean of condition A = 410 ms, and the mean of condition 
B = 390 ms, then every RT from condition A would be 
deduced with 10 ms and every RT from condition B would 
be increased with 10 ms). Distributions of the temporal 
dependency measures for original and corrected were virtu-
ally the same, and rerunning the repeatability and generali-
sation analyses resulted in highly similar patterns with only 
small and unsystematic changes. As such, the measurement 
of temporal structure does not seem to substantially altered 
by switches in experimental conditions. We note though 
that tasks with interleaved conditions do appear to give rise 
to lower temporal dependencies in general compared to 
tasks without conditions, as suggested by the distributions 
of measures across tasks in Fig. 3. This seems sensible, as 
performing a congruent versus incongruent task is not only 
“doing the same thing but more slowly”, but likely involves 
different underlying processes (e.g. conflict detection, inhibi-
tion), which could very well be less temporally dependent 
than repeating the same action over and over again.

From a mechanistic perspective (Torre & Delignières, 
2008; Torre & Wagenmakers, 2009), one could expect 
that the relationship between performance and temporal 
dependencies across participants may strongly depend on 
the task, and may not be linear. For instance, an engaging 
task over the course of which one high-performance state 
dominates would be characterised by low temporal depend-
encies (because alternations between states are scarce). In 
this speculative scenario, individuals impacted by more low-
performance episodes would see their overall performance 
decrease but exhibit more temporal structure. In contrast, 
a task allowing on average for an even split between the 
two modes may lead to a quadratic relationship, whereby 
any departure from the average leads to less temporal 
dependencies.

In the current data, the monotonic increase of temporal 
structure with RT variability may appear consistent with the 
following (highly speculative) reasoning: good performance 
in the MRT task is associated with the dominance of one 
high-performance mode, while increasingly poorer perfor-
mance is driven by more switching to a low-performance 
mode. The within-individual local correlation between RT 
variability and attention ratings suggests that high and low 
modes could be somehow associated with different subjec-
tive feelings of being on task. However, this correlation is 
weak, and the within-subject distributions of subjective 
reports were not bimodal. Moreover, we found evidence 
against correlations between temporal dependency and 
the variability of subjective attention ratings. Therefore, 
although the idea of mode-switching between on-task and 
off-task states is seducing, its ability to accurately describe 
our data is unclear.
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Clinical Relevance

To our knowledge, the current study is the first to directly 
relate temporal dependency to self-assessed personality 
traits. Bayesian analyses showed evidence against correla-
tions with ADHD tendencies, mind wandering tendencies, 
and impulsivity. It is important to note that the current 
study used healthy participants, who do not typically report 
clinical levels of ADHD symptoms. Oversampling for high 
ADHD tendencies, testing clinical samples versus healthy 
controls, or testing the effects of medication on clinical sam-
ples may have led to different conclusions.

Gilden and Hancock (2007) have previously compared 
temporal structures of participants with high versus low RT 
variability on a mental rotation task. They report that no 
one in the ‘low’ group reported ADHD symptoms, while 
participants in the ‘high’ group did. However, a range of 
methodological issues with the analysis method (see Farrell 
et al., 2006 for a critique), and the study design (including 
small sample size, uncontrolled differences between groups, 
unclear self-constructed questionnaire) make the findings 
difficult to interpret. Other studies have also looked at the 
temporal dynamics of RT in ADHD (e.g. Castellanos et al., 
2005; Geurts et al., 2008; Johnson et al., 2007; see Karalu-
nas et al., 2013; 2014 for reviews; see Kofler et al., 2013 for 
a meta-analysis), but their methods and aims have been dif-
ferent than described in the current research. Rather, assum-
ing that people with ADHD are indeed more variable than 
neurotypicals, these studies have examined whether this 
increased variability is driven by rhythmic fluctuations — 
i.e. if the longer RTs observed in ADHD are temporally pre-
dictable. Typically, the RT series are transformed to the fre-
quency domain by either a Fast-Fourier or Morlet-wavelet 
transform to obtain a power spectrum — to test if specific 
frequencies show higher peaks for ADHD patients com-
pared to controls. Although these studies typically found 
increased power in ADHD patients, they have only focused 
on low frequencies (< 1.5 Hz). It remains unknown if this 
would translate in higher slopes (which would mainly hap-
pen if lower frequencies were increased but higher frequen-
cies were not). Nowadays, this analysis seems to have gone 
out of fashion, as differences between groups could not be 
traced back to one specific low-frequency peak (Karalunas 
et al., 2013) .

In contrast, ADHD in children has been associated with 
reduced autocorrelations in RT compared to healthy sam-
ples (Aase & Sagvolden, 2005; Aase et al., 2006). However, 
both studies used reinforcement learning tasks — for which 
performance may exhibit both positive and negative autocor-
relations, with the temporal structures reflecting the training 
process. This makes conclusions from learning tasks hard to 
generalise to other tasks designed to focus on endogenous 
variability alone.

Attention deficits have also been investigated in rela-
tion to temporal dependency in neural activity (Smit and 
Anokhin, 2016)  in adolescents. Attention deficits were 
measured with a questionnaire that was completed by the 
mother (the strengths and weaknesses of ADHD symptoms 
and Normal Behavior Scale; SWAN-AP), and scores were 
validated with a diagnostic interview. Results indicated no 
significant correlations between attention problems and 
DFA slopes in α, β, and θ oscillations in resting-state EEG, 
although some exploratory analyses suggested the change 
in temporal structure across age may differ for high and low 
attention-problems groups, with the high group showing 
more increase of structure over age. Whether these patterns 
can be extrapolated to adults remains an open question.

The disconnect between task behaviour and self-assessed 
scores in healthy individuals has been discussed previously 
e.g. in the domain of self-control (Enkavi et al., 2019). It 
has been suggested that this disconnect may be caused by 
measurement error, as the self-assessments are much more 
reliable than behaviour. This suggestion cannot be applied to 
our current findings: both the self-reports and the temporal 
dependencies were highly repeatable within individuals, and 
still, they were not informative of each other — suggesting 
they may measure different constructs altogether.

Statistical Power

As the current paper deals with multiple research questions 
and a large number of analyses, we used a hard cut-off of 3 
for BF in all our figures and interpretations. Most of our BFs 
were much higher than the cutoff, and we largely find the 
same patterns across different measures (e.g. different tem-
poral dependency measures, different measures of subjective 
attentional state, different analysis choices), despite varia-
tions in important design factors, including (but not limited 
to) number of trials, trial length, number of participants, and 
experiment length — each of which affects the estimates of 
temporal dependency and the statistical power. Overall, it 
seems unlikely our findings are due to chance.

The only noteworthy exception relates to correlations 
between mean subjective attention score and temporal 
dependency, clearly unsupported in our data but supported 
in Anderson’s. Although the sample size in Anderson’s data 
was higher than ours, the BFs in favour of the null-hypothe-
sis in our data were between 7 and 8 when using the stand-
ard priors, providing reasonable support for an absence of 
correlations. Additional robustness checked showed that the 
evidence favouring the null-hypothesis was robust to most 
reasonable prior settings. In other words, it does not appear 
that our data lack sensitivity, as this would correspond to 
indeterminate  BF10-values between 0.33 and 3. Instead, 
our data are most consistent with the conclusion that there 
is no effect. It is thus unlikely that the discrepancy results 
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from a lack of power. It rather seems that our participants 
were performing the task more seriously than Anderson’s, 
rarely report being off-task intentionally, while this was very 
common in Anderson’s data. The subjective levels of being 
off-task from both datasets may thus also be qualitatively 
different.

Temporal Dependency Across the Brain‑Cognition 
System

Neural oscillatory activity also clearly shows temporal 
dependencies, as consistently reported in the EEG and MEG 
literature. However, exact relationships to individual differ-
ences in health condition, task performance or temporal 
structure in behavioural series are difficult to summarise. 
Linkenkaer-Hansen et al. (2001) presented the first empiri-
cal evidence for temporal structure in α oscillations during 
rest in MEG data, showing the presence of non-zero PSD 
slopes and of positive autocorrelations that slowly decayed 
over > 100  s. Typically, the temporal structures appear 
strongest with eyes closed, and reduce with eyes open and 
during task (e.g. Irrmischer et al., 2018b;  Linkenkaer-
Hansen et al., 2004; Smit et al., 2013), reinforcing the idea 
that they result from internally-generated dynamics. These 
neural temporal structures during rest have been studied 
on their own (without any task to relate to), including in 
clinical groups such as depression, schizophrenia, epilepsy, 
Alzheimer’s disease, Parkinson’s disease, and autism (see 
Zimmern, 2020 for an overview). It is unclear how informa-
tive these are to understand individual differences in perfor-
mance during sensorimotor or cognitive tasks. Below we 
focus on work that is more directly related to our current 
focus.

Several studies have reported links across individuals 
between temporal structure in neural activity and temporal 
structure in behavioural time series or simply with over-
all performance, but no consistent picture appears to have 
emerged yet. One study reported strong between-subject cor-
relations between temporal structure in behavioural hit-miss 
series during an audio-visual detection task, and temporal 
structure in MEG oscillatory activity, both at rest and during 
the task (Palva et al., 2013). In contrast, Smit et al. (2013) 
reported only weak correlation between temporal structures 
in finger tapping series and EEG oscillations during rest, and 
none with EEG activity recorded during the task. Broaden-
ing up to individual differences in overall task performance, 
in the two studies using a sustained attention task, higher 
temporal structures in resting-state EEG oscillations were 
associated with better (Irrmischer et al., 2018b) or worse 
performance (Herzog et al., 2021). In contrast, temporal 
structure of EEG during the task was associated with worse 
performance (Irrmischer et al., 2018b) or not associated 
with performance (Herzog et al., 2021). In conclusion, and 

similar to the literature on behavioural temporal structure, 
the literature on neural temporal structures does not cur-
rently support clear directional predictions.

Short‑ versus Long‑Term Dependency

Two overarching questions for both the behavioural and 
neural temporal structure remain: (1) how persistent are 
these dependencies over time and, relatedly (2) what are the 
generative processes driving the presence of dependency? 
The presence of long-term dependency cannot simply be 
assessed with DFA and PSD slopes tested against a null-
hypothesis assuming no temporal dependency at all (also see 
Farrell et al., 2006;  Wagenmakers et al., 2004), but need to 
be tested against short-term models.

In the current study, we used short-term autocorrelation 
and ARFIMA(1,d,1) modelling alongside PSD and DFA. 
We observe that, even in the tasks in which the fit meas-
ures clearly favoured the long-term model (like both MRT 
tasks), there were plenty of individuals for whom the short-
term model was still clearly preferred (ranging from 6 to 
12% of participants for AIC and 32–36% for BIC). Further-
more, in four out of the nineteen group comparisons shown 
in Table 5, the short-term only model was unambiguously 
favoured by both AIC and BIC over the model with a long-
term parameter for the majority of participants, and in many 
of the other tasks, support for either model was ambiguous 
across fit measures. This occurred even when the distribu-
tions of group distributions for AC1, PSD, and DFA slopes 
were clearly above their null hypothesis (Fig. 3)—indicating 
that merely assessing the magnitudes of temporal depend-
ency measures is not sufficient for assessing long-term 
processes.

Although DFA and PSD measures have been developed 
to capture temporal dependencies beyond the very-short 
term correlations captured by the AC1, we observed that all 
were highly correlated. In datasets where no clear long-term 
structure was observed, this would suggest that the informa-
tion driving individual differences in DFA and PSD comes 
mainly from short-term dependency. This could explain why 
the correlations between AC1 and the long-term measures 
are so high.

Individual Differences in Subjective Attentional 
State

Subjective ratings of attentional state were highly repeatable 
across the two MRT sessions, showing ~ 61% shared vari-
ance, but did not appear to transfer between the SART and 
the Visual Search task (there were no thought probes in the 
other datasets considered). The self-reported mind wander-
ing in daily life score (as measured by the DFS) has been 
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previously found to be repeatable even after a 1-year interval 
(Giambra, 1980). However, we found that the attentional 
state ratings did not correlate with the DFS nor with any 
other measures across individuals (except for the standard 
deviation of these ratings). Previous work has reported a 
similar absence of relationship (Kane et al., 2021)  or sig-
nificant but small correlations (Mrazek et al., 2012;  Seli 
et al., 2016; Smeekens and Kane, 2016) . This relationship 
is necessarily expected, as they measure different constructs: 
the ratings measure the dynamic attentional states through-
out a repetitive experimental task, while the questionnaire 
measures people’s recollection of their overall attention dur-
ing daily life. Still, as these measures both reflect subjective 
judgement on attention, a stronger and consistent relation-
ship might be expected. However, it is possible that partici-
pants use different criteria for answering the thought probes 
and questionnaires — for example, one might consider how 
their attention compares to others when answering questions 
about their attention in daily life, but consider how their 
attention compares to their own baseline when answering 
questions about their attention in the present moment. In 
that case, weak to no correlations between the two meas-
ures would not be surprising. Still, individual differences in 
subjective attention might be driven by other constructs not 
measured in the current design.

Rather than the reliability of the subjective ratings them-
selves, there may be interest in the relationship between the 
subjective ratings and behavioural variability. A strong rela-
tionship between behaviour and attentional state ratings may 
suggest an ability to accurately monitor one’s own internal 
states. As a control analysis, we quantified the relationship 
between SD and attentional state for each participant (for 
details, see the ‘Methods’) separately for the first and sec-
ond session, and computed the correlation between them. 
Results suggested an absence of repeatability (r = 0.22, 
BF10 = 0.87), showing that the relationship of one’s sub-
jective judgements of attention and variability is not a sta-
ble trait. Below, we offer two possible (but not necessarily 
irreconcilable) explanations.

First, within-person stability of subjective ratings may 
be driven by persistent individual biases in the self-report 
scales. Research on report biases has mainly been conducted 
in the context of survey questions, including the social desir-
ability bias, the acquiescence bias (i.e. the tendency to agree 
with a statement regardless of its content), and the central-
tendency bias to use mid-point rather than extreme values. 
Attempts to overcome these biases have been sought in scale 
design (e.g. length of scale, verbalisation of categories) as 
well as Item-Response Theory modelling of the responses 
(e.g. Kreitchmann et al., 2019;  Menold, 2021; Nadler et al., 
2015; Primi et al., 2019;  Soto & John, 2019). Responses 
styles and biases differ reliably between individuals (Cron-
bach, 1946), and may affect the external generalisation of 

self-reports. To our knowledge though, there is no research 
particularly on reporting in subjective attentional state in 
general, and it is unclear how the known biases and their 
proposed solutions would directly translate to thought probes 
that are repeatably presented during a task. In research on 
retrospective subjective confidence of performance, methods 
have been developed to dissociate ‘metacognitive bias’ (i.e. 
absolute confidence score) from ‘metacognitive sensitivity’ 
(i.e. confidence score in comparison to performance, such 
that an individual with high sensitivity reports high confi-
dence following correct trials and low confidence follow-
ing errors; Fleming & Lau, 2014). One might expect that 
reporting biases affect the former but not the latter, but this 
remains speculative for now, and it likewise remains unclear 
if the proposed solutions would work for these measures.

Biases may also be introduced by the way that subjective 
attentional state is measured. Indeed, there is a large variety 
in probe-based measures (e.g. categorical versus continuous, 
fewer versus more response options) with little convergence 
towards a standard (see Weinstein, 2018 for a review). Our 
measure consisted of a 9-point scale from ‘completely on’ to 
‘completely off task’. The benefit of such a scale is that it can 
measure a larger variability in subjective attention compared 
to categorical responses, and thus should be able to capture 
the ‘depth’ of the off-task focus. However, these depth meas-
ures appear to be more confounded by the confidence partic-
ipants have in their ratings compared to measures targeting 
the content of their thoughts (Kane et al., 2021). Further-
more, the external validity of depth responses has recently 
been disputed. Ideally, one might expect that any increase in 
subjective rating is on average associated with worsening of 
performance. This seems untrue in practice: using a 5-point 
scale, Kane et al. (2021) only found a significant increase in 
RT variability between ratings 4 and 5. Similar patterns can 
be found in our data: most participants do not show a linear 
relationship between subjective ratings and RT variability.

Secondly, the high repeatability of subjective attentional 
state and of behavioural variability could be independent 
of each other. Although the intra-individual relationship 
between attentional state ratings and variability seems 
robust, their shared variance is typically very low (including 
in the current paper, in which the median Kendall’s τ cor-
relation coefficient was 0.08). Furthermore, while thought 
probe methods interrupt participants to rate their subjec-
tive state, participants are not good at catching themselves 
being off-task as it occurs (Franklin et al., 2011; Schooler 
et al., 2004) , and are unable to use the fluctuations in their 
attentional state to improve upcoming performance (Perquin 
et al., 2020). If the intra-individual relationship between 
subjective attentional state and behavioural variability is 
weak, it makes sense that any potential reliability of this 
relationship would be difficult to capture. One approach here 
may be to examine if the relationship between subjective 
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attentional state and behavioural variability can be increased 
with interventions. For example, subjective attentional state 
and behavioural variability have been found to moderately 
decrease with mindfulness training (Morrison et al., 2014; 
Mrazek et al., 2012) , but to our knowledge, no study has 
looked into any changes in the relationship between atten-
tional state and behavioural variability directly. Though the 
computational methods used to dissociate bias versus sensi-
tivity in confidence ratings do not directly translate to probe-
based attentional state ratings (as they are based on accuracy 
and require a rating for every trial), the attentional state lit-
erature may benefit from a similar conceptual approach of 
testing the relationship between behaviour and subjective 
ratings directly.

One more general caveat of using thought probes to meas-
ure attentional state is that they could themselves affect par-
ticipants’ RT series and attentional state: each probe itself is 
a disruption from the actual task. Two studies concluded to 
the absence of effect of thought probe frequency on objec-
tive performance, although they disagreed on the effect on 
off-task ratings, where one showed that higher frequency 
reduced the tendency to be off-task (Seli et al., 2013) , while 
the other reported evidence against such effect (Robison 
et al., 2019). Still, these results only pertain to the overall 
performance, and not to the structures in the time series — it 
is likely that the temporal structures are affected. The same 
would be true for pauses between blocks of trials. To our 
knowledge, pauses have been largely ignored in the litera-
ture so far, and more empirical evidence would be needed 
to assess their effects. In the current study, however, partici-
pants all received the same number of probes throughout 
the task, and the lag between probes should on average be 
equal, meaning that these disruptions to the time series can-
not explain our current results in any systematic way. Future 
studies focusing on individual differences in subjective 
attentional state may consider keeping the interval between 
probes consistent between participants to potentially reduce 
individual variance.

Different Measures of Temporal Dependency

All of the analyses methods used in the current study are 
so-called ‘fractal methods’ and are mathematically derivable 
from each other (Stadnitski, 2012). Similarities in results 
may therefore be expected. Still, we found important differ-
ences over the methods, both in their properties (repeatabil-
ity and relationship to performance) as well as in the extent 
to which they correlated with each other.

Our choice of methods was dictated by those previously 
used on cognitive data. However, these methods (1) are not 
exhaustive — other methods, such as rescaled range analysis 
and dispersion analysis, fall under the same subclass (see 
Delignières et al., 2005, 2006 for overviews) — and (2) may 

come with several variants and refinements. Furthermore, 
the analyses methods in the current research are all for cap-
turing linear trends in the data over different time windows. 
Non-linear methods may capture more nuanced temporal 
trends in the data, and have been used previously on RT 
data (see Kelly et al., 2001). Again however, these methods 
have been hardly used on psychological data, and overall, 
non-linear trends in RT series are difficult to capture, as their 
presence seems to depend on particular tasks demands and 
characteristics (e.g. short versus longer inter-stimulus inter-
val; Kelly et al., 2001).

Particularly striking is the extremely high correlation 
between AC1 and the PSD-slope, with around 92% shared 
variance. This implies that when studying individual differ-
ences, fitting a slope over the power of the entire time series 
(in this case: a range of 1050 trials) gives little additional 
information to simply correlating each trial to the next. It is 
clear that the PSD method is not more informative, despite 
being more computationally heavy, less intuitive in inter-
pretation, and hence more difficult to implement in practical 
contexts (e.g. physicians working with patients).

Comparisons between the goodness-of-fit of the 
ARMA(1,1) to the ARFIMA(1,d,1) models (Torre et al., 
2007; Wagenmakers et al., 2004) showed the ARFIMA 
models were favoured on MRT data – indicative of the pres-
ence of long-term structure. However, it should be noted 
that, as the ARFIMA parameters were at best poorly repeat-
able within individuals, the model may be more difficult to 
interpret. One possibility for this lack of reliability is that 
the model estimates three parameters at once. However, 
the AR and MA weights from the ARMA model (hence 
only two parameters) were not more repeatable than the 
AR and MA weights from the ARFIMA model. As a con-
trol analysis, we fitted each parameter separately (e.g. fit-
ting an ARFIMA(0,d,0) to estimate d) to see if this would 
improve repeatability. These analyses showed high repeat-
ability across sessions for all three parameters (AR: r = 0.80, 
 BF10 > 1000; MA: r = 0.78,  BF10 > 1000; d: r = 0.81, 
 BF10 > 1000). Furthermore, unlike within the ARMA and 
ARFIMA model, the single AR weights were the exact same 
values as AC1 – as one would expect.

As such, the individual parameters get altered when esti-
mated together to obtain a better numerical fit. While this is 
not necessarily surprising, it does raise questions about the 
biological plausibility of the model: as short-term depend-
encies in behaviour (and neural activity) are much easier to 
explain than long-term dependencies, modelling may instead 
take an approach in which the short-term parameters are 
fitted first, and the contribution of a long-term parameter is 
assessed afterwards.

While AC1 and PSD have the highest repeatability, the 
DFA may come with most flexibility. One can decide on how 
many time windows to take into account, and whether these 
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should overlap or not. The fitted slope can be plotted against 
the window size (see Fig. 8 for examples), which allows one 
to directly assess the fit. Based on this fit, the window size 
can be adjusted (see Kantelhardt et al., 2001; Krzemiński 
et al., 2017 for examples). This ensures the obtained slope 
actually matches the data — something which is not clear 
in the PSD slopes (Torre et al., 2007; Wagenmakers et al., 
2004). However, this flexibility also has its drawbacks: it 
opens the door to selective reporting, and can make it more 
difficult to compare and replicate findings across studies. For 
example, Irrmischer et al. (2018b) used windows of 2–60 
RTs on the go-trials (but note that go-trials only occurred 
every 4 to 10 trials, which means that their DFA slopes are 
not calculated on the basis of adjacent trials) with 50% over-
lap between the windows, while Torre et al. (2011) used a 
maximum window of 256 trials (on a series of 512 trials) 
without overlap, and Simola et al. (2017) used windows 
of 30–300 s without overlap. While none of these analysis 
choices are necessarily wrong, it is clearly difficult to com-
pare these findings, which stands in the way of replicability. 
Ideally, it should thus be reported how any analysis choices 
were decided upon, and potentially, how different choices 
may or may not alter the results.

Missing Values in the Time Series

Regarding the extraction of the different measures, the issue 
of missing values (i.e. missed responses on trials) has been 
scarcely addressed. Three methods have been discussed to 
deal with this issue in our analyses: (1) exclude the miss-
ing values entirely from the series (which appears the most 
common option in the literature), (2) replace the missing 
values by values that stay true to the distribution of non-
missing values (for instance by using the median value, or a 
value obtained by statistical interpolation; see Adamo et al., 
2015 for an example), or (3) replace the missing values by 
the most extreme value (e.g. the maximum response time).

Overall, the result patterns were fairly robust across these 
three methods. Still, some substantial changes occurred 
even when the number of missed responses was low for 
most participants (group median < 1% in our MRT data). 
One explanation for these increases in repeatability may 
be that the number of omissions is itself a repeatable trait 
(r = 0.65,  BF10 > 1000) — although this would not explain 
why the increase is not found in all the measures. As there 
is no straightforward way of dealing with these missing val-
ues, it may be recommended to also report alternative meth-
ods — particularly when the number of missed responses 
is high and/or different across the groups that are being 
compared.

The issue of missing values has been mentioned pre-
viously by both Kofler et al. (2013) and Karalunas et al., 
2013; 2014). They rightly point out that the use of different 

methods across articles complicates results comparison. We 
would like to take this one step further: as soon as the time 
series have a lot of missing values, interpretation becomes 
more difficult no matter which method is used. This is due to 
what missed responses possibly represent: extreme cases of 
poor task performance. By excluding the missing responses 
or by replacing them with average values, it appears that the 
participants are doing better than they actually are — by 
disregarding the moments in which they were doing the task 
so poorly that they did not respond at all. In other words, 
imputation of missing values only gives unbiased estimates 
when the missing values are ‘missing at random’, which is 
typically not the case in these experimental tasks — which 
means that there is no reliable way of estimating their values 
(see Donders et al., 2006 for a review on data imputation). 
By replacing the missing values with the most extreme val-
ues, this issue is solved, as the missing values are being 
represented by extremely poor performance on that trial. 
However, this method takes a toll on the RT distributions, 
and conceptually only works if there is a known maximum 
(as in the MRT, or in task with a response limit).

It should be emphasised that this problem is not trivial 
— particularly when studying clinical samples compared to 
healthy controls. It is a fair expectation that clinical popula-
tions show more missing responses — meaning that any 
method of dealing with the missing values may introduce or 
mask systematic group differences unrelated to the temporal 
structures in the time series.

Our Recommendations For Studying Temporal 
Dependencies

The current study is a large-scale investigation into the 
repeatability and between-subject attention-related cor-
relates of temporal structures in sensorimotor variability, 
featuring RT series from 11 tasks (or 19 sessions), using 
four common temporal structure measures. Based on our 
findings and experiences with quantifying the dependencies, 
we make the following six recommendations:

1. Formally assess the presence of long-term depend-
ency. The presence of long-term dependency cannot 
be assumed to be a ubiquitous phenomenon across all 
individuals and tasks but should be tested against a null-
hypothesis that includes a short-term parameters (as 
opposed to white noise), echoing Wagenmakers et al., 
(2004, 2012) and Torre et al. (2007).

2. Formally assess the reliability of temporal structures. 
Repeatability of the autocorrelation and PSD slope 
across time was high in some tasks (time estimation) but 
lower in other cognitive tasks. We recommend research-
ers interested in individual differences in temporal struc-
ture to first run a reliability study on their paradigm. The 
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importance of reliability has been previously discussed 
(Hedge et al., 2018, 2020), and has implications for sam-
ple size determination.

3. Formally assess the external validity. In most of our 
results, we found that repeatable individual difference 
in temporal structure failed to show external validity. As 
we found high positive correlations between temporal 
structure and performance, and we know there is some 
within-subject association between MRT performance 
and subjective ratings of being off-task, it would have 
been easy to conclude that people who are more off-task 
show increased temporal structure. Only by including 
the measure of subjective off-taskness into our design 
were we able to reject this conclusion. As such, our find-
ings highlight the importance of a multi-modal approach 
when studying temporal structures, particularly as their 
neurocognitive mechanisms remain largely mysterious.

4. Be transparent about analysis choices and their effects. 
Small changes in the analysis pipeline may lead to sub-
stantial changes, highlighting the importance of trans-
parent reporting. Here we checked our results against 
two types of analysis choices (frequency length and 
methods of dealing with missing data). By far, the larg-
est part of the found patterns held up, but there were 
some obvious exceptions. Transparency also makes it 
easier to integrate different findings from the literature.

5. Estimate the autocorrelation. AC1 may be best suited as 
a potential biomarker, as its repeatability is high, and the 
measure is relatively easy to implement in practical set-
tings. Of course, repeatability is not the only construct of 
interest in neurocognitive variables. Most measures did 
correlate to performance — and may still be useful for 
capturing moment-to-moment fluctuations in the data 
and correlating them to moment-to-moment fluctuations 
in behavioural and neural data. However, the autocor-
relation still comes with some advantages here. Unlike 
long-term processes, the presence of an autocorrelation 
can be easily tested with rather unambiguous results, and 
its estimation is a direct representation of the effect size, 
with its squared value indicating the amount of explained 
variance. It also requires fewer analysis choices, and its 
temporal range can straightforwardly be increased with 
lag size. Furthermore, the long-range parameters can be 
difficult to justify if there is no evidence for long-term 
structure in the RT data. We therefore advocate that the 
autocorrelation should be included alongside other meas-
ures, facilitating comparisons across aims and paradigms.

6. Manipulate the temporal dependencies. The underly-
ing mechanisms driving the relationship between per-
formance and temporal structure remain unknown. In 

particular, it is unclear how the structures behave under 
different conditions (e.g. different cognitive loads or 
attentional constraints), and with what kind of neural 
processes they are associated (as the literature often 
assumes but rarely empirically tests underlying neural 
mechanisms), which gets in the way of coming up with 
clear falsifiable predictions (also see Wagenmakers 
et al., 2012). Some may argue that the temporal struc-
tures should manifest similarly under different condi-
tions — reflecting their ‘ubiquitous nature’ — but this 
would make the measures mostly uninformative. Simi-
larly, some may argue that healthy participants should 
exhibit temporal structure largely to the same extent, 
because all neural systems should have spontaneously 
converged towards criticality. As noted above, this 
was clearly not the case in our data. Future research 
may therefore aim to directly manipulate the temporal 
structures with different experimental conditions (see 
Perquin et al., 2020 for one such an attempt) — to get a 
clearer idea of their neural-cognitive mechanisms.

Conclusion

The idea that there is meaningful information in what was 
so far treated as neural or behavioural noise has gained 
traction over the years, fuelled by growing evidence that 
spontaneous variability shows temporal structure. In the lit-
erature, the emphasis is often put specifically on long-range 
temporal structures, thought to reflect a universal property 
of brain-cognition systems. Across new and archival data 
spanning a variety of sensorimotor and cognitive tasks, we 
found clear evidence of behavioural temporal structure — 
and indeed, in many instances the structures were long-
term. However, this was not universal across participants 
and tasks: many RT series only showed short-term depend-
ency. The clarity of temporal structures in behaviour varied 
systematically across individuals and was, in many tasks, 
remarkably repeatable. This makes it theoretically possible 
that they are informative of individual differences in other 
domains. However, although they were internally related 
to performance, they were not informative of concomi-
tant attentional state, temporal structure in other tasks or 
externally assessed attentional traits. Therefore, the glar-
ingly open question remains what they can inform us about. 
Combined with the lack of consistent empirical evidence for 
a link between behavioural and neural temporal structures, 
it seems now clear that temporal dependencies are not the 
unifying manifestation of one overarching stable trait across 
all circumstances.
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Appendix

Below, we describe the Methods from our own data in detail 
for both collected cohorts. As both data cohorts have been 
collected in collaborative projects, including student under-
graduate projects, not all measures were analysed for the 
current research aims. For transparency purposes, we do 
report all taken measures from the experiments.

Questionnaire scores and eye movement data recorded 
before and after the task for cohort 1 are published in Per-
quin and Bompas (2019), alongside other datasets.

This study was not preregistered.

Metronome Task

Participants

Participants were undergraduate Psychology students who 
participated for course credits. They were specifically 
excluded from participation if they had a prior clinical diag-
nosis of ADHD or depression, if they did not have normal or 
corrected-normal hearing, or if they had significant difficulties 
with fine motor control. Participants were instructed to refrain 
from alcohol and drugs in the 24 h prior to the experiment. 
The study was approved by the local ethics commission. Com-
bined over the two cohorts, we had analysable datasets from 
139 participants, with 73 having done both MRT sessions 
(see the ‘Data Preparation and Analysis’ section for details).

Cohort 1. 84 healthy participants (69 female, 14 male, 
one other, aged 18–25) participated in a laboratory experi-
ment. One was excluded because of technical issues. Of 
these, 24 participants performed the behavioural task twice.

Cohort 2. 81 healthy participants (62 female, 18 male, 1 
preferred not to say, aged 18–21) participated in an online 
video conferencing experiment. Three were excluded dur-
ing screening for having a diagnosis of depression, five had 
incomplete data, three dropped out before the behavioural 
session, and for another three no behavioural responses were 
recorded during the MRT. This relatively high attrition rate 
is likely due to the online nature. In total, this resulted in 
data from 66 participants, of whom 61 performed the behav-
ioural session twice.

Materials

Cohort 1. The behavioural paradigm was generated on a 
Viglen Genie PC with MATLAB version 8 (The Mathworks, 
Inc., Release 2015b) and Psychtoolbox-3 (Brainard, 1997; 
Kleiner et al., 2007; Pelli, 1997), and was displayed on an 

ASUS VG248 monitor with a resolution of 1920 by 1080 
and a refresh rate of 144 Hz. The background was light grey 
throughout the experiment, with the fixation point and text 
in white. During the MRT task(s), eye movements and pupil 
dilation were recorded with an Eyelink 1000 (SR Research), 
with participants seated with their head in a chinrest to limit 
motion (at 615 cm distance from the screen).

Cohort 2. Due to the COVID-19 pandemic, data were col-
lected online. The experiment was generated in Psychopy 3 
and was run using Pavlovia (Pierce et al., 2019). Participants 
performed the experiment on their personal devices. The 
background was light grey throughout the experiment, with 
the fixation point and text in white.

Questionnaires

Cohort 1. Participants completed the Adult ADHD Self-
Report Scale (ASRS-v1.1; Kessler et al., 2005). This scale 
consists of eighteen items on a scale from 0 (“Never”) to 
4 (“Very often”), and is composed of two subscales: Inat-
tention and Hyperactivity/impulsivity (Kessler et al., 2005; 
Reuter et al., 2006). Internal consistency of the ASRS-v1.1 
is high (Cronbach’s ranged from 0.88–0.94; Adler et al., 
2006, 2012).

To measure mind wandering tendencies in daily life, 
participants completed the Daydreaming Frequency Scale 
(DFS; Singer & Antrobus, 1963), a subscale of the Imaginal 
Processes Inventory that consists of twelve 5-point items. 
The DFS also has a high internal consistency, as well as high 
test-rest reliability (Cronbach’s α = 0.91, test–retest reliabil-
ity with interval of maximum 1 year = 0.76; Giambra, 1980).

Furthermore, participants filled in the UPPS-P Impulsive 
Behaviour Scale (Lynam et al., 2006;  Whiteside & Lynam, 
2001). This questionnaire consists of 59 items, scored on a 
scale from 1 (‘agree strongly’) to 4 (‘disagree strongly’), and 
is composed of five subscales: positive urgency, negative 
urgency, (lack of) premeditation, (lack of) perseverance, and 
sensation seeking.

All participants also filled in six other questionnaires, 
which were not analysed in the current study: the Beck 
Anxiety Inventory Second edition (Beck & Steer, 1993), 
Beck Depression Inventory Second edition (Beck et al., 
1996), Short form Wisconsin Schizotypy scales (Winter-
stein et al., 2011), Five-facet Mindfulness Questionnaire 
(Baer et al., 2006) , Toronto mindfulness scale (Lau et al., 
2006), and Positive and Negative Affect Schedule (Watson 
et al., 1988).

Cohort 2. Participants completed the ASRS-v1.1 (Kessler 
et al., 2005). For the purpose of other studies, participants 
also completed the Beck Depression Inventory Second edi-
tion (Beck et al., 1996) and questions related to COVID-
related social isolation and sleep quality.
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Procedures

Cohort 1. Participants came to the lab for one session. After 
eye tracker calibration, participants took part in a 4-min rest-
ing state session (eyes open), to get them into a common 
baseline state before starting the behavioural task. Next, they 
performed the MRT (~ 25 min). After the task, they per-
formed another resting state session (eyes open), and then 
filled in questionnaires. In total, this took about 1.5 h. Of the 
83 participants, 25 of them then performed the MRT again, 
after watching one of two video clips of 3 and 5 min.

Figure 2 shows an overview of the MRT task over time 
(Seli et al., 2013). Each trial lasts 1300 ms. In the middle of 
the trial (650 ms after onset), a short tone is presented to the 
participants (~ 75 ms). The task of the participant is to press 
on this tone, such that perfect performance is indicated by a 
complete synchrony between tones and presses. Rhythmic 
reaction time (RT) is measured as the relative time from the 
press to the tone (with RT = 0 being a perfect response). The 
RT series throughout the task were used to measure perfor-
mance and temporal structures in performance.

Throughout the task, participants were presented 
with thought probes. The first question related to their 
subjective rating of attention just prior to the thought 
probe appeared (“Please record a response from 1 to 9 
which characterises how on task you were just before this 
screen appeared”, with 1 as ‘completely ON task’ and 9 as 
‘completely OFF task’). Based on their rating, they then 
received five follow-up questions related to the content, 
temporality, valence, and intentionality of their on-task (if 
their rating was 1–3) or off-task (if their rating was > 3) 
thoughts, as well as to their motivation. The follow-up 
questions were not analysed in the current research. In 
total, the experimental phase of the MRT consisted of 
21 blocks with 50 trials each (1050 trials in total), with 
one thought probe in every block. Probes were presented 
pseudo-randomly. To make sure the probes did not follow 
too closely after each other, they were never administered 
in the first five trials of a block.

The random lottery reward system (Cubitt et al., 1998) 
was used to motivate participants to keep up good perfor-
mance throughout the task. After the session, one trial n was 
randomly extracted, and if the standard deviation of trial n 
to trial n − 4 was below 0.075 (indicating consistent perfor-
mance in that time window), the participant received a reward 
of £5. The cutoff of 0.075 was based on pilot data, chosen 
such that ~ 20% of the participants would receive the reward.

Before the experimental phase of the MRT, participants 
received a training block of 50 trials to learn the rhythm of 
the tone. At training trial 15, they were presented with a 
thought probe. After the training, the participant received 
feedback on their performance from the experimenter, to 
make sure they understood the task. Participants were also 

told how many of their trials would qualify for the reward, 
to provide them motivation to keep up good performance.

Cohort 2. Participants attended one online session 
through video conferencing. The session started with a 
brief plenary explanation from the experimenter. They first 
received a Qualtrics link, in which they completed informed 
consent and filled in the ASRS.

Next, they performed the MRT (~ 25 min). The trials, 
blocks, and probes were kept equal to the MRT of the first 
cohort. The only differences were the follow-up questions, 
which were also not analysed in the current research, and 
the absence of a lottery-based rewards system. After the first 
behavioural task, participants filled in a short questionnaire 
related to sleepiness, and then were instructed to have a 
break in-between the two tasks. On average, they completed 
the second task 30 min after the first task.

Data Preparation and Analysis

For each participant, the total percentage of omissions was 
calculated, and participants with more than 10% omissions 
were excluded from analyses (following the procedure of 
Seli et al., 2013). Four participants from cohort 1 and five 
participants from cohort 2 were excluded due to having too 
many omissions in the first session (~ 6% of total useable 
datasets) and furthermore, one participant was excluded for 
responding in anti-phase with the tone. Data from another 
6 participants (one from cohort 1) were excluded from the 
second MRT session due to too many omissions (~ 7% of 
total useable datasets).

Performance was quantified on the basis of each RT series 
using the standard deviation of the RT (SD, reflecting con-
sistency), as is common in studies using the MRT. The first 
five trials as well as the five trials following each thought 
probe were excluded from SD calculation. Two measures of 
subjective attentional state were calculated on each thought 
probe rating series: the mean and SD of the 21 ratings. Inde-
pendent two-sample t-tests were conducted on SD and mean 
subjective attentional rating to see if systematic differences 
appeared between the two cohorts. As the evidence favoured 
an absence of difference  (BF01 = 2.2, 3.5, 3.8, and 4.5 respec-
tively for the two measures on the first and the second MRT 
sessions), data of the two cohorts were combined across all 
analyses to increase statistical power. Still, as minor differ-
ences between cohorts might contaminate the intra- and 
inter-individual correlation analyses, RT series were nor-
malised for each participant across the two cohorts, using 
Y(c,n) = X(c,n) – mean(X(c,1):X(c,Nc)), where Y is the nor-
malised data series, X is the original RT series, c is cohort, 
n is participant number and Nc is the number of participants 
in each cohort). As the distribution of SD was not normal on 
the group level, it was log-transformed (decreasing its Skew-
ness value from 2.0 to 0.6, and its Kurtosis from 5.4 to 0.5).
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The mean and SD of subjective ratings were also corre-
lated (r = 0.26,  BF10 = 12.6), verifying the assumption that 
participants who report being more off-task also switch more 
between ratings on average, though this relationship is not 
very strong. Across individuals, there was no evidence that 
the subjective measures correlated with any of the objective 
measures (r ranging from 0.05 to 0.15,  BF01 ranging 2.2 to 
8.2). For completion, we also report the standard within-
subject analysis (as per Anderson et al., 2021; Laflamme 
et al., 2018; Seli et al., 2013): variance was calculated on 
the last five trials before each probe, and its logarithmically 
transformed value was correlated within participants to the 
attentional state ratings. Indeed, increased levels of being 
off task were associated with increased variability in the 
RTs (median Kendall’s τ = 0.08,  BF10 > 1000). We report 
this here—rather than in the main results — as this was not 
the purpose of the present study. We note that, consistent 
with previous studies, local correlations between perfor-
mance and attention ratings are highly significant, but their 
shared variance is weak, consistent with the idea that most 
of the variability in performance escapes consciousness (see 
Perquin et al., 2020 for empirical implications of this idea).

Archival Datasets

Here, we describe the Methods from the archival datasets. 
As these Methods have been described in their original 
papers, we will only summarise the key points and describe 
our current data analyses. These archival datasets were con-
sidered after having fully analysed the results from our own 
data. None allowed to test all our questions, but each of 
them provided an opportunity to test the generalisability of 
some of our conclusions. All datasets analysed are included 
in this report.

MRT: Anderson et al. (2021)

We received data from 375 participants (all with omissions 
rates lower than 10%), who had participated in a single-ses-
sion laboratory study on the MRT. The timing of the MRT 
was the same as our design (1300 ms), with one thought 
probe being presented once in each 50-trial block. Partici-
pants completed 18 blocks (compared to our 21), giving 900 
trials in total. On the thought probes, they were asked to 
categorise their subjective attentional state using the fol-
lowing six response options: (1) completely on-task, (2) 
mostly on-task, (3) mostly mind-wandering unintention-
ally, (4) completely mind-wandering unintentionally, (5) 
mostly mind-wandering intentionally, and (6) completely 
mind-wandering intentionally. After the MRT, participants 
completed the Attention-Related Cognitive Errors Scale 
(ARCES; Cheyne et al., 2006).

The ARCES consists of 12 questions, aiming to meas-
ure individuals’ tendency to experience attentional lapses 
in daily life (e.g. “I have absent-mindedly placed things 
in unintended locations (e.g. putting milk in the pantry or 
sugar in the fridge).”). It has a high internal consistency, 
with Cronbach’s α = 0.88 (Cheyne et al., 2006).

Data preparation and analysis. Six participants were 
excluded based on qualitative checks by the original paper 
(Anderson et al., 2021). Furthermore, 17 participants were 
excluded by us for responding in antiphase with the tone 
and/or having pronounced bimodal RT distributions — leav-
ing us with 352 participants for analysis. Again, we calcu-
lated the SD of RT for each participant.

However, group distributions of RT revealed two note-
worthy differences between these and our own MRT data. 
Firstly, mean RT (calculated over the raw RT series, with 
a possible range of -0.65 to 0.65, and reflecting bias com-
pared to the tone) was high on average (0.22 s), indicat-
ing that participants were not responding on the tone as per 
instructions, but rather as a response to it. In comparison, the 
group means in our data from the first session were − 0.06 
and − 0.09 s respectively for the first and second cohort, indi-
cating that participants were responding anticipatory to the 
tone. Secondly, SD did not correlate to the mean of the abso-
lute RT (|RT|, calculated over the absolute values of the RT 
series, with a possible range of 0 to 0.65, and reflecting abso-
lute distance to the tone; r = 0.01,  BF01 = 14.4). In contrast, 
in our MRT data, SD and mean |RT| were highly correlated 
(r = 0.75, log(BF10) = 53.8) — indicating that participants 
who performed well pressed close to the tone and did so 
consistently, while poorer-performing participants had larger 
asynchronies and were more variable. This is more in line 
with what one would expect from task instructions, which 
would lead well-performing participants to anticipate the 
tone rather than respond to it. We note that, the performance 
measures from this dataset are thus more difficult to interpret 
on a between-subject level than our MRT data.

Mean and SD of the subjective ratings (scaled 1–6) were 
calculated for each subject. These were positively correlated 
to each other (r = 0.49, log(BF10) = 44.7). As a sanity check, 
we also ran all analyses using the percentage of being off-
task (number of off-task (3 to 6) responses / total number of 
responses) instead of the mean rating. These did not show 
any different result patterns. None of the performance meas-
ures correlated with the subjective ratings across participants 
(r ranging 0.03–0.11,  BF01 ranging 2.1–12.7). On a within-
subject level, the attentional state ratings correlated with 
increased within-subject variability of RT (quantified as SD 
on the last five RT before the thought probes, as reported in 
the original paper.

AC1, PSD slope, and ARFIMA parameters were cal-
culated as above. Settings for estimating the Bayes Fac-
tors were also kept the same. DFA was performed over 
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non-overlapping blocks log-linearly spaced from a minimum 
of 4 trials to 256 trials.

Cognitive Control: Hedge et al. (2018)

Here, we describe three experiments that were conducted for 
a reliability study of task performance in a battery of well-
known cognitive paradigms (Hedge et al., 2018). As in the 
original paper, we have combined the data from experiments 
1 and 2, as these included the same tasks.

Experiments 1 and 2. 107 participants took part in two 
sessions (Experiment 1: 50, Experiment 2: 62) in a labo-
ratory experiment. Nine participants were excluded from 
analysis on all four tasks, and another five and one only on 
the Stop-signal and Stroop task respectively, based on poor 
performance as per the original paper.

Participants performed four tasks of ~ 20 min each. The 
first was an Eriksen Flanker task, in which participants have 
to discriminate the direction of an arrow. The task consisted 
of three conditions (congruent: flanker arrows pointed in the 
same direction as target arrow, incongruent: flanker arrows 
pointed in the opposite direction as target arrow, and neu-
tral: flankers were lines rather than arrows), of which par-
ticipants completed 240 trials for each (720 trials in total). 
The second was a Stroop task, in which participants had to 
name the colour of the word. The task consisted of three 
conditions (congruent: the written word was the same as 
the physical colour of the word e.g. the word ‘red’ written 
in red letters, incongruent: the written word was a different 
colour as the colour, and neutral: the written word was a 
non-colour word), of which participants completed 240 tri-
als for each (720 trials in total, ~ 20 min). The third task was 
a Stop-Signal task, in which participants had to respond if 
the presented stimulus was a square or a circle. On 25% of 
the tasks, a tone (stop signal) was presented indicating to 
withhold their response (with tone latency from the stimulus 
onset being an individual adaptive measure, as is common 
with this task). Participants performed 600 trials in total 
(25% stop-trials). The fourth task was a Go/No-Go task. In 
each block, participants were presented with one of four let-
ter stimuli. They were instructed to respond as quickly as 
possible to three of the letters (75% go trials) and withhold 
a response to the fourth (25% no-go trials). Participants per-
formed 600 trials in total.

The order of the tasks was counterbalanced across par-
ticipants. Participants completed each of the four tasks in a 
first session. Three weeks later, they returned to the lab and 
completed all four tasks again.

Experiment 3. 40 participants took part in two sessions in 
a laboratory experiment. They performed three tasks, each 
of ~ 20 min. The first was the Posner Cuing Task, in which 
participants were presented with a stimulus on the left or the 
right side of the screen, and had to press a button as soon 

as they detected it. Before stimulus onset, they were pre-
sented with a cue (SOA = 300–600 ms, in steps of 100 ms), 
which was accurate in 80% of trials. The second task was 
a NAVON task, in which participants were presented with 
a large ‘S’ or a large ‘H’, which consisted of smaller ‘S’ 
and ‘H’ letters. These refer respectively to the global and 
local level of the stimulus, which could either be congruent 
or incongruent with each other. On half the trials, partici-
pants had to identify the global level, and on the other half, 
the local level. The third task was the Spatial-Numerical 
Association of Response Codes (SNARC) task, in which 
participants had to respond if a presented letter was smaller 
or larger than 5. On half of the trials, the ‘smaller’ response 
had to be indicated by a left-sided button press and the ‘big-
ger’ response by a right-sided button press. On the other half 
of trials, these response mappings were reversed.

Participants completed 640 trials in total for each task. 
Task order was counterbalanced across participants. Par-
ticipants completed all three tasks in a first session. Three 
weeks later, they returned to the lab and completed all tasks 
again.

Data Preparation and Analysis. For each of the seven 
tasks and for each session separately, the AC1, PSD slope, 
and ARFIMA parameters were calculated as above on the 
RT series. Settings for estimating the Bayes Factors were 
kept the same. DFA was performed over non-overlapping 
blocks log-linearly spaced from a minimum of 4 trials to 
256 trials.

Visual Search and SART (Jin et al., 2019)

A total of 30 participants took part in an EEG study, in 
which they completed two tasks. The first was a Sustained 
Attention to Response Task (SART), which has been used 
extensively to study subjective attentional states (e.g. Christ-
off et al., 2009; McVay and Kane, 2012;  Qin et al., 2011; 
Robison et al., 2019; Smallwood et al., 2008, 2009; Stawarc-
zyk et al., 2013; Van Vugt & Broers, 2016). Participants had 
to respond with a button press if the stimulus was a lower-
case word (frequent case, 89%) and had to withhold their 
response if the stimulus was an upper-case word (infrequent 
case, 11%). They completed 378–486 trials. The second task 
was a Visual Search task, in which participants had to indi-
cate if a target was present or absent (with targets being 
present on 50% of trials). They completed 420 trials.

In both tasks, participants were occasionally presented 
with a thought probe (presented every 7–24 trials, with a 
total of 54 probes per task for each participant). They were 
asked to categorise their attentional state using one of the 
following six response options: (1) “I entirely concentrated 
on the ongoing task”, (2) “I evaluated aspects of the task 
(e.g. my performance or how long it takes)”, (3) I thought 
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about personal matters”, (4) I was distracted by my sur-
roundings (e.g. noise, temperature, my physical condition”, 
(5) I was daydreaming, thinking of task unrelated things, 
or (6) “I was not paying attention, but my thought wasn’t 
anywhere specifically.”

Data Preparation and Analysis As the RT series contained 
some extreme outliers (particularly in the Visual Search 
task), RTs that were 3 SD above the mean were first excluded 
for each participant. In the SART, 0.07% of the trials were 
excluded on average (range: 0–2.1%), and in the Visual 
Search, 1.1% of the trials were excluded (range: 0–2.9%).

The original paper reported relationships between the 
subjective ratings and performance. As the categories from 
the attentional state ratings do not correspond directly 
to depth, we instead calculated the percentage off-task 
responses for each participant (number of 3 to 6 responses / 
total number of responses * 100%).

AC1, PSD slope, and ARFIMA parameters were calcu-
lated on the RT series for both tasks separately. Settings 
for estimating the Bayes Factors were kept the same. DFA 
was performed over non-overlapping blocks log-linearly 
spaced from a minimum of 4 trials to 128 trials.

RT Tasks (Wagenmakers et al., 2004)

We also reanalysed the data from Wagenmakers et al. (2004), 
an important milestone in the temporal dependencies litera-
ture, containing six participants, who performed two simple 
RT, two choice RT, and two time-estimation tasks. This data 
did not lend itself to our specific research questions, as the 
sample size is too small to estimate reliable correlation coef-
ficients, but has been plotted in Fig. 3 alongside the rest of 
the data to compare the weight of the measures.

Six participants took part in a behavioural study inves-
tigating the presence of 1/f noise in RT series, in which 
they performed simple RT, choice RT, and time estimation 
tasks. One each trial, they were shown a number from 1 
to 9. In the simple RT task, they had to press a button as 
soon as they saw the stimulus. In the choice RT task, they 
had to discriminate whether the number was odd or even. 
In the time estimation task, they had to respond when they 
thought one second had passed since stimulus onset.

For each task, participants performed a ‘short’ and a 
‘long’ version, relating to the time between response and 
next trial (response-to-stimulus interval; RSI). The original 
paper found no significant differences in temporal structure 
within tasks between short and long RSI. Each participant 
performed 1024 trials for all six tasks.

Data preparation and Analysis. AC1, PSD slope, and 
ARFIMA parameters were calculated on the RT series for 
each tasks separately. Settings for estimating the Bayes Factors 
were kept the same. DFA was performed over non-overlapping 

blocks log-linearly spaced from a minimum of 4 trials to 256 
trials.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s42113- 022- 00162-1.
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