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Abstract—Federated learning (FL) is a technique for dis-
tributed machine learning that enables the use of siloed
and distributed data. With FL, individual machine learning
models are trained separately and then only model param-
eters (e.g., weights in a neural network) are shared and
aggregated to create a global model, allowing data to re-
main in its original environment. While many applications
can benefit from FL, existing frameworks are incomplete,
cumbersome, and environment-dependent. To address these
issues, we present FLoX, an FL framework built on the funcX
federated serverless computing platform. FLoX decouples FL
model training/inference from infrastructure management and
thus enables users to easily deploy FL models on one or
more remote computers with a single line of Python code. We
evaluate FLoX using three benchmark datasets deployed on ten
heterogeneous and distributed compute endpoints. We show
that FLoX incurs minimal overhead, especially with respect to
the large communication overheads between endpoints for data
transfer. We show how balancing the number of samples and
epochs with respect to the capacities of participating endpoints
can significantly reduce training time with minimal reduction
in accuracy. Finally, we show that global models consistently
outperform any single model on average by 8%.

Index Terms—Federated learning, serverless, edge computing,
heterogeneous computing, computing continuum.

1. Introduction

FL is a decentralized machine learning (ML) technique
that was proposed to address privacy concerns and reduce
data communication when training ML models over dis-
tributed data. The FL paradigm aims to train a ML model
without requiring that all data be moved to a central location.
Thus, raw data owned by user devices need not be shared
or communicated [1]. This provides an immediate layer
of privacy when compared to centralized techniques where
all data are sent to a centralized location for training and
reduces communication costs as model parameters can be
significantly smaller than raw data [2]–[4].

Despite the obvious need for and benefits of FL, there
are not yet sufficiently generalizable and flexible frame-

works that can be readily adopted and used to deploy FL in
practice. As a result, most FL systems are built from scratch,
requiring developers to coordinate all aspects of FL, such as:
network communication, training on remote heterogeneous
devices, and model aggregation. Existing frameworks aim
to partially address this gap; however, they are not with-
out limitations. TensorFlow Federated [5] does not include
a public implementation of their remote execution API;
PySyft [6] supports multi-node execution but only on cloud-
hosted resources; Flower [7] enables FL experimentation
with heterogeneous devices but bases communication on a
user-managed client-server architecture.

We present a new FL framework called FLoX (Federated
Learning on funcX) that builds upon the funcX [8] federated
Function-as-a-Service (FaaS) platform. FLoX is designed on
a serverless computing framework to better support diverse
and distributed deployment environments. Serverless com-
puting abstracts device heterogeneity and provides a high-
level interface via which computation (e.g., model training
and model aggregation) can be performed irrespective of the
specific location in which it is executed.

We evaluate FLoX using three benchmark ML datasets,
with two neural network architectures, deployed over ten
heterogeneous and distributed compute resources (including
Raspberry Pi, Jetson Nano, and desktop PCs). We show
that FL training can produce models that outperform those
trained entirely at the edge while exhibiting comparable
accuracy to those trained centrally. We also demonstrate that
the overhead of FLoX is minimal. Finally, we explore meth-
ods for balancing training workloads according to resource
capacity and show that such balancing can reduce training
time while maintaining model accuracy.

This paper is organized as follows: Section 2 presents
background information about FL and serverless computing.
Section 3 presents several use cases that motivate our work.
Section 4 introduces the FLoX framework and outlines the
use of FLoX for a typical FL workflow. Section 5 demon-
strates the performance of FLoX on three different datasets
evaluating accuracy, performance, and overheads. Finally,
Section 6 summarizes and concludes our work.
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2. Background and Motivation

To contextualize our work, we describe relevant back-
ground in both FL and serverless computing. We also dif-
ferentiate our approach from other FL frameworks.

2.1. Federated Learning

An FL workflow generally consists of the following
steps: (i) the central server distributes a copy of the global
model (initially with random parameters) to client devices;
(ii) the client devices independently train their copy of the
global model on their local data; (iii) the client devices
send back the parameters from local training to the central
server; (iv) the central server aggregates the received model
parameters to update the global model (fusing what has
been learned); and (v) the loop restarts [1]. Because FL
does not rely on transferring raw data to the central server,
it is typically used in settings where locally stored data
cannot be transferred due to privacy concerns or data transfer
costs [2]. FL deployments can largely be classified into two
classes [9]: cross-device and cross-silo.

Cross-device. Cross-device FL refers to settings where
there exist a large number of low-power heterogeneous
devices (e.g., smart phones, smart wearables, edge devices,
sensors). One cross-device application of FL is training mo-
bile keyboards (e.g., Google Gboard [10], [11]) across user
devices in a federated fashion. In this way, user predicting
typing patterns is learned across all users without sharing
raw user typing data. Cross-device FL is commonly used in
edge and other IoT applications in domains, such as indus-
trial IoT, smart cities, smart healthcare, smart transportation,
and mobile crowdsensing [12]. In these settings, privacy is
sometimes a challenge but use cases also rely on FL due to
sporadic availability of devices (i.e., some devices may be
offline due to no power or poor connectivity) and diverse
hardware resources (i.e., low powered edge devices).

Cross-silo. Cross-silo FL refers to settings where there
exist several large-scale datacenters or sites (e.g., hospitals,
banks) wanting to collectively train a model on decentralized
data without revealing their own sensitive data. Concerns
regarding security and privacy are heightened in this context;
however, there is less concern regarding resource constraints
and availability. Applications of cross-silo FL are often
found in biomedical (e.g., to create brain tumor segmen-
tation models [13], mine electronic health records [14], and
develop pediatric risk models [15]) and commercial (e.g.,
to train marketing and risk management models using data
stored across multiple companies [16]) scenarios.

2.2. Federated Learning Challenges

We are motivated by the need to easily deploy FL in
heterogeneous environments. Li et al. [17] identified four
key challenges associated with cross-device FL in such
environments. Below we describe these challenges and add
a fifth, dynamic infrastructure, that is equally important.

Expensive communication. FL algorithms send only model
updates to the server, potentially reducing the data transfer
cost when compared to sending entire datasets; however,
model parameters can be large. Therefore, proper analysis
of the tradeoffs is necessary to ensure moving raw data or
model parameters off-device is not prohibitively expensive
in terms of time, energy, or bandwidth.

Systems heterogeneity. Participating devices can vary in
architecture, storage capacity, computational power, network
connectivity and more. Furthermore, participating devices
can drop out during the training process because of connec-
tivity or energy constraints. Hence, FL frameworks must be
flexible to accommodate heterogeneous devices and fault-
tolerant to accommodate failures.

Statistical heterogeneity. Devices may observe different
volumes and distributions of data depending on usage and
location. For example, a device that observes only one class
of images in its location might make non-generalizable
updates to the model. Including its updates in the global
model could harm the accuracy of devices in other locations
that observe more classes. This challenge is defined as the
problem of non-IID (independent and identically distributed)
data due to non-identical client distribution [9]. Some work
has been done in multi-task [18] and meta-learning [19],
which enable personalized and device-specific modeling to
help solve the challenge.

Privacy concerns. While FL sends only model updates
instead of the training data, malicious attackers may still
use individual model parameters to reconstruct the data [20].
A lot of work has been done in applying cryptographic
protocols (e.g., homomorphic encryption) and differential
privacy to protect the individual model updates [21]–[23].

Dynamic infrastructure. Beyond the four challenges iden-
tified by Li et al. [17] there are many infrastructural chal-
lenges that must be addressed. For example, often only a
subset of available devices participates in an FL training
round. The other devices are idle. If clients are deployed
on dedicated resources (e.g., if using cloud Infrastructure-
as-a-Service), these resources are wasted and may incur
significant costs [24]. There is a need to efficiently handle
intensive and sporadic FL workloads (e.g., when clients
are training their models and when clients return the local
model updates [5]). Finally, there are significant challenges
in deploying and configuring the infrastructure for FL, such
as deploying servers for a network of edge devices, con-
figuring network connectivity, and managing security—all
of which can be cumbersome when working with many
heterogeneous and distributed devices.

In this paper, we address these infrastructural challenges
by applying a federated serverless model, which decouples
the communication and task execution from the FL work-
flow. Our approach simplifies device setup, supports rapid
scalability based on computational necessity, and enables
sharing between users and FL models using the underlying
federated FaaS framework.
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TABLE 1: Comparison of federated learning frameworks, extended from Beutel et al. [7].

TFF PySysft FedScale LEAF Flower FedLess λ− FL FLoX

Single-node simulation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Multi-node execution * ✓ ✓ ✓ ✓ ✓ ✓
Scalability * ** ✓ ✓ ✓ ✓
Heterogeneous clients ✓ ** ✓ ✓ ✓
Language-agnostic ✓
ML framework-agnostic *** *** ✓ *** *** ***
Baselines ✓ ✓ *
Lightweight endpoints ✓ ✓ ✓ ✓ ✓
Controller-driven ✓ ✓
Serverless ✓ ✓ ✓

*: planned; **: simulated only; ***: PyTorch or TF/Keras only

2.3. Serverless Computing

Serverless computing is a modern cloud computing
paradigm that enables execution of user workloads without
regard for the underlying physical and virtual infrastruc-
ture [25]. Function-as-a-Service (FaaS), the most common
example of serverless computing, allows scalable execu-
tion of programming functions via a cloud-hosted platform.
Users register functions, and optionally any system or lan-
guage dependencies needed to execute each function, with
a cloud provider. Authorized individuals may subsequently
execute that function one or many times by passing the
function ID and input arguments to the cloud provider. Users
pay only for the compute resources used (often measured
in execution time) and need not provision, configure, and
manage dedicated servers that otherwise would continuously
run and consume resources.

There are many examples of both commercial and
open-source FaaS providers, including AWS Lambda [26],
Google Cloud Functions [27], Azure Functions [28], and
OpenWhisk [29], among many others [30]. However, these
services are either operated centrally, as is the case with
commercial providers, or must be set up and deployed
locally, typically on a Kubernetes cluster.

funcX [8] is a federated FaaS platform that decouples
the cloud-hosted function registration and management from
function execution. Thus, in this model, users register, share,
and execute functions via the cloud service in much the
same way as a centralized FaaS platform; however, they
may choose on which external endpoint those functions
are executed. Endpoints are lightweight and require only
installation of a Python agent on a remote computer or
device. After requesting that a function is executed on a
remote endpoint, funcX stages function code and input ar-
guments to the endpoint. The endpoint deploys an execution
environment, starts and monitors execution, and returns the
output to the user via the funcX service. funcX also provides
a robust security model using Globus Auth [31], via which
endpoints may be shared with one or more users.

We implement FLoX using funcX because it supports
high-performance function execution across heterogeneous,
distributed compute resources; decouples deployment of FL
software on edge devices from the FL framework; pro-

vides reliability and robustness to overcome intermittent
connectivity of edge devices; and multiplexes execution of
functions on endpoints associated with different users or FL
models.

2.4. Related FL Frameworks

There are several general-purpose and open-source FL
libraries and frameworks, including TensorFlow Federated
(TFF) [5], LEAF [32], and PySyft [6]. These frameworks
are primarily used in local deployments and provide only
building blocks for distributed deployments. For example,
TFF defines an API for remote execution; however, they do
not provide a public implementation of this API.

Flower [7] enables experiments on heterogeneous de-
vices; however, its communication model is based on a
client-server architecture in which users must install and
configure client software, run a persistent server, and man-
age network connectivity. Thus, deploying a FL application
on heterogeneous hardware in diverse physical locations
requires significant effort to configure networking permis-
sions, security certificates, and unique clients for each de-
vice. This makes it difficult both for rapid prototyping and
to manage production deployments at large scale.

Two frameworks closely related to FLoX are λ-FL [33]
and FedLess [24]. λ-FL is a system for serverless FL aggre-
gation that addresses the issue of idle aggregators wasting
resources while waiting for model updates. It deploys FL
models on a Kubernetes cluster and manages the training
and aggregation of models. It does not support execution
on remote edge devices. FedLess implements a distributed
model in which multiple FaaS providers can be used concur-
rently, such as AWS Lambda, OpenWhisk, and OpenFaaS.
However, FedLess requires significant control infrastructure
and is targeted at production deployments across cloud
providers. It assumes use of pre-deployed FaaS systems,
such as OpenWhisk, which are not designed to be deployed
on low-power edge devices. Each of these FaaS systems
is itself an entire system with its own identity and access
management, communication, and execution models.

To the best of our knowledge, FLoX is the first library to
support FL over a federated serverless framework.The goal
of FLoX is to simplify the FL setup and workflow using
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serverless deployment and enable flexibility for models,
clients, datasets, and FL algorithms. To summarize how
FLoX compares in general features and characteristics to
these other frameworks, we adapt a table from Beutel et
al. [7] comparing different FL frameworks in Table 1. We
augment the table with new dimensions “serverless” (lever-
ages a flexible serverless model), “lightweight endpoints”
(requires minimal configuration and management of soft-
ware on remote devices), and “controller-driven” (the FL
application can be driven the FL process for centralized
experimentation rather than by the participating clients).

3. Use Cases

We describe example use cases in science applications
and FL experiments that motivate our design decisions.

3.1. Science Applications

Scientific applications increasingly rely on ML methods
deployed in distributed environments. We describe two ex-
ample use cases in rural settings and sensor networks.

Rural AI. In this application, the goal is to perform FL
across physically separated rural data sources, providing
technologically-enabled insights to otherwise unserved ap-
plications and communities [34]. One example application,
robotic weed spraying, requires that field robots first iden-
tify weeds using powerful, multi-spectrum cameras. Sharing
models trained in different areas can improve performance,
however imagery collected by these robots is large and net-
work connections are unreliable. Further, there is reluctance
to share images between farms.

Sensor networks. The Sage project [35] aims to bring
AI to the edge using smart sensor networks for real-time
monitoring and fine-grained predictive applications. Moti-
vated by a diverse set of ML-driven tasks (e.g., endangered
animal observation, wildfire prediction, flood tracking), Sage
requires infrastructure that allows computation to be per-
formed across sensors, edge devices, and the cloud. Some of
these tasks benefit from FL techniques to train models across
many edge devices, including animal tracking, wildfire iden-
tification, and social distancing analysis. FL is crucial as the
overhead of sending large datasets from low-powered edge
devices can be significant.

3.2. FL Experiments

There is an important, yet unmet, need to provide sys-
tems on which users can develop and evaluate FL methods
in real, rather than simulated, environments.

Comparing FL workflow on different devices. There
is a need to evaluate FL models on real-world testbeds
comprised of distributed and heterogeneous devices. For ex-
ample, many real-world environments contain edge devices
(e.g., Raspberry Pi, Jetson Nano), personal computers, cloud
instances, clusters, and other resources.

Comparing different FL algorithms. An important need
when developing FL algorithms is to be able to implement
and compare possible algorithms easily. For example, one
may choose to compare the performance of Federated Av-
eraging (FedAvg) [1] with FedProx which supports hetero-
geneous network conditions [36] on various datasets and on
different testbeds.

Comparing FL performance with different settings. It
is valuable to be able to change the training parameters of
the FL workflow. For example, users may wish to train a
model on edge devices and compare how the accuracy and
training time change in response to the number of training
samples and epochs sent to each device. Other parameters
may include changing the dataset, model size, participating
devices, optimizers, and more.

4. Implementation

FLoX is an open-source [37], federated-FaaS-based FL
framework that allows users to deploy FL workflows across
heterogeneous devices with custom datasets, algorithms, and
settings. The FL workflow can be managed from any com-
puting device (e.g., laptop, PC, or cloud instance); funcX
manages reliable execution of the training and inference
process as well as communication with edge devices. We
describe our design goals, architecture, and interface.

4.1. Design Goals

Based on the use cases presented above, we identify the
following design goals for FLoX.
• Device-agnostic. There are myriad types of edge devices

with different configurations. Our goal is to support them
regardless of their hardware or operating system.

• Scalable. To enable the use of FL in realistic settings,
FLoX must scale to support many connected devices, large
training data, and complex models.

• Flexible & usable. It must be easy to set up an FL
environment and experiment with different types of ML
workflows, datasets, and settings.

• Controlled access. Access to remote devices must be
secure but also easily shareable.

• Fault-tolerant. Device dropouts is a primary challenge in
edge computing, it is important that FLoX is resilient to
intermittent and permanent failures.

• Centrally managed. For ease of experimentation and
deployment, FL workflows must be able to be launched
from a single, remote computer without requiring manual
device configuration.

• Distribution-first design. A robust FL framework must
enable workflow distribution and modification as easily as
modifying local code, which can be accomplished via a
self-adaptive design using serverless.

4.2. FLoX Workflow

FLoX is implemented as a Python library capable of
training and deploying Tensorflow-based ML models. The
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Figure 1: Sample learning round in a FLoX experiment flow. On the left (yellow) are the actions performed by the FLoX
client library. Here a user invokes the FLoX API, FLoX configures a global model, and packages that model as a function,
and calls funcX to execute the FL process. The top right (blue) shows the funcX authorization process and deployment of
training functions on each of the participating devices. Lower right (green) shows the participating devices training models
on local data) before returning results back to the client library via funcX.

library exposes an interface (see Section 4.3) for users
to define their FL workflow. The FLoX library is then
responsible for managing the deployment of that workflow
on participating devices.

funcX manages the remote execution of FL training
processes. To do so, we register the FL workflow as a
set of funcX functions. The functions are then deployed to
the participating devices and invoked along with the spe-
cific input arguments to configure relevant training process.
funcX manages communication to the device and serializes
input and output data (e.g., configuration parameters, model
weights, metrics). The funcX endpoints manage execution
of their respective functions, optionally deploying functions
inside preconfigured containers.

The typical FL workflow includes two types of actor:
one controller (perhaps implemented in a Jupyter notebook
or deployed as a cloud service) and several participating
devices. The main activities performed by each are:

Controller.

1) Select participating and eligible devices for the training
round from a pool of available devices.

2) Send the training function along with the global model
to the participating devices.

3) Retrieve the trained model (often weights) once the
devices finish local training.

4) Aggregate the received model weights using an FL
aggregation algorithm.

5) Repeat steps 1-4.

Devices.
1) Retrieve local data (e.g., from a sensor stream or a file).
2) Process the data if needed.
3) Train the model on the local data.
4) Send back the updated model weights.

Sample Flow. Figure 1 shows the specific steps involved
in executing the FL workflow with FLoX. 1) the user
calls federated_learning. 2) the function extracts the
weights and architecture of the input ML model. 3) the
input parameters and data are packaged into a single training
function; 4) FuncXExecutor, part of funcX’s Python
SDK, serializes the function and sends it as a task to funcX.
5) Upon receiving the task, funcX first authorizes the user
via Globus Auth and checks whether the user is permitted to
access the endpoints. Shared access to endpoints can be con-
figured using Globus groups. 6) funcX forwards the function
and data to the selected devices. Each device’s funcX end-
point is responsible for managing compute resources and
containers, if configured it may reuse an existing container
or start a new one for executing the training function. 7) The
training function retrieves data from the specified source,
processes it, compiles the model using the global model’s
configuration and weights, and performs training on the
local data. 8) The model updates are returned to the funcX
service that registers task completion and makes the results
available for fetching. 9) federated_learning fetches
the results at the completion of the round and aggregates the
model updates using the weighted FedAvg [1] algorithm. 10)
the centralized model’s weights are updated. 11) the entire
process is repeated for n rounds.
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from flox import federated_learning

federated_learning(
global_model=tf_model,
endpoint_ids=[ep1, ep2, ep3],
loops=10,
epochs=10,
data_source="keras",
keras_dataset="mnist",
num_samples=1000

)

Listing 1: Example invocation of FLoX

Aggregation. For aggregation in FLoX, we implement two
aggregation techniques: standard FedAvg and weighted Fe-
dAvg [1]. Before defining the aggregation technique, we
first note that we denote the parameters of an ML model
trained by device k at time-step t by ωk

t (the aggregated,
global model denoted by ωt). Standard FedAvg is defined as
ωt+1 = (1/K) ·

∑K
k=1 ω

k
t+1 and is suitable for cases where

data are distributed in a balanced way among client devices.
Weighted FedAvg is defined as ωt+1 =

∑K
k=1(nk/n) ·ωk

t+1

where nk is the number of data samples at client device k
and n =

∑K
k=1 nk. This technique is meant for cases when

data distribution among client devices is imbalanced.
The ability to apply a weighted average is important in

environments in which devices have differing capacities or
unbalanced training data. FLoX allows users to configure the
number of training epochs or the number of samples used in
training each endpoint. It may then apply an average with
weighting based on the number of samples or epochs so
as to avoid overvaluing weights from data-sparse endpoints
(addressing the statistical heterogeneity challenge [9]).

FLoX is designed to be extensible such that users can
configure the FedAvg algorithms or implement their own ag-
gregation algorithm. For example, users may want to weight
model updates based on their deviation from the global
model (i.e., diff-aware weighting) or apply a hyperparameter
optimization function to enable weighting of each endpoint
based on the observed effect its contributions have on final
model accuracy. To do so, users may simply replace the
function ID in FLoX’s Python interface to point to their
own aggregation algorithm.

Device configuration. Prior to running the FL workflow,
users must first configure devices to execute funcX func-
tions. This is a one-time cost and requires simply down-
loading (e.g., via pip) and configuring funcx-endpoint,
a lightweight Python agent that enables serverless execution.

4.3. FLoX Interface

The largest hurdle to effective adoption of FL is the
ease of development, configuration, and deployment. Over-
coming these initial steps may pose too large of a barrier
to entry for some even before beginning training of the FL
model itself. To this end, we designed the interface to FLoX

such that users with minimal systems or machine learning
expertise can begin training FL models in minutes.

The core of the library’s interface is a single-line invo-
cation function: federated_learning. Using this func-
tion, the user can specify as little as the model architecture
they wish to use and a list of funcX endpoints to be used
for training. FLoX will otherwise use default arguments and
deploy the FL experiment on those endpoints.

Users can optionally specify the number of FL rounds
(or loops) they wish to train their model, the number of
epochs and samples, as well as the data source (either
globally or by endpoint), and any specifications for data
processing. Users may also specify custom training, ag-
gregation, and data retrieval & processing functions for
advanced use cases.

Listing 1 shows an example of a call that facilitates
10 rounds of FL training on each endpoint with 10 epochs
and 1000 MNIST images. The complete set of configurable
parameters are:
• ML model. The ML model architecture. FLoX currently

only supports Tensorflow/Keras models; however, other
frameworks will be added in the future.

• Data source. The source of data for training. FLoX
currently supports built-in Keras datasets (e.g., MNIST),
locally stored files, or retrieved sensor data.

• Data processing. Custom prepossessing functions used to
prepare edge data for training.

• Training parameters. Standard ML parameters such as
the optimizer, loss function, metrics, etc.

• Aggregation algorithm. The algorithm used to aggregate
models. FLoX offers a simple average and a weighted
average of model updates. Users can provide custom
aggregation algorithms.

• Epochs. The number of epochs to be used in training (set
globally or per endpoint).

• Samples. The number of samples to be required for
training (set globally or per endpoint).

• Loops. The number of FL training rounds.
• Time interval. The interval between FL rounds. For

example, the devices can perform a FL round every hour.
• Evaluation. An optional validation dataset and evaluation

function. FLoX evaluates the aggregated and individual
models if the validation set is provided. Users can provide
custom evaluation datasets and functions.

5. Evaluation

We evaluate FLoX by deploying FL models using three
common ML datasets (fashion-MNIST [38], CIFAR-10 [39],
and Animals-10 [40]) on a heterogeneous and geographi-
cally distributed testbed comprised of ten devices with six
different configurations (see Table 2). We configure each
device with a funcX endpoint with a fork-based executor.

For this work, our testbed includes small edge devices
(e.g., Raspberry Pis) to represent resource-constrained de-
vices that are common in edge computing scenarios (e.g.,
sensors for retrieving real-time data). In prior work we
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TABLE 2: The heterogeneous testbed used for experiments.

Description Hardware Name Count

Edge device (Raspberry Pi 3B) ARM Cortex-A53, 4-core, 1GB pi3 4
Edge device (Raspberry Pi 4B) ARM Cortex-A72, 4-core, 4/8GB pi4 2
Edge device (Jetson Nano 2GB) ARM Cortex-A57, 4-core, Maxwell GPU, 128-core, 2GB jetson 1
Fast desktop (Department Workstation) Intel Core i7-8700, 12-thread, 16GB pc 1 1
Average desktop (Department Workstation) Intel Core i7-6700, 8-thread, 8GB pc 2 1
Slow desktop (Department Workstation) Intel Core i7-3770, 8-thread, 8GB pc 3 1

(a) CIFAR-10 (b) Fashion-MNIST

Figure 2: Validation accuracy of local, aggregated, and centrally trained models on different datasets. (a) uses 400 samples
and 20 epochs per device per training round; (b) uses 200 samples and 20 epochs per device per training round; (c) uses
varying numbers of samples and epochs per training round.

showed that funcX scales well to much more powerful
computing systems, including supercomputers [8].

We summarize the specific experiments and results in
Table 4 and the configurations employed for each dataset
in Table 3. We manage all experiments from a cloud-hosted
Google Colab notebook. For model architectures, we use a
CNN with two convolutional layers (32×3×3 and 64×3×3),
pooling layers after each one, and a final dense classifier for
the fashion-MNIST dataset; we use a CNN with four con-
volutional layers (two 32×3×3 and two 64×3×3), pooling
layers after the second and fourth convolutional layers, a
dense layer with 128 units, and a final dense classifier for
CIFAR-10 and Animals-10. All models are trained with the
ADAM optimizer [41].

5.1. Runtime and Overhead

First, we measure the runtime and overhead of using
FLoX by logging the time spent in each FLoX workflow
stage, per device per round. We run a regular FL workflow
with 100 samples and 10 epochs on the Fashion-MNIST
dataset for 10 rounds. We use timestamps, timers, and funcX
endpoint logs to measure these timing values.

Figure 4 shows that the model training and communi-
cation time are most significant, with less powerful devices
(e.g., Jetson Nano) taking more time than more powerful
devices (e.g., PCs). On the other hand, the aggregation
of model weights takes only 0.3 seconds, and the funcX
overhead is only 0.1 seconds, on average. Thus, the most
optimal way to reduce the round trip time is to deploy
smaller models. They take less time to train, and their data
sizes are smaller, decreasing the communication time.

This experiment demonstrates the small overhead of
FLoX when deployed in a distributed environment. It also
shows that FLoX is able to orchestrate FL over a diverse
set of 10 remote devices, thus addressing the system het-
erogeneity challenge of being device-agnostic (see Sec. 2).
Finally, we also see the impact of individual devices on the
overall performance of the FL workflow—demonstrating the
possible bottlenecks imposed by low-power devices.

5.2. Model Accuracy

As a functional verification of FLoX’s functionality, we
now consider the accuracy of models trained with FLoX.
Specifically, we train a model across our testbed and com-
pare the accuracy of the aggregated FL model, individual
models (trained per device), and a centrally trained model.

We run 20 rounds of learning on 10 devices with a
fixed number of samples and epochs per training round
for the CIFAR-10 and Fashion-MNIST datasets. The data
are sampled randomly on each device, creating the non-IID
data setting. As per the FL workflow, a global model is
deployed to each device, and that model is trained using
only local data. Then, the updated weights are returned to
the server, aggregated using the weighted FedAvg algorithm,
and redeployed to the devices for the next round. The
evaluation of individual and aggregated models is done on
the controller using a validation set.

We performed centralized training as a baseline for
comparison. We fetch the same number of samples from
each device (using a function that simply returns a data
subset), combine the data together to get a total of 2,000
samples for Fashion-MNIST (200 samples from 10 devices)
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(a) Balancing samples (b) Balancing epochs (c) Animals-10

Figure 3: Accuracy vs. time when training on all endpoints for the same duration by balancing the number of samples and
the number of epochs. (a) 100–1000 samples per endpoint; (b) 10–60 epochs per endpoint.

Figure 4: Runtime for each stage of the FL workflow for
each device, averaged over 10 rounds. Training uses 100
samples and 10 epochs on the Fashion MNIST dataset.

and CIFAR-10 (400 samples from 5 devices). We then train
the model on the controller for 200 epochs (20 epochs from
10 devices) for Fashion-MNIST and 100 for CIFAR-10. We
repeat this sequence for 20 rounds. We use the free Google
Colab notebook as the controller, enabling the use of a GPU
to accelerate centralized training.

CIFAR-10. Figure 2a shows the validation accuracy vs.
training time for the centrally trained model, aggregated
model, and individual model weights. On average, the ag-
gregated model’s accuracy is 7 percentage points (pp) higher
than the individual models. The centrally trained model is
4 pp higher than the aggregated model, on average per
round, and it also completed training 24 minutes faster.
However, training the model centrally required more data
to be transferred to the server, which might not be desirable
or feasible due to privacy or dataset sizes in some scenar-
ios. Furthermore, the aggregated FL model (represented by
the blue line in Figure 2a) converged to almost the same
accuracy after 20 rounds, although taking longer.

Fashion-MNIST. Figure 2b shows that the aggregated
model’s accuracy is 2.5 pp higher than the individual mod-

TABLE 3: # of samples/epochs per device group by dataset
for performance-aware balancing experiments.

Dataset Feature Jetson Pi 3 Pi 4 PC

Animals-10 Samples 30 100 200 1000
Epochs 3 5 10 30

Fashion-MNIST (a) Samples 50 100 400 2000
Epochs 10 10 10 10

Fashion-MNIST (b) Samples 200 200 200 200
Epochs 5 10 15 60

els. The centralized model is 4 pp higher than the aggregated
model, on average per round, although in this case the
training took 10 minutes longer than for FL. This can
be explained by long communication overheads that make
aggregating data and training centrally untenable. When the
participating devices have suboptimal network capabilities
(often present in edge environments [34]), FL can enable a
faster training regime.

Given that training the model with FL was faster than
centrally on fashion-MNIST, we see FLoX’s ability to out-
perform centralized training when training data are large or
network bandwidth is low. Specifically, this demonstration
shows that FLoX is able to succeed in these network-
constrained environments, while enabling device-agnostic
and fault-tolerant execution using serverless.

These experiments demonstrate that FLoX effectively
facilitates FL across heterogeneous devices and datasets.

5.3. Performance-Aware Parameterization

We designed FLoX for managing FL in diverse envi-
ronments comprised of devices with varied capacities. To
address this use case, we provide support to vary the number
of samples and epochs considered by each device. In the
following experiments, we use these options to balance the
number of samples and epochs per device based on its
capabilities [42]. We use the fashion-MNIST and Animals-
10 datasets for this experiment.

Animals-10. The Animals-10 dataset contains color images
of 10 different animals, thus presenting a more life-like
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TABLE 4: Summary of centralized and federated learning for Fashion-MNIST, CIFAR-10, Animals-10. Parentheticals
indicate which parameter was used to balance on for endpoint heterogeneity, if any. AFL = Aggregated Federated Learning.

Dataset Training Mode Final
Accuracy

Total Time
(minutes)

Total Data Transferred
per Round per Device (MB)

Total Number of
Samples per Round

Total Number of
Epochs per Round

Fashion-MNIST

AFL 86% 37 0.55 2000 200
Centralized 86% 46 0.63 2000 200
AFL (Samples) 90% 35 0.55 7250 100
AFL (Epochs) 83% 33 0.55 1000 255

CIFAR-10 AFL 58% 49 4.35 2000 100
Centralized 60% 25 4.9 2000 100

Animals-10 AFL (Samples & Epochs) 56% 42 4.35 3830 133
Centralized 58% 54 5.05 3830 133

scenario. To demonstrate FLoX’s flexibility for data sources,
we retrieve the data from local files. We adapt the number
of samples and epochs to each device’s capabilities, as
per Table 3. Figure 3c shows that the aggregated model
outperforms individual models by an average of 5 pp in
validation accuracy, reaching 56% on the last training round.
While centralized training reached the same accuracy 15
minutes faster than FL approach,, the complete training
process took 12 minutes longer for the centralized model
due to initial data transfer overheads.

Fashion-MNIST. We now compare varying the number of
samples and epochs while keeping the other constant for
the Fashion-MNIST dataset. The exact balances used in this
experiment are shown in Table 3. To aggregate the model
weights, we set the weight for the local updates by the
number of samples they were trained on, thus giving more
credibility to updates from devices that have seen more
data. This functionality is built into FLoX, though other
aggregation methods can be used by replacing the serverless
aggregation function in the workflow.

Figure 3a shows the validation accuracy for aggregated
and individual models with balanced number of samples.
Figure 3b shows the same with a balanced number of
epochs. Both aggregated models have higher accuracy than
individual models. However, the balanced samples model
achieves higher accuracy in the same time as the unbalanced
model from Figure 2b, while the balanced epoch model
achieves the same accuracy but in less time.

In future work, we plan to investigate self-adaptation
so that the number of samples and epochs could change
dynamically based on training performance after each round.

5.4. Discussion

We present consolidated results, training times, trans-
ferred data sizes, and other metrics for all experiments in
Table 4. This table demonstrates that FLoX is consistently
able to achieve comparable or superior accuracy compared
to centralized training. Additionally, we can see that this
is achieved while reducing training time by up to 24% or
increasing throughput by more than 80%.

6. Summary

FLoX is a serverless federated learning framework de-
signed to support the deployment of FL models on hetero-
geneous and distributed devices. We described the current
state of federated learning—including the relative sparsity of
other serverless-based FL frameworks—and motivated our
use of serverless with real-world use cases. After describing
our design goals, we illustrated how FLoX enables simple
and seamless FL by using preexisting funcX endpoints to
train and deploy FL models with as little as a single line
of code. We showed that FLoX can represent real-world FL
workflows by using three benchmark datasets and can make
effective use of highly heterogeneous compute resources
to accomplish superior accuracy and training time when
compared with local-only training. We also showed that
FLoX can aggregate compute resources from 10 relatively
low-power devices to achieve model accuracies and training
times comparable to centralized training on a server-class
GPU. Finally, we showed that the overheads of using FLoX
are low, enabling deployment on a broad range of edge
devices. Overall, FLoX demonstrates that simplicity and
usability in federated learning need not come at the cost
of performance or accuracy.
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