
Citation: Alamri, N.M.H.;

Packianather, M.; Bigot, S. Predicting

the Porosity in Selective Laser

Melting Parts Using Hybrid

Regression Convolutional Neural

Network. Appl. Sci. 2022, 12, 12571.

https://doi.org/10.3390/

app122412571

Academic Editor: Christian

Spielmann

Received: 23 October 2022

Accepted: 5 December 2022

Published: 8 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Predicting the Porosity in Selective Laser Melting Parts Using
Hybrid Regression Convolutional Neural Network
Nawaf Mohammad H. Alamri * , Michael Packianather and Samuel Bigot

School of Engineering, Cardiff University, Queen’s Buildings, 14-17 The Parade, Cardiff CF24 3AA, UK
* Correspondence: alamrinm@cardiff.ac.uk

Abstract: Assessing the porosity in Selective Laser Melting (SLM) parts is a challenging issue, and
the drawback of using the existing gray value analysis method to assess the porosity is the difficulty
and subjectivity in selecting a uniform grayscale threshold to convert a single slice to binary image
to highlight the porosity. This paper proposes a new approach based on the use of a Regression
Convolutional Neural Network (RCNN) algorithm to predict the percent of porosity in CT scans of
finished SLM parts, without the need for subjective difficult thresholding determination to convert
a single slice to a binary image. In order to test the algorithm, as the training of the RCNN would
require a large amount of experimental data, this paper proposed a new efficient approach of creating
artificial porosity images mimicking the real CT scan slices of the finished SLM part with a similarity
index of 0.9976. Applying RCNN improved porosity prediction accuracy from 68.60% for image
binarization method to 75.50% using the RCNN. The algorithm was then further developed by
optimizing its parameters using Bees Algorithm (BA), which is known to mimic the behavior of
honeybees, and the hybrid Bees Regression Convolutional Neural Network (BA-RCNN) produced
better prediction accuracy with a value of 85.33%.

Keywords: deep learning; regression convolutional neural network; bees algorithm; selective laser
melting; artificial porosity images

1. Introduction

Additive manufacturing (AM) is defined in ISO/ASTM 52900:2021 standard [1] as a
process that builds parts by joining a material layer by layer, using 3D model data. The
standard defined seven process categories for AM, namely binder jetting, directed energy
deposition, material extrusion, material jetting, powder bed fusion, sheet lamination, and
vat photopolymerization. AM are also referred to as rapid prototyping, 3D printing, layered
manufacturing, and digital manufacturing [2]. There are two levels for AM processes. The
first one is the digital level where the CAD model is prepared, converted to stl.file, and
where machine control strategy is generated (e.g., CAM, G code). The second level is
the physical level which contains part manufacturing using one of the seven processes
mentioned previously [3]. Initially, AM or 3D printing technologies were used mainly for
rapid prototyping, but with improvements in the reliability and efficiency of AM processes,
as well as in the material properties of the components produced, they are increasingly
used in creating complicated customized parts, visualizing tools in design, and producing
serial components with small volume. In the future, it might be used for manufacturing
clothes, creating food confections, and human organs [2].

There are many advantages for using AM processes, such as the flexibility in the pro-
ducible designs, the facilitated customization of products, and the capability to print highly
complex structures. However, many challenges and drawbacks remain. More specifically,
some disadvantages are the stair-stepping effect that appeared in the manufactured prod-
uct, void formation between the layers resulting from binding reduction, and mechanical
proprieties and microstructure variation [4].

Appl. Sci. 2022, 12, 12571. https://doi.org/10.3390/app122412571 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122412571
https://doi.org/10.3390/app122412571
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5641-0178
https://orcid.org/0000-0002-0789-4727
https://doi.org/10.3390/app122412571
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122412571?type=check_update&version=1


Appl. Sci. 2022, 12, 12571 2 of 29

The applications for using AM include prototyping during the product development
phase, producing products in pilot series production where injection molding costs are
high, and creating complex geometry parts which cannot be produced by other means
of manufacturing [5]. This gives the edge to AM among manufacturing processes. For
example, it allows the integration of additional functionality in components, such as the
production of repeated patterns internally. Thus, AM has the capability for combining
internal complex structures with more regular outer geometries, reducing weight while
keeping structural and aesthetic integrity, as can be done in the manufacturing of a bike
frame. Furthermore, applications are emerging in the context of the highly regulated
aerospace and automotive sector. For instance, metal parts suitable for aircraft were directly
manufactured using titanium material [4], reducing lead time by 30–70%, non-recurring
fabrication costs by 45%, and reducing the manufacturing cost for producing low-volume
parts by 30–35%. However, metal-based AM such as Powder Bed Fusion (PBF) still has
many issues such as porosity, part deformation, and cracks formations [6] that remain
to be tackled. Among them, the presence of porosity is particularly critical, as this can
have significant effects on the mechanical properties of components, cause failures for the
structure, and may decrease the strength and modulus of Young [7]. Thus, the focus of this
paper is to facilitate the study of porosity formation in AM.

A common approach in the study and optimization of emerging manufacturing tech-
niques is the use of Artificial Intelligence (AI) technologies. AI facilitate intelligent systems
development [8] to maximize the efficiency and productivity of manufacturing machines.
AI techniques include Artificial Neural Network (ANN), inspired by the biological human
brain. It can be used to investigate the complex relationships in big data [9] and extract
meaningful implicit patterns to predict complex systems’ future states [10].

Deep Learning (DL) techniques are established as an extension to the capabilities
of ANN, as they extract features, automatically producing better learning capability [11].
Convolutional Neural Network (CNN) is one of the most used DL techniques which
deals mainly with image data [9], and it can be integrated with other intelligent swarm
optimization algorithms to optimize its parameters to improve CNN performance in
analyzing a large number of images for classification and prediction problems [12]. Thus,
CNN is an effective DL network that can be applied in the manufacturing context and
therefore, in this paper context, to analyze porosity images related to AM facilitating the
optimization of the process.

This study aims at facilitating the accurate prediction of porosity percentage occurring
in PBF when analyzing CT scans of parts. This is achieved using a new Regression Convo-
lutional Neural Network (RCNN) algorithm. As the training of such RCNN would require
a large amount of costly experimental data to generate real CT scans, it was decided to first
train, test, and validate the new algorithm using artificial porosity images mimicking real
CT scan slices. Following this, the RCNN was further optimized using the Bees Algorithm
(BA), which mimics the behavior of honeybees to produce better prediction accuracy, as was
demonstrated by the authors in a previous paper that described the hybrid Bees Regression
Convolutional Neural Network (BA-RCNN) [12].

The paper structure is as follows: Section 2 summarizes the main AM processes and
provides a review of PBF, highlighting the gaps that remain to be addressed to improve
the process performance. Section 3 describes a new method developed to create artificial
porosity images that mimic real CT scan slices of finished SLM parts, and Section 4 presents
the predicted percent of porosity using RCNN and proposes a novel hybrid BA-RCNN
algorithm in order to improve the prediction accuracy. Finally, Section 5 concludes the
study and suggests the future directions.

2. Powder Bed Fusion

This section presents a review of the PBF process, showing the way of working,
thermodynamical phenomena, parameters, open issues, and state-of-the-art studies.
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2.1. PBF Definition and Way of Working

As shown in Table 1, Reference [2] presented many AM processes that can be used for
the production of complex parts, and PBF is one of the most promising due to its ability to
process a wide range of hard metals.

Table 1. Additive layer manufacturing processes (Farinia Group).

No. Process Techniques Materials

1 Powder bed fusion

Direct metal laser sintering
(DMLS), selective laser

sintering (SLS), selective laser
melting (SLM) and electron

beam melting (EBM)

Polymers, metals: miraging
steel, stainless steel 316L,

15-5PH, nickel-based
superalloys: Hastelloy X,
Inconel 625, Inconel 718,
chrome-cobalt, titanium

TA6V, aluminum AISi10mg

2 Material extrusion Fused deposition modelling
(FDM) Thermoplastic filament

3 Material Jetting PolyJet (PJ) Photopolymers and
wax-like materials

4 Binder jetting Binder jetting Photopolymers and
wax-like materials

5 Sheet lamination

Laminated object
manufacturing (LOM), paper
lamination technology (PLT),

ultrasonic additive
manufacturing (UAM)

Adhesive-coated papers,
metal tapes and foils,
plastic sheet material

6 Vat
photopolymerization

Stereolithography (SLA),
digital light processing (DLP) Light curable resin

7 Directed energy
deposition

Laser engineered lens shaping
(LENS), direct metal deposition
(DMD), laser metal deposition
(LMD), blown powder, laser

cladding

Metals such as aluminum
nickel-based alloys

Reference [3] presented AM manufacturing technologies classification based on mate-
rials according to ISO/ASTM 52900, as shown below in Figure 1:

PBF processes are metal-based AM where the laser beam scans at a controlled speed
selected locations of a powder bed and then fuses the powder to obtain solid material [13]
layer by layer by either partial melting, such as in SLS, or full melting, such as in the metal-
based process SLM [6]. Reference [13] presents Figure 2, which illustrates the elements of
laser-based PBF process.

The first crucial part of the SLM process is the build job preparation for any given
3D model. It consists of four main steps: geometry importation, alignment/orientation
within a build envelope (critical as surfaces with an angle less than 45◦ need to be sup-
ported), support creation to allow stable processing conditions, and finally slicing based on
machine-specific requirements. After preparing and loading a build job onto a machine,
the manufacturing process can be initiated starting with the alignment of the recoating
device or levelling of the substrate to enable the deposition of powder. Next, the laser
scans a specific area based on a predefined scanning strategy and controllable parameters
to selectively solidify the material. After finishing a layer scanning, the build plate is
moved down, and new powder is deposited on top of the build area to produce a new
layer [14]. Reference [14] presented Figure 3 that illustrates the influential factors of a
typical SLM process:
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There are many applications of the SLM process in real life, such as in the medical field
with dental implants (highly complex, small in dimension, and one-off patient products) or
with specialized surgery equipment. Another large field is in the aerospace industry where
it is hard to manufacture materials, such as nickel-based superalloy, and requires high
quality, complex shapes, and low to medium production lots like hydraulic manifolds [14].

2.2. Thermodynamical Phenomena

The PBF process involves complicated thermodynamical phenomena and physio-
chemical behavior, as powder particles are melted using a laser beam with high energy.
Thermodynamic monitoring is important to control the performance of the process, but it is
difficult as the molten pool is small and moves quickly. Recently, numerical modelling has
been developed to study the physical mechanism deeply. Metal SLM involves principles
for multiscale coordinate control, and they include deformation and stress (macroscale),
melting behavior and laser absorption (mesoscale), and the development of microstructure
(microscale) [15].

The limited energy on the powder bed and low operating temperature resulting from
low laser power value in SLM lead to generating residual pores between the neighboring
small molten pools. The low temperature decreased the liquid surface tension, leading
to the melt flow [15]. These conditions cause a remarkable reduction of the melt pool
convection, and simultaneously lead to a weakening of the melt migration between the
current and solidified neighboring tracks. As a result, the porosity is shown obviously on
the top surface and cross-section of the SLM part. Conversely, increasing the laser power
results in a larger molten pool size with a longer lifetime of the liquid. The considerable
laser energy input leads to an intensified convection within the melt pool with sufficient
melt migrations between the high laser power tracks, which produce high-quality SLM
parts without distinct defects on both the cross-section and top surface. In addition,
cellular morphology is presented with the microstructure surrounding the tracks with no
obvious defects. Reference [15] presented the following Figures 4 and 5 for the top surface
morphology of the produced Inconel 718 part with two different laser powers, 90 W and
120 W.
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Therefore, with a low laser power value of 90 W, irregularly shaped porosity was
shown distinctively in the tracks where heat transfer and limited mass occurred. Increasing
the laser power value to 120 W decreased the porosity. Therefore, producing high-quality
Inconel 718 parts are achievable with optimal laser power that can be specified using
mesoscale simulation and analysis [15].
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2.3. Parameters

The process parameters for PBF can be classified into four categories. The first one is
the parameters related to the laser which include laser power, spot size, wavelength, pulse
frequency, and duration. The second category is scanning strategy parameters (scanning
speed, scanning patterns, scanning spacing, and layer thickness). The third category is
the set of powder-related parameters which include powder bed density, particle shape,
distribution and size, material proprieties, and layer thickness. The last category is the
parameters related to temperature, including the temperature of the powder bed and feeder
and temperature uniformity [13].

2.4. Open Issues

Metal-based AM has many gaps that need to be addressed, such as porosity, cracks,
and part deformation [6], but as mentioned previously, porosity is a challenging issue
due to its effect on the mechanical properties, structural integrity, strength, and Young’s
modulus of the produced material. There are three main pore types, namely gas, keyholes,
and lack of fusion pore [7]. The following subsection will explain each type, showing its
characteristics and mechanism of formation.

2.4.1. Gas Porosity

Gas pores belong to the most common type of pores. They are the most spherical
and the smallest type. It is characterized by smooth edges and a wide range of sizes from
submicron to several microns [16]. The following Figure 6 shows an illustrative example of
the gas porosity using the scanning electron microscope (SEM) [16]:

Gas pores are connected to trapped gas that might have different sources of origin,
either during or before the process starts, such as the entrapped gas in the powder of
the alloy during the process of gas atomization. However, increasing the laser power or
decreasing the scanning speed might enlarge this type of pore. Reference [16] fabricated
SLM samples at a specific scanning speed of 1200 mm/s and with laser power values
between 225 W to 375 W to investigate the gas porosity evolution. They found that
increasing the laser power from 225 W to 300 W leads to raising the fraction of gas pore
from 1.3% to 1.6% but increasing the laser power further from 300 W to 375 W reduced
the fraction to 0.7% as the thermal gradient between the center and boundary of melt
pool is increased, which leads to facilitating the process of outgassing. Therefore, it was
concluded that it is difficult to fully understand the effect of SLM process parameters on
gas porosity formation, since it is a dynamic process that involves pore nucleation, growth,
and outgassing during rapid solidification [16].

2.4.2. Keyhole Porosity

Keyhole pores arise from energy input excess with an energy density value of more
than 110 J/mm3 [16], which is a result of increasing the laser power or decreasing scanning
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speed. It is characterized by large-size cavities reaching hundreds of microns and tended
to be near-spherical in shape, so sometimes it is difficult to distinguish between large gas
pores and keyhole pores. The following Figures 7 and 8 show the 3D view of the keyhole
pore at a laser power value of 195 W and scanning speed value of 400 mm/sand different
shapes of 2D images [6].
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Unlike gas pores, the surface and contour are bumpy, and these cavities are the most
common type of keyhole porosity that appear in the SLM part [16]. It is caused when
trapping bubbles of vapor within the melt pool [6], changing the melting mode from
conduction to keyhole mode at high laser energy intensity leads to the formation of this
type of pore. In the conduction mode, the laser energy input is low to moderate which
mediates the heat transfer through conduction. The material melting happens in this mode
without vaporization which results in less porosity, but in the keyhole mode, the high laser
intensity causes metal evaporation which generates recoil pressure at the bottom of the
melt pool. The instability of the dynamic behavior in the melt pool leads to the formation
of keyhole porosity with near-spherical morphology at the bottom of the melt pool, which
acts as a stress concentrator, causing material property deterioration [16].
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2.4.3. Lack of Fusion Porosity

Lack of fusion pores have irregular voids morphology that commonly appeared in
SLM alloy. They are featured with large sizes, reaching hundreds of micrometers as shown
in the following Figure 9 [16]:
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Irregular voids are formed because of un-melting in some regions caused by the
reduction in energy density, which is generally a result of the low value of laser power
or fast scanning speed [16]. The energy density is a function consisting of laser power,
scanning speed, layer thickness, and hatch distance, and these parameters have a significant
effect on pores formation [6]. Having insufficient laser energy to induce the overlapping
between the adjacent layers leads to the formation of this type of pore. Additionally, the
high reflectivity and dense oxide presence on the powder particles’ surface might form
such defects as the laser penetrability is lowered [16].

Thus, when optimizing the SLM process, it is essential to accurately study the pore
formation occurring when using various combinations of parameters.

2.5. State of the Art Studies

Detecting porosities in PBF processes has a significant contribution to improving part
quality [17]. The porosity during the laser additive manufacturing process was monitored
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using a deep learning-based method, namely convolutional neural network, that predicts
the porosity based on melt pool cross-section images acquired by coaxial camera [18]. The
model achieved an accuracy of 91.2% in detecting porosity occurrence, and all misclassified
samples have pores less than 50 µm. This limitation in detecting micropores is one of the
issues in applying convolutional neural network for pores prediction. Similarly, a lack
of fusion porosity was predicted based on melt pool data collected during the selective
laser melting process, and the DMP monitoring system was used to monitor the melt pool
during the processing with titanium alloy material. Next, they created an algorithm that
correlated the porosity with melt pool monitoring data, which achieved 90% prediction
sensitivity for events with a lack of fusion pores greater than 160 µm volume [19].

Recently, acoustic signals have been used in porosity classification, particularly in
achieving the balance between classification accuracy and spatial resolution in porosity
detection. High sensitivity fiber Bragg grating sensor was adopted to collect acoustic
signals for airborne. The time span for each running window was 160ms, and 300 patterns
represented each of the three porosity levels without overlapping between training and
testing set in terms of the running window. The parts with different porosity levels were
classified using spectral CNN with a classification accuracy between 83–89% [20].

Using CT scans of sample parts, there is a problem related to assessing accurately the
porosity in SLM parts [21]. One main drawback is clear when using gray value analysis to
assess the porosity of SLM parts visible in CT scan slices. The difficulty is the subjectivity
in selecting an appropriate grayscale threshold that would convert a single slice into binary
images highlighting defective regions, as well as determining the true level of porosity. For
example, in Figure 10 when an inappropriately low grayscale threshold is used for binary
image conversion for the original slice, an amount of tiny undesired white spots is not
filtered, as shown in Figure 10b. However, adopting a high threshold causes significant
alterations in the morphological features of the defective area, more specifically near the
boundary, as shown in Figure 10c. These thresholds would result in significantly different
predictions of porosity levels.
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To evaluate this issue further, the authors of this study [21] proposed an empirical
method to estimate the porosity in finished SLM parts using a naturalized threshold
for CT scan slices. When compared with the Archimedes method, they found similar
increasing or decreasing trends in the predicted percentage of porosity, and concluded that
the naturalized greyscale threshold is not the best method for porosity estimation in CT scan
slices due to radiodensity variation and CT setup mutual influence. Thus, compensating for
these variations is difficult with a unique grayscale [21]. This limitation is found in one of
the main existing methods used in porosity estimation, along with the Archimedes method,
as mentioned in [22]. Thus, this paper addresses this gap by proposing a new approach
based on the use of a Regression Convolutional Neural Network (RCNN) algorithm to
predict the percent of porosity in CT scans of finished SLM parts, without the need for
subjective difficult thresholding determination to convert single slice to a binary image. In
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order to test the algorithm, as the training of the RCNN would require a large amount of
experimental data, artificial porosity images mimicking real CT scan slices of the finished
SLM part will be created using a new efficient method explained in detail in the following
section.

3. Artificial Porosity Images Creation for SLM Parts

Training CNN algorithms would require a large amount of experimental data, which
is expensive for SLM parts [23], since there are many types of production costs for pre-
processing, processing, and post-processing costs, including preparing geometry data, CAD
model, machine setup, material cost, building up the part, and postprocessing cost [24],
so producing a large amount of porosity images to train RCNN is not cost-effective. This
section proposes a new efficient approach of creating artificial keyhole porosity images
mimicking the real CT scan slices of finished SLM parts that can be used in the research
environment effectively and efficiently, in particular to validate the training of an accurate
RCNN for the automatic prediction of porosity in CT scans of SLM parts. The steps of
creating the artificial porosity images are illustrated in Figure 11, followed by subsections
explaining the steps in detail.

3.1. Establishing Regression Equations

The formulation of two regression equations is based on the laser power and the
scanning speed data found in [6]. The first equation correlates the number of pores (Y) with
the laser power (X1) and the scanning speed (X2), and the second equation correlates the
pores’ diameters (Y) with the same parameters (X1 and X2). The data used to establish the
two equations are related to keyhole porosity and they will be used as a demonstration for
an example of pore types’ formation.

Table 2 shows the corresponding number of pores for each combination of laser power
and scanning speed.

Table 2. Number of pores for each laser power and scanning speed combination [6].

No. Laser Power (W) Scanning Speed (mm/s) Number of Pores in 2.6 mm3

Volume

1 195 200 101
2 175 200 121
3 150 200 121
4 125 200 101
5 195 400 41
6 175 400 75
7 150 400 55
8 195 600 4
9 125 400 30
10 175 600 19
11 150 600 4
12 195 800 0
13 175 800 1
14 125 600 2
15 150 800 0
16 195 1000 0
17 175 1000 0
18 125 800 0
19 195 1200 0
20 150 1000 1
21 175 1200 0
22 125 1000 0
23 150 1200 0
24 125 1200 0
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The Minitab software was used to establish the first regression equation that fits the
24 observations [6] mentioned in the previous table, thus correlating the number of pores
with the laser power and the scanning speed, which results in the following equation:

Number of Pores = 89.3 + 0.063 × Laser Power − 0.1017 × Scanning Speed (1)
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Similarly, the second regression equation was established to fit pores diameter with
laser power and scanning speed data found in [6], and the dataset is shown in the following
Table 3.

Table 3. Pore diameter for each laser power and scanning speed combination [6].

No. Laser Power (W) Scanning Speed (mm/s) Pores Diameter (µm)

1 195 200 47
2 175 200 46
3 150 200 42
4 125 200 45
5 195 400 36
6 175 400 41
7 150 400 27
8 125 400 26
9 195 600 25
10 175 600 27
11 150 600 25

Once again, the Minitab software was used to establish the regression equation that
fits the 11 observations [6] mentioned in Table 3 correlating the diameter of the pores with
the laser power and the scanning speed, which results in the following equation:

Pores Diameter = 37.88 + 0.1044 × Laser Power − 0.05207 × Scanning Speed (2)

3.2. Generating Pores Numbers and Diameters

The two regression equations established in the previous section were used to generate
30 values for the number of pores and pores diameter by substituting the 30 combinations
of laser power and scanning speed found in [6]. The following is an illustrative example
using a laser power of 15 W and a scanning speed of 50 mm/s:

Number of Pores = 89.3 + 0.063 × (15) − 0.1017 × (50) = 85 Pores

Pores Diameter = 37.88 + 0.1044 × (15) − 0.05207 × (50) = 36.94 µm

Table 4 shows the 30 combinations of laser power and scanning speed found in [6],
along with the corresponding number of pores after scaling down from a 2.6 mm3 to a
1mm3 volume, the volume of the cube in which the pores will be positioned and used
to train the CNN. Variations of ±10 µm were applied randomly to the generated pore
diameters, mimicking variations occurring in real porosity images.

Table 4. Number of pores and pores’ diameter for combined laser power and scanning speed.

No. Laser
Power (W)

Scanning
Speed
(mm/s)

Number of Pores
in 2.6 mm3

Volume

Number of Pores
after Scaling

(Divided by 2.6 to
Scale it to 1 mm3

volume)

Average Pores
Diameter (µm)

Maximum
Pores

Diameter (µm)

Minimum
Pores

Diameter (µm)

1 16 50 85 33 36.9469 46.9469 26.9469
2 20 50 85 33 37.3645 47.3645 27.3645
3 24 50 86 33 37.7821 47.7821 27.7821
4 32 100 81 31 36.0138 46.0138 26.0138
5 40 100 82 32 36.849 46.849 26.849
6 48 100 82 32 37.6842 47.6842 27.6842
7 48 150 77 30 35.0807 45.0807 25.0807
8 60 150 78 30 36.3335 46.3335 26.3335
9 72 150 79 30 37.5863 47.5863 27.5863
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Table 4. Cont.

No. Laser
Power (W)

Scanning
Speed
(mm/s)

Number of Pores
in 2.6 mm3

Volume

Number of Pores
after Scaling

(Divided by 2.6 to
Scale it to 1 mm3

volume)

Average Pores
Diameter (µm)

Maximum
Pores

Diameter (µm)

Minimum
Pores

Diameter (µm)

10 64 200 73 28 34.1476 44.1476 24.1476
11 80 200 74 28 35.818 45.818 25.818
12 96 200 75 29 37.4884 47.4884 27.4884
13 80 250 69 27 33.2145 43.2145 23.2145
14 100 250 70 27 35.3025 45.3025 25.3025
15 120 250 71 27 37.3905 47.3905 27.3905
16 96 300 65 25 32.2814 42.2814 22.2814
17 120 300 66 25 34.787 44.787 24.787
18 144 300 68 26 37.2926 47.2926 27.2926
19 112 350 61 23 31.3483 41.3483 21.3483
20 140 350 63 24 34.2715 44.2715 24.2715
21 168 350 64 25 37.1947 47.1947 27.1947
22 130 406.2 56 22 30.301166 40.301166 20.301166
23 162.5 406.2 58 22 33.694166 43.694166 23.694166
24 195 406.2 60 23 37.087166 47.087166 27.087166
25 144 450 53 20 29.4821 39.4821 19.4821
26 180 450 55 21 33.2405 43.2405 23.2405
27 156 487.5 50 19 28.782275 38.782275 18.782275
28 195 487.5 52 20 32.853875 42.853875 22.853875
29 176 550 44 17 27.6159 37.6159 17.6159
30 195 609.4 40 15 26.506542 36.506542 16.506542

3.3. Creating 3D Cubes

Overall, 30 samples of 3D cubes were created with a volume of 1 mm3 for each cube,
and they contain the number of pores with diameters generated in the previous section
(Table 4). Thus, the first cube has 33 pores with an average diameter of 36.94 µm. In [25],
the position of pores was considered by analyzing the porosity distribution in real images
of pores. They observed 975 porosity positions in X and Y. In this research, the Minitab
platform was used to conduct a normality test on these observations, as shown in the
following Figures 12 and 13:
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With a p-value of less than 0.005, the probability that these data are not coming from a
normal distribution is very low, so it is concluded that the observed porosity positions are
normally distributed, with a mean and a standard deviation of 0.48 and 0.27 for X-positions
and 0.44 and 0.26 for Y-positions. Therefore, in this research, it was decided to produce
porosity positions with the same statistical distribution, as observed in [25].

Thus, MATLAB software was used to generate normally distributed porosity positions
inside each of the 30 cubes with the mean and the standard deviation mentioned previously
in the X and Y positions, while the Z position was arbitrarily given the average between X
and Y to produce normal distribution positions in a volume. The pores morphology was
created to be similar to the 3D view of the pores shown in Figure 7 in Section 2.4.2 [6]. The
following Figure 14 shows an illustrative example of the cube with 33 pores and an average
diameter of 36.94 µm, as mentioned in the first combination of Table 4.
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Figure 14. 3D Cube with 33 pores and average pores diameter of 36.94 µm.

3.4. Slicing 3D Cubes into 2D Images

Each cube created in the previous step was sliced using the MATLAB platform into
100 slices with a thickness of 0.01 mm, resulting in 3000 slices of 2D images, an illustrative
example of the cube, and three non-sequential slices that are shown in the following
Figure 15.
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Figure 15. Illustrative example of the cube slicing.

The first slices are expected to be with no pore, as shown at the bottom of the cube.
Thereafter, part of a pore is shown in some slices and parts of many pores are shown in
other slices. The pore morphology tended to be near-spherical in shape, as described in
Section 2.4.2 [16].

3.5. Labelling 2D Slices

The slices were labelled with the actual percent of porosity for each slice using MAT-
LAB software, and were calculated by dividing the number of elements with specific pore
unique pixel values by the total image size (650 × 630 × 3). The pixel values for the pores
were determined by inspecting the pixel values of porosity seen in real CT Scan images [26],
and are between 110 and 124. The first slice has no elements with a pixel value in the range
between 110 and 124 so the actual percentage of pore is 0. In slice 31 there are 258 elements
with pixel values in the range specified, so the actual percent of pore is (258/(650 × 630 ×
3)) × 100 = 0.0210, similarly for slice 59 with 2193 elements of pixel values between 110 and
124, the actual percent of pore is (2193/(650 × 630 × 3)) × 100 = 0.1785, and the average
actual percent of pore for 3000 slices is 0.0134.

3.6. Adding Noisy Background

Firstly, image processing in the MATLAB platform was conducted to fuse the noisy
background of 100 CT scan images containing porosities with the slices extracted from each
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cube, resulting in the first version of the filtered artificial images shown in the following
Figure 16.
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Secondly, in the artificial images, the edges of the pores have a uniform shading,
making them clearly distinguishable from the background. This is not a true representation
of porosity seen on real CT scans, where shade variations make it difficult to properly
distinguish pores’ edges. Thus, in a second version, image processing in the MATLAB
platform was conducted to further filter the artificial porosity images by creating similar
noise, so the background of a sample of 100 existing images was inserted into 100 pores
slices extracted from 3D cube after reducing the pixel value for its white background from
255 to 155 to convert it to a gray background. The artificial images were overlayed with
the noisy background of real images. The degree of overlaying was determined by a factor
(between 0 and 1) following the method described in [27].

Thus, with a factor of 1, the pore image will be shown without noisy background and
with a factor of 0, and the noisy background will be shown without pores. After many trial
and error experiments, a factor of 0.125 was considered to visually be the best value that
combined both pore and noisy background images, as shown in the following Figure 17.
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As shown in the slices, the noise in the background and the pores appear more like real
porosity images as the edges are not as clearly defined, but this is a subjective evaluation.
The following Section 3.7 will present quantitative measure for the similarity between real
and artificial porosity images to ensure that the artificial images are realistic.

3.7. Measuring the Similarity between Artificial and Real Porosity Images

The created artificial porosity images were compared with real CT scan slices of
finished SLM parts [26] to verify that the simulated images are close the reality. The real
images are only used as a demonstration and are not directly linked with the pore formation
equations mentioned in Section 3.1. The following Figure 18 shows an illustrative example
of the slices before and after processing, which was required to focus on the bulk of the
material and to obtain images of the same size as the artificial images.
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Figure 19 presents the real image along with the first version of the artificial image.
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Figure 19. Real image (Left) vs. first version of artificial image (Right).

Samples of 100 slices of real images were taken and compared with each of the first
versions of 100 artificial images created in the previous section. The comparison was made
using a quantitative method called Structural Similarity Index (SSI). It is a measure that
assesses the images based on three computational terms, namely the luminance (l), the
contrast (c), and the structural terms (s). Multiplying the three terms results in the overall
index. If two images are exactly the same, the index should be 1, and if they are totally
different the index should be close to zero. The mathematical equations for calculating SSI
for images x and y are as follow [28]:

SSI(x,y) = [l(x,y)]α × [c(x,y)]β × [s(x,y)]γ (3)

where:
l(x,y) = (2 × µx × µy + C1)/(µx

2 + µy
2 + C1) (4)

c(x,y) = (2 × σx × σy + C2)/(σx
2 + σy

2 + C2) (5)

s(x,y) = (σxy + C3)/(σx × σy + C3) (6)

µx and µy are local means, σx and σy are standard deviations, and σxy is cross-
covariance for images x and y. The exponents for luminance, contrast and structural are
alpha(α), beta(β), and gamma(γ), while C1, C2, and C3 are constants added to avoid
instability for image regions with local mean or standard deviation close to zero.

MATLAB software was used to calculate SSI between the real and first version of
artificial porosity images, the average similarity index for 3000 slices was 0.9586. The same
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100 samples of real images were used to compare them, with the final version of artificial
porosity images shown in the following Figure 20:
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Figure 20. Real image (Left) vs. final version of artificial image (Right).

The average similarity index for 3000 slices was improved to 0.9967, which means that
the final version of artificial porosity images mimics better real images since the index is
closer to 1.

3.8. Study Limitations

The created artificial porosity images in this section will be used only to test the
proposed CNN algorithms that will be developed in Section 4. The study did not aim
to study the porosities in depth, so no experiments have been conducted, but the paper
proposes a method that will enhance such studies, particularly in predicting the percent
of porosity as will be demonstrated in Section 4. In the future, real experiments can be
conducted in order to produce real porosity images.

4. Predicting the Porosity in Selective Laser Melting Parts

Using the artificial images created in Section 3, this section will show three methods
for predicting the percentage of porosity in SLM parts. The first one is the existing image
binarization method, which is one of the main methods for measuring porosity along
with the Archimedes method [22]. Archimedes’ principle might be used in the case of
producing real SLM parts, and this paper uses artificial porosity images, so the image
binarization method will be conducted and explained in Section 4.1. The second and
third methods are Regression Convolutional Neural Network (RCNN) and hybrid Bees
Regression Convolutional Neural Network (BA-RCNN), which will be explained in detail
in Section 4.2.

4.1. Predicting the Porosity Using Image Binarization

There is a problem related to accurately assessing the porosity in SLM parts [21]. The
problem is the difficulty and subjectivity in selecting an appropriate grayscale threshold
for binary image conversion to highlight defective regions and determine the true level of
porosity, as mentioned previously in Section 2.5.

The first version of created artificial images presented in the previous section were
binarized using an adaptive thresholding algorithm provided in the MATLAB platform,
which selects the threshold based on local mean intensity in the pixel neighborhood, and is
determined by a sensitivity factor, between 0 and 1, that indicates the sensitivity toward
thresholding more pixels as a foreground [29]. This sensitivity factor is selected manually.
The following Figure 21 shows the first version of the artificial image, along with the
binarized image with an arbitrarily selected sensitivity factor of 0.66.
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As can be seen in the figure, there are tiny undesired black spots in different positions
in the binarized image, and the undesired spots also appear in slices with no pores, as
shown in the following Figure 22.
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Figure 22. First version of artificial image with no pore (Left) vs. binarized artificial image (Right).

The average actual percent of pore for 3000 slices was 0.0134, while the average percent
of pore for 3000 binarized images is overestimated with a value of 0.0578, so the absolute
error is 0.0444. The prediction accuracy with a difference of less than a threshold of 0.02
(percent of observations with error less than 0.02) is 64.47%.

The same approach was followed for the final version of artificial porosity images,
and the following Figure 23 shows the artificial image along with the binarized image, with
a sensitivity factor of 0.66.
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Figure 23. Final version of artificial image (Left) vs. binarized artificial image (Right).

As can be seen in the figure, there are tiny undesired black spots in different positions in
the binarized image, confirming the problem stated in [21], which is a result of inconsistent
grayscale in CT scan slices because of the mutual influence of CT setup and radiodensity
variation. Removing these spots using image processing is time-consuming since they
appear in different positions in each slice without a simple pattern, so the processing needs
to be performed image by image to distinguish between the undesired black spots and the
pores first. Following that, unwanted spots need to be replaced with a white background
because they are counted in the porosity calculation which overestimates the percent of
porosity. Such an issue also occurs in the pores, as tiny white spots would alter their
morphological feature and slightly reduce the percentage of porosity. However, the effect
of this on porosity calculations is negligible when compared to the effect of the small black
spots occurring in the large background. Depending on the sensitivity factor used, the
black spots also appear in slices with no pores, as shown in the following Figure 24.
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Experimenting with different sensitivity factors between 0.63 to 0.74 resulted in the
following binary images with different percentages of porosity as shown in Figure 25.
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Figure 25. Binary images with different sensitivity factors and percent of porosity.

As can be seen from the images, increasing the sensitivity factors reduces the black
spots resulting from the noisy background, but it alters the pore’s morphological features
dramatically. A sensitivity factor of 0.69 seems relatively better and it will be selected to
binarize all 3000 slices since it yielded the most accurate percent of porosity of 0.17%, which
is close to the actual percent of pore for the original slice with a value of 0.1785%. It is
worth noting that in the case of producing real porosity images, sensitivity factor selection
will be subjective and difficult since the actual percentage of porosity will be unknown.
The average percent of pore for 3000 slices was 0.0203, while the average percent of pore
for 3000 binarized images is overestimated with a value of 0.0424, so the absolute error is
0.0221. The prediction accuracy with a difference less than a threshold of 0.02 (percent of
observations with error less than 0.02) is 68.60%.
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4.2. Predicting the Porosity Using RCNN and BA-RCNN

CNN can be used for regression problems to predict numerical values based on images,
so regression CNN will be used to predict the percent of porosity based on created artificial
porosity images in the previous section. As mentioned previously (in Section 3.5), the
images were labelled using the actual percent of porosity calculated during the creation
process by dividing the number of elements with specific pore unique pixel values by the
total image size. CNN learns the porosity pattern in artificial porosity images that mimic
CT scan images of the finished SLM part and predict the percent of porosity without the
need for subjective difficult thresholding determination to convert the single slice to a
binary image, which ultimately achieves automized quality assessment.

4.2.1. RCNN and BA-RCNN Architecture

The CNN architecture for predicting the percent of porosity is composed of 22 layers
with one input layer, five convolutional layers, five rectified linear unit layers, five batch
normalization layers, four average pooling layers, one fully connected layer, and one
regression layer.

The input layer is represented by a matrix with height by width size (650 × 630).
It contains pixel brightness values between 0 for black regions to 255 for white regions.
The convolutional layers contain filters represented by weight matrix slide along the pixel
brightness matrix using a special dot product to create a feature map matrix [30]. The
rectified linear unit layer comes after each convolutional layer to increase the effectiveness
and speed of the training by maintaining positive values and mapping negative values to
zero [31]. In addition, the batch normalization layer comes after each convolutional layer as
a supplement layer mitigating the overfitting risk [32]. Pooling layers are used between the
convolutional layers for output dimensionality reduction [33] without losing the important
image features, which helps in minimizing the computational time. Regression and fully
connected layers are the output layers that show the predicted percentage of pores.

The normal number of convolutional layers to start is between two to three layers with
a filter size of 3 × 3 or 5 × 5 as advised in [31], CNN was designed with five convolutional
layers with four average pooling layers in between, with the number of filters ranging
between 8 for the first layer and 128 for the last one. Each layer has twice the number of
filters of the previous layer [34]. The filter size is 5 × 5, the section depth is 3, and the
padding that detects the image edges is set as ‘same’, so the padding size is automatically
calculated at the training time, producing output size equivalent to input size when the
stride (number of pixel shift) is one.

The pooling type is ‘average’ which takes the average presence of the feature, while
the max pooling layer takes the most activated feature, so the average pooling is used with
light background and max pooling is better with dark background [35], the default size of
pooling layer is 2 × 2 [30], but it yielded high computational cost since the image input
size is big (650 × 630). The size was changed to 4 × 4 with a stride value of 4 to minimize
the training time.

CNN was trained using SGDM, which is the most common training algorithm [32].
The default values for this algorithm are an initial learning rate of 0.01, a momentum of 0.9,
a regularization of 1 × 10−4, and the maximum number of epochs is 20, as presented in [36].
After applying some experiments and monitoring the validation accuracy, the momentum
was changed to 0.8, and with regularization became 1 × 10−10.

The RCNN algorithm will train the artificial porosity images of the SLM part to predict
the percent of porosity without the need for subjective difficult threshold determination to
convert the single slice to a binary image, as mentioned in [21].

The hybrid algorithm (BA-RCNN) uses BA to optimize the parameter values for sec-
tion depth that controls the network depth, the initial learning rate that is used for features
learning, the momentum that performs the hyperparameters update and regularization
that prevents overfitting [37] to reach the minimum prediction error on the validation set.
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The BA consists of global and local searches. The global search is done by the scout
bees that evaluate random positions based on the fitness value. In the local search, the best
sites are selected, and the remaining sites are abandoned. The intense search is done to
select the elite sites, which are the best among the best sites selected in the local search. The
next step is recruiting more bees for the elite sites based on the size of the neighborhood
search space and recruiting lower bees for other sites to conduct the local search [38]. The
stopping conditions for this iterative process are:

• Finding the optimal solution
• Exceeding the iteration number
• No improvement over specified sequential iterations

The values of BA hyperparameters are assigned based on the capability of the com-
puter and equations in [39]:

• Scout bees (n) = 4
• Selected bees (m) = 0.5 × n = 2
• Elite bees (e) = 1
• Recruited bees for e (nep) = 2 × m = 4
• Recruited bees for other best sites (nsp) = 0.5 × n = 2
• Neighborhood size (ngh) = 0.1 × (Maximum − Minimum):

◦ Section Depth: 0.1 × (3 − 1) = 0.1 × 2 = 0.2
◦ Initial Learning Rate: 0.1 × (1 − 1 × 10−2) = 0.1 × 0.99 = 0.099
◦ Momentum: 0.1 × (0.98 − 0.8) = 0.1 × 0.18 = 0.018
◦ Regularization: 0.1 × (1 × 10−2 − 1 × 10−10) = 0.1 × 0.01 = 0.001

The following Figure 26 shows the pseudo-code for the BA-RCNN algorithm:
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The following Figure 27 summarizes the task for hybrid regression CNN:
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4.2.2. RCNN and BA-RCNN Results

MATLAB is the platform used to apply RCNN and BA-RCNN on the newly created
3000 artificial porosity images, of which 1800 images are for training and 600 are for each
of the validation and testing sets to predict the percent of porosity without the need for
subjective difficult thresholding determination to convert the single slice to a binary image,
which ultimately achieves automized quality assessment. The following Table 5 shows the
average percent of porosity error (the difference between the actual and predicted percent
of porosity on average) for the first version of artificial porosity images.

Table 5. Average percent of porosity error (first version).

Original RCNN Hybrid BA-RCNN

Average Percent of Porosity
Error in Training Set 0.0164 0.0169

Average Percent of Porosity
Error in Validation Set 0.0171 0.0160

Average Percent of Porosity
Error in Testing Set 0.0189 0.0191

The minimum percent of porosity error value of 0.0160 comes with the validation
set in BA-RCNN, and the following Table 6 shows the optimal CNN parameters values
optimized using BA.
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Table 6. Optimal CNN parameters values using BA (first version).

Value

Optimal Section Depth 3
Optimal Initial Learning Rate 0.0118

Optimal Momentum 0.8229
Optimal Regularization 0.0091

Validation Error 0.0160

The minimum error value of 0.0160 was achieved with a section depth of 3, 0.0118
initial learning rate, a momentum value of 0.8229, and a regularization parameter of 0.0091,
which is less than the error value of 0.0444 for the image binarization method. The following
Table 7 shows the prediction accuracy with a difference less than a threshold of 0.02 (percent
of observations with error less than 0.02) for all three sets, along with computational time
for all algorithms.

Table 7. Prediction accuracy and computational time for algorithms (first version).

Original RCNN Hybrid BA-RCNN

Training Accuracy 81.22% 82.06%
Validation Accuracy 81.50% 81.67%

Testing Accuracy 78.83% 80.67%
Computational Time 18 min 17 s 18 min 13 s

The existing original RCNN produced 78.83% prediction accuracy in the testing set,
which is approximately 14% better than the accuracy resulting from the image binarization
method with a value of 64.47%. The novel hybrid BA-RCNN produced better prediction
accuracy in all training, validation, and testing sets, which means it has better generaliza-
tion capability than RCNN. The accuracy in the testing set has a value of 80.67%, which is
approximately 16% better than the existing image binarization method, and the computa-
tional time is almost similar in both algorithms. The following Table 8 shows the prediction
accuracy for all three methods.

Table 8. Porosity prediction accuracy (first version).

Image Binarization Original RCNN Hybrid BA-RCNN

Porosity Prediction
Accuracy 64.47% 78.83%. 80.67%

The same approach is followed to predict the percent of porosity for the final version
of artificial porosity images. The following Table 9 shows the average percent of porosity
error (the difference between the actual and predicted percent of porosity on average) for
the first version of artificial porosity images.

Table 9. Average percent of porosity error (final version).

Original RCNN Hybrid BA-RCNN

Average Percent of Porosity
Error in Training Set 0.0229 0.0230

Average Percent of Porosity
Error in Validation Set 0.0231 0.0214

Average Percent of Porosity
Error in Testing Set 0.0236 0.0234
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The minimum percent of porosity error value of 0.0214 comes with the validation
set in BA-RCNN, and the following Table 10 shows the optimal CNN parameters values
optimized using BA.

Table 10. Optimal CNN parameters values using BA (final version).

Value

Optimal Section Depth 1
Optimal Initial Learning Rate 0.0101

Optimal Momentum 0.9568
Optimal Regularization 0.0097

Validation Error 0.0214

The minimum error value of 0.0214 comes with a section depth of 1, 0.0101 initial
learning rate, a momentum parameter of 0.9568, and a regularization value of 0.0097, and is
less than the error value of 0.3167 for the image binarization method. The following Table 11
shows prediction accuracy for training, validation, and testing sets with a difference less
than a threshold of 0.02 (percent of observations with error less than 0.02), along with
computational time for best iteration for all algorithms.

Table 11. Prediction accuracy and computational time for algorithms (final version).

Original RCNN Hybrid BA-RCNN

Training Accuracy 74.94% 85.94%
Validation Accuracy 76% 87.33%

Testing Accuracy 75.50% 85.33%
Computational Time 15 min 43 s 13 min 40 s

The existing original RCNN produced 75.50% prediction accuracy in the testing set,
which is approximately 7% better than the accuracy resulting from the image binarization
method with a value of 68.60%. The novel hybrid BA-RCNN produced better prediction
accuracy in all training, validation, and testing sets, which means it has better generalization
capability than RCNN. The accuracy in the testing set has a value of 85.33% which is
approximately 17% better than the existing image binarization method, and the hybrid
BA-RCNN is cost-effective since the computational time is reduced by approximately 2 min.
The following Table 12 shows the prediction accuracy for all three methods.

Table 12. Porosity average prediction accuracy (final version).

Image Binarization Original RCNN Hybrid BA-RCNN

Porosity Prediction
Accuracy 68.60% 75.50% 85.33%

The contribution of the paper is developing a new approach based on the use of a
Regression Convolutional Neural Network (RCNN) algorithm to predict the percent of
porosity in CT scans of finished SLM parts, without the need for subjective difficult thresh-
olding determination to convert a single slice to a binary image, the model achieved better
prediction accuracy than the existing image binarization method by 17%. In order to test
the algorithm, as the training of the RCNN would require a large amount of experimental
data, artificial porosity images mimicking real CT scan slices of the finished SLM part were
created with a similarity index of 0.9976 with real images.

5. Conclusions

Assessing the porosity in Selective Laser Melting (SLM) parts is a challenging issue,
and the drawback of using the existing gray value analysis method to assess the porosity is
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the difficulty and subjectivity in selecting a uniform grayscale threshold for binary image
conversion to detect the porosity. This paper demonstrated a new efficient approach of
creating artificial porosity images, mimicking real CT scan slices of finished SLM part with a
similarity index of 0.9976 which can be used to train an accurate Regression Convolutional
Neural Network (RCNN) for automatic porosity prediction. Further work is required to
tune this approach for the creation of artificial images mimicking a wider range of porosity
types, and experiments need to be performed to do so. The MATLAB platform was used
to develop the RCNN. In order to predict the percent of porosity in the created artificial
porosity images, it improved porosity prediction accuracy from 68.60% for image binariza-
tion method to 75.50% for RCNN. The algorithm was further developed by optimizing its
parameters the using Bees Algorithm (BA), which mimics the behavior of honeybees, with
the hybrid Bees Regression Convolutional Neural Network (BA-RCNN) producing better
prediction accuracy with a value of 85.33%.

Author Contributions: Conceptualization, N.M.H.A., M.P. and S.B.; methodology, N.M.H.A., M.P.
and S.B.; software, N.M.H.A.; validation, N.M.H.A., M.P. and S.B.; formal analysis, N.M.H.A.,
M.P. and S.B.; investigation, N.M.H.A., M.P. and S.B.; resources, N.M.H.A., M.P. and S.B.; data
curation, N.M.H.A., M.P. and S.B.; writing—original draft preparation, N.M.H.A.; writing—review
and editing, M.P. and S.B.; visualization, N.M.H.A., M.P. and S.B.; supervision, M.P. and S.B.; project
administration, N.M.H.A., M.P. and S.B.; funding acquisition, N.M.H.A., M.P. and S.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research was supported by the project Additive Manufacturing using Metal
Pilot Line (MANUELA), which received funding from the European Union’s Horizon2020 research
and innovation programme under grant agreement No. 820774.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. ISO/ASTM 52900:2021; Additive Manufacturing. General Principles. Fundamentals and Vocabulary. Available online: https:

//www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-2:v1:en (accessed on 15 November 2022).
2. Farinia Group. What Is Additive Layer Manufacturing (ALM)? Available online: https://www.farinia.com/additive-

manufacturing/3d-technique/additive-layer-manufacturing (accessed on 4 January 2020).
3. Lastra, R.; Pereira, A.; Díaz-Cacho, M.; Acevedo, J.; Collazo, A. Spare Parts Made by Additive Manufacturing to Improve

Preventive Maintenance. Appl. Sci. 2022, 12, 10564. [CrossRef]
4. Abdulhameed, O.; Al-Ahmari, A.; Ameen, W.; Mian, S.H. Additive manufacturing: Challenges, trends, and applications. Adv.

Mech. Eng. 2019, 11, 1687814018822880. [CrossRef]
5. Metal, A.M. Applications for Metal Additive Manufacturing Technology. Available online: https://www.metal-am.com/

introduction-to-metal-additive-manufacturing-and-3d-printing/applications-for-additive-manufacturing-technology/ (ac-
cessed on 10 January 2020).

6. Shrestha, S.; Starr, T.; Chou, K. A study of keyhole porosity in selective laser melting: Single-track scanning with micro-CT
analysis. J. Manuf. Sci. Eng. 2019, 141, 71004. [CrossRef]

7. Snell, R.; Tammas-Williams, S.; Chechik, L.; Lyle, A.; Hernández-Nava, E.; Boig, C.; Panoutsos, G.; Todd, I. Methods for rapid
pore classification in metal additive manufacturing. JOM 2020, 72, 101–109. [CrossRef]

8. Li, B.H.; Hou, B.C.; Yu, W.T.; Lu, X.B.; Yang, C.W. Applications of artificial intelligence in intelligent manufacturing: A review.
Front. Inf. Technol. Electron. Eng. 2017, 18, 86–96. [CrossRef]

9. De Filippis, L.A.C.; Serio, L.M.; Facchini, F.; Mummolo, G. ANN Modelling to Optimize Manufacturing Process. In Advanced
Applications for Artificial Neural Networks; IntechOpen: London, UK, 2017.

10. Wuest, T.; Weimer, D.; Irgens, C.; Thoben, K.D. Machine learning in manufacturing: Advantages, challenges, and applications.
Prod. Manuf. Res. 2016, 4, 23–45. [CrossRef]

11. Singh, A.K.; Ganapathysubramanian, B.; Sarkar, S.; Singh, A. Deep learning for plant stress phenotyping: Trends and future
perspectives. Trends Plant Sci. 2018, 23, 883–898. [CrossRef] [PubMed]

https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-2:v1:en
https://www.farinia.com/additive-manufacturing/3d-technique/additive-layer-manufacturing
https://www.farinia.com/additive-manufacturing/3d-technique/additive-layer-manufacturing
http://doi.org/10.3390/app122010564
http://doi.org/10.1177/1687814018822880
https://www.metal-am.com/introduction-to-metal-additive-manufacturing-and-3d-printing/applications-for-additive-manufacturing-technology/
https://www.metal-am.com/introduction-to-metal-additive-manufacturing-and-3d-printing/applications-for-additive-manufacturing-technology/
http://doi.org/10.1115/1.4043622
http://doi.org/10.1007/s11837-019-03761-9
http://doi.org/10.1631/FITEE.1601885
http://doi.org/10.1080/21693277.2016.1192517
http://doi.org/10.1016/j.tplants.2018.07.004
http://www.ncbi.nlm.nih.gov/pubmed/30104148


Appl. Sci. 2022, 12, 12571 29 of 29

12. Alamri, N.M.H.; Packianather, M.; Bigot, S. Deep learning: Parameter optimization using proposed novel hybrid bees Bayesian
convolutional neural network. In Applied Artificial Intelligence; Taylor & Francis: Milton Park, UK, 2022; pp. 1–26.

13. Sun, S.; Brandt, M.; Easton, M. Powder bed fusion processes: An overview. In Laser Additive Manufacturing; Elsevier: Amsterdam,
The Netherlands, 2017; pp. 55–77.

14. Bauer, T. Prediction of Process Parameters in Selective Laser Melting. Ph.D. Thesis, ETH Zurich, Zürich, Switzerland, 2021.
15. Gu, D.; Ma, C.; Xia, M.; Dai, D.; Shi, Q. A multiscale understanding of the thermodynamic and kinetic mechanisms of laser

additive manufacturing. Engineering 2017, 3, 675–684. [CrossRef]
16. Tan, Q.; Liu, Y.; Fan, Z.; Zhang, J.; Yin, Y.; Zhang, M.X. Effect of processing parameters on the densification of an additively

manufactured 2024 Al alloy. J. Mater. Sci. Technol. 2020, 58, 34–45. [CrossRef]
17. Kim, H.; Lin, Y.; Tseng, T.L.B. A review on quality control in additive manufacturing. Rapid Prototyp. J. 2018, 24, 645–669.

[CrossRef]
18. Zhang, B.; Liu, S.; Shin, Y.C. In-Process monitoring of porosity during laser additive manufacturing process. Addit. Manuf. 2019,

28, 497–505. [CrossRef]
19. Coeck, S.; Bisht, M.; Plas, J.; Verbist, F. Prediction of lack of fusion porosity in selective laser melting based on melt pool monitoring

data. Addit. Manuf. 2019, 25, 347–356. [CrossRef]
20. Wang, C.; Tan, X.P.; Tor, S.B.; Lim, C.S. Machine learning in additive manufacturing: State-of-the-art and perspectives. Addit.

Manuf. 2020, 36, 101538. [CrossRef]
21. Gong, H.; Nadimpalli, V.K.; Rafi, K.; Starr, T.; Stucker, B. Micro-CT evaluation of defects in Ti-6Al-4V parts fabricated by metal

additive manufacturing. Technologies 2019, 7, 44. [CrossRef]
22. Arvieu, C.; Galy, C.; Le Guen, E.; Lacoste, E. Relative density of SLM-produced aluminum alloy parts: Interpretation of results. J.

Manuf. Mater. Process. 2020, 4, 83. [CrossRef]
23. Facfox. Selective Laser Melting—The Ultimate Guide. 2022. Available online: https://facfox.com/docs/kb/selective-laser-

melting-the-ultimate-guide (accessed on 2 September 2022).
24. Rickenbacher, L.; Spierings, A.; Wegener, K. An integrated cost-model for selective laser melting (SLM). Rapid Prototyp. J. 2013, 19,

208–214. [CrossRef]
25. Maskery, I.; Aboulkhair, N.T.; Corfield, M.R.; Tuck, C.; Clare, A.T.; Leach, R.K.; Wildman, R.D.; Ashcroft, I.A.; Hague, R.J.

Quantification and characterisation of porosity in selectively laser melted Al-Si10-Mg using X-ray computed tomography. Mater.
Charact. 2016, 111, 193–204. [CrossRef]

26. Feng, S.; Chen, Z.; Bircher, B.; Ji, Z.; Nyborg, L.; Bigot, S. Predicting laser powder bed fusion defects through in-process monitoring
data and machine learning. Mater. Des. 2022, 222, 111115. [CrossRef]

27. MathWorks-1. Overlay Image on Top of Image. Available online: https://www.mathworks.com/matlabcentral/answers/414351
-overlay-image-on-top-of-image (accessed on 4 October 2022).

28. MathWorks-2. Structural Similarity (SSIM) Index for Measuring Image Quality. Available online: https://uk.mathworks.com/
help/images/ref/ssim.html (accessed on 27 July 2022).

29. MathWorks-3. Adaptthresh. Available online: https://uk.mathworks.com/help/images/ref/adaptthresh.html (accessed on 2
September 2022).

30. Hui, J. Convolutional Neural Networks (CNN) Tutorial. 2017. Available online: https://jhui.github.io/2017/03/16/CNN-
Convolutional-neural-network (accessed on 15 November 2021).

31. MathWorks-3. Convolutional Neural Network. Available online: https://uk.mathworks.com/solutions/deep-learning/
convolutional-neural-network.html (accessed on 7 October 2019).

32. Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology.
Insights Imaging 2018, 9, 611–629. [CrossRef] [PubMed]

33. McDermott, J. Convolutional Neural Networks—Image Classification w. Keras. 2021. Available online: https://www.learndatasci.
com/tutorials/convolutional-neural-networks-image-classification (accessed on 15 November 2021).

34. Brownlee, J. Understand the Impact of Learning Rate on Neural Network Performance. 2020. Available online: https://
machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/ (accessed on 29
November 2021).

35. Ouf, H. Maxpooling vs. Minpooling vs. Average Pooling. 2017. Available online: https://hany-ouf.blogspot.com/2020/08/
maxpooling-vs-minpooling-vs-average.html (accessed on 15 November 2021).

36. MathWorks-4. Training Options SGDM. Available online: https://uk.mathworks.com/help/deeplearning/ref/nnet.cnn.
trainingoptionssgdm.html (accessed on 15 November 2021).

37. MathWorks-5. Deep Learning Using Bayesian Optimization. Available online: https://www.mathworks.com/help/
deeplearning/ug/deep-learning-using-bayesian-optimization.html (accessed on 4 April 2020).

38. Al-Musawi, A. The Development of New Artificial Intelligence Based Hybrid Techniques Combining Bees Algorithm, Data
Mining and Genetic Algorithm for Detection, Classification and Prediction of Faults in Induction Motors. Ph.D. Thesis, Cardiff
University, Cardiff, UK, 2019.

39. MathWorks-6. Bees Algorithm (BeA) in MATLAB. Available online: https://uk.mathworks.com/matlabcentral/fileexchange/52
967-bees-algorithm-bea-in-matlab (accessed on 9 April 2020).

http://doi.org/10.1016/J.ENG.2017.05.011
http://doi.org/10.1016/j.jmst.2020.03.070
http://doi.org/10.1108/RPJ-03-2017-0048
http://doi.org/10.1016/j.addma.2019.05.030
http://doi.org/10.1016/j.addma.2018.11.015
http://doi.org/10.1016/j.addma.2020.101538
http://doi.org/10.3390/technologies7020044
http://doi.org/10.3390/jmmp4030083
https://facfox.com/docs/kb/selective-laser-melting-the-ultimate-guide
https://facfox.com/docs/kb/selective-laser-melting-the-ultimate-guide
http://doi.org/10.1108/13552541311312201
http://doi.org/10.1016/j.matchar.2015.12.001
http://doi.org/10.1016/j.matdes.2022.111115
https://www.mathworks.com/matlabcentral/answers/414351-overlay-image-on-top-of-image
https://www.mathworks.com/matlabcentral/answers/414351-overlay-image-on-top-of-image
https://uk.mathworks.com/help/images/ref/ssim.html
https://uk.mathworks.com/help/images/ref/ssim.html
https://uk.mathworks.com/help/images/ref/adaptthresh.html
https://jhui.github.io/2017/03/16/CNN-Convolutional-neural-network
https://jhui.github.io/2017/03/16/CNN-Convolutional-neural-network
https://uk.mathworks.com/solutions/deep-learning/convolutional-neural-network.html
https://uk.mathworks.com/solutions/deep-learning/convolutional-neural-network.html
http://doi.org/10.1007/s13244-018-0639-9
http://www.ncbi.nlm.nih.gov/pubmed/29934920
https://www.learndatasci.com/tutorials/convolutional-neural-networks-image-classification
https://www.learndatasci.com/tutorials/convolutional-neural-networks-image-classification
https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/
https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/
https://hany-ouf.blogspot.com/2020/08/maxpooling-vs-minpooling-vs-average.html
https://hany-ouf.blogspot.com/2020/08/maxpooling-vs-minpooling-vs-average.html
https://uk.mathworks.com/help/deeplearning/ref/nnet.cnn.trainingoptionssgdm.html
https://uk.mathworks.com/help/deeplearning/ref/nnet.cnn.trainingoptionssgdm.html
https://www.mathworks.com/help/deeplearning/ug/deep-learning-using-bayesian-optimization.html
https://www.mathworks.com/help/deeplearning/ug/deep-learning-using-bayesian-optimization.html
https://uk.mathworks.com/matlabcentral/fileexchange/52967-bees-algorithm-bea-in-matlab
https://uk.mathworks.com/matlabcentral/fileexchange/52967-bees-algorithm-bea-in-matlab

	Introduction 
	Powder Bed Fusion 
	PBF Definition and Way of Working 
	Thermodynamical Phenomena 
	Parameters 
	Open Issues 
	Gas Porosity 
	Keyhole Porosity 
	Lack of Fusion Porosity 

	State of the Art Studies 

	Artificial Porosity Images Creation for SLM Parts 
	Establishing Regression Equations 
	Generating Pores Numbers and Diameters 
	Creating 3D Cubes 
	Slicing 3D Cubes into 2D Images 
	Labelling 2D Slices 
	Adding Noisy Background 
	Measuring the Similarity between Artificial and Real Porosity Images 
	Study Limitations 

	Predicting the Porosity in Selective Laser Melting Parts 
	Predicting the Porosity Using Image Binarization 
	Predicting the Porosity Using RCNN and BA-RCNN 
	RCNN and BA-RCNN Architecture 
	RCNN and BA-RCNN Results 


	Conclusions 
	References

