Nitrogen Doped Graphene Supported Mixed Metal Sulfide Photocatalyst for High Production of Hydrogen Using Natural Solar Light

Daniel Arulraj Abraham, Aswathy Rajan, M.D Dhileepan, Masakazu Anpo, Bernaurdshaw Neppolian

PII: S0920-5861(22)00471-0
Reference: CATTOD13971

To appear in: Catalysis Today

Received date: 23 September 2022
Revised date: 24 November 2022
Accepted date: 7 December 2022

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier.
Nitrogen Doped Graphene Supported Mixed Metal Sulfide Photocatalyst for High Production of Hydrogen Using Natural Solar Light

Daniel Arulraj Abrahama, Aswathy Rajanb, M.D. Dhileepanc, Masakazu Anpod,e, Bernaudshaw Neppolianb,*

a School of Engineering, Cardiff University, Cardiff, United Kingdom.
b Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
c Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
d Department of Applied Chemistry Graduate School of Engineering, Osaka Prefecture University (now, Osaka Metropolitan University), Sakai, Osaka 599-8531, Japan
e State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
* Corresponding authors - neppolib@srmist.edu.in

Abstract

We have developed a strategy to prevent the photo-corrosion of cadmium sulfide nanorods (CdSNRs) by coating them with cerium sulfide (Ce\textsubscript{2}S\textsubscript{3}) as co-catalyst and N-doped Graphene (NG) for a solar light-driven H\textsubscript{2} production application. The uniform deposition and coating of Ce\textsubscript{2}S\textsubscript{3} and NG over the CdSNRs were confirmed by both FESEM and HRTEM analyses. The incorporation of Ce\textsubscript{2}S\textsubscript{3} and NG into CdSNRs not only increased its stability but also extended its absorption in visible and NIR regions. As a result, the prepared CdSNRs/Ce\textsubscript{2}S\textsubscript{3} photocatalysts produced \sim16,181 μmol h-1 g-1 of H\textsubscript{2} under solar light irradiation, which was \sim 10 times higher than the pure CdSNRs. Interestingly, N atom doped graphene-supported CdSNRs/Ce\textsubscript{2}S\textsubscript{3} photocatalysts has shown a paramount effect on the H\textsubscript{2} production by 24 times higher compared to bare CdSNRs (35,946 μmol h-1 g-1). In addition, the NG-CdSNRs/Ce\textsubscript{2}S\textsubscript{3} photocatalysts
exhibited high stability up to 5 continuous cycles. The high stability was achieved due to the covering of CdSNRs by Ce$_2$S$_3$ and NG, which may effectively prevent the leaching out of S$^{2-}$ ions from CdSNRs. On the other hand, the NG played a dual role by preventing the photocorrosion and also improving the charge carrier separation as evidenced by the PL, TRPL, and Impedance studies. The present work may open a new direction in designing a highly photostable metal sulfide photocatalyst for energy conversion applications in aqueous medium.

Keywords: Photocatalyst, CdS-Ce$_2$S$_3$, N doped Graphene, Hydrogen production, Solar light

1. Introduction

Currently, 95% of the industrial scale H$_2$ is produced from fossil fuels, and most of it is via the steam methane reforming (SMR) method. However, SMR is a complex and costly method and it produces carbon dioxide as a by-product along with H$_2$. On the other hand, H$_2$ production via solar water splitting (SWS) and biomass reforming is considered a clean, sustainable, and environmentally friendly energy carrier to replace fossil fuels[1,2]. The SWS method is simple in design, cost-effective, and produces no CO$_2$ emissions. Water and sunlight are copious and renewable resources on earth and hence, the photocatalytic splitting of water is one of the most promising methods to produce H$_2$ [3]. Semiconducting photocatalysts are low-cost and provide adjustable energy band gap for solar light absorption [4].

Since Honda and Fujishima discovered the sensitizing effect of TiO$_2$ semiconductor electrode in the electrochemical photolysis of water with Pt counter electrode in 1972 [5], several semiconductors such as TiO$_2$, ZnO, and CdS have been applied to study the photocatalytic splitting of water to produce H$_2$ [6]. Most of the well-known photocatalysts are wide band gap
semiconductors and can only be excited by UV light irradiation, which accounts for only ~4 % of solar energy [7, 8]. Therefore, narrow band gap visible light active photocatalysts are essential to utilize photons energy in the visible region, which is ~46% of solar energy reaching on earth’s surface. Modak et al [9] reported photocatalytic H₂ production from water by using Pt-loaded 9,9’-spirobifluorene based-conjugated microporous polymer (Pt/COP-3). Here H₂ was produced by the photocatalyst under visible light irradiation in the presence of triethanolamine (TEOA) as a sacrificial agent. Transition metal dichalcogenides such as metal sulfides and metal selenides are widely used in several applications like catalysts, H₂ production, energy storage, etc. Singh et al [10] suggested MoS₂ has been used as a photocatalyst for H₂ production and CO₂ photoreduction.

Among the numerous visible light active photocatalysts, Cadmium sulfate (CdS) is considered an excellent visible light active semiconducting photocatalyst for solar energy conversion applications due to its appropriate redox potentials and visible light active energy band gap (2.4 eV). CdS produce H₂ because its conduction band edge potential is more negative than the water reduction potential w.r.t. Normalized hydrogen electrode (NHE) [11]. However, it suffers from photo-corrosion and shows instability during the catalytic reaction because of S²⁻ oxidation by photogenerated holes and leaching out of Cd²⁺ ion [12]. Several strategies such as removing the oxygen from the photocatalytic system, use of perfluorodecalin, and anti-photo corrosion layer (Al₂O₃, Cr₂O₃, etc.) have been adopted in the past to overcome these challenges with partial success [13].
Herein, we have used a novel strategy to inhibit S^{2-} oxidation and Cd^{2+} leaching by incorporating N-doped Graphene (NG) as supporting material and Ce_2S_3 as the co-catalyst. CdSNRs covered by NG and Ce_2S_3 nanoparticles have also been applied to realize a high photoelectrochemical performance from ultraviolet to NIR with photocurrent enhancement. The NG provides a large surface area, excellent conductivity, high catalytic sites, and tunable electronic properties [14]. Previous studies such as by Li et al have also reported that NG/CdS can retard the recombination of photoelectron-hole pair and improves photocatalytic H$_2$ production [15]. However, there has been no report on Ce_2S_3 works as a co-catalyst and extends the absorption to NIR light, which correlated to enhancing the photocatalytic performance of CdS-based nanostructure, particularly for H$_2$ production. In this study, a photocatalyst consisting of nanoscale NG-CdSNRs/Ce_2S_3 heterostructures were successfully fabricated and characterized by various techniques. The structural and optical properties of photocatalysts were characterized by FESEM, HRTEM, and UV-visible-NIR spectrophotometry. The chemical composition and oxidation state of the photocatalysts were studied in detail. The photophysical properties were further determined by photoelectrochemical measurements, and the light-harvesting properties were correlated with the observed photocatalytic performance, which indicates that Ce_2S_3 is an efficient cocatalyst for H$_2$ production in water under solar light irradiation.

2. Experimental section

2.1. Materials

All chemicals and reagents were of analytical grade and used without further purification. Cadmium chloride monohydrate, cerium III nitrate hexahydrate, ethylenediamine ($H_2NCH_2CH_2NH_2$, 99.0%), thiourea (CH_4N_2S, 99.0%), sodium sulfite (Na_2SO_3) anhydrous were
purchased from Sigma Aldrich. Citric acid, ethanol, and sodium sulfide nonahydrate flakes (Na₂S·9H₂O, ≥98.0%) were obtained from Rankem, India. Graphite powder (purity 99.9995%) and urea were purchased from Alpha Aesar.

2.2. Synthesis of CdSNRs

CdS nanorods (CdSNRs) were synthesized by using a simple solvothermal method. Briefly, the cadmium chloride monohydrate was dissolved into 60 mL of ethylenediamine solution. Then, thiourea was added to the above solution and stirred for 5 min. The reaction mixture was transferred into a Teflon-lined autoclave, sealed, and maintained at 160 °C for 48 h in a muffle furnace. After it is allowed to cool at room temperature, the obtained yellow product was washed with distilled water and ethanol several times. Then, the catalyst was dried at 70 °C overnight in an oven.

2.3. Synthesis of CdSNRs/Ce₂S₃ nanocomposite

For the synthesis of CdSNRs/0.1M Ce₂S₃ photocatalyst, 50 mg of CdSNRs and 20 mg of citric acid were initially dissolved in 25 mL distilled water followed by sonication for 15 min. The resulting solution was maintained at 45 °C for 2h with constant stirring. The cerium III nitrate (0.1M) and Na₂S (0.1M) were added to the reaction solution and again stirred for 1h. Finally, the CdSNRs/0.1M Ce₂S₃ catalyst was washed with distilled water and ethanol several times. The obtained CdSNRs/0.1M Ce₂S₃ catalyst was then dried at 70 °C overnight. Similarly, the CdSNRs/0.5M Ce₂S₃, CdSNRs/1.0M Ce₂S₃, CdSNRs/1.25M Ce₂S₃ and Ce₂S₃ (without CdS) photocatalysts were synthesized for H₂ production.
2.4. Synthesis of NG-CdS/Ce$_2$S$_3$ photocatalysts

The graphene oxide was prepared from graphite powder (99%) according to the modified Hummers’ method. N-doped graphene was prepared by the hydrothermal method. In this process, 120 mg of graphene oxide was dispersed in 70 ml distilled water and then 500 mg of urea was added to the dispersed solution followed by sonication for 2 h. The final solution was kept in a 100 ml Teflon-lined autoclave, heated, and maintained at 180 °C for 12 h. The obtained NG was collected and then, washed with distilled water/ethanol several times, and dried at 70 °C under in the oven. The synthesis of NG-CdSNRs/Ce$_2$S$_3$, different weight ratios (1%, 2%, 3%, 4%) of N-doped graphene, 50 mg of CdSNRs, and 20 mg of citric acid were dissolved in 25 ml distilled water followed by sonication for 15 min. The resulting solution was maintained at 45 °C for 2 h with constant stirring. The cerium (III) nitrate solution (0.5M) and Na$_2$S solution (0.5M) were added to the reaction solution and stirred for 1 h. Finally, the NG-CdSNRs/0.5MCe$_2$S$_3$ catalyst was washed with distilled water and ethanol several times. The obtained CdSNRs/0.5MCe$_2$S$_3$ catalyst was then dried at 70 °C overnight.

2.5. Characterisation Studies

Morphology of CdSNRs, CdSNRs/Ce$_2$S$_3$, and NG-CdSNRs/Ce$_2$S$_3$ photocatalysts was observed with a Field-emission scanning electron microscope (FEI Quanta FEG 200 HR-SEM) and HRTEM (Philips Tecnai 20U-Twin microscope at an acceleration voltage of 200 kV used for capture for HRTEM images). UV-vis diffuse reflection spectroscopy (DRS) was performed by Shimadzu UV-2600 UV-Vis spectrometer. XRD patterns were recorded by X-ray diffractometer (PANalytical X’pert powder diffractometer) using Cu Kα radiation. The chemical states of the catalysts were obtained from X-ray photoelectron spectroscopy (XPS). Which was performed by using a PHI Quantera II XPS spectrometer equipped with a monochromatic Al Kα.
X-ray source (hv = 1486.6 eV) Photoelectrochemical studies were carried out by using a Biologic electrochemical workstation (SP-150). A 300WSS–EM Solar simulator was used as the light source for photocurrent measurements. The time-resolved photoluminescence (TRPL) spectra were performed HORIBA FLUORO LOG@3. Electrochemical impedance spectral analysis was carried out by using a Biologic electrochemical workstation (SP-150) in 5mM K₄[Fe(CN)₆]³⁺ 0.1M KCl solution at open-circuit voltage over a frequency range from 10⁵ to 10⁻¹ Hz with an AC voltage at 10 mV. The Mott–Schottky plots were carried out by the CH instrument electrochemical analyzer at a constant frequency (1Hz).

2.6. Photocatalytic activity measurement of NG-CdSNRs/Ce₂S₃

The photocatalytic activity of the NG-CdSNRs/Ce₂S₃ was evaluated by measuring H₂ production under natural solar light. The photocatalyst was dispersed in 50 ml of the sacrificial agent (Na₂S/Na₂SO₃ aqueous solution). Initially, nitrogen gas was purged through the glass reactor cell for 30 min to remove air under dark conditions. The H₂ production was monitored by Shimadzu GC-2014 gas chromatography and nitrogen gas was used as carrier gas. Solar to hydrogen (STH) conversion efficiency is one of the main factors to estimate the efficiency in water splitting given as follows,

\[
\text{STH} = \frac{\text{Output energy of hydrogen}}{\text{Incident solar light energy}}
\]
3. Results and Discussion

3.1. Surface Morphological Studies

The morphology of synthesized CdSNRs, CdSNRs/Ce\textsubscript{2}S\textsubscript{3}, and NG-CdSNRs/Ce\textsubscript{2}S\textsubscript{3} catalysts was observed by FESEM and HRTEM (Fig. 1). FESEM and TEM images of CdS (Fig. 1a and 1c) display nanorods shape (1D) with an average diameter of ~50 nm and length of 0.5-1.2 μm. Fig 1b, 1f, and 1h show the uniform doping of CdS photocatalyst over the support. These images also represented the uniform deposition and coating of Ce\textsubscript{2}S\textsubscript{3} and NG over the surface of CdSNRs (Fig1b, 1f, 1g). The Ce\textsubscript{2}S\textsubscript{3} co-catalyst formed as nanoparticles (Fig. 1d, 1e) with an average size of 3 nm. Figures 1f, 1g, and 1h show that the Ce\textsubscript{2}S\textsubscript{3} nanoparticles [16] are encapsulated onto the nanorods of NG-CdSNRs/Ce\textsubscript{2}S\textsubscript{3} heterostructure and clouds of nanoparticles are occupying the nanorods. It may have occurred due to the strain effect of two different sizes of metals and the ligand effect arises between the surface of CdSNRs and the Ce\textsubscript{2}S\textsubscript{3} cocatalyst. A similar observation was reported by Nakibli et al [17] with cadmium selenide (CdSe) quantum dot embedded with CdSNRs [17]. HRTEM images shown in Fig. 1i present the resolved lattice fringes of CdSNRs with a lattice spacing of 0.35 nm, which is consistent with the d-spacing value for (002) plane of hexagonal CdSNRs [18]. The lattice fringes of Ce\textsubscript{2}S\textsubscript{3} with a spacing of 0.32 nm (031 planes) [16] are shown in Fig. 1j.
Figure 1. The FESEM & TEM images of CdSNRs (a, c) and FESEM images of 3%NG-CdSNRs/Ce$_2$S$_3$ sample (b). TEM image of Ce$_2$S$_3$ nanoparticles (d, e), and 3% NG-CdSNRs/Ce$_2$S$_3$ sample (f, g); HRTEM images of 3%NG-CdSNRs/Ce$_2$S$_3$ sample (h, i, j).

3.2. Structural analysis

XRD patterns of pure CdSNRs, Ce$_2$S$_3$, CdSNRs/Ce$_2$S$_3$, and NG-CdSNRs/Ce$_2$S$_3$ catalysts are shown in Fig. 2. The XRD pattern of the pure CdSNRs shows a highly crystalline hexagonal phase (JCPDS card no. 41-1049) [19] with lattice constants of $a = 4.140$ Å and $c = 6.719$ Å. It
can be seen that after the incorporation of 0.25M Ce$_2$S$_3$ in CdSNRs, the XRD peak intensity of CdSNRs substantially reduced and further increased the Ce$_2$S$_3$ content to 0.5M, and most of the peaks of CdSNRs disappeared. This suggests that Ce$_2$S$_3$ covered the CdSNRs surface. Moreover, with the presence of NG in the composites, the diffraction peak intensity of CdSNRs further reduces (Fig. S1) [20]. From the results (Fig 1, 2), it is considered that CdSNRs are encapsulated by Ce$_2$S$_3$ and NG, successfully preventing photo corrosion.

Figure 2. XRD patterns of the CdSNRs, CdSNRs/Ce$_2$S$_3$ and 3%NG-CdSNRs/Ce$_2$S$_3$ samples

3.3. XPS analysis

Figure 3 (g) shows that the XPS survey scan of the synthesized NG-CdSNRs/Ce$_2$S$_3$ catalyst and the presence of Cd (3d), S (2p), Ce (3d, 4d), N1s, and C (1s) elements in the photocatalysts. The binding energy of C1s peaks in Fig. 3 (a, b) at 284.6, 285.8, 286.4, 287.1, 288.5 and 289.1 eV correspond to the sp2-hybridized carbon (C−C), C-OH, epoxy/ hydroxyl carbon (C−O), carbonyl (C=O), C=C and carboxyl (COOH) functional groups, respectively [21].

Compared to CdSNRs/Ce₂S₃, the XPS peak intensities of C-OH (285.8 eV), C-O (286.4 eV), and COOH (290.0 eV) were found to be slightly reduced, and the peak intensity of C=C enhanced in XPS spectra of NG-CdSNRs/Ce₂S₃. An additional peak at 286.6 eV corresponds to the C−N bond due to the incorporation of NG with CdSNRs/Ce₂S₃. Fig. 3 (e) shows the XPS spectra of N 1s in the as-synthesized NG-CdSNRs/Ce₂S₃. The five types of nitrogen can be indicated in the deconvoluted high-resolution N1s spectra consisting of aromatic N-imines (397.7 eV), pyrrolic-N (398.9 eV), pyridinic-N (400.1 eV), quaternary N (401.3 eV) and oxidized nitrogen (403.1 eV) [22,23]. Similarly, the surface coverage of NG-CdSNRs/Ce₂S₃ displays 17% of aromatic N-imines, 41% of pyrrolic-N, 20 % of pyridinic-N, 12% of quaternary N, and 10 % of oxidized nitrogen.

As shown in Fig. 3 (c), the characteristic peaks of Cd 3d₅/₂ and Cd 3d₃/₂ at 405.04 and 411.76 eV indicates that cadmium is present in the Cd²⁺ state [24]. The S 2p₃/₂ and S 2p₁/₂ peaks of the CdSNRs were observed at 161.0 and 162.9 eV (Fig. 3d), respectively. Therefore, revealing that sulfide is present in the CdSNRs instead of the sulfur element [25]. Figure 3(f) shows the Ce⁴⁺ binding energy states of 3d₅/₂ & 3d₃/₂ at 898.7, 916.9, and Ce³⁺ states of 3d₅/₂ & 3d₃/₂ at 884.7 eV and 906.2 eV, respectively for CdSNRs/Ce₂S₃ photocatalysts. Compared to CdSNRs/Ce₂S₃, the XPS spectra of Ce 3d in NG-CdSNRs/Ce₂S₃ show peaks shift with the 3d₅/₂ and 3d₃/₂ peaks appearing at 898.0 eV and 916.5 eV for Ce⁴⁺ state, respectively [25,26], and for Ce³⁺ state at 884.0 eV, 905.6 eV, respectively. The lower binding energy shift of Ce 3d peaks occurs because of the presence of a lower electronegative nitrogen atom in NG-CdSNRs/Ce₂S₃, which enhances the electron cloud around the Ce cation [27,28]. The concentration % of Ce³⁺ was measured by using the integrated peak area of Ce³⁺ and the total peak area of Ce 3d spectral data. From the measurement (Fig. S2), the Ce³⁺ concentration in the CdSNRs/Ce₂S₃ and NG-CdSNRs/Ce₂S₃ are
~ 10.20 % and 20.13 % respectively. % Of Ce$^{3+}$ is higher in NG-CdSNRs/Ce$_2$S$_3$ than CdSNRs/Ce$_2$S$_3$, which represents the higher the oxygen vacancies in NG-CdSNRs/Ce$_2$S$_3$. Therefore, it delivers higher catalytic activity. The high % of Ce$^{3+}$ may arise from the charge transfer between the NG and CdSNRs.

Figure 3. The C1s XPS spectra of (a) CdSNRs/Ce$_2$S$_3$, (b) 3% NG-CdSNRs/Ce$_2$S$_3$ samples; (c) Cd 3d spectra of CdSNRs/Ce$_2$S$_3$ and 3% NG-CdSNRs/Ce$_2$S$_3$; (d) S 2p spectrum, (e) N1s spectrum, (f) Ce$^{4+}$ spectra, and (g) the survey spectrum of the 3% NG-CdSNRs/Ce$_2$S$_3$ samples, respectively.
3.4. Optical characterization

The UV-vis absorbance spectrum of the CdSNRs and CdSNRs/Ce$_2$S$_3$ (0.25M, 0.50M, 0.75M, 1.00M) and (1%, 2%, 3%, 4%) of NG-CdSNRs/Ce$_2$S$_3$ photocatalysts is shown in Figs. S3 and S4. The CdSNRs showed a band gap of 2.35 eV, which is following the reported value of CdS [29,30]. The visible light absorption (550-900nm) of pure CdSNRs gradually increased with increasing the amount of Ce$_2$S$_3$ to 0.5M on the CdSNRs after which it decreased. One important observation is that after Ce$_2$S$_3$ coating on the CdSNRs surface, the absorption of CdSNRs/Ce$_2$S$_3$ catalyst increased both in the UV and visible regions and the color of the catalyst turned to greenish-yellow from yellow for CdSNRs [31,32]. The absorption edge of NGCdSNRs/Ce$_2$S$_3$ photocatalyst was at ~573 nm with a band gap energy of 2.25 eV (Fig. 4B). This is slightly red-shifted from the band edge of pure Ce$_2$S$_3$ as shown in Fig. 4A, suggesting that the coupling of CdSNRs with Ce$_2$S$_3$ nanoparticles can increase the light absorption capacity of pure Ce$_2$S$_3$ and enhance the absorption of visible light. Similarly, the incorporation of NG with the photocatalyst shifted the band edge, it is clear evidence that NG not only is solid support but also interacts with metal, which increases the charge carrier separation and transfer. NG-modified CdSNRs/Ce$_2$S$_3$ photocatalyst has wide light absorption from UV to visible light, which is crucial for photocatalytic activity. The absorption enhancement of the NG-CdSNRs/Ce$_2$S$_3$ photocatalyst in the visible region can be considered as the synergistic effect of the NG and CdSNRs/Ce$_2$S$_3$. This result is consistent with the XPS spectra and can be described in terms of the hybridization of CdSNRs/Ce$_2$S$_3$ with NG [33,34].

The charge separation efficiency of the synthesized photocatalysts was evaluated by photoluminescence (PL) spectra at an excitation wavelength of 380 nm, as presented in Fig. S5. After the introduction of Ce$_2$S$_3$, the PL intensity of CdSNRs/Ce$_2$S$_3$ is remarkably lower than that
of CdSNRs due to the charge carrier transformation between CdSNRs and Ce$_2$S$_3$. When the dispersion of NG on the surface of the photocatalyst, the PL intensity significantly decreased. The peak intensity of NG-CdSNRs/Ce$_2$S$_3$ was lower than that of the CdSNRs/Ce$_2$S$_3$ and pure CdSNRs due to the synergistic effect of the NG and CdSNRs/Ce$_2$S$_3$. This confirmed that the photogenerated charge separation efficiency of NG-CdSNRs/Ce$_2$S$_3$ was better than the CdSNRs/Ce$_2$S$_3$ and CdSNRs. PL results also indicate that the while using NG could prevent the electron-hole pair recombination during the catalytic reaction. Furthermore, TRPL measurements were carried out and the decay spectra indicate the relocation of photogenerated charge carriers of the synthesized photocatalysts (Fig. S6). NG-CdSNRs/Ce$_2$S$_3$ and CdSNRs/Ce$_2$S$_3$ catalysts showed a longer lifetime of 0.139 ns and 0.132 ns compared with that of 0.126 ns for CdSNRs (Fig. S6). These results confirmed that the electron-hole pair effectively separated in the NG composites compared with pure CdSNRs and CdSNRs/Ce$_2$S$_3$ because of the synergistic effect of the NG and CdSNRs/Ce$_2$S$_3$. Due to the presence of NG, the efficient charge transfer and separation process occurs at the NG composite, which led to improved photocatalytic H$_2$ production compared with CdSNRs.
Figure 4. (A) Comparison of UV-Vis absorbance spectra of CdSNRs, CdSNRs/\(\text{Ce}_2\text{S}_3\), 3% NG-CdSNRs/\(\text{Ce}_2\text{S}_3\) and \(\text{Ce}_2\text{S}_3\) nanocatalysts. (B) Plots of the \((\alpha E_g)^2\) vs. \(E_g\) (eV) for synthesized photocatalyst

3.5. Electrochemical performance

The charge transfer process of the photocatalysts was further studied by the electrochemical impedance spectral analysis (EIS) method (Fig. 5 a). Generally, the diameter of the semicircle is equal to the charge transfer resistance (Rct) of the photocatalysts [35, 36], and Rct values of pure CdSNRs, CdSNRs/\(\text{Ce}_2\text{S}_3\), NG-CdSNRs/\(\text{Ce}_2\text{S}_3\) were 357, 220 and 182 \(\Omega\), respectively. The results show that the charge transfer resistance of the NG-CdSNRs/\(\text{Ce}_2\text{S}_3\) is less than the pure CdSNRs and CdSNRs/\(\text{Ce}_2\text{S}_3\) (0.5M), owing to the presence of N atom doped graphene in the nanocomposite, demonstrating its superior electronic conductivity [37]. The NG in NG-CdSNRs/\(\text{Ce}_2\text{S}_3\) acts as an effective electron collector and prevents charge recombination. Therefore, these photocatalysts effectively may be expected to produce a huge amount of \(\text{H}_2\).
Additionally, the capacitance of modified electrodes [CdSNRs, CdSNRs/Ce$_2$S$_3$, NG-CdSNRs/Ce$_2$S$_3$] was measured in the three-electrode cell (potential range from 0.2 V to -0.85 V) by Mott-Schottky experiments. Based on these capacitance results, the flat band potential of the modified electrodes is calculated by using the following equation [38,39].

\[
N_d = \frac{2}{e_0 \varepsilon_0} \int \frac{1}{C^2} \, dV
\]

where, the electron charge (e_0), relative permittivity (ε), and vacuum permittivity are 1.602×10^{-19} C, 48 and 8.854×10^{12} F m$^{-1}$, respectively. N_d and V are donor density and applied bias at the electrode. Fig. 5 (b, c, d, e) shows that the photocatalysts exhibit a positive slope in the Mott-Schottky plots indicating that they are n-type semiconductors. The N_d value was measured from the slope of Mott–Schottky plots and the flat band potential value was determined by extrapolation to a capacitance of zero. The calculated donor density and flat band potential (V_{FB}) values of CdSNRs, CdSNRs/Ce$_2$S$_3$, NG-CdSNRs/Ce$_2$S$_3$ are 7.610×10^{13}, 1.3759×10^{16}, 2.020×10^{16} cm$^{-3}$ and -0.89V, -1.02V, -1.11V, respectively. These results indicate that NG-CdSNRs/Ce$_2$S$_3$ photocatalyst has a higher donor density than the CdSNRs/Ce$_2$S$_3$ and CdSNRs. The higher donor density of NG-CdSNRs/Ce$_2$S$_3$, when combined with PL, TRPL, and impedance spectra suggest efficient charge carrier transfer than CdSNRs/Ce$_2$S$_3$ and CdSNRs [40,41].

Generally, the conduction band (CB) edge potential of an n-type semiconductor is more negative (~0.10V) than the flat band potential [42,43]. Hence, the CB of CdSNRs, CdSNRs/Ce$_2$S$_3$ and NG-CdSNRs/Ce$_2$S$_3$ were calculate to be -0.791V, -0.920V and -1.011V vs. NHE, respectively. These potentials are more negative than the proton reduction potential (-0.41 V vs. NHE at pH = 7); therefore, NG-CdSNRs/Ce$_2$S$_3$ photocatalyst provides a much higher over-potential to reduce protons to produce H$_2$ from aqueous solution compared to CdSNRs/Ce$_2$S$_3$ and
CdSNRs. The E_{VB} values of CdSNRs, CdSNRs/Ce$_2$S$_3$, NG-CdSNRs/Ce$_2$S$_3$ were calculated to be 1.559V, 1.390V, 1.239V, respectively by following the equation $E_{CB} = E_{VB} - E_g$ [44]. These values are more positive than the redox potential of O$_2$/H$_2$O (0.82 V vs. NHE at pH = 7) [45–47].

To understand the charge transfer dynamics, a three-electrode electrochemical setup was used to measure photocurrent response. Figure 5 (f) shows the transient photocurrent responses of CdSNRs, CdSNRs/Ce$_2$S$_3$, and NG-CdSNRs/Ce$_2$S$_3$. The higher transient photocurrent response shown by NG-CdSNRs/Ce$_2$S$_3$ resulted from interface junction formation between CdSNRs and Ce$_2$S$_3$ and the high conductivity of N-doped graphene.

Figure 5 (a) Electrochemical impedance spectra of as-prepared CdSNRs, CdSNRs/ Ce$_2$S$_3$ and NG-CdSNRs/Ce$_2$S$_3$ photocatalysts; Mott-Schottky plots of (b) CdSNRs, (c) CdSNRs/Ce$_2$S$_3$, (d) NG-CdSNRs/Ce$_2$S$_3$ and (e) Ce$_2$S$_3$, and (f) photocurrent measurements of NG-CdSNRs/Ce$_2$S$_3$ photocatalysts
3.6. Solar light-driven H$_2$ production

The synthesized photocatalysts, CdSNRs, CdSNRs/Ce$_2$S$_3$, and NG-CdSNRs/Ce$_2$S$_3$ were used for H$_2$ production reaction with Na$_2$S/Na$_2$SO$_3$ as a sacrificial reagent under natural solar light irradiation. Figure 6 (a) shows the photocatalytic activities of Ce$_2$S$_3$ coated on CdSNRs for H$_2$ production. The bare CdSNRs produced only 1498 µmol h$^{-1}$ g$^{-1}$ of H$_2$ due to the rapid charge recombination rate [48] and the Ce$_2$S$_3$ generated a negligible amount of H$_2$. However, when CdSNRs were covered with 0.25M to 0.50M Ce$_2$S$_3$ nanoparticles, the hydrogen production rate also increased and reached a maximum of 16,181 µmol h$^{-1}$ g$^{-1}$, which is ~ 10 times higher than the pure CdSNRs. The order of photocatalytic activity on different catalysts is CdSNRs/0.5M Ce$_2$S$_3$ > CdSNRs/0.75M Ce$_2$S$_3$ > CdSNRs/0.25M Ce$_2$S$_3$ > CdSNRs/1.0M Ce$_2$S$_3$ > CdSNRs/1.25M Ce$_2$S$_3$ > CdSNRs > 0.5M Ce$_2$S$_3$. As expected, the rate of H$_2$ production of CdSNRs/Ce$_2$S$_3$ is sharply enhanced due to the Ce$_2$S$_3$ coated on CdSNRs, indicating Ce$_2$S$_3$ performs very well as a co-catalyst [49–51].

Further increasing the amount of Ce$_2$S$_3$ in the catalyst from 0.50M (optimum level) to 1.25M, the rate of H$_2$ production (3189 µmol h$^{-1}$ g$^{-1}$) decreased. Higher Ce$_2$S$_3$ amount in CdSNRs acts as a blocking layer for solar light absorption and leads to lower hydrogen production [52,53]. The higher hydrogen production shown by CdSNRs/Ce$_2$S$_3$ is in correlation with its improved visible light absorption and improved charge separation efficiency. To the best of our knowledge, this is the first report showing that Ce$_2$S$_3$ can be used as an efficient co-catalyst for H$_2$ production under solar light irradiation.
To further enhance the H₂ production rate, NG is incorporated into the CdSNRs/Ce₂S₃ photocatalysts as shown in Fig. 6(b). The results indicate that the amount of H₂ production is remarkably increasing with respect to increasing the amount of 1% NG (16,455 µmol h⁻¹ g⁻¹) to 3% NG (35,946 µmol h⁻¹ g⁻¹). The rate of production is almost double (from 16,181 to 35,946 µmol h⁻¹ g⁻¹) when NG is incorporated with CdSNRs/Ce₂S₃. Hence, NG plays an important role in enriching the photocatalytic activity of NG-CdSNRs/Ce₂S₃. Further increasing the amount of NG (4wt%) leads to a reduced H₂ production rate (19,112 µmol h⁻¹ g⁻¹), which is due to the excess amount of NG in the photocatalysts. This may increase the light scattering and also decrease the absorption of light by the photocatalyst [54,55]. These results are correlated to the UV-vis absorption spectra of different loading of NG in the nanocomposite [3% NG-CdSNRs/Ce₂S₃ given higher absorbance] (Fig. S4).

The excessive NG causes a shielding effect on the active sites present on the surface of photocatalysts and reduces the number of photo-generated electrons on the CdSNRs and photocatalytic reaction sites, respectively [56,57]. Here, 3% NG incorporated with CdSNRs/Ce₂S₃ is taken as an optimum level for the highest H₂ production (35946 µmol h⁻¹ g⁻¹), which is about 2 times higher than CdSNRs/0.5M Ce₂S₃ (16181 µmol h⁻¹ g⁻¹) and ~24 times higher than bare CdSNRs, indicating that synergistic effect arises between the NG and CdSNRs/Ce₂S₃ photocatalysts.

The prepared photocatalyst has shown high H₂ production compared to the previously reported catalysts as compared in Table S1. The Solar to hydrogen (STH) efficiency of 1.29% was achieved with the as-prepared photocatalyst under solar light irradiation. These results indicate that the synthesized catalysts are efficient catalysts for solar light-driven H₂ production. This is further confirmed by a video taken during the H₂ production of the photocatalyst, a large
number of bubbles were frequently generated upon solar light irradiation in a glass cell filled with NG-CdSNRs/Ce$_2$S$_3$ photocatalyst. The enhancement of photocatalytic activities of NG-CdSNRs/Ce$_2$S$_3$ is due to the presence of N atom doped graphene that increases the surface area of photocatalysts compared to CdSNRs/Ce$_2$S$_3$ and CdSNRs alone.

The stability of NG-CdSNRs/Ce$_2$S$_3$ photocatalysts was quantified with Na$_2$S/Na$_2$SO$_3$ sacrificial solution under simulated sunlight. The reaction system was evacuated to remove the evolved H$_2$ inside the glass reactor for every cycle. The same method was performed for 5 repeated cycles. There is negligible change in the reproduction of H$_2$ for NG-CdSNRs/Ce$_2$S$_3$ photocatalysts as shown in Fig. 6(c), indicating that prepared catalysts are more stable for H$_2$ production. TEM images and XRD data are also supporting that due to the coating of Ce$_2$S$_3$ cocatalyst on the CdSNRs, photo-corrosion of CdSNRs is retarded. Therefore, the hybrid NG-CdSNRs/Ce$_2$S$_3$ becomes highly stable.
Figure 6 Photocatalytic H\textsubscript{2} production rate of (a) CdSNRs/Ce\textsubscript{2}S\textsubscript{3} (0.25, 0.50, 0.75, 1.00, 1.25M) samples, (b) CdSNRs, CdSNRs/0.5MCe\textsubscript{2}S\textsubscript{3}, 1, 2, 3 and 4% NG-CdSNRs/Ce\textsubscript{2}S\textsubscript{3} samples under sunlight irradiation, (c) Reusability reaction of NG-CdSNRs/Ce\textsubscript{2}S\textsubscript{3} sample under sunlight irradiation, and (d) the proposed photocatalytic H\textsubscript{2} production mechanism.

A proposed photocatalytic mechanism was proposed based on the obtained experimental data for photocatalytic H\textsubscript{2} production as given in Fig. 6(d). The CB potential of Ce\textsubscript{2}S\textsubscript{3} samples is more negative (-1.271 V vs NHE) than the CB of pure CdSNRs (-0.791V vs NHE), So that, the transfer of the photo-induced electrons from Ce\textsubscript{2}S\textsubscript{3} to CdSNRs is easily feasible at the interfaces. Additionally, photo-induced electrons are excited from VB to CB of CdSNRs during solar light irradiation. Hence, the numbers of photoelectrons are increased in the CB of CdSNRs, these CB
electrons in the CdSNRs have transferred via N-doped graphene (NG) in the catalysts. The NG is used as an electron conductor to improve the electron-hole pair separation and leave more charge carriers for effective H₂ production [58–61]. These photo-induced electrons are easily reduced by the protons present in the aqueous solution to produce H₂. At the same time, the transfers of photo-generated holes are trapped on the surface of Ce₂S₃ and lead to the anions (sulfide and sulfite ions) that induce the oxidation reaction.

3.7. Importance of sacrificial reagents

The main drawback of water splitting by a photocatalyst is that the process employing pure water is generally inefficient, and correlated to the oxidation and reduction reaction of water at the same time (in multistep reaction). The sacrificial reagents have been used as electron donors and holes scavenger for enhancing H₂ production [62]. In this work, S²⁻ ions and SO₃²⁻ ions can act as inorganic sacrificial reagents instead of alcohols because it is more easily oxidizable than the alcohols for H₂ production. It can accept holes and easily separate the electron-hole pair [63–65]. The usage of S²⁻ ions is an advantage for the production of H₂ using a CdS photocatalyst because the dissolved Cd²⁺ ions can interact with S²⁻ ions existing in the solution to reproduce the CdS catalyst. The general leaching of Cd²⁺ is largely prevented in this method. So that it retards the photo-corrosion of CdS and also stimulates the H₂ production through water-splitting reactions [66].

The combination of S²⁻ and SO₃²⁻ ions containing solution is useful as a sacrificial agent for superior production of H₂ from the water. When sulfide (S²⁻) ions are used alone for the production of H₂, they form disulfide (S₂²⁻) ions, which have less negative reduction potential than the protons and also minimize the absorption of light by CdSNRs [67]. Therefore, SO₃²⁻ ions are an extra addition to the reaction solution and it interacts with disulfide ions to produce
sulfide ions. According to the previous reports [68], the following reaction mechanism was discussed in the production of H₂ using NG-CdSNRs/Ce₂S₃ photocatalyst in the presence of S²⁻ and SO₃²⁻ sacrificial agents. The photons were absorbed on the surface of CdSNRs to produce the electron-hole pairs under solar light irradiation (Equation-1) discussed as follows,

\[h\nu > 420 \text{ nm} \]

\[\text{CdSNRs} + h\nu \longrightarrow h^+ + e^- \quad \text{(1)} \]

Photogenerated electrons and holes were transferred to the surface of the photocatalyst and reacted with adsorbed water molecules or these electrons undergo recombination. Initially, the water molecule is reduced by the obtained electrons in the conduction band of the catalyst to produce H₂ (Equation-2). Simultaneously, oxidization of SO₃²⁻ ions and S₂⁻ ions to produce SO₄²⁻ and S₂²⁻ ions by the obtained holes in the valance band of the photocatalyst as described by Equations-3 and 4. Then, S₂²⁻ ions again interacted with SO₃²⁻ ions to produce S₂O₃²⁻ and S²⁻ ions (Equation-5).

\[2e^- + 2H_2O \longrightarrow H_2 + 2OH^- \quad \text{-------(2)} \]

\[\text{SO}_3^{2-} + 2OH^- + 2h^+ \longrightarrow \text{SO}_4^{2-} + 2H^+ \quad \text{-------(3)} \]

\[2S^{2-} + 2h^+ \longrightarrow S_2^{2-} \quad \text{-------(4)} \]

\[S_2^{2-} + \text{SO}_3^{2-} \longrightarrow \text{S}_2\text{O}_3^{2-} + S^{2-} \quad \text{-------(5)} \]

Additional S²⁻ ions present in the solution prevent the photo-corrosion of CdSNRs and also improve the efficiency of H₂ production. Moreover, S₂O₃²⁻ ions do not interfere with protons in the reduction process.
4. Conclusion

In conclusion, we have synthesized Ce$_2$S$_3$ nanoparticles coated CdSNRs photocatalyst by the simple deposition-precipitation method and used it for a photocatalytic H$_2$ production application. When the coating of Ce$_2$S$_3$ on the surface of CdSNRs leads to the improved light absorption capacity of CdSNRs/Ce$_2$S$_3$ in the UV, Visible, and NIR regions. The photocatalytic production of H$_2$ was considerably increased in the presence of the Ce$_2$S$_3$ cocatalyst with the value of 16,181 μmol h$^{-1}$ g$^{-1}$ of H$_2$ under solar light irradiation, which is \sim 10 times higher than the pure CdSNRs. We have validated the N-doped graphene functionalized catalysts for considerable enhancement in photocatalytic H$_2$ production. At the optimal incorporation of N-doped graphene with CdSNR/Ce$_2$S$_3$, the H$_2$ production rate further enhanced is up to 35,946 μmol h$^{-1}$ g$^{-1}$, which is 24 times higher than pure CdSNRs. (1) The absorption enhancement of the NG-CdSNRs/Ce$_2$S$_3$ photocatalyst in the visible region, (2) the efficient charge separation at the interface of CdSNRs and Ce$_2$S$_3$, and (3) the presence of NG in the catalyst could prevent the electron-hole pair recombination during the photocatalytic activity were confirmed by UV-vis, PL, TRPL, and impedance studies. These synergistic effects provide better photocatalytic activity of NG-CdSNRs/Ce$_2$S$_3$ for H$_2$ production. Similarly, NG-CdSNRs/Ce$_2$S$_3$ photocatalysts showed excellent stability up to 5 continuous cycles. The higher stability was achieved due to the covering of CdSNRs by NG and Ce$_2$S$_3$ nanoparticles, which effectively separated the electrons and holes. Moreover, this work provides a new method for improving the H$_2$ production rate of CdS-based photocatalysts under solar light irradiation.”
Acknowledgments

Dr. A. Daniel Arul Raj, thanks to the Science & Engineering Research Board (SERB), New Delhi, India for providing National Postdoctoral Fellowship [PDF/2016/001209]. The authors also thank the Department of Science and Technology-Solar Energy Research Initiative (DST-SERI) [File No: DST/TM/SERI/S170(G)] for the financial support.

References:

AUTHOR CONTRIBUTION STATEMENT

Daniel Arulraj Abraham: Conceptualization, Methodology, Validation, Investigation, Data Curation, Visualization, Formal analysis, Writing – original draft

Aswathy Rajan: Investigation, Formal analysis, Writing – Review & Editing

M. D. Dhileepan: Investigation, Formal analysis, Editing

Masakazu Anpo: Validation, Formal analysis, Writing - Review & Editing

Neppolian. B: Supervision, writing – review and editing, funding acquisition, resources
Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

☐ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Graphical Abstract
Highlights

- The NG-CdSNRs/Ce$_2$S$_3$ photocatalyst was prepared by a hydrothermal route.
- The CdS is deposited and coated uniformly over Ce$_2$S$_3$ and NG.
- NG-CdSNRs/Ce$_2$S$_3$ produced photocatalytic H$_2$ production rate of 35,946 µmol h$^{-1}$g$^{-1}$.
- H$_2$ production rate of NG-CdSNRs/Ce$_2$S$_3$ catalyst is 24 times higher than pristine